Targeting phosphorus recovery from sewage sludge while preventing contaminant spread via combined hydrothermal carbonization and wet chemical extraction
•P extraction from slurry and hydrochar is feasible, being the second more convenient.•Oxalic acid proved a good leaching agent and a more environmentally friendly acid.•Selection of the best leaching agent is related to characteristics of source material.•Material recovered from hydrochar was compl...
Saved in:
Published in | Separation and purification technology Vol. 339; p. 126620 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
02.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •P extraction from slurry and hydrochar is feasible, being the second more convenient.•Oxalic acid proved a good leaching agent and a more environmentally friendly acid.•Selection of the best leaching agent is related to characteristics of source material.•Material recovered from hydrochar was compliant with EU regulation on fertilizers.•High Fe and Al content in the source material may require additional treatments.
The increasing production of sewage sludge is making its management more challenging than ever. Increasing costs of handling and disposal promoted the development of alternative thermochemical treatments for combining waste management and resource recovery such as the hydrothermal carbonization. The products of this process are an interesting source of phosphorus, which is subject to depletion in the next future. This work investigates at the laboratory scale the phosphorus recovery via wet chemical extraction from slurry and hydrochar as the extraction and precipitation of (heavy) metals and metalloids to promote the recovery of non-contaminated high-value phosphorus-rich products. Experimental results indicated that both matrices performed well in terms of phosphorus recovery and acid consumption, but the maximum overall recovery efficiency was higher when phosphorus was extracted from the hydrochar (49.6–75.1%) by using oxalic, sulfuric and nitric acids. Oxalic acid resulted as the most promising extractant from slurry at a dosage of 40 g/L. Instead, extraction from hydrochar was less affected by the type of acid used, suggesting the role of pH as the main driver. The co-precipitation of metals and metalloids was higher in slurry, with one sample of the recovered material exceeding the threshold limits of European fertilizer regulation. Instead, recovered material obtained from hydrochar showed lower level of contamination (in terms of Al, Fe, Ni, Cr and As content) and were regulatory compliant. This study attempts to guide the the type of acid and precipitants’ selection to address a good trade-off between a high P content and a low contamination in the recovered material. |
---|---|
AbstractList | •P extraction from slurry and hydrochar is feasible, being the second more convenient.•Oxalic acid proved a good leaching agent and a more environmentally friendly acid.•Selection of the best leaching agent is related to characteristics of source material.•Material recovered from hydrochar was compliant with EU regulation on fertilizers.•High Fe and Al content in the source material may require additional treatments.
The increasing production of sewage sludge is making its management more challenging than ever. Increasing costs of handling and disposal promoted the development of alternative thermochemical treatments for combining waste management and resource recovery such as the hydrothermal carbonization. The products of this process are an interesting source of phosphorus, which is subject to depletion in the next future. This work investigates at the laboratory scale the phosphorus recovery via wet chemical extraction from slurry and hydrochar as the extraction and precipitation of (heavy) metals and metalloids to promote the recovery of non-contaminated high-value phosphorus-rich products. Experimental results indicated that both matrices performed well in terms of phosphorus recovery and acid consumption, but the maximum overall recovery efficiency was higher when phosphorus was extracted from the hydrochar (49.6–75.1%) by using oxalic, sulfuric and nitric acids. Oxalic acid resulted as the most promising extractant from slurry at a dosage of 40 g/L. Instead, extraction from hydrochar was less affected by the type of acid used, suggesting the role of pH as the main driver. The co-precipitation of metals and metalloids was higher in slurry, with one sample of the recovered material exceeding the threshold limits of European fertilizer regulation. Instead, recovered material obtained from hydrochar showed lower level of contamination (in terms of Al, Fe, Ni, Cr and As content) and were regulatory compliant. This study attempts to guide the the type of acid and precipitants’ selection to address a good trade-off between a high P content and a low contamination in the recovered material. |
ArticleNumber | 126620 |
Author | Gelmi, E. Sessolo, L. Turolla, A. Boniardi, G. Canziani, R. |
Author_xml | – sequence: 1 givenname: G. surname: Boniardi fullname: Boniardi, G. – sequence: 2 givenname: L. surname: Sessolo fullname: Sessolo, L. – sequence: 3 givenname: E. surname: Gelmi fullname: Gelmi, E. – sequence: 4 givenname: A. surname: Turolla fullname: Turolla, A. email: andrea.turolla@polimi.it – sequence: 5 givenname: R. surname: Canziani fullname: Canziani, R. |
BookMark | eNqFkM9q3DAQh0VJocmmb9CDXsAb_bNs9xAIoUkLgV6Ss5Cl8VqLLRlJu9vtk-Rxq8321ENzGGaY4Rv4fVfowgcPCH2hZE0JlTfbdYJl2cU1I0ysKZOSkQ_okrYNr3jTiYsy85ZXdSvlJ3SV0pYQ2tCWXaLXZx03kJ3f4GUMqVTcJRzBhD3EIx5imHGCg94ATtPOlnYY3QR4ibAH_8aZ4LOendc-41T22uK902U9986DxePRxpBHiLOesNGxD9791tkFj7W3-AAZmxFmZ8oZfuWozel2jT4Oekrw-W9foZeHb8_336unn48_7u-eKsOJzBUnrCNSCAusHjqwVPYN510vNK1bURM9dLTvDaOyA8Kg05IIK0B0bdOIGghfIXH-a2JIKcKgluhmHY-KEnWyq7bqbFed7Kqz3YJ9_QczLr-FKgHc9B58e4ahBNs7iCoZB96AdcV8Vja4_z_4Awmen6E |
CitedBy_id | crossref_primary_10_1016_j_scp_2024_101885 crossref_primary_10_1016_j_biortech_2024_131279 |
Cites_doi | 10.3390/ijerph17186618 10.1021/acs.iecr.6b04819 10.1504/IJEWM.2016.080795 10.1016/j.cej.2021.129300 10.1080/10643389.2013.866531 10.1016/j.jclepro.2020.120991 10.3390/pr10010151 10.1016/j.chemosphere.2019.04.109 10.1007/s11356-015-4849-0 10.1016/j.jclepro.2021.130130 10.3390/en14092697 10.1007/s12649-021-01463-5 10.3390/en15155633 10.1007/s13399-017-0291-5 10.1016/j.chemosphere.2017.11.129 10.1007/s12649-021-01368-3 10.1039/c0em00168f 10.1007/s12649-020-01280-2 10.1016/j.chemosphere.2021.129609 10.1016/j.jenvman.2019.02.121 10.1016/j.jaap.2022.105678 10.1016/j.cherd.2022.06.028 10.3390/en12122383 10.1016/j.joei.2018.12.003 10.3390/pr9040618 10.1016/j.watres.2019.05.022 10.1016/j.jclepro.2021.126456 10.1016/j.chemosphere.2017.11.023 10.1016/j.envres.2017.03.010 10.1016/j.chemosphere.2021.131476 10.1016/j.fuel.2016.02.068 10.3390/app10103445 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.seppur.2024.126620 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3794 |
ExternalDocumentID | 10_1016_j_seppur_2024_126620 S1383586624003599 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- SSH |
ID | FETCH-LOGICAL-c306t-30290644de25f9ed16b7339b4a158450af91bbc2169e02e9a604d4e4987745e03 |
IEDL.DBID | .~1 |
ISSN | 1383-5866 |
IngestDate | Thu Apr 24 23:00:57 EDT 2025 Tue Jul 01 00:45:37 EDT 2025 Sat Apr 20 15:58:56 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermochemical treatment Hydrochar Circular economy Heavy metals and metalloids Wet chemical extraction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-30290644de25f9ed16b7339b4a158450af91bbc2169e02e9a604d4e4987745e03 |
ParticipantIDs | crossref_primary_10_1016_j_seppur_2024_126620 crossref_citationtrail_10_1016_j_seppur_2024_126620 elsevier_sciencedirect_doi_10_1016_j_seppur_2024_126620 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-02 |
PublicationDateYYYYMMDD | 2024-07-02 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Separation and purification technology |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | ISO 3310-1. Test sieves — Technical requirements and testing — Part 1: Test sieves of metal wire cloth, 2016. Song, Park, Kim (b0145) 2019; 12 EN 15956 Fertilizers - Extraction of Phosphorus Soluble in Mineral Acids, 2011. Xu, Ma, Zhou, Duan, Zhou, Ahmad, Luque (b0175) 2022; 167 Shettigondahalli Ekanthalu, Narra, Sprafke, Nelles (b0055) 2021 Zhang, Xue, Chen, Li, Chen (b0120) 2021; 9 Islam (b0080) 2021 Maurizio, Luca, Fabio, Antonio, Gianni (b0155) 2020; 80 G.D. Giacomo, P. Romano, Evolution and Prospects in Managing Sewage Sludge Resulting from Municipal Wastewater Purification, (2022) 33. Ighalo, Rangabhashiyam, Dulta, Umeh, Iwuozor, Aniagor, Eshiemogie, Iwuchukwu, Igwegbe (b0090) 2022; 184 Zhang, Xu, Li, Wang, Zheng (b0010) 2017; 56 Marin-Batista (b0140) 2020; 9 Shi, Luo, Rao, Chen, Zhang (b0180) 2019; 228 Tasca, Mannarino, Gori, Vitolo, Puccini (b0150) 2020 UNI EN 12457-2. Characterisation of waste - leaching - compliance test for leaching of granular waste materials and sludges - part 2: one stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction), 2004. Heidari, Dutta, Acharya, Mahmud (b0065) 2019; 92 Peng, Zhai, Zhu, Xu, Wang, Li, Zeng (b0245) 2016; 176 Kwapinski, Kolinovic, Leahy (b0025) 2021; 12 Luo, Huang, Lin, Li, Qiu, Liu, Mao (b0095) 2020; 258 Marc (b0225) 2022 Ma, Rosen (b0045) 2021; 274 Wang (b0115) 2020; 12 Statistisches Bundesamt Destatis. Erhebung der öff. Abwasserentsorgung-Klärschlamm, 2021. https://wwwgenesis.destatis.de/genesis/online?operation=statistic&levelindex=0&levelid=1639500438707&code=32214#abreadcrumb (accessed September 5, 2022). Liu, Hu, Basar, Li, Lyczko, Nzihou, Eskicioglu (b0250) 2021; 417 Langone, Basso (b0255) 2020; 17 Liang, Xu, Feng, Hao, Guo, Wang (b0050) 2021; 295 Liu (b0110) 2014; 8 González-Arias (b0070) 2022; 11 Bianchini, Bonfiglioli, Pellegrini, Saccani (b0015) 2016; 18 Sichler, Adam, Montag, Barjenbruch (b0030) 2022; 333 Becker, Wüst, Köhler, Lautenbach, Kruse (b0125) 2019; 238 Shi (b0100) 2018; 10 Regulation (EU) 2019/1009. Safe and effective fertilising products on the EU market., 2019. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1009&from=EN. UNE EN 15920. Fertilizers - Extraction of phosphorus soluble in 2 % citric acid, 2011. Fang, Li, Guo, Cheeseman, Tsang, Donatello, Poon (b0230) 2018; 193 Lachos-Perez (b0270) 2022; 15 Shettigondahalli Ekanthalu, Narra, Ender, Antwi, Nelles (b0035) 2022; 10 G. Gerner, L. Meyer, R. Wanner, T. Keller, R. Krebs, Sewage Sludge Treatment by Hydrothermal Carbonization: Feasibility Study for Sustainable Nutrient Recovery and Fuel Production, (2021) 12. Lucian, Merzari, Gubert, Messineo, Volpe (b0135) 2021 Luyckx, Sousa Correia, Van Caneghem (b0260) 2021; 12 Bontempi, Zacco, Borgese, Gianoncelli, Ardesi, Depero (b0210) 2010; 12 X. Zhao, G. C. Becker, N. Faweya, C. Rodriguez Correa, S. Yang, X. Xie, A. Kruse, Fertilizer and activated carbon production by hydrothermal carbonization of digestate, (2018) 14. Pérez, Boily, Jansson, Gustafsson, Fick (b0165) 2021; 12 Ferrentino, Ceccato, Marchetti, Andreottola, Fiori (b0085) 2020; 10 Liang, Chen, Zeng, Li, Yu, Xiao, Hu, Hou, Liu, Tao, Yang (b0265) 2019; 159 Kacprzak, Neczaj, Fijałkowski, Grobelak, Grosser, Worwag, Rorat, Brattebo, Almås, Singh (b0020) 2017; 156 Fang (b0075) 2018; 7 Desmidt, Ghyselbrecht, Zhang, Pinoy, Van der Bruggen, Verstraete, Rabaey, Meesschaert (b0170) 2015; 45 Wang (b0060) 2019; 18 Sun, Tang, Gong, Zhang (b0105) 2015; 22 Waldmüller, Herdzik, Gaderer (b0185) 2021 Boniardi, Turolla, Fiameni, Gelmi, Malpei, Bontempi, Canziani (b0235) 2021; 285 UNI EN ISO 17294-1. Water Quality - Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) - Part 1: General Guidelines, n.d. 2007. ASTM (American Society for Testing and Materials) E11, n.d. Lee, Alvarez, Kim, Jeong, Lee, Lee, Lee, Choi (b0190) 2018; 193 Boniardi (10.1016/j.seppur.2024.126620_b0235) 2021; 285 Marc (10.1016/j.seppur.2024.126620_b0225) 2022 Maurizio (10.1016/j.seppur.2024.126620_b0155) 2020; 80 10.1016/j.seppur.2024.126620_b0220 Wang (10.1016/j.seppur.2024.126620_b0115) 2020; 12 Xu (10.1016/j.seppur.2024.126620_b0175) 2022; 167 Desmidt (10.1016/j.seppur.2024.126620_b0170) 2015; 45 Kwapinski (10.1016/j.seppur.2024.126620_b0025) 2021; 12 Sun (10.1016/j.seppur.2024.126620_b0105) 2015; 22 Langone (10.1016/j.seppur.2024.126620_b0255) 2020; 17 Shettigondahalli Ekanthalu (10.1016/j.seppur.2024.126620_b0055) 2021 Kacprzak (10.1016/j.seppur.2024.126620_b0020) 2017; 156 Waldmüller (10.1016/j.seppur.2024.126620_b0185) 2021 Lucian (10.1016/j.seppur.2024.126620_b0135) 2021 Peng (10.1016/j.seppur.2024.126620_b0245) 2016; 176 Ma (10.1016/j.seppur.2024.126620_b0045) 2021; 274 Liang (10.1016/j.seppur.2024.126620_b0050) 2021; 295 Bontempi (10.1016/j.seppur.2024.126620_b0210) 2010; 12 Bianchini (10.1016/j.seppur.2024.126620_b0015) 2016; 18 Sichler (10.1016/j.seppur.2024.126620_b0030) 2022; 333 Luo (10.1016/j.seppur.2024.126620_b0095) 2020; 258 Lee (10.1016/j.seppur.2024.126620_b0190) 2018; 193 Liu (10.1016/j.seppur.2024.126620_b0110) 2014; 8 Shi (10.1016/j.seppur.2024.126620_b0100) 2018; 10 10.1016/j.seppur.2024.126620_b0275 Fang (10.1016/j.seppur.2024.126620_b0075) 2018; 7 10.1016/j.seppur.2024.126620_b0195 Shi (10.1016/j.seppur.2024.126620_b0180) 2019; 228 Luyckx (10.1016/j.seppur.2024.126620_b0260) 2021; 12 Lachos-Perez (10.1016/j.seppur.2024.126620_b0270) 2022; 15 Marin-Batista (10.1016/j.seppur.2024.126620_b0140) 2020; 9 Zhang (10.1016/j.seppur.2024.126620_b0120) 2021; 9 10.1016/j.seppur.2024.126620_b0205 Liang (10.1016/j.seppur.2024.126620_b0265) 2019; 159 10.1016/j.seppur.2024.126620_b0005 10.1016/j.seppur.2024.126620_b0200 Wang (10.1016/j.seppur.2024.126620_b0060) 2019; 18 Zhang (10.1016/j.seppur.2024.126620_b0010) 2017; 56 10.1016/j.seppur.2024.126620_b0240 10.1016/j.seppur.2024.126620_b0040 10.1016/j.seppur.2024.126620_b0160 Islam (10.1016/j.seppur.2024.126620_b0080) 2021 Heidari (10.1016/j.seppur.2024.126620_b0065) 2019; 92 Pérez (10.1016/j.seppur.2024.126620_b0165) 2021; 12 Tasca (10.1016/j.seppur.2024.126620_b0150) 2020 Shettigondahalli Ekanthalu (10.1016/j.seppur.2024.126620_b0035) 2022; 10 10.1016/j.seppur.2024.126620_b0215 Fang (10.1016/j.seppur.2024.126620_b0230) 2018; 193 Liu (10.1016/j.seppur.2024.126620_b0250) 2021; 417 10.1016/j.seppur.2024.126620_b0130 González-Arias (10.1016/j.seppur.2024.126620_b0070) 2022; 11 Becker (10.1016/j.seppur.2024.126620_b0125) 2019; 238 Ighalo (10.1016/j.seppur.2024.126620_b0090) 2022; 184 Song (10.1016/j.seppur.2024.126620_b0145) 2019; 12 Ferrentino (10.1016/j.seppur.2024.126620_b0085) 2020; 10 |
References_xml | – start-page: 16 year: 2021 ident: b0080 article-title: Hydrochar-based soil amendments for agriculture: a review of recent progress publication-title: Arab J Geosci – reference: Statistisches Bundesamt Destatis. Erhebung der öff. Abwasserentsorgung-Klärschlamm, 2021. https://wwwgenesis.destatis.de/genesis/online?operation=statistic&levelindex=0&levelid=1639500438707&code=32214#abreadcrumb (accessed September 5, 2022). – reference: X. Zhao, G. C. Becker, N. Faweya, C. Rodriguez Correa, S. Yang, X. Xie, A. Kruse, Fertilizer and activated carbon production by hydrothermal carbonization of digestate, (2018) 14. – volume: 156 start-page: 39 year: 2017 end-page: 46 ident: b0020 article-title: Sewage sludge disposal strategies for sustainable development publication-title: Environ. Res. – volume: 193 start-page: 1087 year: 2018 end-page: 1093 ident: b0190 article-title: Phosphorous recovery from sewage sludge using calcium silicate hydrates publication-title: Chemosphere – reference: UNI EN ISO 17294-1. Water Quality - Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) - Part 1: General Guidelines, n.d. 2007. – volume: 45 start-page: 336 year: 2015 end-page: 384 ident: b0170 article-title: Global phosphorus scarcity and full-scale P-recovery techniques: a review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 18 year: 2019 ident: b0060 article-title: Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review publication-title: Renew. Sustain. Energy Rev. – volume: 17 start-page: 6618 year: 2020 ident: b0255 article-title: Process waters from hydrothermal carbonization of sludge: characteristics and possible valorization pathways publication-title: IJERPH – volume: 92 start-page: 1779 year: 2019 end-page: 1799 ident: b0065 article-title: A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion publication-title: J. Energy Inst. – start-page: 11 year: 2021 ident: b0185 article-title: Combined filtration and oxalic acid leaching for recovering phosphorus from hydrothermally carbonized sewage sludge publication-title: Journal of Environmental Chem. Eng. – volume: 10 start-page: 151 year: 2022 ident: b0035 article-title: Influence of post- and pre-acid treatment during hydrothermal carbonization of sewage sludge on P-transformation and the characteristics of hydrochar publication-title: Processes – reference: G. Gerner, L. Meyer, R. Wanner, T. Keller, R. Krebs, Sewage Sludge Treatment by Hydrothermal Carbonization: Feasibility Study for Sustainable Nutrient Recovery and Fuel Production, (2021) 12. – volume: 184 start-page: 419 year: 2022 end-page: 456 ident: b0090 article-title: Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants publication-title: Chem. Eng. Res. Des. – volume: 15 year: 2022 ident: b0270 article-title: Hydrothermal carbonization and Liquefaction: differences, progress, challenges, and opportunities publication-title: Bioresour. Technol. – reference: G.D. Giacomo, P. Romano, Evolution and Prospects in Managing Sewage Sludge Resulting from Municipal Wastewater Purification, (2022) 33. – volume: 9 year: 2020 ident: b0140 article-title: Energy and phosphorous recovery through hydrothermal carbonization of digested sewage sludge publication-title: Waste Manag. – volume: 417 year: 2021 ident: b0250 article-title: Phosphorus recovery from municipal sludge-derived ash and hydrochar through wet-chemical technology: a review towards sustainable waste management publication-title: Chem. Eng. J. – start-page: 618 year: 2021 ident: b0055 article-title: Influence of acids and alkali as additives on hydrothermally treating sewage sludge: effect on phosphorus recovery, yield, and energy value of hydrochar publication-title: Processes 9 – volume: 285 year: 2021 ident: b0235 article-title: Assessment of a simple and replicable procedure for selective phosphorus recovery from sewage sludge ashes by wet chemical extraction and precipitation publication-title: Chemosphere – volume: 12 year: 2020 ident: b0115 article-title: Hydrothermal co-carbonization of sewage sludge and high concentration phenolic wastewater for production of solid biofuel with increased calorific value publication-title: J. Clean. Prod. – volume: 80 start-page: 199 year: 2020 end-page: 204 ident: b0155 article-title: Hydrothermal carbonization as an efficient tool for sewage sludge valorization and phosphorous recovery publication-title: Chemical Eng. Trans. – volume: 176 start-page: 110 year: 2016 end-page: 118 ident: b0245 article-title: Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics publication-title: Fuel – volume: 8 year: 2014 ident: b0110 article-title: Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars publication-title: Appl. Energy – reference: ASTM (American Society for Testing and Materials) E11, n.d. – volume: 258 year: 2020 ident: b0095 article-title: Hydrothermal carbonization of sewage sludge and in-situ preparation of hydrochar/MgAl-layered double hydroxides composites for adsorption of Pb(II) publication-title: J. Clean. Prod. – volume: 10 year: 2018 ident: b0100 article-title: Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution publication-title: Bioresour. Technol. – volume: 12 start-page: 6555 year: 2021 end-page: 6568 ident: b0165 article-title: Acid-induced phosphorus release from hydrothermally carbonized sewage sludge publication-title: Waste Biomass Valor – volume: 228 start-page: 619 year: 2019 end-page: 628 ident: b0180 article-title: Hydrothermal conversion of dewatered sewage sludge: focusing on the transformation mechanism and recovery of phosphorus publication-title: Chemosphere – start-page: 13 year: 2020 ident: b0150 article-title: Phosphorus recovery from sewage sludge hydrochar: process optimization by response surface methodology publication-title: Water Science – volume: 12 start-page: 5837 year: 2021 end-page: 5852 ident: b0025 article-title: Sewage sludge thermal treatment technologies with a focus on phosphorus recovery: a review publication-title: Waste Biomass Valor – reference: EN 15956 Fertilizers - Extraction of Phosphorus Soluble in Mineral Acids, 2011. – volume: 56 start-page: 3033 year: 2017 end-page: 3039 ident: b0010 article-title: Recovery of phosphorus and potassium from source-separated urine using a fluidized bed reactor: optimization operation and mechanism modeling publication-title: Ind. Eng. Chem. Res. – volume: 7 year: 2018 ident: b0075 article-title: Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass publication-title: J. Ind. Eng. Chem. – volume: 12 start-page: 2093 year: 2010 ident: b0210 article-title: A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica publication-title: J. Environ. Monit. – volume: 238 start-page: 119 year: 2019 end-page: 125 ident: b0125 article-title: Novel approach of phosphate-reclamation as struvite from sewage sludge by utilising hydrothermal carbonization publication-title: J. Environ. Manage. – volume: 193 start-page: 278 year: 2018 end-page: 287 ident: b0230 article-title: Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA) publication-title: Chemosphere – volume: 18 start-page: 226 year: 2016 ident: b0015 article-title: Sewage sludge management in Europe: a critical analysis of data quality publication-title: IJEWM – volume: 295 year: 2021 ident: b0050 article-title: Municipal sewage sludge incineration and its air pollution control publication-title: J. Clean. Prod. – year: 2022 ident: b0225 publication-title: Personal Information. – volume: 12 start-page: 5235 year: 2021 end-page: 5248 ident: b0260 article-title: Linking phosphorus extraction from different types of biomass incineration ash to ash mineralogy, ash composition and chemical characteristics of various types of extraction liquids publication-title: Waste Biomass Valor – volume: 11 year: 2022 ident: b0070 article-title: Hydrothermal carbonization of biomass and waste: A review publication-title: Environ. Chem. Lett. – volume: 274 year: 2021 ident: b0045 article-title: Land application of sewage sludge incinerator ash for phosphorus recovery: a review publication-title: Chemosphere – volume: 9 year: 2021 ident: b0120 article-title: Revealing the heating value characteristics of sludge-based hydrochar in hydrothermal process: from perspective of hydrolysate publication-title: Water Res. – start-page: 15 year: 2021 ident: b0135 article-title: Industrial-scale hydrothermal carbonization of agro-industrial digested sludge publication-title: Filterability Enhancement and Phosphorus Recovery – volume: 333 year: 2022 ident: b0030 article-title: Future nutrient recovery from sewage sludge regarding three different scenarios - German case study publication-title: J. Clean. Prod. – volume: 12 start-page: 2383 year: 2019 ident: b0145 article-title: Upgrading hydrothermal carbonization (HTC) hydrochar from sewage sludge publication-title: Energies – reference: UNI EN 12457-2. Characterisation of waste - leaching - compliance test for leaching of granular waste materials and sludges - part 2: one stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction), 2004. – volume: 167 year: 2022 ident: b0175 article-title: The influence of key reactions during hydrothermal carbonization of sewage sludge on aqueous phase properties: a review publication-title: J. Anal. Appl. Pyrol. – reference: Regulation (EU) 2019/1009. Safe and effective fertilising products on the EU market., 2019. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1009&from=EN. – reference: ISO 3310-1. Test sieves — Technical requirements and testing — Part 1: Test sieves of metal wire cloth, 2016. – volume: 159 start-page: 242 year: 2019 end-page: 251 ident: b0265 article-title: A comparison between sulfuric acid and oxalic acid leaching with subsequent purification and precipitation for phosphorus recovery from sewage sludge incineration ash publication-title: Water Res. – volume: 10 start-page: 3445 year: 2020 ident: b0085 article-title: Sewage sludge hydrochar: an option for removal of methylene blue from wastewater publication-title: Appl. Sci. – volume: 22 start-page: 16640 year: 2015 end-page: 16651 ident: b0105 article-title: Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water publication-title: Environ Sci Pollut Res – reference: UNE EN 15920. Fertilizers - Extraction of phosphorus soluble in 2 % citric acid, 2011. – volume: 17 start-page: 6618 year: 2020 ident: 10.1016/j.seppur.2024.126620_b0255 article-title: Process waters from hydrothermal carbonization of sludge: characteristics and possible valorization pathways publication-title: IJERPH doi: 10.3390/ijerph17186618 – volume: 56 start-page: 3033 year: 2017 ident: 10.1016/j.seppur.2024.126620_b0010 article-title: Recovery of phosphorus and potassium from source-separated urine using a fluidized bed reactor: optimization operation and mechanism modeling publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b04819 – volume: 18 start-page: 226 year: 2016 ident: 10.1016/j.seppur.2024.126620_b0015 article-title: Sewage sludge management in Europe: a critical analysis of data quality publication-title: IJEWM doi: 10.1504/IJEWM.2016.080795 – volume: 9 year: 2020 ident: 10.1016/j.seppur.2024.126620_b0140 article-title: Energy and phosphorous recovery through hydrothermal carbonization of digested sewage sludge publication-title: Waste Manag. – volume: 417 year: 2021 ident: 10.1016/j.seppur.2024.126620_b0250 article-title: Phosphorus recovery from municipal sludge-derived ash and hydrochar through wet-chemical technology: a review towards sustainable waste management publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129300 – volume: 45 start-page: 336 year: 2015 ident: 10.1016/j.seppur.2024.126620_b0170 article-title: Global phosphorus scarcity and full-scale P-recovery techniques: a review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2013.866531 – start-page: 11 year: 2021 ident: 10.1016/j.seppur.2024.126620_b0185 article-title: Combined filtration and oxalic acid leaching for recovering phosphorus from hydrothermally carbonized sewage sludge publication-title: Journal of Environmental Chem. Eng. – volume: 258 year: 2020 ident: 10.1016/j.seppur.2024.126620_b0095 article-title: Hydrothermal carbonization of sewage sludge and in-situ preparation of hydrochar/MgAl-layered double hydroxides composites for adsorption of Pb(II) publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120991 – volume: 10 start-page: 151 year: 2022 ident: 10.1016/j.seppur.2024.126620_b0035 article-title: Influence of post- and pre-acid treatment during hydrothermal carbonization of sewage sludge on P-transformation and the characteristics of hydrochar publication-title: Processes doi: 10.3390/pr10010151 – volume: 15 year: 2022 ident: 10.1016/j.seppur.2024.126620_b0270 article-title: Hydrothermal carbonization and Liquefaction: differences, progress, challenges, and opportunities publication-title: Bioresour. Technol. – ident: 10.1016/j.seppur.2024.126620_b0040 – volume: 228 start-page: 619 year: 2019 ident: 10.1016/j.seppur.2024.126620_b0180 article-title: Hydrothermal conversion of dewatered sewage sludge: focusing on the transformation mechanism and recovery of phosphorus publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.04.109 – volume: 22 start-page: 16640 year: 2015 ident: 10.1016/j.seppur.2024.126620_b0105 article-title: Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-015-4849-0 – volume: 333 year: 2022 ident: 10.1016/j.seppur.2024.126620_b0030 article-title: Future nutrient recovery from sewage sludge regarding three different scenarios - German case study publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.130130 – ident: 10.1016/j.seppur.2024.126620_b0130 doi: 10.3390/en14092697 – volume: 12 start-page: 6555 year: 2021 ident: 10.1016/j.seppur.2024.126620_b0165 article-title: Acid-induced phosphorus release from hydrothermally carbonized sewage sludge publication-title: Waste Biomass Valor doi: 10.1007/s12649-021-01463-5 – volume: 10 year: 2018 ident: 10.1016/j.seppur.2024.126620_b0100 article-title: Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution publication-title: Bioresour. Technol. – start-page: 16 year: 2021 ident: 10.1016/j.seppur.2024.126620_b0080 article-title: Hydrochar-based soil amendments for agriculture: a review of recent progress publication-title: Arab J Geosci – year: 2022 ident: 10.1016/j.seppur.2024.126620_b0225 publication-title: Personal Information. – ident: 10.1016/j.seppur.2024.126620_b0275 – ident: 10.1016/j.seppur.2024.126620_b0005 doi: 10.3390/en15155633 – volume: 7 year: 2018 ident: 10.1016/j.seppur.2024.126620_b0075 article-title: Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass publication-title: J. Ind. Eng. Chem. – ident: 10.1016/j.seppur.2024.126620_b0160 doi: 10.1007/s13399-017-0291-5 – volume: 193 start-page: 1087 year: 2018 ident: 10.1016/j.seppur.2024.126620_b0190 article-title: Phosphorous recovery from sewage sludge using calcium silicate hydrates publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.11.129 – ident: 10.1016/j.seppur.2024.126620_b0240 – volume: 12 year: 2020 ident: 10.1016/j.seppur.2024.126620_b0115 article-title: Hydrothermal co-carbonization of sewage sludge and high concentration phenolic wastewater for production of solid biofuel with increased calorific value publication-title: J. Clean. Prod. – volume: 12 start-page: 5235 year: 2021 ident: 10.1016/j.seppur.2024.126620_b0260 article-title: Linking phosphorus extraction from different types of biomass incineration ash to ash mineralogy, ash composition and chemical characteristics of various types of extraction liquids publication-title: Waste Biomass Valor doi: 10.1007/s12649-021-01368-3 – start-page: 13 year: 2020 ident: 10.1016/j.seppur.2024.126620_b0150 article-title: Phosphorus recovery from sewage sludge hydrochar: process optimization by response surface methodology publication-title: Water Science – volume: 12 start-page: 2093 year: 2010 ident: 10.1016/j.seppur.2024.126620_b0210 article-title: A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica publication-title: J. Environ. Monit. doi: 10.1039/c0em00168f – ident: 10.1016/j.seppur.2024.126620_b0215 – volume: 12 start-page: 5837 year: 2021 ident: 10.1016/j.seppur.2024.126620_b0025 article-title: Sewage sludge thermal treatment technologies with a focus on phosphorus recovery: a review publication-title: Waste Biomass Valor doi: 10.1007/s12649-020-01280-2 – volume: 274 year: 2021 ident: 10.1016/j.seppur.2024.126620_b0045 article-title: Land application of sewage sludge incinerator ash for phosphorus recovery: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.129609 – volume: 238 start-page: 119 year: 2019 ident: 10.1016/j.seppur.2024.126620_b0125 article-title: Novel approach of phosphate-reclamation as struvite from sewage sludge by utilising hydrothermal carbonization publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2019.02.121 – volume: 167 year: 2022 ident: 10.1016/j.seppur.2024.126620_b0175 article-title: The influence of key reactions during hydrothermal carbonization of sewage sludge on aqueous phase properties: a review publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2022.105678 – ident: 10.1016/j.seppur.2024.126620_b0220 – volume: 184 start-page: 419 year: 2022 ident: 10.1016/j.seppur.2024.126620_b0090 article-title: Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2022.06.028 – ident: 10.1016/j.seppur.2024.126620_b0205 – volume: 8 year: 2014 ident: 10.1016/j.seppur.2024.126620_b0110 article-title: Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars publication-title: Appl. Energy – volume: 12 start-page: 2383 year: 2019 ident: 10.1016/j.seppur.2024.126620_b0145 article-title: Upgrading hydrothermal carbonization (HTC) hydrochar from sewage sludge publication-title: Energies doi: 10.3390/en12122383 – volume: 92 start-page: 1779 year: 2019 ident: 10.1016/j.seppur.2024.126620_b0065 article-title: A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion publication-title: J. Energy Inst. doi: 10.1016/j.joei.2018.12.003 – start-page: 618 year: 2021 ident: 10.1016/j.seppur.2024.126620_b0055 article-title: Influence of acids and alkali as additives on hydrothermally treating sewage sludge: effect on phosphorus recovery, yield, and energy value of hydrochar publication-title: Processes 9 doi: 10.3390/pr9040618 – ident: 10.1016/j.seppur.2024.126620_b0195 – volume: 11 year: 2022 ident: 10.1016/j.seppur.2024.126620_b0070 article-title: Hydrothermal carbonization of biomass and waste: A review publication-title: Environ. Chem. Lett. – start-page: 15 year: 2021 ident: 10.1016/j.seppur.2024.126620_b0135 article-title: Industrial-scale hydrothermal carbonization of agro-industrial digested sludge publication-title: Filterability Enhancement and Phosphorus Recovery – volume: 159 start-page: 242 year: 2019 ident: 10.1016/j.seppur.2024.126620_b0265 article-title: A comparison between sulfuric acid and oxalic acid leaching with subsequent purification and precipitation for phosphorus recovery from sewage sludge incineration ash publication-title: Water Res. doi: 10.1016/j.watres.2019.05.022 – volume: 80 start-page: 199 year: 2020 ident: 10.1016/j.seppur.2024.126620_b0155 article-title: Hydrothermal carbonization as an efficient tool for sewage sludge valorization and phosphorous recovery publication-title: Chemical Eng. Trans. – volume: 18 year: 2019 ident: 10.1016/j.seppur.2024.126620_b0060 article-title: Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review publication-title: Renew. Sustain. Energy Rev. – volume: 295 year: 2021 ident: 10.1016/j.seppur.2024.126620_b0050 article-title: Municipal sewage sludge incineration and its air pollution control publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126456 – volume: 193 start-page: 278 year: 2018 ident: 10.1016/j.seppur.2024.126620_b0230 article-title: Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.11.023 – ident: 10.1016/j.seppur.2024.126620_b0200 – volume: 156 start-page: 39 year: 2017 ident: 10.1016/j.seppur.2024.126620_b0020 article-title: Sewage sludge disposal strategies for sustainable development publication-title: Environ. Res. doi: 10.1016/j.envres.2017.03.010 – volume: 285 year: 2021 ident: 10.1016/j.seppur.2024.126620_b0235 article-title: Assessment of a simple and replicable procedure for selective phosphorus recovery from sewage sludge ashes by wet chemical extraction and precipitation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131476 – volume: 176 start-page: 110 year: 2016 ident: 10.1016/j.seppur.2024.126620_b0245 article-title: Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics publication-title: Fuel doi: 10.1016/j.fuel.2016.02.068 – volume: 10 start-page: 3445 year: 2020 ident: 10.1016/j.seppur.2024.126620_b0085 article-title: Sewage sludge hydrochar: an option for removal of methylene blue from wastewater publication-title: Appl. Sci. doi: 10.3390/app10103445 – volume: 9 year: 2021 ident: 10.1016/j.seppur.2024.126620_b0120 article-title: Revealing the heating value characteristics of sludge-based hydrochar in hydrothermal process: from perspective of hydrolysate publication-title: Water Res. |
SSID | ssj0017182 |
Score | 2.4493735 |
Snippet | •P extraction from slurry and hydrochar is feasible, being the second more convenient.•Oxalic acid proved a good leaching agent and a more environmentally... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 126620 |
SubjectTerms | Circular economy Heavy metals and metalloids Hydrochar Thermochemical treatment Wet chemical extraction |
Title | Targeting phosphorus recovery from sewage sludge while preventing contaminant spread via combined hydrothermal carbonization and wet chemical extraction |
URI | https://dx.doi.org/10.1016/j.seppur.2024.126620 |
Volume | 339 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3yTg9e6TZsmzVFEWRW8qOCtpMksu6K7pd118eLv8Oc604coiIKH0jZkIHSGedBvvmHsWLlUO0s0-zqKA6l1HNBg7QDCFDBgAymG0BY3qn8vrx6ShwV21vXCEKyy9f2NT6-9dbvSa79mrxiNercCi6skVYpQkHFiqIlPSk1WfvL2CfMQ6HvrP564OaDdXftcjfGqoChmxAoayROBoYqmfv8Unr6EnIs1ttrmivy0Oc46W4DxBlv5wiC4yd7vaiQ3PvNiOKnwKmcVpyoXTfSVU_MIr2COToNXTzOPt_kQ_QAvWuYmlCOwum0AMbzCdev5y8ji8jMWzeD58NWXdZvWM57F2TKfdL2b3I49n8OUu5Z1gKOnL5tOiS12f3F-d9YP2mELgcOqYRrEIRG_S-khSgYGvFC5jmOTSyswR0lCOzAiz10klIEwAmNVKL0EaVJMIBMI4222OJ6MYYdxjxqRIjUiydE_GGWdslEKWrsk8gMLuyzuvnHmWiZyGojxlHWQs8es0UxGmskazeyy4FOqaJg4_tivO_Vl3ywqw2Dxq-TevyX32TK91XDe6IAtTssZHGLSMs2Paqs8Ykunl9f9mw-2Fu9g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzaHtofRJkr506NVdPyTZOobQsGnSvXQDuRlZmmW3JLvG3u2Sf5Kf2xlbDimUFnowNrIGhEbMA33zDcAn7YrcWabZz9MsknmeRdxYO8K4QHLYyIphtMVUTy7l1yt1tQcnQy0MwyqD7e9temetw8g47Oa4Xi7H3xNKrlShNaMgM2XMI9hndio1gv3js_PJ9P4ygcxvd-lJ8yMWGCroOphXi3W9ZWLQVH5OyFtx4-8_eagHXuf0OTwL4aI47lf0AvZw9RKePiARfAV3sw7MTd-iXqxbepptKzjRpVN6K7h-RLS4I7sh2uutp9duQaZA1IG8ieQYr257TIxoadx68XNpafiG8mb0YnHrm65S64bW4mxTrYfyTWFXXuxwI1wgHhBk7Ju-WOI1XJ5-mZ1MotBvIXKUOGyiLGbudyk9pmpu0Ce6yrPMVNImFKao2M5NUlUuTbTBOEVjdSy9RGkKiiEVxtkbGK3WKzwA4UkpMilMoioyEUZbp21aYJ47lfq5xUPIhj0uXSAj554Y1-WAOvtR9popWTNlr5lDiO6l6p6M4x_z80F95W-HqiR_8VfJo_-W_AiPJ7NvF-XF2fT8LTzhPx26N30Ho02zxfcUw2yqD-GM_gLhCvIR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+phosphorus+recovery+from+sewage+sludge+while+preventing+contaminant+spread+via+combined+hydrothermal+carbonization+and+wet+chemical+extraction&rft.jtitle=Separation+and+purification+technology&rft.au=Boniardi%2C+G.&rft.au=Sessolo%2C+L.&rft.au=Gelmi%2C+E.&rft.au=Turolla%2C+A.&rft.date=2024-07-02&rft.issn=1383-5866&rft.volume=339&rft.spage=126620&rft_id=info:doi/10.1016%2Fj.seppur.2024.126620&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_seppur_2024_126620 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |