Bayesian analysis of hidden Markov structural equation models with an unknown number of hidden states
Hidden Markov models (HMMs) are widely used to analyze heterogeneous longitudinal data owing to their capability to model dynamic heterogeneity. Early advancements in HMMs have mainly assumed that the number of hidden states is fixed and predetermined based on the knowledge of the subjects or a cert...
Saved in:
Published in | Econometrics and statistics Vol. 18; pp. 29 - 43 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hidden Markov models (HMMs) are widely used to analyze heterogeneous longitudinal data owing to their capability to model dynamic heterogeneity. Early advancements in HMMs have mainly assumed that the number of hidden states is fixed and predetermined based on the knowledge of the subjects or a certain criterion. However, as a limitation, this approach determines the number of hidden states on a pairwise basis, which becomes increasingly tedious when the state space is enlarged. Moreover, criterion-based statistics tend to select complex models with overestimated numbers of components in mixture modeling. A full Bayesian approach is developed to analyze hidden Markov structural equation models with an unknown number of hidden states. An efficient and hybrid algorithm that combines the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm, the forward filtering and backward sampling scheme, and the Metropolis-Hastings algorithm is proposed to simultaneously select the number of hidden states and perform parameter estimation. The simulation study shows the satisfactory performance of the proposed method. Two real datasets collected from the UCLA Drug Abuse Research Center and National Longitudinal Survey of Youth are analyzed. |
---|---|
AbstractList | Hidden Markov models (HMMs) are widely used to analyze heterogeneous longitudinal data owing to their capability to model dynamic heterogeneity. Early advancements in HMMs have mainly assumed that the number of hidden states is fixed and predetermined based on the knowledge of the subjects or a certain criterion. However, as a limitation, this approach determines the number of hidden states on a pairwise basis, which becomes increasingly tedious when the state space is enlarged. Moreover, criterion-based statistics tend to select complex models with overestimated numbers of components in mixture modeling. A full Bayesian approach is developed to analyze hidden Markov structural equation models with an unknown number of hidden states. An efficient and hybrid algorithm that combines the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm, the forward filtering and backward sampling scheme, and the Metropolis-Hastings algorithm is proposed to simultaneously select the number of hidden states and perform parameter estimation. The simulation study shows the satisfactory performance of the proposed method. Two real datasets collected from the UCLA Drug Abuse Research Center and National Longitudinal Survey of Youth are analyzed. |
Author | Liu, Hefei Song, Xinyuan |
Author_xml | – sequence: 1 givenname: Hefei surname: Liu fullname: Liu, Hefei organization: School of Statistics, Capital University of Economics and Business, Beijing, China – sequence: 2 givenname: Xinyuan surname: Song fullname: Song, Xinyuan email: xysong@sta.cuhk.edu.hk organization: Department of Statistics, The Chinese University of Hong Kong, Hong Kong |
BookMark | eNqFkL1OwzAUhS1UJErpGzD4BRpunKRJGJCg4k8qYoHZsp1r1W1qg-206tuTUoaKAaZ7lu_o3O-cDKyzSMhlCkkK6fRqmaByIYqEAYMEsgQgOyFDlhdsksGUDY7yGRmHsASAtCogr8ohwTuxw2CEpcKKdhdMoE7ThWkatPRF-JXb0BB9p2LnRUvxsxPROEvXrsE20K2Ji56knV1Zt7XUdmuJ_qiiHxYxXJBTLdqA4587Iu8P92-zp8n89fF5djufqH5d7CfmtaxUiQyqWteylLIQdVbIqimUkLosp7qCnKm81KyRItMAqtZCKZRTpYtsRPJDr_IuBI-af3izFn7HU-B7W3zJD7b43haHjPe2euz6F6ZM_P4zemHa_-CbA9z7wI1Bz4MyaBU2xqOKvHHm74Iv-0qNVg |
CitedBy_id | crossref_primary_10_1016_j_ecosta_2021_03_005 crossref_primary_10_1080_10618600_2023_2231055 crossref_primary_10_1016_j_ecosta_2021_08_004 crossref_primary_10_1109_ACCESS_2021_3097363 crossref_primary_10_1109_ACCESS_2020_3030776 crossref_primary_10_1016_j_ecosta_2023_01_002 |
Cites_doi | 10.1177/0962280217748675 10.1348/000711003321645403 10.1080/10705511.2017.1372688 10.1111/1467-9868.00095 10.1093/biomet/82.4.711 10.1214/ss/1177011136 10.1111/biom.12536 10.1198/016214506000001086 10.1111/1467-9868.00219 10.1007/s00180-007-0097-1 10.1002/sim.8513 10.1002/sim.8051 10.1111/j.1751-5823.2011.00160.x 10.1214/06-BA122 10.1198/016214504000001592 10.1080/10705511.2017.1364968 10.1080/00273171.2013.787870 10.1016/j.csda.2008.10.022 10.1093/biostatistics/kxm049 10.1198/016214506000000302 |
ContentType | Journal Article |
Copyright | 2020 EcoSta Econometrics and Statistics |
Copyright_xml | – notice: 2020 EcoSta Econometrics and Statistics |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ecosta.2020.03.003 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-3062 |
EndPage | 43 |
ExternalDocumentID | 10_1016_j_ecosta_2020_03_003 S2452306220300356 |
GroupedDBID | --M 0R~ AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AAXUO ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV AEBSH AEYQN AFKWA AFTJW AGTHC AGUBO AIEXJ AIIAU AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM M41 O9- RIG ROL SPC SPCBC SSB SSF SSW SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-3049b8c7e2089f9b7bb5a935b8d5cabf776f8042c47f2dba3f00c9facceb6cf53 |
IEDL.DBID | AIKHN |
ISSN | 2452-3062 |
IngestDate | Thu Apr 24 23:00:07 EDT 2025 Tue Jul 01 02:02:17 EDT 2025 Fri Feb 23 02:46:47 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | Hidden Markov model Latent variables RJMCMC algorithm Structural equation model Multivariate longitudinal data |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-3049b8c7e2089f9b7bb5a935b8d5cabf776f8042c47f2dba3f00c9facceb6cf53 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1016_j_ecosta_2020_03_003 crossref_citationtrail_10_1016_j_ecosta_2020_03_003 elsevier_sciencedirect_doi_10_1016_j_ecosta_2020_03_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | Econometrics and statistics |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bollen (bib0003) 1989 Richardson, Green (bib0021) 1997; 59 Lee (bib0014) 2007 Teh, Jordan, Beal, Blei (bib0028) 2006; 101 Robert, Rydén, Titterington (bib0022) 2000; 62 Cappé, Moulines, Rydén (bib0006) 2005 Bartolucci, Farcomeni, Pennoni (bib0002) 2013 Liu, Song (bib0017) 2018; 25 Song, Lee (bib0025) 2012 Zhou, Kang, Song (bib0029) 2020; 39 Green (bib0011) 1995; 82 Papastamoulis, Iliopoulos (bib0019) 2009; 53 Boys, Henderson (bib0004) 2001; 33 Altman (bib0001) 2007; 102 Lee, Song (bib0016) 2003; 56 Plummer (bib0020) 2008; 9 Celeux, Forbes, Robert, Titterington (bib0008) 2006; 1 Gelman, Rubin (bib0010) 1992; 7 Spiegelhalter, Thomas, Best, Lunn (bib0027) 2003 Celeux, Durand (bib0007) 2008; 23 Brooks, Giudici (bib0005) 1998; 6 Kang, Song, Hu, Zhu (bib0013) 2019; 38 Scott, James, Sugar (bib0023) 2005; 100 Chow, Grimm, Filteau, Dolan, Mc Ardle (bib0009) 2013; 48 Maruotti (bib0018) 2011; 79 Song, Xia, Zhu (bib0026) 2017; 73 Kang, Cai, Song, Zhu (bib0012) 2019; 28 Song, Kang, Ouyang, Jiang, Cai (bib0024) 2018; 25 Zhou (10.1016/j.ecosta.2020.03.003_bib0029) 2020; 39 Liu (10.1016/j.ecosta.2020.03.003_bib0017) 2018; 25 Teh (10.1016/j.ecosta.2020.03.003_bib0028) 2006; 101 Papastamoulis (10.1016/j.ecosta.2020.03.003_bib0019) 2009; 53 Bartolucci (10.1016/j.ecosta.2020.03.003_bib0002) 2013 Lee (10.1016/j.ecosta.2020.03.003_bib0016) 2003; 56 Celeux (10.1016/j.ecosta.2020.03.003_bib0008) 2006; 1 Song (10.1016/j.ecosta.2020.03.003_bib0024) 2018; 25 Gelman (10.1016/j.ecosta.2020.03.003_bib0010) 1992; 7 Maruotti (10.1016/j.ecosta.2020.03.003_bib0018) 2011; 79 Spiegelhalter (10.1016/j.ecosta.2020.03.003_bib0027) 2003 Lee (10.1016/j.ecosta.2020.03.003_bib0014) 2007 Boys (10.1016/j.ecosta.2020.03.003_bib0004) 2001; 33 Richardson (10.1016/j.ecosta.2020.03.003_bib0021) 1997; 59 Altman (10.1016/j.ecosta.2020.03.003_bib0001) 2007; 102 Bollen (10.1016/j.ecosta.2020.03.003_bib0003) 1989 Plummer (10.1016/j.ecosta.2020.03.003_bib0020) 2008; 9 Robert (10.1016/j.ecosta.2020.03.003_bib0022) 2000; 62 Chow (10.1016/j.ecosta.2020.03.003_bib0009) 2013; 48 Brooks (10.1016/j.ecosta.2020.03.003_bib0005) 1998; 6 Scott (10.1016/j.ecosta.2020.03.003_bib0023) 2005; 100 Celeux (10.1016/j.ecosta.2020.03.003_bib0007) 2008; 23 Cappé (10.1016/j.ecosta.2020.03.003_bib0006) 2005 Song (10.1016/j.ecosta.2020.03.003_bib0025) 2012 Kang (10.1016/j.ecosta.2020.03.003_bib0012) 2019; 28 Green (10.1016/j.ecosta.2020.03.003_bib0011) 1995; 82 Song (10.1016/j.ecosta.2020.03.003_bib0026) 2017; 73 Kang (10.1016/j.ecosta.2020.03.003_bib0013) 2019; 38 |
References_xml | – volume: 53 start-page: 900 year: 2009 end-page: 911 ident: bib0019 article-title: Reversible jump MCMC in mixtures of normal distributions with the same component means publication-title: Computational Statistics and Data Analysis – volume: 62 start-page: 57 year: 2000 end-page: 75 ident: bib0022 article-title: Bayesian inference in hidden markov models through the reversible jump markov chain monte carlo method publication-title: Journal of the Royal Statistical Society, Series B – year: 1989 ident: bib0003 article-title: Structural Equations with Latent Variables – volume: 101 start-page: 1566 year: 2006 end-page: 1581 ident: bib0028 article-title: Hierarchical dirichlet processes publication-title: Journal of the American Statistical Association – year: 2013 ident: bib0002 article-title: Latent Markov Models for Longitudinal Data – volume: 33 start-page: 35 year: 2001 end-page: 49 ident: bib0004 article-title: A comparison of reversible jump MCMC algorithms for DNA sequence segmentation using hidden Markov models publication-title: Comp. Sci. and Statist – volume: 38 start-page: 1634 year: 2019 end-page: 1650 ident: bib0013 article-title: Bayesian adaptive group lasso with semiparametric hidden markov models publication-title: Statistics in Medicine – volume: 59 start-page: 731 year: 1997 end-page: 792 ident: bib0021 article-title: On bayesian analysis of mixtures with an unknown number of components(with discussion) publication-title: Journal of the Royal Statistical Society, Series B – volume: 100 start-page: 359 year: 2005 end-page: 369 ident: bib0023 article-title: Hidden markov models for longitudinal comparisons publication-title: Journal of the American Statistical Association – volume: 82 start-page: 711 year: 1995 end-page: 732 ident: bib0011 article-title: Reversible jump markov chain mente carlo computation and bayesian model determination publication-title: Biometrika – year: 2003 ident: bib0027 article-title: WinBUGS User Manual. Version 1.4 – volume: 6 start-page: 1 year: 1998 end-page: 9 ident: bib0005 article-title: Convergency assessment for reversible jump MCMC simulations publication-title: Bayesian Statistics – volume: 28 start-page: 986 year: 2019 end-page: 1002 ident: bib0012 article-title: Bayesian hidden markov models for delineating the pathology of alzheimer’s disease publication-title: Statistical Methods in Medical Research – volume: 56 start-page: 145 year: 2003 end-page: 165 ident: bib0016 article-title: Bayesian model selection for mixture of structure equation models with an unknown number of components publication-title: British Journal of Mathematical and Statistical Psychology – volume: 79 start-page: 427 year: 2011 end-page: 454 ident: bib0018 article-title: Mixed hidden markov models for longitudinal data: An overview publication-title: International Statistical Review – volume: 102 start-page: 201 year: 2007 end-page: 210 ident: bib0001 article-title: Mixed hidden markov models publication-title: Journal of the American Statistical Association – volume: 39 start-page: 1801 year: 2020 end-page: 1816 ident: bib0029 article-title: Two-part hidden markov models for semicontinuous longitudinal data with nonignorable missing covariates publication-title: Statistics in Medicine – year: 2005 ident: bib0006 article-title: Inference in Hidden Markov Models – year: 2007 ident: bib0014 article-title: Structural Equation Modeling: A Bayesian Approach – year: 2012 ident: bib0025 article-title: Basic and advanced bayesian structural equation modeling: publication-title: With applications in the medical and behavioral sciences – volume: 23 start-page: 541 year: 2008 end-page: 564 ident: bib0007 article-title: Selecting hidden markov model state number with cross-validated likelihood publication-title: Computational Statistics – volume: 73 start-page: 313 year: 2017 end-page: 323 ident: bib0026 article-title: Hidden markov latent variable models with multivariate longitudinal data publication-title: Biometrics – volume: 9 start-page: 523 year: 2008 end-page: 539 ident: bib0020 article-title: Penalized loss functions for bayesian model comparison publication-title: Biostatistics – volume: 25 start-page: 1 year: 2018 end-page: 20 ident: bib0024 article-title: Bayesian analysis of semiparametric hidden markov models with latent variables publication-title: Structural Equation Modeling: A Multidisciplinary Journal – volume: 48 start-page: 463 year: 2013 end-page: 502 ident: bib0009 article-title: Regime-switching bivariate dual change score model publication-title: Multivariate Behavioral Research – volume: 1 start-page: 651 year: 2006 end-page: 674 ident: bib0008 article-title: Deviance information criteria for missing data models publication-title: Bayesian Analysis – volume: 25 start-page: 41 year: 2018 end-page: 55 ident: bib0017 article-title: Bayesian analysis of mixture structural equation models with an unknown number of components publication-title: Structural Equation Modeling: A Multidisciplinary Journal – volume: 7 start-page: 457 year: 1992 end-page: 511 ident: bib0010 article-title: Inference from iterative simulations using multiple sequences publication-title: Statistical Science – volume: 28 start-page: 986 year: 2019 ident: 10.1016/j.ecosta.2020.03.003_bib0012 article-title: Bayesian hidden markov models for delineating the pathology of alzheimer’s disease publication-title: Statistical Methods in Medical Research doi: 10.1177/0962280217748675 – volume: 56 start-page: 145 year: 2003 ident: 10.1016/j.ecosta.2020.03.003_bib0016 article-title: Bayesian model selection for mixture of structure equation models with an unknown number of components publication-title: British Journal of Mathematical and Statistical Psychology doi: 10.1348/000711003321645403 – volume: 25 start-page: 41 year: 2018 ident: 10.1016/j.ecosta.2020.03.003_bib0017 article-title: Bayesian analysis of mixture structural equation models with an unknown number of components publication-title: Structural Equation Modeling: A Multidisciplinary Journal doi: 10.1080/10705511.2017.1372688 – year: 2013 ident: 10.1016/j.ecosta.2020.03.003_bib0002 – volume: 59 start-page: 731 year: 1997 ident: 10.1016/j.ecosta.2020.03.003_bib0021 article-title: On bayesian analysis of mixtures with an unknown number of components(with discussion) publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/1467-9868.00095 – volume: 82 start-page: 711 year: 1995 ident: 10.1016/j.ecosta.2020.03.003_bib0011 article-title: Reversible jump markov chain mente carlo computation and bayesian model determination publication-title: Biometrika doi: 10.1093/biomet/82.4.711 – volume: 7 start-page: 457 year: 1992 ident: 10.1016/j.ecosta.2020.03.003_bib0010 article-title: Inference from iterative simulations using multiple sequences publication-title: Statistical Science doi: 10.1214/ss/1177011136 – volume: 73 start-page: 313 year: 2017 ident: 10.1016/j.ecosta.2020.03.003_bib0026 article-title: Hidden markov latent variable models with multivariate longitudinal data publication-title: Biometrics doi: 10.1111/biom.12536 – year: 2003 ident: 10.1016/j.ecosta.2020.03.003_bib0027 – volume: 102 start-page: 201 year: 2007 ident: 10.1016/j.ecosta.2020.03.003_bib0001 article-title: Mixed hidden markov models publication-title: Journal of the American Statistical Association doi: 10.1198/016214506000001086 – volume: 62 start-page: 57 year: 2000 ident: 10.1016/j.ecosta.2020.03.003_bib0022 article-title: Bayesian inference in hidden markov models through the reversible jump markov chain monte carlo method publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/1467-9868.00219 – year: 2012 ident: 10.1016/j.ecosta.2020.03.003_bib0025 article-title: Basic and advanced bayesian structural equation modeling: – volume: 23 start-page: 541 year: 2008 ident: 10.1016/j.ecosta.2020.03.003_bib0007 article-title: Selecting hidden markov model state number with cross-validated likelihood publication-title: Computational Statistics doi: 10.1007/s00180-007-0097-1 – volume: 39 start-page: 1801 year: 2020 ident: 10.1016/j.ecosta.2020.03.003_bib0029 article-title: Two-part hidden markov models for semicontinuous longitudinal data with nonignorable missing covariates publication-title: Statistics in Medicine doi: 10.1002/sim.8513 – volume: 38 start-page: 1634 year: 2019 ident: 10.1016/j.ecosta.2020.03.003_bib0013 article-title: Bayesian adaptive group lasso with semiparametric hidden markov models publication-title: Statistics in Medicine doi: 10.1002/sim.8051 – year: 2007 ident: 10.1016/j.ecosta.2020.03.003_bib0014 – volume: 79 start-page: 427 year: 2011 ident: 10.1016/j.ecosta.2020.03.003_bib0018 article-title: Mixed hidden markov models for longitudinal data: An overview publication-title: International Statistical Review doi: 10.1111/j.1751-5823.2011.00160.x – volume: 6 start-page: 1 year: 1998 ident: 10.1016/j.ecosta.2020.03.003_bib0005 article-title: Convergency assessment for reversible jump MCMC simulations publication-title: Bayesian Statistics – year: 2005 ident: 10.1016/j.ecosta.2020.03.003_bib0006 – volume: 1 start-page: 651 year: 2006 ident: 10.1016/j.ecosta.2020.03.003_bib0008 article-title: Deviance information criteria for missing data models publication-title: Bayesian Analysis doi: 10.1214/06-BA122 – volume: 33 start-page: 35 year: 2001 ident: 10.1016/j.ecosta.2020.03.003_bib0004 article-title: A comparison of reversible jump MCMC algorithms for DNA sequence segmentation using hidden Markov models publication-title: Comp. Sci. and Statist – volume: 100 start-page: 359 year: 2005 ident: 10.1016/j.ecosta.2020.03.003_bib0023 article-title: Hidden markov models for longitudinal comparisons publication-title: Journal of the American Statistical Association doi: 10.1198/016214504000001592 – volume: 25 start-page: 1 year: 2018 ident: 10.1016/j.ecosta.2020.03.003_bib0024 article-title: Bayesian analysis of semiparametric hidden markov models with latent variables publication-title: Structural Equation Modeling: A Multidisciplinary Journal doi: 10.1080/10705511.2017.1364968 – volume: 48 start-page: 463 year: 2013 ident: 10.1016/j.ecosta.2020.03.003_bib0009 article-title: Regime-switching bivariate dual change score model publication-title: Multivariate Behavioral Research doi: 10.1080/00273171.2013.787870 – volume: 53 start-page: 900 year: 2009 ident: 10.1016/j.ecosta.2020.03.003_bib0019 article-title: Reversible jump MCMC in mixtures of normal distributions with the same component means publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2008.10.022 – year: 1989 ident: 10.1016/j.ecosta.2020.03.003_bib0003 – volume: 9 start-page: 523 year: 2008 ident: 10.1016/j.ecosta.2020.03.003_bib0020 article-title: Penalized loss functions for bayesian model comparison publication-title: Biostatistics doi: 10.1093/biostatistics/kxm049 – volume: 101 start-page: 1566 year: 2006 ident: 10.1016/j.ecosta.2020.03.003_bib0028 article-title: Hierarchical dirichlet processes publication-title: Journal of the American Statistical Association doi: 10.1198/016214506000000302 |
SSID | ssj0001850487 |
Score | 2.1963556 |
Snippet | Hidden Markov models (HMMs) are widely used to analyze heterogeneous longitudinal data owing to their capability to model dynamic heterogeneity. Early... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 29 |
SubjectTerms | Hidden Markov model Latent variables Multivariate longitudinal data RJMCMC algorithm Structural equation model |
Title | Bayesian analysis of hidden Markov structural equation models with an unknown number of hidden states |
URI | https://dx.doi.org/10.1016/j.ecosta.2020.03.003 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA5ze_FFFBV_kwdfw9ImaZvHORzT4R7U4d5KkiY4kW6yKfjfm2tanSAKPhVKv9Jer3eXy913CJ3riAutlCTKckq4KSKiOEuIld73FjShppoZeTNOhhN-PRXTFuo3vTBQVlnb_mDTK2tdn-nW0uwuZrPuHewZ-oA3jr2eUiaSDdSJmUy8and6V6Ph-CvVkgmvp9A4DRACmKaJrqr08us8H4n5tWJMA-Ep-9lJrTmewTbaqiNG3AsPtYNattxF9kK9W-h_xKpmFcFzhx-BD6TE0H8zf8OBGhZoNbB9CYzeuBp8s8SQffVI_FpCTq3EYS7I2i2qPqPlHpoMLu_7Q1JPTCDGv9WKwJ6ZzkxqY5pJJ3WqtVCSCZ0Vwijt0jRxmf9NDU9dXGjFHKVGOmWM1Ylxgu2jdjkv7QHCJmZWRsqvJqjj0ts1Vc0AZ0IWEXepPESsEVFuajpxmGrxnDd1Y095EGwOgs0pAxrSQ0Q-UYtAp_HH9Wkj_fybWuTe4v-KPPo38hhtxlC4UpXnnKC2_1j21EceK31WaxYcR7cPow98Edow |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zO-hFFBXnZw5ew9KmaZvjHI7OfVzcYLeSpAlOpJtsCv735vVDJ4iC19JX2pfX95G83-8hdKO8gCspBZEmoCTQmUdkwEJihIu9GQ2pLmZGjidhMgvu53zeQL0aCwNtlZXvL3164a2rK51Km53VYtF5gDNDl_D6vrNTyni4g1rATsWbqNUdDJPJ11ZLzJ2dAnAaRAjI1CC6otPL1XkuE3O1ok9LwlP2c5DaCjz9A7RfZYy4W77UIWqY_AiZW_luAP-IZcUqgpcWPwIfSI4Bf7N8wyU1LNBqYPNSMnrjYvDNGsPuq5PErznsqeW4nAuy9YgCZ7Q-RrP-3bSXkGpiAtHuqzYEzsxUrCPj01hYoSKluBSMqzjjWiobRaGN3W-qg8j6mZLMUqqFlVobFWrL2Qlq5svcnCKsfWaEJ101QW0gnF-TxQxwxkXmBTYSbcRqFaW6ohOHqRbPad039pSWik1BsSllQEPaRuRTalXSafxxf1RrP_1mFqnz-L9Knv1b8hrtJtPxKB0NJsNztOdDE0vRqnOBmm7hzKXLQjbqqrKyD-9v23M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+analysis+of+hidden+Markov+structural+equation+models+with+an+unknown+number+of+hidden+states&rft.jtitle=Econometrics+and+statistics&rft.au=Liu%2C+Hefei&rft.au=Song%2C+Xinyuan&rft.date=2021-04-01&rft.issn=2452-3062&rft.eissn=2452-3062&rft.volume=18&rft.spage=29&rft.epage=43&rft_id=info:doi/10.1016%2Fj.ecosta.2020.03.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecosta_2020_03_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-3062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-3062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-3062&client=summon |