Targeting phosphorus recovery from sewage sludge while preventing contaminant spread via combined hydrothermal carbonization and wet chemical extraction

•P extraction from slurry and hydrochar is feasible, being the second more convenient.•Oxalic acid proved a good leaching agent and a more environmentally friendly acid.•Selection of the best leaching agent is related to characteristics of source material.•Material recovered from hydrochar was compl...

Full description

Saved in:
Bibliographic Details
Published inSeparation and purification technology Vol. 339; p. 126620
Main Authors Boniardi, G., Sessolo, L., Gelmi, E., Turolla, A., Canziani, R.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 02.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •P extraction from slurry and hydrochar is feasible, being the second more convenient.•Oxalic acid proved a good leaching agent and a more environmentally friendly acid.•Selection of the best leaching agent is related to characteristics of source material.•Material recovered from hydrochar was compliant with EU regulation on fertilizers.•High Fe and Al content in the source material may require additional treatments. The increasing production of sewage sludge is making its management more challenging than ever. Increasing costs of handling and disposal promoted the development of alternative thermochemical treatments for combining waste management and resource recovery such as the hydrothermal carbonization. The products of this process are an interesting source of phosphorus, which is subject to depletion in the next future. This work investigates at the laboratory scale the phosphorus recovery via wet chemical extraction from slurry and hydrochar as the extraction and precipitation of (heavy) metals and metalloids to promote the recovery of non-contaminated high-value phosphorus-rich products. Experimental results indicated that both matrices performed well in terms of phosphorus recovery and acid consumption, but the maximum overall recovery efficiency was higher when phosphorus was extracted from the hydrochar (49.6–75.1%) by using oxalic, sulfuric and nitric acids. Oxalic acid resulted as the most promising extractant from slurry at a dosage of 40 g/L. Instead, extraction from hydrochar was less affected by the type of acid used, suggesting the role of pH as the main driver. The co-precipitation of metals and metalloids was higher in slurry, with one sample of the recovered material exceeding the threshold limits of European fertilizer regulation. Instead, recovered material obtained from hydrochar showed lower level of contamination (in terms of Al, Fe, Ni, Cr and As content) and were regulatory compliant. This study attempts to guide the the type of acid and precipitants’ selection to address a good trade-off between a high P content and a low contamination in the recovered material.
AbstractList •P extraction from slurry and hydrochar is feasible, being the second more convenient.•Oxalic acid proved a good leaching agent and a more environmentally friendly acid.•Selection of the best leaching agent is related to characteristics of source material.•Material recovered from hydrochar was compliant with EU regulation on fertilizers.•High Fe and Al content in the source material may require additional treatments. The increasing production of sewage sludge is making its management more challenging than ever. Increasing costs of handling and disposal promoted the development of alternative thermochemical treatments for combining waste management and resource recovery such as the hydrothermal carbonization. The products of this process are an interesting source of phosphorus, which is subject to depletion in the next future. This work investigates at the laboratory scale the phosphorus recovery via wet chemical extraction from slurry and hydrochar as the extraction and precipitation of (heavy) metals and metalloids to promote the recovery of non-contaminated high-value phosphorus-rich products. Experimental results indicated that both matrices performed well in terms of phosphorus recovery and acid consumption, but the maximum overall recovery efficiency was higher when phosphorus was extracted from the hydrochar (49.6–75.1%) by using oxalic, sulfuric and nitric acids. Oxalic acid resulted as the most promising extractant from slurry at a dosage of 40 g/L. Instead, extraction from hydrochar was less affected by the type of acid used, suggesting the role of pH as the main driver. The co-precipitation of metals and metalloids was higher in slurry, with one sample of the recovered material exceeding the threshold limits of European fertilizer regulation. Instead, recovered material obtained from hydrochar showed lower level of contamination (in terms of Al, Fe, Ni, Cr and As content) and were regulatory compliant. This study attempts to guide the the type of acid and precipitants’ selection to address a good trade-off between a high P content and a low contamination in the recovered material.
ArticleNumber 126620
Author Gelmi, E.
Sessolo, L.
Turolla, A.
Boniardi, G.
Canziani, R.
Author_xml – sequence: 1
  givenname: G.
  surname: Boniardi
  fullname: Boniardi, G.
– sequence: 2
  givenname: L.
  surname: Sessolo
  fullname: Sessolo, L.
– sequence: 3
  givenname: E.
  surname: Gelmi
  fullname: Gelmi, E.
– sequence: 4
  givenname: A.
  surname: Turolla
  fullname: Turolla, A.
  email: andrea.turolla@polimi.it
– sequence: 5
  givenname: R.
  surname: Canziani
  fullname: Canziani, R.
BookMark eNqFkM9q3DAQh0VJocmmb9CDXsAb_bNs9xAIoUkLgV6Ss5Cl8VqLLRlJu9vtk-Rxq8321ENzGGaY4Rv4fVfowgcPCH2hZE0JlTfbdYJl2cU1I0ysKZOSkQ_okrYNr3jTiYsy85ZXdSvlJ3SV0pYQ2tCWXaLXZx03kJ3f4GUMqVTcJRzBhD3EIx5imHGCg94ATtPOlnYY3QR4ibAH_8aZ4LOendc-41T22uK902U9986DxePRxpBHiLOesNGxD9791tkFj7W3-AAZmxFmZ8oZfuWozel2jT4Oekrw-W9foZeHb8_336unn48_7u-eKsOJzBUnrCNSCAusHjqwVPYN510vNK1bURM9dLTvDaOyA8Kg05IIK0B0bdOIGghfIXH-a2JIKcKgluhmHY-KEnWyq7bqbFed7Kqz3YJ9_QczLr-FKgHc9B58e4ahBNs7iCoZB96AdcV8Vja4_z_4Awmen6E
CitedBy_id crossref_primary_10_1016_j_scp_2024_101885
crossref_primary_10_1016_j_biortech_2024_131279
Cites_doi 10.3390/ijerph17186618
10.1021/acs.iecr.6b04819
10.1504/IJEWM.2016.080795
10.1016/j.cej.2021.129300
10.1080/10643389.2013.866531
10.1016/j.jclepro.2020.120991
10.3390/pr10010151
10.1016/j.chemosphere.2019.04.109
10.1007/s11356-015-4849-0
10.1016/j.jclepro.2021.130130
10.3390/en14092697
10.1007/s12649-021-01463-5
10.3390/en15155633
10.1007/s13399-017-0291-5
10.1016/j.chemosphere.2017.11.129
10.1007/s12649-021-01368-3
10.1039/c0em00168f
10.1007/s12649-020-01280-2
10.1016/j.chemosphere.2021.129609
10.1016/j.jenvman.2019.02.121
10.1016/j.jaap.2022.105678
10.1016/j.cherd.2022.06.028
10.3390/en12122383
10.1016/j.joei.2018.12.003
10.3390/pr9040618
10.1016/j.watres.2019.05.022
10.1016/j.jclepro.2021.126456
10.1016/j.chemosphere.2017.11.023
10.1016/j.envres.2017.03.010
10.1016/j.chemosphere.2021.131476
10.1016/j.fuel.2016.02.068
10.3390/app10103445
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.seppur.2024.126620
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3794
ExternalDocumentID 10_1016_j_seppur_2024_126620
S1383586624003599
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
SSH
ID FETCH-LOGICAL-c306t-30290644de25f9ed16b7339b4a158450af91bbc2169e02e9a604d4e4987745e03
IEDL.DBID .~1
ISSN 1383-5866
IngestDate Thu Apr 24 23:00:57 EDT 2025
Tue Jul 01 00:45:37 EDT 2025
Sat Apr 20 15:58:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermochemical treatment
Hydrochar
Circular economy
Heavy metals and metalloids
Wet chemical extraction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-30290644de25f9ed16b7339b4a158450af91bbc2169e02e9a604d4e4987745e03
ParticipantIDs crossref_primary_10_1016_j_seppur_2024_126620
crossref_citationtrail_10_1016_j_seppur_2024_126620
elsevier_sciencedirect_doi_10_1016_j_seppur_2024_126620
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-02
PublicationDateYYYYMMDD 2024-07-02
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-02
  day: 02
PublicationDecade 2020
PublicationTitle Separation and purification technology
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References ISO 3310-1. Test sieves — Technical requirements and testing — Part 1: Test sieves of metal wire cloth, 2016.
Song, Park, Kim (b0145) 2019; 12
EN 15956 Fertilizers - Extraction of Phosphorus Soluble in Mineral Acids, 2011.
Xu, Ma, Zhou, Duan, Zhou, Ahmad, Luque (b0175) 2022; 167
Shettigondahalli Ekanthalu, Narra, Sprafke, Nelles (b0055) 2021
Zhang, Xue, Chen, Li, Chen (b0120) 2021; 9
Islam (b0080) 2021
Maurizio, Luca, Fabio, Antonio, Gianni (b0155) 2020; 80
G.D. Giacomo, P. Romano, Evolution and Prospects in Managing Sewage Sludge Resulting from Municipal Wastewater Purification, (2022) 33.
Ighalo, Rangabhashiyam, Dulta, Umeh, Iwuozor, Aniagor, Eshiemogie, Iwuchukwu, Igwegbe (b0090) 2022; 184
Zhang, Xu, Li, Wang, Zheng (b0010) 2017; 56
Marin-Batista (b0140) 2020; 9
Shi, Luo, Rao, Chen, Zhang (b0180) 2019; 228
Tasca, Mannarino, Gori, Vitolo, Puccini (b0150) 2020
UNI EN 12457-2. Characterisation of waste - leaching - compliance test for leaching of granular waste materials and sludges - part 2: one stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction), 2004.
Heidari, Dutta, Acharya, Mahmud (b0065) 2019; 92
Peng, Zhai, Zhu, Xu, Wang, Li, Zeng (b0245) 2016; 176
Kwapinski, Kolinovic, Leahy (b0025) 2021; 12
Luo, Huang, Lin, Li, Qiu, Liu, Mao (b0095) 2020; 258
Marc (b0225) 2022
Ma, Rosen (b0045) 2021; 274
Wang (b0115) 2020; 12
Statistisches Bundesamt Destatis. Erhebung der öff. Abwasserentsorgung-Klärschlamm, 2021. https://wwwgenesis.destatis.de/genesis/online?operation=statistic&levelindex=0&levelid=1639500438707&code=32214#abreadcrumb (accessed September 5, 2022).
Liu, Hu, Basar, Li, Lyczko, Nzihou, Eskicioglu (b0250) 2021; 417
Langone, Basso (b0255) 2020; 17
Liang, Xu, Feng, Hao, Guo, Wang (b0050) 2021; 295
Liu (b0110) 2014; 8
González-Arias (b0070) 2022; 11
Bianchini, Bonfiglioli, Pellegrini, Saccani (b0015) 2016; 18
Sichler, Adam, Montag, Barjenbruch (b0030) 2022; 333
Becker, Wüst, Köhler, Lautenbach, Kruse (b0125) 2019; 238
Shi (b0100) 2018; 10
Regulation (EU) 2019/1009. Safe and effective fertilising products on the EU market., 2019. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1009&from=EN.
UNE EN 15920. Fertilizers - Extraction of phosphorus soluble in 2 % citric acid, 2011.
Fang, Li, Guo, Cheeseman, Tsang, Donatello, Poon (b0230) 2018; 193
Lachos-Perez (b0270) 2022; 15
Shettigondahalli Ekanthalu, Narra, Ender, Antwi, Nelles (b0035) 2022; 10
G. Gerner, L. Meyer, R. Wanner, T. Keller, R. Krebs, Sewage Sludge Treatment by Hydrothermal Carbonization: Feasibility Study for Sustainable Nutrient Recovery and Fuel Production, (2021) 12.
Lucian, Merzari, Gubert, Messineo, Volpe (b0135) 2021
Luyckx, Sousa Correia, Van Caneghem (b0260) 2021; 12
Bontempi, Zacco, Borgese, Gianoncelli, Ardesi, Depero (b0210) 2010; 12
X. Zhao, G. C. Becker, N. Faweya, C. Rodriguez Correa, S. Yang, X. Xie, A. Kruse, Fertilizer and activated carbon production by hydrothermal carbonization of digestate, (2018) 14.
Pérez, Boily, Jansson, Gustafsson, Fick (b0165) 2021; 12
Ferrentino, Ceccato, Marchetti, Andreottola, Fiori (b0085) 2020; 10
Liang, Chen, Zeng, Li, Yu, Xiao, Hu, Hou, Liu, Tao, Yang (b0265) 2019; 159
Kacprzak, Neczaj, Fijałkowski, Grobelak, Grosser, Worwag, Rorat, Brattebo, Almås, Singh (b0020) 2017; 156
Fang (b0075) 2018; 7
Desmidt, Ghyselbrecht, Zhang, Pinoy, Van der Bruggen, Verstraete, Rabaey, Meesschaert (b0170) 2015; 45
Wang (b0060) 2019; 18
Sun, Tang, Gong, Zhang (b0105) 2015; 22
Waldmüller, Herdzik, Gaderer (b0185) 2021
Boniardi, Turolla, Fiameni, Gelmi, Malpei, Bontempi, Canziani (b0235) 2021; 285
UNI EN ISO 17294-1. Water Quality - Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) - Part 1: General Guidelines, n.d. 2007.
ASTM (American Society for Testing and Materials) E11, n.d.
Lee, Alvarez, Kim, Jeong, Lee, Lee, Lee, Choi (b0190) 2018; 193
Boniardi (10.1016/j.seppur.2024.126620_b0235) 2021; 285
Marc (10.1016/j.seppur.2024.126620_b0225) 2022
Maurizio (10.1016/j.seppur.2024.126620_b0155) 2020; 80
10.1016/j.seppur.2024.126620_b0220
Wang (10.1016/j.seppur.2024.126620_b0115) 2020; 12
Xu (10.1016/j.seppur.2024.126620_b0175) 2022; 167
Desmidt (10.1016/j.seppur.2024.126620_b0170) 2015; 45
Kwapinski (10.1016/j.seppur.2024.126620_b0025) 2021; 12
Sun (10.1016/j.seppur.2024.126620_b0105) 2015; 22
Langone (10.1016/j.seppur.2024.126620_b0255) 2020; 17
Shettigondahalli Ekanthalu (10.1016/j.seppur.2024.126620_b0055) 2021
Kacprzak (10.1016/j.seppur.2024.126620_b0020) 2017; 156
Waldmüller (10.1016/j.seppur.2024.126620_b0185) 2021
Lucian (10.1016/j.seppur.2024.126620_b0135) 2021
Peng (10.1016/j.seppur.2024.126620_b0245) 2016; 176
Ma (10.1016/j.seppur.2024.126620_b0045) 2021; 274
Liang (10.1016/j.seppur.2024.126620_b0050) 2021; 295
Bontempi (10.1016/j.seppur.2024.126620_b0210) 2010; 12
Bianchini (10.1016/j.seppur.2024.126620_b0015) 2016; 18
Sichler (10.1016/j.seppur.2024.126620_b0030) 2022; 333
Luo (10.1016/j.seppur.2024.126620_b0095) 2020; 258
Lee (10.1016/j.seppur.2024.126620_b0190) 2018; 193
Liu (10.1016/j.seppur.2024.126620_b0110) 2014; 8
Shi (10.1016/j.seppur.2024.126620_b0100) 2018; 10
10.1016/j.seppur.2024.126620_b0275
Fang (10.1016/j.seppur.2024.126620_b0075) 2018; 7
10.1016/j.seppur.2024.126620_b0195
Shi (10.1016/j.seppur.2024.126620_b0180) 2019; 228
Luyckx (10.1016/j.seppur.2024.126620_b0260) 2021; 12
Lachos-Perez (10.1016/j.seppur.2024.126620_b0270) 2022; 15
Marin-Batista (10.1016/j.seppur.2024.126620_b0140) 2020; 9
Zhang (10.1016/j.seppur.2024.126620_b0120) 2021; 9
10.1016/j.seppur.2024.126620_b0205
Liang (10.1016/j.seppur.2024.126620_b0265) 2019; 159
10.1016/j.seppur.2024.126620_b0005
10.1016/j.seppur.2024.126620_b0200
Wang (10.1016/j.seppur.2024.126620_b0060) 2019; 18
Zhang (10.1016/j.seppur.2024.126620_b0010) 2017; 56
10.1016/j.seppur.2024.126620_b0240
10.1016/j.seppur.2024.126620_b0040
10.1016/j.seppur.2024.126620_b0160
Islam (10.1016/j.seppur.2024.126620_b0080) 2021
Heidari (10.1016/j.seppur.2024.126620_b0065) 2019; 92
Pérez (10.1016/j.seppur.2024.126620_b0165) 2021; 12
Tasca (10.1016/j.seppur.2024.126620_b0150) 2020
Shettigondahalli Ekanthalu (10.1016/j.seppur.2024.126620_b0035) 2022; 10
10.1016/j.seppur.2024.126620_b0215
Fang (10.1016/j.seppur.2024.126620_b0230) 2018; 193
Liu (10.1016/j.seppur.2024.126620_b0250) 2021; 417
10.1016/j.seppur.2024.126620_b0130
González-Arias (10.1016/j.seppur.2024.126620_b0070) 2022; 11
Becker (10.1016/j.seppur.2024.126620_b0125) 2019; 238
Ighalo (10.1016/j.seppur.2024.126620_b0090) 2022; 184
Song (10.1016/j.seppur.2024.126620_b0145) 2019; 12
Ferrentino (10.1016/j.seppur.2024.126620_b0085) 2020; 10
References_xml – start-page: 16
  year: 2021
  ident: b0080
  article-title: Hydrochar-based soil amendments for agriculture: a review of recent progress
  publication-title: Arab J Geosci
– reference: Statistisches Bundesamt Destatis. Erhebung der öff. Abwasserentsorgung-Klärschlamm, 2021. https://wwwgenesis.destatis.de/genesis/online?operation=statistic&levelindex=0&levelid=1639500438707&code=32214#abreadcrumb (accessed September 5, 2022).
– reference: X. Zhao, G. C. Becker, N. Faweya, C. Rodriguez Correa, S. Yang, X. Xie, A. Kruse, Fertilizer and activated carbon production by hydrothermal carbonization of digestate, (2018) 14.
– volume: 156
  start-page: 39
  year: 2017
  end-page: 46
  ident: b0020
  article-title: Sewage sludge disposal strategies for sustainable development
  publication-title: Environ. Res.
– volume: 193
  start-page: 1087
  year: 2018
  end-page: 1093
  ident: b0190
  article-title: Phosphorous recovery from sewage sludge using calcium silicate hydrates
  publication-title: Chemosphere
– reference: UNI EN ISO 17294-1. Water Quality - Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) - Part 1: General Guidelines, n.d. 2007.
– volume: 45
  start-page: 336
  year: 2015
  end-page: 384
  ident: b0170
  article-title: Global phosphorus scarcity and full-scale P-recovery techniques: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 18
  year: 2019
  ident: b0060
  article-title: Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 17
  start-page: 6618
  year: 2020
  ident: b0255
  article-title: Process waters from hydrothermal carbonization of sludge: characteristics and possible valorization pathways
  publication-title: IJERPH
– volume: 92
  start-page: 1779
  year: 2019
  end-page: 1799
  ident: b0065
  article-title: A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion
  publication-title: J. Energy Inst.
– start-page: 11
  year: 2021
  ident: b0185
  article-title: Combined filtration and oxalic acid leaching for recovering phosphorus from hydrothermally carbonized sewage sludge
  publication-title: Journal of Environmental Chem. Eng.
– volume: 10
  start-page: 151
  year: 2022
  ident: b0035
  article-title: Influence of post- and pre-acid treatment during hydrothermal carbonization of sewage sludge on P-transformation and the characteristics of hydrochar
  publication-title: Processes
– reference: G. Gerner, L. Meyer, R. Wanner, T. Keller, R. Krebs, Sewage Sludge Treatment by Hydrothermal Carbonization: Feasibility Study for Sustainable Nutrient Recovery and Fuel Production, (2021) 12.
– volume: 184
  start-page: 419
  year: 2022
  end-page: 456
  ident: b0090
  article-title: Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants
  publication-title: Chem. Eng. Res. Des.
– volume: 15
  year: 2022
  ident: b0270
  article-title: Hydrothermal carbonization and Liquefaction: differences, progress, challenges, and opportunities
  publication-title: Bioresour. Technol.
– reference: G.D. Giacomo, P. Romano, Evolution and Prospects in Managing Sewage Sludge Resulting from Municipal Wastewater Purification, (2022) 33.
– volume: 9
  year: 2020
  ident: b0140
  article-title: Energy and phosphorous recovery through hydrothermal carbonization of digested sewage sludge
  publication-title: Waste Manag.
– volume: 417
  year: 2021
  ident: b0250
  article-title: Phosphorus recovery from municipal sludge-derived ash and hydrochar through wet-chemical technology: a review towards sustainable waste management
  publication-title: Chem. Eng. J.
– start-page: 618
  year: 2021
  ident: b0055
  article-title: Influence of acids and alkali as additives on hydrothermally treating sewage sludge: effect on phosphorus recovery, yield, and energy value of hydrochar
  publication-title: Processes 9
– volume: 285
  year: 2021
  ident: b0235
  article-title: Assessment of a simple and replicable procedure for selective phosphorus recovery from sewage sludge ashes by wet chemical extraction and precipitation
  publication-title: Chemosphere
– volume: 12
  year: 2020
  ident: b0115
  article-title: Hydrothermal co-carbonization of sewage sludge and high concentration phenolic wastewater for production of solid biofuel with increased calorific value
  publication-title: J. Clean. Prod.
– volume: 80
  start-page: 199
  year: 2020
  end-page: 204
  ident: b0155
  article-title: Hydrothermal carbonization as an efficient tool for sewage sludge valorization and phosphorous recovery
  publication-title: Chemical Eng. Trans.
– volume: 176
  start-page: 110
  year: 2016
  end-page: 118
  ident: b0245
  article-title: Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics
  publication-title: Fuel
– volume: 8
  year: 2014
  ident: b0110
  article-title: Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars
  publication-title: Appl. Energy
– reference: ASTM (American Society for Testing and Materials) E11, n.d.
– volume: 258
  year: 2020
  ident: b0095
  article-title: Hydrothermal carbonization of sewage sludge and in-situ preparation of hydrochar/MgAl-layered double hydroxides composites for adsorption of Pb(II)
  publication-title: J. Clean. Prod.
– volume: 10
  year: 2018
  ident: b0100
  article-title: Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution
  publication-title: Bioresour. Technol.
– volume: 12
  start-page: 6555
  year: 2021
  end-page: 6568
  ident: b0165
  article-title: Acid-induced phosphorus release from hydrothermally carbonized sewage sludge
  publication-title: Waste Biomass Valor
– volume: 228
  start-page: 619
  year: 2019
  end-page: 628
  ident: b0180
  article-title: Hydrothermal conversion of dewatered sewage sludge: focusing on the transformation mechanism and recovery of phosphorus
  publication-title: Chemosphere
– start-page: 13
  year: 2020
  ident: b0150
  article-title: Phosphorus recovery from sewage sludge hydrochar: process optimization by response surface methodology
  publication-title: Water Science
– volume: 12
  start-page: 5837
  year: 2021
  end-page: 5852
  ident: b0025
  article-title: Sewage sludge thermal treatment technologies with a focus on phosphorus recovery: a review
  publication-title: Waste Biomass Valor
– reference: EN 15956 Fertilizers - Extraction of Phosphorus Soluble in Mineral Acids, 2011.
– volume: 56
  start-page: 3033
  year: 2017
  end-page: 3039
  ident: b0010
  article-title: Recovery of phosphorus and potassium from source-separated urine using a fluidized bed reactor: optimization operation and mechanism modeling
  publication-title: Ind. Eng. Chem. Res.
– volume: 7
  year: 2018
  ident: b0075
  article-title: Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass
  publication-title: J. Ind. Eng. Chem.
– volume: 12
  start-page: 2093
  year: 2010
  ident: b0210
  article-title: A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica
  publication-title: J. Environ. Monit.
– volume: 238
  start-page: 119
  year: 2019
  end-page: 125
  ident: b0125
  article-title: Novel approach of phosphate-reclamation as struvite from sewage sludge by utilising hydrothermal carbonization
  publication-title: J. Environ. Manage.
– volume: 193
  start-page: 278
  year: 2018
  end-page: 287
  ident: b0230
  article-title: Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA)
  publication-title: Chemosphere
– volume: 18
  start-page: 226
  year: 2016
  ident: b0015
  article-title: Sewage sludge management in Europe: a critical analysis of data quality
  publication-title: IJEWM
– volume: 295
  year: 2021
  ident: b0050
  article-title: Municipal sewage sludge incineration and its air pollution control
  publication-title: J. Clean. Prod.
– year: 2022
  ident: b0225
  publication-title: Personal Information.
– volume: 12
  start-page: 5235
  year: 2021
  end-page: 5248
  ident: b0260
  article-title: Linking phosphorus extraction from different types of biomass incineration ash to ash mineralogy, ash composition and chemical characteristics of various types of extraction liquids
  publication-title: Waste Biomass Valor
– volume: 11
  year: 2022
  ident: b0070
  article-title: Hydrothermal carbonization of biomass and waste: A review
  publication-title: Environ. Chem. Lett.
– volume: 274
  year: 2021
  ident: b0045
  article-title: Land application of sewage sludge incinerator ash for phosphorus recovery: a review
  publication-title: Chemosphere
– volume: 9
  year: 2021
  ident: b0120
  article-title: Revealing the heating value characteristics of sludge-based hydrochar in hydrothermal process: from perspective of hydrolysate
  publication-title: Water Res.
– start-page: 15
  year: 2021
  ident: b0135
  article-title: Industrial-scale hydrothermal carbonization of agro-industrial digested sludge
  publication-title: Filterability Enhancement and Phosphorus Recovery
– volume: 333
  year: 2022
  ident: b0030
  article-title: Future nutrient recovery from sewage sludge regarding three different scenarios - German case study
  publication-title: J. Clean. Prod.
– volume: 12
  start-page: 2383
  year: 2019
  ident: b0145
  article-title: Upgrading hydrothermal carbonization (HTC) hydrochar from sewage sludge
  publication-title: Energies
– reference: UNI EN 12457-2. Characterisation of waste - leaching - compliance test for leaching of granular waste materials and sludges - part 2: one stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction), 2004.
– volume: 167
  year: 2022
  ident: b0175
  article-title: The influence of key reactions during hydrothermal carbonization of sewage sludge on aqueous phase properties: a review
  publication-title: J. Anal. Appl. Pyrol.
– reference: Regulation (EU) 2019/1009. Safe and effective fertilising products on the EU market., 2019. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1009&from=EN.
– reference: ISO 3310-1. Test sieves — Technical requirements and testing — Part 1: Test sieves of metal wire cloth, 2016.
– volume: 159
  start-page: 242
  year: 2019
  end-page: 251
  ident: b0265
  article-title: A comparison between sulfuric acid and oxalic acid leaching with subsequent purification and precipitation for phosphorus recovery from sewage sludge incineration ash
  publication-title: Water Res.
– volume: 10
  start-page: 3445
  year: 2020
  ident: b0085
  article-title: Sewage sludge hydrochar: an option for removal of methylene blue from wastewater
  publication-title: Appl. Sci.
– volume: 22
  start-page: 16640
  year: 2015
  end-page: 16651
  ident: b0105
  article-title: Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water
  publication-title: Environ Sci Pollut Res
– reference: UNE EN 15920. Fertilizers - Extraction of phosphorus soluble in 2 % citric acid, 2011.
– volume: 17
  start-page: 6618
  year: 2020
  ident: 10.1016/j.seppur.2024.126620_b0255
  article-title: Process waters from hydrothermal carbonization of sludge: characteristics and possible valorization pathways
  publication-title: IJERPH
  doi: 10.3390/ijerph17186618
– volume: 56
  start-page: 3033
  year: 2017
  ident: 10.1016/j.seppur.2024.126620_b0010
  article-title: Recovery of phosphorus and potassium from source-separated urine using a fluidized bed reactor: optimization operation and mechanism modeling
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b04819
– volume: 18
  start-page: 226
  year: 2016
  ident: 10.1016/j.seppur.2024.126620_b0015
  article-title: Sewage sludge management in Europe: a critical analysis of data quality
  publication-title: IJEWM
  doi: 10.1504/IJEWM.2016.080795
– volume: 9
  year: 2020
  ident: 10.1016/j.seppur.2024.126620_b0140
  article-title: Energy and phosphorous recovery through hydrothermal carbonization of digested sewage sludge
  publication-title: Waste Manag.
– volume: 417
  year: 2021
  ident: 10.1016/j.seppur.2024.126620_b0250
  article-title: Phosphorus recovery from municipal sludge-derived ash and hydrochar through wet-chemical technology: a review towards sustainable waste management
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129300
– volume: 45
  start-page: 336
  year: 2015
  ident: 10.1016/j.seppur.2024.126620_b0170
  article-title: Global phosphorus scarcity and full-scale P-recovery techniques: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2013.866531
– start-page: 11
  year: 2021
  ident: 10.1016/j.seppur.2024.126620_b0185
  article-title: Combined filtration and oxalic acid leaching for recovering phosphorus from hydrothermally carbonized sewage sludge
  publication-title: Journal of Environmental Chem. Eng.
– volume: 258
  year: 2020
  ident: 10.1016/j.seppur.2024.126620_b0095
  article-title: Hydrothermal carbonization of sewage sludge and in-situ preparation of hydrochar/MgAl-layered double hydroxides composites for adsorption of Pb(II)
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120991
– volume: 10
  start-page: 151
  year: 2022
  ident: 10.1016/j.seppur.2024.126620_b0035
  article-title: Influence of post- and pre-acid treatment during hydrothermal carbonization of sewage sludge on P-transformation and the characteristics of hydrochar
  publication-title: Processes
  doi: 10.3390/pr10010151
– volume: 15
  year: 2022
  ident: 10.1016/j.seppur.2024.126620_b0270
  article-title: Hydrothermal carbonization and Liquefaction: differences, progress, challenges, and opportunities
  publication-title: Bioresour. Technol.
– ident: 10.1016/j.seppur.2024.126620_b0040
– volume: 228
  start-page: 619
  year: 2019
  ident: 10.1016/j.seppur.2024.126620_b0180
  article-title: Hydrothermal conversion of dewatered sewage sludge: focusing on the transformation mechanism and recovery of phosphorus
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.04.109
– volume: 22
  start-page: 16640
  year: 2015
  ident: 10.1016/j.seppur.2024.126620_b0105
  article-title: Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-015-4849-0
– volume: 333
  year: 2022
  ident: 10.1016/j.seppur.2024.126620_b0030
  article-title: Future nutrient recovery from sewage sludge regarding three different scenarios - German case study
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.130130
– ident: 10.1016/j.seppur.2024.126620_b0130
  doi: 10.3390/en14092697
– volume: 12
  start-page: 6555
  year: 2021
  ident: 10.1016/j.seppur.2024.126620_b0165
  article-title: Acid-induced phosphorus release from hydrothermally carbonized sewage sludge
  publication-title: Waste Biomass Valor
  doi: 10.1007/s12649-021-01463-5
– volume: 10
  year: 2018
  ident: 10.1016/j.seppur.2024.126620_b0100
  article-title: Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution
  publication-title: Bioresour. Technol.
– start-page: 16
  year: 2021
  ident: 10.1016/j.seppur.2024.126620_b0080
  article-title: Hydrochar-based soil amendments for agriculture: a review of recent progress
  publication-title: Arab J Geosci
– year: 2022
  ident: 10.1016/j.seppur.2024.126620_b0225
  publication-title: Personal Information.
– ident: 10.1016/j.seppur.2024.126620_b0275
– ident: 10.1016/j.seppur.2024.126620_b0005
  doi: 10.3390/en15155633
– volume: 7
  year: 2018
  ident: 10.1016/j.seppur.2024.126620_b0075
  article-title: Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass
  publication-title: J. Ind. Eng. Chem.
– ident: 10.1016/j.seppur.2024.126620_b0160
  doi: 10.1007/s13399-017-0291-5
– volume: 193
  start-page: 1087
  year: 2018
  ident: 10.1016/j.seppur.2024.126620_b0190
  article-title: Phosphorous recovery from sewage sludge using calcium silicate hydrates
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.11.129
– ident: 10.1016/j.seppur.2024.126620_b0240
– volume: 12
  year: 2020
  ident: 10.1016/j.seppur.2024.126620_b0115
  article-title: Hydrothermal co-carbonization of sewage sludge and high concentration phenolic wastewater for production of solid biofuel with increased calorific value
  publication-title: J. Clean. Prod.
– volume: 12
  start-page: 5235
  year: 2021
  ident: 10.1016/j.seppur.2024.126620_b0260
  article-title: Linking phosphorus extraction from different types of biomass incineration ash to ash mineralogy, ash composition and chemical characteristics of various types of extraction liquids
  publication-title: Waste Biomass Valor
  doi: 10.1007/s12649-021-01368-3
– start-page: 13
  year: 2020
  ident: 10.1016/j.seppur.2024.126620_b0150
  article-title: Phosphorus recovery from sewage sludge hydrochar: process optimization by response surface methodology
  publication-title: Water Science
– volume: 12
  start-page: 2093
  year: 2010
  ident: 10.1016/j.seppur.2024.126620_b0210
  article-title: A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica
  publication-title: J. Environ. Monit.
  doi: 10.1039/c0em00168f
– ident: 10.1016/j.seppur.2024.126620_b0215
– volume: 12
  start-page: 5837
  year: 2021
  ident: 10.1016/j.seppur.2024.126620_b0025
  article-title: Sewage sludge thermal treatment technologies with a focus on phosphorus recovery: a review
  publication-title: Waste Biomass Valor
  doi: 10.1007/s12649-020-01280-2
– volume: 274
  year: 2021
  ident: 10.1016/j.seppur.2024.126620_b0045
  article-title: Land application of sewage sludge incinerator ash for phosphorus recovery: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.129609
– volume: 238
  start-page: 119
  year: 2019
  ident: 10.1016/j.seppur.2024.126620_b0125
  article-title: Novel approach of phosphate-reclamation as struvite from sewage sludge by utilising hydrothermal carbonization
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.02.121
– volume: 167
  year: 2022
  ident: 10.1016/j.seppur.2024.126620_b0175
  article-title: The influence of key reactions during hydrothermal carbonization of sewage sludge on aqueous phase properties: a review
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2022.105678
– ident: 10.1016/j.seppur.2024.126620_b0220
– volume: 184
  start-page: 419
  year: 2022
  ident: 10.1016/j.seppur.2024.126620_b0090
  article-title: Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2022.06.028
– ident: 10.1016/j.seppur.2024.126620_b0205
– volume: 8
  year: 2014
  ident: 10.1016/j.seppur.2024.126620_b0110
  article-title: Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars
  publication-title: Appl. Energy
– volume: 12
  start-page: 2383
  year: 2019
  ident: 10.1016/j.seppur.2024.126620_b0145
  article-title: Upgrading hydrothermal carbonization (HTC) hydrochar from sewage sludge
  publication-title: Energies
  doi: 10.3390/en12122383
– volume: 92
  start-page: 1779
  year: 2019
  ident: 10.1016/j.seppur.2024.126620_b0065
  article-title: A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2018.12.003
– start-page: 618
  year: 2021
  ident: 10.1016/j.seppur.2024.126620_b0055
  article-title: Influence of acids and alkali as additives on hydrothermally treating sewage sludge: effect on phosphorus recovery, yield, and energy value of hydrochar
  publication-title: Processes 9
  doi: 10.3390/pr9040618
– ident: 10.1016/j.seppur.2024.126620_b0195
– volume: 11
  year: 2022
  ident: 10.1016/j.seppur.2024.126620_b0070
  article-title: Hydrothermal carbonization of biomass and waste: A review
  publication-title: Environ. Chem. Lett.
– start-page: 15
  year: 2021
  ident: 10.1016/j.seppur.2024.126620_b0135
  article-title: Industrial-scale hydrothermal carbonization of agro-industrial digested sludge
  publication-title: Filterability Enhancement and Phosphorus Recovery
– volume: 159
  start-page: 242
  year: 2019
  ident: 10.1016/j.seppur.2024.126620_b0265
  article-title: A comparison between sulfuric acid and oxalic acid leaching with subsequent purification and precipitation for phosphorus recovery from sewage sludge incineration ash
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.05.022
– volume: 80
  start-page: 199
  year: 2020
  ident: 10.1016/j.seppur.2024.126620_b0155
  article-title: Hydrothermal carbonization as an efficient tool for sewage sludge valorization and phosphorous recovery
  publication-title: Chemical Eng. Trans.
– volume: 18
  year: 2019
  ident: 10.1016/j.seppur.2024.126620_b0060
  article-title: Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 295
  year: 2021
  ident: 10.1016/j.seppur.2024.126620_b0050
  article-title: Municipal sewage sludge incineration and its air pollution control
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126456
– volume: 193
  start-page: 278
  year: 2018
  ident: 10.1016/j.seppur.2024.126620_b0230
  article-title: Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.11.023
– ident: 10.1016/j.seppur.2024.126620_b0200
– volume: 156
  start-page: 39
  year: 2017
  ident: 10.1016/j.seppur.2024.126620_b0020
  article-title: Sewage sludge disposal strategies for sustainable development
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.03.010
– volume: 285
  year: 2021
  ident: 10.1016/j.seppur.2024.126620_b0235
  article-title: Assessment of a simple and replicable procedure for selective phosphorus recovery from sewage sludge ashes by wet chemical extraction and precipitation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131476
– volume: 176
  start-page: 110
  year: 2016
  ident: 10.1016/j.seppur.2024.126620_b0245
  article-title: Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.02.068
– volume: 10
  start-page: 3445
  year: 2020
  ident: 10.1016/j.seppur.2024.126620_b0085
  article-title: Sewage sludge hydrochar: an option for removal of methylene blue from wastewater
  publication-title: Appl. Sci.
  doi: 10.3390/app10103445
– volume: 9
  year: 2021
  ident: 10.1016/j.seppur.2024.126620_b0120
  article-title: Revealing the heating value characteristics of sludge-based hydrochar in hydrothermal process: from perspective of hydrolysate
  publication-title: Water Res.
SSID ssj0017182
Score 2.4493735
Snippet •P extraction from slurry and hydrochar is feasible, being the second more convenient.•Oxalic acid proved a good leaching agent and a more environmentally...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126620
SubjectTerms Circular economy
Heavy metals and metalloids
Hydrochar
Thermochemical treatment
Wet chemical extraction
Title Targeting phosphorus recovery from sewage sludge while preventing contaminant spread via combined hydrothermal carbonization and wet chemical extraction
URI https://dx.doi.org/10.1016/j.seppur.2024.126620
Volume 339
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3yTg9e6TZsmzVFEWRW8qOCtpMksu6K7pd118eLv8Oc604coiIKH0jZkIHSGedBvvmHsWLlUO0s0-zqKA6l1HNBg7QDCFDBgAymG0BY3qn8vrx6ShwV21vXCEKyy9f2NT6-9dbvSa79mrxiNercCi6skVYpQkHFiqIlPSk1WfvL2CfMQ6HvrP564OaDdXftcjfGqoChmxAoayROBoYqmfv8Unr6EnIs1ttrmivy0Oc46W4DxBlv5wiC4yd7vaiQ3PvNiOKnwKmcVpyoXTfSVU_MIr2COToNXTzOPt_kQ_QAvWuYmlCOwum0AMbzCdev5y8ji8jMWzeD58NWXdZvWM57F2TKfdL2b3I49n8OUu5Z1gKOnL5tOiS12f3F-d9YP2mELgcOqYRrEIRG_S-khSgYGvFC5jmOTSyswR0lCOzAiz10klIEwAmNVKL0EaVJMIBMI4222OJ6MYYdxjxqRIjUiydE_GGWdslEKWrsk8gMLuyzuvnHmWiZyGojxlHWQs8es0UxGmskazeyy4FOqaJg4_tivO_Vl3ywqw2Dxq-TevyX32TK91XDe6IAtTssZHGLSMs2Paqs8Ykunl9f9mw-2Fu9g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzaHtofRJkr506NVdPyTZOobQsGnSvXQDuRlZmmW3JLvG3u2Sf5Kf2xlbDimUFnowNrIGhEbMA33zDcAn7YrcWabZz9MsknmeRdxYO8K4QHLYyIphtMVUTy7l1yt1tQcnQy0MwyqD7e9temetw8g47Oa4Xi7H3xNKrlShNaMgM2XMI9hndio1gv3js_PJ9P4ygcxvd-lJ8yMWGCroOphXi3W9ZWLQVH5OyFtx4-8_eagHXuf0OTwL4aI47lf0AvZw9RKePiARfAV3sw7MTd-iXqxbepptKzjRpVN6K7h-RLS4I7sh2uutp9duQaZA1IG8ieQYr257TIxoadx68XNpafiG8mb0YnHrm65S64bW4mxTrYfyTWFXXuxwI1wgHhBk7Ju-WOI1XJ5-mZ1MotBvIXKUOGyiLGbudyk9pmpu0Ce6yrPMVNImFKao2M5NUlUuTbTBOEVjdSy9RGkKiiEVxtkbGK3WKzwA4UkpMilMoioyEUZbp21aYJ47lfq5xUPIhj0uXSAj554Y1-WAOvtR9popWTNlr5lDiO6l6p6M4x_z80F95W-HqiR_8VfJo_-W_AiPJ7NvF-XF2fT8LTzhPx26N30Ho02zxfcUw2yqD-GM_gLhCvIR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+phosphorus+recovery+from+sewage+sludge+while+preventing+contaminant+spread+via+combined+hydrothermal+carbonization+and+wet+chemical+extraction&rft.jtitle=Separation+and+purification+technology&rft.au=Boniardi%2C+G.&rft.au=Sessolo%2C+L.&rft.au=Gelmi%2C+E.&rft.au=Turolla%2C+A.&rft.date=2024-07-02&rft.issn=1383-5866&rft.volume=339&rft.spage=126620&rft_id=info:doi/10.1016%2Fj.seppur.2024.126620&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_seppur_2024_126620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon