Bayesian analysis of hidden Markov structural equation models with an unknown number of hidden states

Hidden Markov models (HMMs) are widely used to analyze heterogeneous longitudinal data owing to their capability to model dynamic heterogeneity. Early advancements in HMMs have mainly assumed that the number of hidden states is fixed and predetermined based on the knowledge of the subjects or a cert...

Full description

Saved in:
Bibliographic Details
Published inEconometrics and statistics Vol. 18; pp. 29 - 43
Main Authors Liu, Hefei, Song, Xinyuan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hidden Markov models (HMMs) are widely used to analyze heterogeneous longitudinal data owing to their capability to model dynamic heterogeneity. Early advancements in HMMs have mainly assumed that the number of hidden states is fixed and predetermined based on the knowledge of the subjects or a certain criterion. However, as a limitation, this approach determines the number of hidden states on a pairwise basis, which becomes increasingly tedious when the state space is enlarged. Moreover, criterion-based statistics tend to select complex models with overestimated numbers of components in mixture modeling. A full Bayesian approach is developed to analyze hidden Markov structural equation models with an unknown number of hidden states. An efficient and hybrid algorithm that combines the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm, the forward filtering and backward sampling scheme, and the Metropolis-Hastings algorithm is proposed to simultaneously select the number of hidden states and perform parameter estimation. The simulation study shows the satisfactory performance of the proposed method. Two real datasets collected from the UCLA Drug Abuse Research Center and National Longitudinal Survey of Youth are analyzed.
AbstractList Hidden Markov models (HMMs) are widely used to analyze heterogeneous longitudinal data owing to their capability to model dynamic heterogeneity. Early advancements in HMMs have mainly assumed that the number of hidden states is fixed and predetermined based on the knowledge of the subjects or a certain criterion. However, as a limitation, this approach determines the number of hidden states on a pairwise basis, which becomes increasingly tedious when the state space is enlarged. Moreover, criterion-based statistics tend to select complex models with overestimated numbers of components in mixture modeling. A full Bayesian approach is developed to analyze hidden Markov structural equation models with an unknown number of hidden states. An efficient and hybrid algorithm that combines the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm, the forward filtering and backward sampling scheme, and the Metropolis-Hastings algorithm is proposed to simultaneously select the number of hidden states and perform parameter estimation. The simulation study shows the satisfactory performance of the proposed method. Two real datasets collected from the UCLA Drug Abuse Research Center and National Longitudinal Survey of Youth are analyzed.
Author Liu, Hefei
Song, Xinyuan
Author_xml – sequence: 1
  givenname: Hefei
  surname: Liu
  fullname: Liu, Hefei
  organization: School of Statistics, Capital University of Economics and Business, Beijing, China
– sequence: 2
  givenname: Xinyuan
  surname: Song
  fullname: Song, Xinyuan
  email: xysong@sta.cuhk.edu.hk
  organization: Department of Statistics, The Chinese University of Hong Kong, Hong Kong
BookMark eNqFkL1OwzAUhS1UJErpGzD4BRpunKRJGJCg4k8qYoHZsp1r1W1qg-206tuTUoaKAaZ7lu_o3O-cDKyzSMhlCkkK6fRqmaByIYqEAYMEsgQgOyFDlhdsksGUDY7yGRmHsASAtCogr8ohwTuxw2CEpcKKdhdMoE7ThWkatPRF-JXb0BB9p2LnRUvxsxPROEvXrsE20K2Ji56knV1Zt7XUdmuJ_qiiHxYxXJBTLdqA4587Iu8P92-zp8n89fF5djufqH5d7CfmtaxUiQyqWteylLIQdVbIqimUkLosp7qCnKm81KyRItMAqtZCKZRTpYtsRPJDr_IuBI-af3izFn7HU-B7W3zJD7b43haHjPe2euz6F6ZM_P4zemHa_-CbA9z7wI1Bz4MyaBU2xqOKvHHm74Iv-0qNVg
CitedBy_id crossref_primary_10_1016_j_ecosta_2021_03_005
crossref_primary_10_1080_10618600_2023_2231055
crossref_primary_10_1016_j_ecosta_2021_08_004
crossref_primary_10_1109_ACCESS_2021_3097363
crossref_primary_10_1109_ACCESS_2020_3030776
crossref_primary_10_1016_j_ecosta_2023_01_002
Cites_doi 10.1177/0962280217748675
10.1348/000711003321645403
10.1080/10705511.2017.1372688
10.1111/1467-9868.00095
10.1093/biomet/82.4.711
10.1214/ss/1177011136
10.1111/biom.12536
10.1198/016214506000001086
10.1111/1467-9868.00219
10.1007/s00180-007-0097-1
10.1002/sim.8513
10.1002/sim.8051
10.1111/j.1751-5823.2011.00160.x
10.1214/06-BA122
10.1198/016214504000001592
10.1080/10705511.2017.1364968
10.1080/00273171.2013.787870
10.1016/j.csda.2008.10.022
10.1093/biostatistics/kxm049
10.1198/016214506000000302
ContentType Journal Article
Copyright 2020 EcoSta Econometrics and Statistics
Copyright_xml – notice: 2020 EcoSta Econometrics and Statistics
DBID AAYXX
CITATION
DOI 10.1016/j.ecosta.2020.03.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2452-3062
EndPage 43
ExternalDocumentID 10_1016_j_ecosta_2020_03_003
S2452306220300356
GroupedDBID --M
0R~
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AEYQN
AFKWA
AFTJW
AGTHC
AGUBO
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
M41
O9-
RIG
ROL
SPC
SPCBC
SSB
SSF
SSW
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-3049b8c7e2089f9b7bb5a935b8d5cabf776f8042c47f2dba3f00c9facceb6cf53
IEDL.DBID AIKHN
ISSN 2452-3062
IngestDate Thu Apr 24 23:00:07 EDT 2025
Tue Jul 01 02:02:17 EDT 2025
Fri Feb 23 02:46:47 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords Hidden Markov model
Latent variables
RJMCMC algorithm
Structural equation model
Multivariate longitudinal data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-3049b8c7e2089f9b7bb5a935b8d5cabf776f8042c47f2dba3f00c9facceb6cf53
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_ecosta_2020_03_003
crossref_citationtrail_10_1016_j_ecosta_2020_03_003
elsevier_sciencedirect_doi_10_1016_j_ecosta_2020_03_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Econometrics and statistics
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bollen (bib0003) 1989
Richardson, Green (bib0021) 1997; 59
Lee (bib0014) 2007
Teh, Jordan, Beal, Blei (bib0028) 2006; 101
Robert, Rydén, Titterington (bib0022) 2000; 62
Cappé, Moulines, Rydén (bib0006) 2005
Bartolucci, Farcomeni, Pennoni (bib0002) 2013
Liu, Song (bib0017) 2018; 25
Song, Lee (bib0025) 2012
Zhou, Kang, Song (bib0029) 2020; 39
Green (bib0011) 1995; 82
Papastamoulis, Iliopoulos (bib0019) 2009; 53
Boys, Henderson (bib0004) 2001; 33
Altman (bib0001) 2007; 102
Lee, Song (bib0016) 2003; 56
Plummer (bib0020) 2008; 9
Celeux, Forbes, Robert, Titterington (bib0008) 2006; 1
Gelman, Rubin (bib0010) 1992; 7
Spiegelhalter, Thomas, Best, Lunn (bib0027) 2003
Celeux, Durand (bib0007) 2008; 23
Brooks, Giudici (bib0005) 1998; 6
Kang, Song, Hu, Zhu (bib0013) 2019; 38
Scott, James, Sugar (bib0023) 2005; 100
Chow, Grimm, Filteau, Dolan, Mc Ardle (bib0009) 2013; 48
Maruotti (bib0018) 2011; 79
Song, Xia, Zhu (bib0026) 2017; 73
Kang, Cai, Song, Zhu (bib0012) 2019; 28
Song, Kang, Ouyang, Jiang, Cai (bib0024) 2018; 25
Zhou (10.1016/j.ecosta.2020.03.003_bib0029) 2020; 39
Liu (10.1016/j.ecosta.2020.03.003_bib0017) 2018; 25
Teh (10.1016/j.ecosta.2020.03.003_bib0028) 2006; 101
Papastamoulis (10.1016/j.ecosta.2020.03.003_bib0019) 2009; 53
Bartolucci (10.1016/j.ecosta.2020.03.003_bib0002) 2013
Lee (10.1016/j.ecosta.2020.03.003_bib0016) 2003; 56
Celeux (10.1016/j.ecosta.2020.03.003_bib0008) 2006; 1
Song (10.1016/j.ecosta.2020.03.003_bib0024) 2018; 25
Gelman (10.1016/j.ecosta.2020.03.003_bib0010) 1992; 7
Maruotti (10.1016/j.ecosta.2020.03.003_bib0018) 2011; 79
Spiegelhalter (10.1016/j.ecosta.2020.03.003_bib0027) 2003
Lee (10.1016/j.ecosta.2020.03.003_bib0014) 2007
Boys (10.1016/j.ecosta.2020.03.003_bib0004) 2001; 33
Richardson (10.1016/j.ecosta.2020.03.003_bib0021) 1997; 59
Altman (10.1016/j.ecosta.2020.03.003_bib0001) 2007; 102
Bollen (10.1016/j.ecosta.2020.03.003_bib0003) 1989
Plummer (10.1016/j.ecosta.2020.03.003_bib0020) 2008; 9
Robert (10.1016/j.ecosta.2020.03.003_bib0022) 2000; 62
Chow (10.1016/j.ecosta.2020.03.003_bib0009) 2013; 48
Brooks (10.1016/j.ecosta.2020.03.003_bib0005) 1998; 6
Scott (10.1016/j.ecosta.2020.03.003_bib0023) 2005; 100
Celeux (10.1016/j.ecosta.2020.03.003_bib0007) 2008; 23
Cappé (10.1016/j.ecosta.2020.03.003_bib0006) 2005
Song (10.1016/j.ecosta.2020.03.003_bib0025) 2012
Kang (10.1016/j.ecosta.2020.03.003_bib0012) 2019; 28
Green (10.1016/j.ecosta.2020.03.003_bib0011) 1995; 82
Song (10.1016/j.ecosta.2020.03.003_bib0026) 2017; 73
Kang (10.1016/j.ecosta.2020.03.003_bib0013) 2019; 38
References_xml – volume: 53
  start-page: 900
  year: 2009
  end-page: 911
  ident: bib0019
  article-title: Reversible jump MCMC in mixtures of normal distributions with the same component means
  publication-title: Computational Statistics and Data Analysis
– volume: 62
  start-page: 57
  year: 2000
  end-page: 75
  ident: bib0022
  article-title: Bayesian inference in hidden markov models through the reversible jump markov chain monte carlo method
  publication-title: Journal of the Royal Statistical Society, Series B
– year: 1989
  ident: bib0003
  article-title: Structural Equations with Latent Variables
– volume: 101
  start-page: 1566
  year: 2006
  end-page: 1581
  ident: bib0028
  article-title: Hierarchical dirichlet processes
  publication-title: Journal of the American Statistical Association
– year: 2013
  ident: bib0002
  article-title: Latent Markov Models for Longitudinal Data
– volume: 33
  start-page: 35
  year: 2001
  end-page: 49
  ident: bib0004
  article-title: A comparison of reversible jump MCMC algorithms for DNA sequence segmentation using hidden Markov models
  publication-title: Comp. Sci. and Statist
– volume: 38
  start-page: 1634
  year: 2019
  end-page: 1650
  ident: bib0013
  article-title: Bayesian adaptive group lasso with semiparametric hidden markov models
  publication-title: Statistics in Medicine
– volume: 59
  start-page: 731
  year: 1997
  end-page: 792
  ident: bib0021
  article-title: On bayesian analysis of mixtures with an unknown number of components(with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 100
  start-page: 359
  year: 2005
  end-page: 369
  ident: bib0023
  article-title: Hidden markov models for longitudinal comparisons
  publication-title: Journal of the American Statistical Association
– volume: 82
  start-page: 711
  year: 1995
  end-page: 732
  ident: bib0011
  article-title: Reversible jump markov chain mente carlo computation and bayesian model determination
  publication-title: Biometrika
– year: 2003
  ident: bib0027
  article-title: WinBUGS User Manual. Version 1.4
– volume: 6
  start-page: 1
  year: 1998
  end-page: 9
  ident: bib0005
  article-title: Convergency assessment for reversible jump MCMC simulations
  publication-title: Bayesian Statistics
– volume: 28
  start-page: 986
  year: 2019
  end-page: 1002
  ident: bib0012
  article-title: Bayesian hidden markov models for delineating the pathology of alzheimer’s disease
  publication-title: Statistical Methods in Medical Research
– volume: 56
  start-page: 145
  year: 2003
  end-page: 165
  ident: bib0016
  article-title: Bayesian model selection for mixture of structure equation models with an unknown number of components
  publication-title: British Journal of Mathematical and Statistical Psychology
– volume: 79
  start-page: 427
  year: 2011
  end-page: 454
  ident: bib0018
  article-title: Mixed hidden markov models for longitudinal data: An overview
  publication-title: International Statistical Review
– volume: 102
  start-page: 201
  year: 2007
  end-page: 210
  ident: bib0001
  article-title: Mixed hidden markov models
  publication-title: Journal of the American Statistical Association
– volume: 39
  start-page: 1801
  year: 2020
  end-page: 1816
  ident: bib0029
  article-title: Two-part hidden markov models for semicontinuous longitudinal data with nonignorable missing covariates
  publication-title: Statistics in Medicine
– year: 2005
  ident: bib0006
  article-title: Inference in Hidden Markov Models
– year: 2007
  ident: bib0014
  article-title: Structural Equation Modeling: A Bayesian Approach
– year: 2012
  ident: bib0025
  article-title: Basic and advanced bayesian structural equation modeling:
  publication-title: With applications in the medical and behavioral sciences
– volume: 23
  start-page: 541
  year: 2008
  end-page: 564
  ident: bib0007
  article-title: Selecting hidden markov model state number with cross-validated likelihood
  publication-title: Computational Statistics
– volume: 73
  start-page: 313
  year: 2017
  end-page: 323
  ident: bib0026
  article-title: Hidden markov latent variable models with multivariate longitudinal data
  publication-title: Biometrics
– volume: 9
  start-page: 523
  year: 2008
  end-page: 539
  ident: bib0020
  article-title: Penalized loss functions for bayesian model comparison
  publication-title: Biostatistics
– volume: 25
  start-page: 1
  year: 2018
  end-page: 20
  ident: bib0024
  article-title: Bayesian analysis of semiparametric hidden markov models with latent variables
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
– volume: 48
  start-page: 463
  year: 2013
  end-page: 502
  ident: bib0009
  article-title: Regime-switching bivariate dual change score model
  publication-title: Multivariate Behavioral Research
– volume: 1
  start-page: 651
  year: 2006
  end-page: 674
  ident: bib0008
  article-title: Deviance information criteria for missing data models
  publication-title: Bayesian Analysis
– volume: 25
  start-page: 41
  year: 2018
  end-page: 55
  ident: bib0017
  article-title: Bayesian analysis of mixture structural equation models with an unknown number of components
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
– volume: 7
  start-page: 457
  year: 1992
  end-page: 511
  ident: bib0010
  article-title: Inference from iterative simulations using multiple sequences
  publication-title: Statistical Science
– volume: 28
  start-page: 986
  year: 2019
  ident: 10.1016/j.ecosta.2020.03.003_bib0012
  article-title: Bayesian hidden markov models for delineating the pathology of alzheimer’s disease
  publication-title: Statistical Methods in Medical Research
  doi: 10.1177/0962280217748675
– volume: 56
  start-page: 145
  year: 2003
  ident: 10.1016/j.ecosta.2020.03.003_bib0016
  article-title: Bayesian model selection for mixture of structure equation models with an unknown number of components
  publication-title: British Journal of Mathematical and Statistical Psychology
  doi: 10.1348/000711003321645403
– volume: 25
  start-page: 41
  year: 2018
  ident: 10.1016/j.ecosta.2020.03.003_bib0017
  article-title: Bayesian analysis of mixture structural equation models with an unknown number of components
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
  doi: 10.1080/10705511.2017.1372688
– year: 2013
  ident: 10.1016/j.ecosta.2020.03.003_bib0002
– volume: 59
  start-page: 731
  year: 1997
  ident: 10.1016/j.ecosta.2020.03.003_bib0021
  article-title: On bayesian analysis of mixtures with an unknown number of components(with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/1467-9868.00095
– volume: 82
  start-page: 711
  year: 1995
  ident: 10.1016/j.ecosta.2020.03.003_bib0011
  article-title: Reversible jump markov chain mente carlo computation and bayesian model determination
  publication-title: Biometrika
  doi: 10.1093/biomet/82.4.711
– volume: 7
  start-page: 457
  year: 1992
  ident: 10.1016/j.ecosta.2020.03.003_bib0010
  article-title: Inference from iterative simulations using multiple sequences
  publication-title: Statistical Science
  doi: 10.1214/ss/1177011136
– volume: 73
  start-page: 313
  year: 2017
  ident: 10.1016/j.ecosta.2020.03.003_bib0026
  article-title: Hidden markov latent variable models with multivariate longitudinal data
  publication-title: Biometrics
  doi: 10.1111/biom.12536
– year: 2003
  ident: 10.1016/j.ecosta.2020.03.003_bib0027
– volume: 102
  start-page: 201
  year: 2007
  ident: 10.1016/j.ecosta.2020.03.003_bib0001
  article-title: Mixed hidden markov models
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214506000001086
– volume: 62
  start-page: 57
  year: 2000
  ident: 10.1016/j.ecosta.2020.03.003_bib0022
  article-title: Bayesian inference in hidden markov models through the reversible jump markov chain monte carlo method
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/1467-9868.00219
– year: 2012
  ident: 10.1016/j.ecosta.2020.03.003_bib0025
  article-title: Basic and advanced bayesian structural equation modeling:
– volume: 23
  start-page: 541
  year: 2008
  ident: 10.1016/j.ecosta.2020.03.003_bib0007
  article-title: Selecting hidden markov model state number with cross-validated likelihood
  publication-title: Computational Statistics
  doi: 10.1007/s00180-007-0097-1
– volume: 39
  start-page: 1801
  year: 2020
  ident: 10.1016/j.ecosta.2020.03.003_bib0029
  article-title: Two-part hidden markov models for semicontinuous longitudinal data with nonignorable missing covariates
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.8513
– volume: 38
  start-page: 1634
  year: 2019
  ident: 10.1016/j.ecosta.2020.03.003_bib0013
  article-title: Bayesian adaptive group lasso with semiparametric hidden markov models
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.8051
– year: 2007
  ident: 10.1016/j.ecosta.2020.03.003_bib0014
– volume: 79
  start-page: 427
  year: 2011
  ident: 10.1016/j.ecosta.2020.03.003_bib0018
  article-title: Mixed hidden markov models for longitudinal data: An overview
  publication-title: International Statistical Review
  doi: 10.1111/j.1751-5823.2011.00160.x
– volume: 6
  start-page: 1
  year: 1998
  ident: 10.1016/j.ecosta.2020.03.003_bib0005
  article-title: Convergency assessment for reversible jump MCMC simulations
  publication-title: Bayesian Statistics
– year: 2005
  ident: 10.1016/j.ecosta.2020.03.003_bib0006
– volume: 1
  start-page: 651
  year: 2006
  ident: 10.1016/j.ecosta.2020.03.003_bib0008
  article-title: Deviance information criteria for missing data models
  publication-title: Bayesian Analysis
  doi: 10.1214/06-BA122
– volume: 33
  start-page: 35
  year: 2001
  ident: 10.1016/j.ecosta.2020.03.003_bib0004
  article-title: A comparison of reversible jump MCMC algorithms for DNA sequence segmentation using hidden Markov models
  publication-title: Comp. Sci. and Statist
– volume: 100
  start-page: 359
  year: 2005
  ident: 10.1016/j.ecosta.2020.03.003_bib0023
  article-title: Hidden markov models for longitudinal comparisons
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214504000001592
– volume: 25
  start-page: 1
  year: 2018
  ident: 10.1016/j.ecosta.2020.03.003_bib0024
  article-title: Bayesian analysis of semiparametric hidden markov models with latent variables
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
  doi: 10.1080/10705511.2017.1364968
– volume: 48
  start-page: 463
  year: 2013
  ident: 10.1016/j.ecosta.2020.03.003_bib0009
  article-title: Regime-switching bivariate dual change score model
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273171.2013.787870
– volume: 53
  start-page: 900
  year: 2009
  ident: 10.1016/j.ecosta.2020.03.003_bib0019
  article-title: Reversible jump MCMC in mixtures of normal distributions with the same component means
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2008.10.022
– year: 1989
  ident: 10.1016/j.ecosta.2020.03.003_bib0003
– volume: 9
  start-page: 523
  year: 2008
  ident: 10.1016/j.ecosta.2020.03.003_bib0020
  article-title: Penalized loss functions for bayesian model comparison
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxm049
– volume: 101
  start-page: 1566
  year: 2006
  ident: 10.1016/j.ecosta.2020.03.003_bib0028
  article-title: Hierarchical dirichlet processes
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214506000000302
SSID ssj0001850487
Score 2.1963556
Snippet Hidden Markov models (HMMs) are widely used to analyze heterogeneous longitudinal data owing to their capability to model dynamic heterogeneity. Early...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 29
SubjectTerms Hidden Markov model
Latent variables
Multivariate longitudinal data
RJMCMC algorithm
Structural equation model
Title Bayesian analysis of hidden Markov structural equation models with an unknown number of hidden states
URI https://dx.doi.org/10.1016/j.ecosta.2020.03.003
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA5ze_FFFBV_kwdfw9ImaZvHORzT4R7U4d5KkiY4kW6yKfjfm2tanSAKPhVKv9Jer3eXy913CJ3riAutlCTKckq4KSKiOEuIld73FjShppoZeTNOhhN-PRXTFuo3vTBQVlnb_mDTK2tdn-nW0uwuZrPuHewZ-oA3jr2eUiaSDdSJmUy8and6V6Ph-CvVkgmvp9A4DRACmKaJrqr08us8H4n5tWJMA-Ep-9lJrTmewTbaqiNG3AsPtYNattxF9kK9W-h_xKpmFcFzhx-BD6TE0H8zf8OBGhZoNbB9CYzeuBp8s8SQffVI_FpCTq3EYS7I2i2qPqPlHpoMLu_7Q1JPTCDGv9WKwJ6ZzkxqY5pJJ3WqtVCSCZ0Vwijt0jRxmf9NDU9dXGjFHKVGOmWM1Ylxgu2jdjkv7QHCJmZWRsqvJqjj0ts1Vc0AZ0IWEXepPESsEVFuajpxmGrxnDd1Y095EGwOgs0pAxrSQ0Q-UYtAp_HH9Wkj_fybWuTe4v-KPPo38hhtxlC4UpXnnKC2_1j21EceK31WaxYcR7cPow98Edow
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zO-hFFBXnZw5ew9KmaZvjHI7OfVzcYLeSpAlOpJtsCv735vVDJ4iC19JX2pfX95G83-8hdKO8gCspBZEmoCTQmUdkwEJihIu9GQ2pLmZGjidhMgvu53zeQL0aCwNtlZXvL3164a2rK51Km53VYtF5gDNDl_D6vrNTyni4g1rATsWbqNUdDJPJ11ZLzJ2dAnAaRAjI1CC6otPL1XkuE3O1ok9LwlP2c5DaCjz9A7RfZYy4W77UIWqY_AiZW_luAP-IZcUqgpcWPwIfSI4Bf7N8wyU1LNBqYPNSMnrjYvDNGsPuq5PErznsqeW4nAuy9YgCZ7Q-RrP-3bSXkGpiAtHuqzYEzsxUrCPj01hYoSKluBSMqzjjWiobRaGN3W-qg8j6mZLMUqqFlVobFWrL2Qlq5svcnCKsfWaEJ101QW0gnF-TxQxwxkXmBTYSbcRqFaW6ohOHqRbPad039pSWik1BsSllQEPaRuRTalXSafxxf1RrP_1mFqnz-L9Knv1b8hrtJtPxKB0NJsNztOdDE0vRqnOBmm7hzKXLQjbqqrKyD-9v23M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+analysis+of+hidden+Markov+structural+equation+models+with+an+unknown+number+of+hidden+states&rft.jtitle=Econometrics+and+statistics&rft.au=Liu%2C+Hefei&rft.au=Song%2C+Xinyuan&rft.date=2021-04-01&rft.issn=2452-3062&rft.eissn=2452-3062&rft.volume=18&rft.spage=29&rft.epage=43&rft_id=info:doi/10.1016%2Fj.ecosta.2020.03.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecosta_2020_03_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-3062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-3062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-3062&client=summon