Identification of tea leaf diseases by using an improved deep convolutional neural network
•A method for identifying tea diseases with low cost and high identification accuracy is proposed.•Multiscale feature extraction is introduced to distinguish the features of different tea leaf diseases.•Depthwise separable convolution is used instead of standard convolution to reduce the number of m...
Saved in:
Published in | Sustainable computing informatics and systems Vol. 24; p. 100353 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A method for identifying tea diseases with low cost and high identification accuracy is proposed.•Multiscale feature extraction is introduced to distinguish the features of different tea leaf diseases.•Depthwise separable convolution is used instead of standard convolution to reduce the number of model parameters.
Accurate and rapid identification of tea leaf diseases is beneficial to their prevention and control. This study proposes a method based on an improved deep convolutional neural network (CNN) for tea leaf disease identification. A multiscale feature extraction module is added into the improved deep CNN of a CIFAR10-quick model to improve the ability to automatically extract image features of different tea leaf diseases. The depthwise separable convolution is used to reduce the number of model parameters and accelerate the calculation of the model. Experimental results show that the average identification accuracy of the proposed method is 92.5%, which is higher than that of traditional machine learning methods and classical deep learning methods. The number of parameters and the convergence iteration times of the improved model are significantly lower than those of VGG16 and AlexNet deep learning network models. |
---|---|
AbstractList | •A method for identifying tea diseases with low cost and high identification accuracy is proposed.•Multiscale feature extraction is introduced to distinguish the features of different tea leaf diseases.•Depthwise separable convolution is used instead of standard convolution to reduce the number of model parameters.
Accurate and rapid identification of tea leaf diseases is beneficial to their prevention and control. This study proposes a method based on an improved deep convolutional neural network (CNN) for tea leaf disease identification. A multiscale feature extraction module is added into the improved deep CNN of a CIFAR10-quick model to improve the ability to automatically extract image features of different tea leaf diseases. The depthwise separable convolution is used to reduce the number of model parameters and accelerate the calculation of the model. Experimental results show that the average identification accuracy of the proposed method is 92.5%, which is higher than that of traditional machine learning methods and classical deep learning methods. The number of parameters and the convergence iteration times of the improved model are significantly lower than those of VGG16 and AlexNet deep learning network models. |
ArticleNumber | 100353 |
Author | Wan, Mingzhu Zhang, Yan Yang, Xiaowei Hu, Gensheng |
Author_xml | – sequence: 1 givenname: Gensheng surname: Hu fullname: Hu, Gensheng organization: National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei, 230601, China – sequence: 2 givenname: Xiaowei surname: Yang fullname: Yang, Xiaowei organization: National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei, 230601, China – sequence: 3 givenname: Yan surname: Zhang fullname: Zhang, Yan email: zhangyan@ahu.edu.cn organization: National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei, 230601, China – sequence: 4 givenname: Mingzhu surname: Wan fullname: Wan, Mingzhu organization: School of Information Science and Technology, Fudan University, Shanghai, 200433, China |
BookMark | eNqFkM1KAzEURrOoYK19Axd5ganJZDI_LgQpagsFN7pxEzLJjaROk5JkKn17px1XLvRuPrhwPu49V2jivAOEbihZUELL2-0i9lH53SIntBlWhHE2QdM8pyTjrGou0TzGLRmGl7RhxRS9rzW4ZI1VMlnvsDc4gcQdSIO1jSAjRNwecR-t-8DSYbvbB38AjTXAHivvDr7rT6jssIM-nCN9-fB5jS6M7CLMf3KG3p4eX5erbPPyvF4-bDLFSJmy3HBjWC0lM60mrda8Ik3b8IrLvIF8uLOUlS64ppVu81JXhaprYwirlYSyJWyGirFXBR9jACP2we5kOApKxEmL2IpRizhpEaOWAbv7hSmbzhJSkLb7D74fYRgeO1gIIioLToG2AVQS2tu_C74BjNiG3Q |
CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3120379 crossref_primary_10_1111_exsy_12746 crossref_primary_10_1002_rob_22318 crossref_primary_10_1111_pce_14749 crossref_primary_10_3389_fsufs_2023_1172543 crossref_primary_10_3934_mbe_2021170 crossref_primary_10_1109_ACCESS_2024_3373707 crossref_primary_10_1155_2021_9957067 crossref_primary_10_1007_s10278_020_00402_5 crossref_primary_10_1007_s11277_024_10873_2 crossref_primary_10_1007_s41870_022_00860_w crossref_primary_10_3389_fpls_2022_949054 crossref_primary_10_1007_s00521_024_10758_2 crossref_primary_10_54097_fcis_v3i2_7187 crossref_primary_10_7161_omuanajas_805152 crossref_primary_10_1007_s11356_024_31963_5 crossref_primary_10_1109_ACCESS_2023_3286730 crossref_primary_10_1002_jsfa_13241 crossref_primary_10_1109_ACCESS_2022_3141371 crossref_primary_10_1109_ACCESS_2024_3450016 crossref_primary_10_31590_ejosat_883787 crossref_primary_10_3233_JIFS_200862 crossref_primary_10_1080_01969722_2024_2343993 crossref_primary_10_1007_s40747_023_01024_4 crossref_primary_10_1155_2023_7876302 crossref_primary_10_5194_jsss_10_153_2021 crossref_primary_10_1186_s13007_024_01219_x crossref_primary_10_1007_s11042_024_18392_9 crossref_primary_10_1007_s00521_022_07743_y crossref_primary_10_1007_s00521_022_07744_x crossref_primary_10_12791_KSBEC_2024_33_1_001 crossref_primary_10_1007_s41870_021_00657_3 crossref_primary_10_1038_s41598_024_62451_y crossref_primary_10_1007_s11119_023_09992_w crossref_primary_10_1080_22797254_2023_2186955 crossref_primary_10_1007_s11119_020_09782_8 crossref_primary_10_1080_1206212X_2023_2235750 crossref_primary_10_1007_s11042_023_17472_6 crossref_primary_10_1002_fsn3_2699 crossref_primary_10_1002_ps_7964 crossref_primary_10_1038_s41598_023_33270_4 crossref_primary_10_1155_2022_7012399 crossref_primary_10_1007_s11042_022_12984_z crossref_primary_10_29130_dubited_648387 crossref_primary_10_3389_fbioe_2022_855667 crossref_primary_10_3389_fpls_2023_1230886 |
Cites_doi | 10.1109/5.726791 10.1371/journal.pone.0168274 10.1016/j.procs.2017.11.450 10.1109/ACCESS.2018.2844405 10.1016/j.compag.2018.11.005 10.3389/fpls.2017.01852 10.3389/fpls.2016.01419 10.1016/j.compag.2017.08.005 10.1016/j.compag.2018.12.042 10.1016/j.biosystemseng.2016.08.024 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. |
Copyright_xml | – notice: 2019 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.suscom.2019.100353 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_suscom_2019_100353 S221053791930201X |
GroupedDBID | --K --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AARJD AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA GBOLZ HZ~ J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSR SSV SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-2f5ff38aa3fbd0bdd5709b9575a29e26196a7d45d17db26d74c88ff038cae6b03 |
IEDL.DBID | .~1 |
ISSN | 2210-5379 |
IngestDate | Tue Jul 01 01:35:18 EDT 2025 Thu Apr 24 23:09:23 EDT 2025 Fri Feb 23 02:48:56 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | Tea leaf disease Depthwise separable convolution Neural network Target identification Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-2f5ff38aa3fbd0bdd5709b9575a29e26196a7d45d17db26d74c88ff038cae6b03 |
ParticipantIDs | crossref_primary_10_1016_j_suscom_2019_100353 crossref_citationtrail_10_1016_j_suscom_2019_100353 elsevier_sciencedirect_doi_10_1016_j_suscom_2019_100353 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationTitle | Sustainable computing informatics and systems |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Sandler, Howard, Zhu (bib0095) 2018 Karmokar, Ullah, Siddiquee (bib0025) 2015; 114 Kumar, Mishra, Khanna (bib0040) 2017; 122 Cheng, Zhang, Chen (bib0055) 2017; 141 Mohanty, Hughes, Salathé (bib0075) 2016; 7 Tan, Ma (bib0005) 2009; 6 Howard, Zhu, Chen (bib0090) 2017; 1704 Zhao, Wang, Bai (bib0010) 2007; 43 Sun, Jiang, Zhang (bib0015) 2019; 157 Pantazi, Moshou, Tamouridou (bib0035) 2019; 156 Ramcharan, Baranowski, McCloskey (bib0080) 2017; 8 Vedaldi, Matconvnet (bib0085) 2015 LeCun, Bottou, Bengio (bib0045) 1998; 86 Guan, Yu, Jianxin (bib0065) 2017; 2017 Dyrmann, Karstoft, Midtiby (bib0050) 2016; 151 Hossain, Mou, Hasan (bib0020) 2018 Sun, Mu, Xu (bib0060) 2019; 1901 Qin, Liu, Sun (bib0030) 2016; 11 Zhang, Qiao, Meng (bib0070) 2018; 6 Tan (10.1016/j.suscom.2019.100353_bib0005) 2009; 6 Guan (10.1016/j.suscom.2019.100353_bib0065) 2017; 2017 Dyrmann (10.1016/j.suscom.2019.100353_bib0050) 2016; 151 Cheng (10.1016/j.suscom.2019.100353_bib0055) 2017; 141 Kumar (10.1016/j.suscom.2019.100353_bib0040) 2017; 122 Ramcharan (10.1016/j.suscom.2019.100353_bib0080) 2017; 8 Mohanty (10.1016/j.suscom.2019.100353_bib0075) 2016; 7 Qin (10.1016/j.suscom.2019.100353_bib0030) 2016; 11 Zhao (10.1016/j.suscom.2019.100353_bib0010) 2007; 43 Pantazi (10.1016/j.suscom.2019.100353_bib0035) 2019; 156 Sandler (10.1016/j.suscom.2019.100353_bib0095) 2018 Sun (10.1016/j.suscom.2019.100353_bib0015) 2019; 157 Hossain (10.1016/j.suscom.2019.100353_bib0020) 2018 Sun (10.1016/j.suscom.2019.100353_bib0060) 2019; 1901 LeCun (10.1016/j.suscom.2019.100353_bib0045) 1998; 86 Zhang (10.1016/j.suscom.2019.100353_bib0070) 2018; 6 Karmokar (10.1016/j.suscom.2019.100353_bib0025) 2015; 114 Howard (10.1016/j.suscom.2019.100353_bib0090) 2017; 1704 Vedaldi (10.1016/j.suscom.2019.100353_bib0085) 2015 |
References_xml | – start-page: 4510 year: 2018 end-page: 4520 ident: bib0095 article-title: MobileNetV2: inverted residuals and linear bottlenecks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 6 start-page: 41 year: 2009 end-page: 43 ident: bib0005 article-title: The method of recognition of damage by disease and insect based on laminae publication-title: J. Agric. Mech. Res. – volume: 8 start-page: 1852 year: 2017 ident: bib0080 article-title: Deep learning for image-based cassava disease detection publication-title: Front. Plant Sci. – volume: 43 start-page: 193 year: 2007 end-page: 195 ident: bib0010 article-title: Bayesian classifier method on maize leaf disease identifying based images publication-title: Comput. Eng. Appl. – volume: 1704 year: 2017 ident: bib0090 article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications publication-title: arXiv preprint arXiv – volume: 151 start-page: 72 year: 2016 end-page: 80 ident: bib0050 article-title: Plant species classification using deep convolutional neural network publication-title: Biosyst. Eng. – volume: 7 start-page: 1419 year: 2016 ident: bib0075 article-title: Using deep learning for image-based plant disease detection publication-title: Front. Plant Sci. – volume: 156 start-page: 96 year: 2019 end-page: 104 ident: bib0035 article-title: Automated leaf disease detection in different crop species through image features analysis and one class classifiers publication-title: Comput. Electron. Agric. – volume: 141 start-page: 351 year: 2017 end-page: 356 ident: bib0055 article-title: Pest identification via deep residual learning in complex background publication-title: Comput. Electron. Agric. – start-page: 689 year: 2015 end-page: 692 ident: bib0085 article-title: Convolutional neural networks for matlab publication-title: Proceedings of the 23rd ACM International Conference on Multimedia – volume: 157 start-page: 102 year: 2019 end-page: 109 ident: bib0015 article-title: SLIC_SVM based leaf diseases saliency map extraction of tea plant publication-title: Comput. Electron. Agric. – volume: 122 start-page: 881 year: 2017 end-page: 887 ident: bib0040 article-title: Precision sugarcane monitoring using SVM classifier publication-title: Procedia Comput. Sci. – volume: 11 year: 2016 ident: bib0030 article-title: Identification of alfalfa leaf diseases using image recognition technology publication-title: PLoS One – volume: 6 start-page: 30370 year: 2018 end-page: 30377 ident: bib0070 article-title: Identification of maize leaf diseases using improved deep convolutional neural networks publication-title: IEEE Access – volume: 1901 start-page: 94 year: 2019 ident: bib0060 article-title: Image recognition of tea leaf diseases based on convolutional neural network publication-title: arXiv preprint arXiv – volume: 114 year: 2015 ident: bib0025 article-title: Tea leaf diseases recognition using neural network ensemble publication-title: Int. J. Comput. Appl. – start-page: 150 year: 2018 end-page: 154 ident: bib0020 article-title: Recognition and detection of tea leaf’s diseases using support vector machine publication-title: 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA) – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib0045 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 2017 start-page: 1 year: 2017 end-page: 8 ident: bib0065 article-title: Automatic image-based plant disease severity estimation using deep learning publication-title: Comput. Intell. Neurosci. – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.suscom.2019.100353_bib0045 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – start-page: 4510 year: 2018 ident: 10.1016/j.suscom.2019.100353_bib0095 article-title: MobileNetV2: inverted residuals and linear bottlenecks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 1901 start-page: 94 issue: 026 year: 2019 ident: 10.1016/j.suscom.2019.100353_bib0060 article-title: Image recognition of tea leaf diseases based on convolutional neural network publication-title: arXiv preprint arXiv – start-page: 689 year: 2015 ident: 10.1016/j.suscom.2019.100353_bib0085 article-title: Convolutional neural networks for matlab – volume: 1704 issue: 04861 year: 2017 ident: 10.1016/j.suscom.2019.100353_bib0090 article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications publication-title: arXiv preprint arXiv – volume: 11 issue: 12 year: 2016 ident: 10.1016/j.suscom.2019.100353_bib0030 article-title: Identification of alfalfa leaf diseases using image recognition technology publication-title: PLoS One doi: 10.1371/journal.pone.0168274 – volume: 122 start-page: 881 year: 2017 ident: 10.1016/j.suscom.2019.100353_bib0040 article-title: Precision sugarcane monitoring using SVM classifier publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.11.450 – volume: 6 start-page: 30370 year: 2018 ident: 10.1016/j.suscom.2019.100353_bib0070 article-title: Identification of maize leaf diseases using improved deep convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2844405 – volume: 156 start-page: 96 year: 2019 ident: 10.1016/j.suscom.2019.100353_bib0035 article-title: Automated leaf disease detection in different crop species through image features analysis and one class classifiers publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.11.005 – volume: 8 start-page: 1852 year: 2017 ident: 10.1016/j.suscom.2019.100353_bib0080 article-title: Deep learning for image-based cassava disease detection publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01852 – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.suscom.2019.100353_bib0065 article-title: Automatic image-based plant disease severity estimation using deep learning publication-title: Comput. Intell. Neurosci. – start-page: 150 year: 2018 ident: 10.1016/j.suscom.2019.100353_bib0020 article-title: Recognition and detection of tea leaf’s diseases using support vector machine – volume: 7 start-page: 1419 year: 2016 ident: 10.1016/j.suscom.2019.100353_bib0075 article-title: Using deep learning for image-based plant disease detection publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01419 – volume: 141 start-page: 351 year: 2017 ident: 10.1016/j.suscom.2019.100353_bib0055 article-title: Pest identification via deep residual learning in complex background publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.08.005 – volume: 6 start-page: 41 year: 2009 ident: 10.1016/j.suscom.2019.100353_bib0005 article-title: The method of recognition of damage by disease and insect based on laminae publication-title: J. Agric. Mech. Res. – volume: 114 issue: 17 year: 2015 ident: 10.1016/j.suscom.2019.100353_bib0025 article-title: Tea leaf diseases recognition using neural network ensemble publication-title: Int. J. Comput. Appl. – volume: 157 start-page: 102 year: 2019 ident: 10.1016/j.suscom.2019.100353_bib0015 article-title: SLIC_SVM based leaf diseases saliency map extraction of tea plant publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.12.042 – volume: 43 start-page: 193 issue: 5 year: 2007 ident: 10.1016/j.suscom.2019.100353_bib0010 article-title: Bayesian classifier method on maize leaf disease identifying based images publication-title: Comput. Eng. Appl. – volume: 151 start-page: 72 year: 2016 ident: 10.1016/j.suscom.2019.100353_bib0050 article-title: Plant species classification using deep convolutional neural network publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2016.08.024 |
SSID | ssj0000561934 |
Score | 2.5133524 |
Snippet | •A method for identifying tea diseases with low cost and high identification accuracy is proposed.•Multiscale feature extraction is introduced to distinguish... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100353 |
SubjectTerms | Depthwise separable convolution Machine learning Neural network Target identification Tea leaf disease |
Title | Identification of tea leaf diseases by using an improved deep convolutional neural network |
URI | https://dx.doi.org/10.1016/j.suscom.2019.100353 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YHVNPEjiceqAhUQXaBSxRLFL1RUpRVtBxZ-O77EqUBCIDFFiXyJdb6cP5-_OyN0qfwc5xyUQrRUEU4jTqSOBElspDxKcioWkCj8MEqGY343EZMWGjS5MECrDL6_9umVtw5PekGbvcV02nukfrUiWCo9BPGYJ55ABjtPwcqvPuJNnAUQsqw2l6E9AYEmg66ieS3XS6CN-BdIYAwwwX6eob7MOjd7aCfARdyve7SPWrY8QLvNUQw4_JmH6LlOuHUhAofnDvvRwzNbOBz2YJZYvWOgub_gosTTKphgDTbWLjBwz4MN-q9BjcvqUjHEj9D45vppMCTh2ASiPf5fEeqE135WFMwpEyljRBpJJT0uK6i0sGJKitRwYeLUKJqYlOsscy5imS5soiJ2jNrlvLQnCFvumzqeWR5LnnGmmNDKLwF1JjWjjnYQa1SV61BTHI62mOUNeew1rxWcg4LzWsEdRDZSi7qmxh_t02YU8m-2kXu3_6vk6b8lz9A23NXElXPUXr2t7YWHHyvVreyri7b6t_fD0Sdovds5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6I8PbBGTWI7iceqomrpY6GVKpYofqGiKq1oO_DvsROnAgmBxBQp8SXW2Tl_d_7uDPDAzRqntS2FqELukdAnHhM-9SLlc4OSNA-oTRQejaPelDzN6KwGnSoXxtIqne0vbXphrd2dltNmazWft55D461QHDMDQQzmCWZ70LDVqWgdGu3-oDfehVosSGbF_rIV8axMlURXML3W27Vljph3MEsawBT_vEh9WXi6x3DoECNql506gZrKT-GoOo0BuZ_zDF7KnFvtgnBoqZEZQLRQmUZuG2aN-AeyTPdXlOVoXsQTlERSqRWy9HM3Dc3XbJnL4lKQxM9h2n2cdHqeOznBE8YF2HihpmYAkizDmkufS0ljn3FmoFkWMmWdpiiLJaEyiCUPIxkTkSRa-zgRmYq4jy-gni9zdQlIEdNUk0SRgJGEYI6p4MYLFAkTONRhE3ClqlS4suL2dItFWvHH3tJSwalVcFoquAneTmpVltX4o31cjUL6bXqkxvL_Knn1b8l72O9NRsN02B8PruHAPil5LDdQ37xv1a1BIxt-52bbJ_Sr3eo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+tea+leaf+diseases+by+using+an+improved+deep+convolutional+neural+network&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=Hu%2C+Gensheng&rft.au=Yang%2C+Xiaowei&rft.au=Zhang%2C+Yan&rft.au=Wan%2C+Mingzhu&rft.date=2019-12-01&rft.issn=2210-5379&rft.volume=24&rft.spage=100353&rft_id=info:doi/10.1016%2Fj.suscom.2019.100353&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_suscom_2019_100353 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon |