Identification of tea leaf diseases by using an improved deep convolutional neural network

•A method for identifying tea diseases with low cost and high identification accuracy is proposed.•Multiscale feature extraction is introduced to distinguish the features of different tea leaf diseases.•Depthwise separable convolution is used instead of standard convolution to reduce the number of m...

Full description

Saved in:
Bibliographic Details
Published inSustainable computing informatics and systems Vol. 24; p. 100353
Main Authors Hu, Gensheng, Yang, Xiaowei, Zhang, Yan, Wan, Mingzhu
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A method for identifying tea diseases with low cost and high identification accuracy is proposed.•Multiscale feature extraction is introduced to distinguish the features of different tea leaf diseases.•Depthwise separable convolution is used instead of standard convolution to reduce the number of model parameters. Accurate and rapid identification of tea leaf diseases is beneficial to their prevention and control. This study proposes a method based on an improved deep convolutional neural network (CNN) for tea leaf disease identification. A multiscale feature extraction module is added into the improved deep CNN of a CIFAR10-quick model to improve the ability to automatically extract image features of different tea leaf diseases. The depthwise separable convolution is used to reduce the number of model parameters and accelerate the calculation of the model. Experimental results show that the average identification accuracy of the proposed method is 92.5%, which is higher than that of traditional machine learning methods and classical deep learning methods. The number of parameters and the convergence iteration times of the improved model are significantly lower than those of VGG16 and AlexNet deep learning network models.
AbstractList •A method for identifying tea diseases with low cost and high identification accuracy is proposed.•Multiscale feature extraction is introduced to distinguish the features of different tea leaf diseases.•Depthwise separable convolution is used instead of standard convolution to reduce the number of model parameters. Accurate and rapid identification of tea leaf diseases is beneficial to their prevention and control. This study proposes a method based on an improved deep convolutional neural network (CNN) for tea leaf disease identification. A multiscale feature extraction module is added into the improved deep CNN of a CIFAR10-quick model to improve the ability to automatically extract image features of different tea leaf diseases. The depthwise separable convolution is used to reduce the number of model parameters and accelerate the calculation of the model. Experimental results show that the average identification accuracy of the proposed method is 92.5%, which is higher than that of traditional machine learning methods and classical deep learning methods. The number of parameters and the convergence iteration times of the improved model are significantly lower than those of VGG16 and AlexNet deep learning network models.
ArticleNumber 100353
Author Wan, Mingzhu
Zhang, Yan
Yang, Xiaowei
Hu, Gensheng
Author_xml – sequence: 1
  givenname: Gensheng
  surname: Hu
  fullname: Hu, Gensheng
  organization: National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei, 230601, China
– sequence: 2
  givenname: Xiaowei
  surname: Yang
  fullname: Yang, Xiaowei
  organization: National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei, 230601, China
– sequence: 3
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  email: zhangyan@ahu.edu.cn
  organization: National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei, 230601, China
– sequence: 4
  givenname: Mingzhu
  surname: Wan
  fullname: Wan, Mingzhu
  organization: School of Information Science and Technology, Fudan University, Shanghai, 200433, China
BookMark eNqFkM1KAzEURrOoYK19Axd5ganJZDI_LgQpagsFN7pxEzLJjaROk5JkKn17px1XLvRuPrhwPu49V2jivAOEbihZUELL2-0i9lH53SIntBlWhHE2QdM8pyTjrGou0TzGLRmGl7RhxRS9rzW4ZI1VMlnvsDc4gcQdSIO1jSAjRNwecR-t-8DSYbvbB38AjTXAHivvDr7rT6jssIM-nCN9-fB5jS6M7CLMf3KG3p4eX5erbPPyvF4-bDLFSJmy3HBjWC0lM60mrda8Ik3b8IrLvIF8uLOUlS64ppVu81JXhaprYwirlYSyJWyGirFXBR9jACP2we5kOApKxEmL2IpRizhpEaOWAbv7hSmbzhJSkLb7D74fYRgeO1gIIioLToG2AVQS2tu_C74BjNiG3Q
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3120379
crossref_primary_10_1111_exsy_12746
crossref_primary_10_1002_rob_22318
crossref_primary_10_1111_pce_14749
crossref_primary_10_3389_fsufs_2023_1172543
crossref_primary_10_3934_mbe_2021170
crossref_primary_10_1109_ACCESS_2024_3373707
crossref_primary_10_1155_2021_9957067
crossref_primary_10_1007_s10278_020_00402_5
crossref_primary_10_1007_s11277_024_10873_2
crossref_primary_10_1007_s41870_022_00860_w
crossref_primary_10_3389_fpls_2022_949054
crossref_primary_10_1007_s00521_024_10758_2
crossref_primary_10_54097_fcis_v3i2_7187
crossref_primary_10_7161_omuanajas_805152
crossref_primary_10_1007_s11356_024_31963_5
crossref_primary_10_1109_ACCESS_2023_3286730
crossref_primary_10_1002_jsfa_13241
crossref_primary_10_1109_ACCESS_2022_3141371
crossref_primary_10_1109_ACCESS_2024_3450016
crossref_primary_10_31590_ejosat_883787
crossref_primary_10_3233_JIFS_200862
crossref_primary_10_1080_01969722_2024_2343993
crossref_primary_10_1007_s40747_023_01024_4
crossref_primary_10_1155_2023_7876302
crossref_primary_10_5194_jsss_10_153_2021
crossref_primary_10_1186_s13007_024_01219_x
crossref_primary_10_1007_s11042_024_18392_9
crossref_primary_10_1007_s00521_022_07743_y
crossref_primary_10_1007_s00521_022_07744_x
crossref_primary_10_12791_KSBEC_2024_33_1_001
crossref_primary_10_1007_s41870_021_00657_3
crossref_primary_10_1038_s41598_024_62451_y
crossref_primary_10_1007_s11119_023_09992_w
crossref_primary_10_1080_22797254_2023_2186955
crossref_primary_10_1007_s11119_020_09782_8
crossref_primary_10_1080_1206212X_2023_2235750
crossref_primary_10_1007_s11042_023_17472_6
crossref_primary_10_1002_fsn3_2699
crossref_primary_10_1002_ps_7964
crossref_primary_10_1038_s41598_023_33270_4
crossref_primary_10_1155_2022_7012399
crossref_primary_10_1007_s11042_022_12984_z
crossref_primary_10_29130_dubited_648387
crossref_primary_10_3389_fbioe_2022_855667
crossref_primary_10_3389_fpls_2023_1230886
Cites_doi 10.1109/5.726791
10.1371/journal.pone.0168274
10.1016/j.procs.2017.11.450
10.1109/ACCESS.2018.2844405
10.1016/j.compag.2018.11.005
10.3389/fpls.2017.01852
10.3389/fpls.2016.01419
10.1016/j.compag.2017.08.005
10.1016/j.compag.2018.12.042
10.1016/j.biosystemseng.2016.08.024
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.suscom.2019.100353
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_suscom_2019_100353
S221053791930201X
GroupedDBID --K
--M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AARJD
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HZ~
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSR
SSV
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-2f5ff38aa3fbd0bdd5709b9575a29e26196a7d45d17db26d74c88ff038cae6b03
IEDL.DBID .~1
ISSN 2210-5379
IngestDate Tue Jul 01 01:35:18 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Fri Feb 23 02:48:56 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords Tea leaf disease
Depthwise separable convolution
Neural network
Target identification
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-2f5ff38aa3fbd0bdd5709b9575a29e26196a7d45d17db26d74c88ff038cae6b03
ParticipantIDs crossref_primary_10_1016_j_suscom_2019_100353
crossref_citationtrail_10_1016_j_suscom_2019_100353
elsevier_sciencedirect_doi_10_1016_j_suscom_2019_100353
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationTitle Sustainable computing informatics and systems
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Sandler, Howard, Zhu (bib0095) 2018
Karmokar, Ullah, Siddiquee (bib0025) 2015; 114
Kumar, Mishra, Khanna (bib0040) 2017; 122
Cheng, Zhang, Chen (bib0055) 2017; 141
Mohanty, Hughes, Salathé (bib0075) 2016; 7
Tan, Ma (bib0005) 2009; 6
Howard, Zhu, Chen (bib0090) 2017; 1704
Zhao, Wang, Bai (bib0010) 2007; 43
Sun, Jiang, Zhang (bib0015) 2019; 157
Pantazi, Moshou, Tamouridou (bib0035) 2019; 156
Ramcharan, Baranowski, McCloskey (bib0080) 2017; 8
Vedaldi, Matconvnet (bib0085) 2015
LeCun, Bottou, Bengio (bib0045) 1998; 86
Guan, Yu, Jianxin (bib0065) 2017; 2017
Dyrmann, Karstoft, Midtiby (bib0050) 2016; 151
Hossain, Mou, Hasan (bib0020) 2018
Sun, Mu, Xu (bib0060) 2019; 1901
Qin, Liu, Sun (bib0030) 2016; 11
Zhang, Qiao, Meng (bib0070) 2018; 6
Tan (10.1016/j.suscom.2019.100353_bib0005) 2009; 6
Guan (10.1016/j.suscom.2019.100353_bib0065) 2017; 2017
Dyrmann (10.1016/j.suscom.2019.100353_bib0050) 2016; 151
Cheng (10.1016/j.suscom.2019.100353_bib0055) 2017; 141
Kumar (10.1016/j.suscom.2019.100353_bib0040) 2017; 122
Ramcharan (10.1016/j.suscom.2019.100353_bib0080) 2017; 8
Mohanty (10.1016/j.suscom.2019.100353_bib0075) 2016; 7
Qin (10.1016/j.suscom.2019.100353_bib0030) 2016; 11
Zhao (10.1016/j.suscom.2019.100353_bib0010) 2007; 43
Pantazi (10.1016/j.suscom.2019.100353_bib0035) 2019; 156
Sandler (10.1016/j.suscom.2019.100353_bib0095) 2018
Sun (10.1016/j.suscom.2019.100353_bib0015) 2019; 157
Hossain (10.1016/j.suscom.2019.100353_bib0020) 2018
Sun (10.1016/j.suscom.2019.100353_bib0060) 2019; 1901
LeCun (10.1016/j.suscom.2019.100353_bib0045) 1998; 86
Zhang (10.1016/j.suscom.2019.100353_bib0070) 2018; 6
Karmokar (10.1016/j.suscom.2019.100353_bib0025) 2015; 114
Howard (10.1016/j.suscom.2019.100353_bib0090) 2017; 1704
Vedaldi (10.1016/j.suscom.2019.100353_bib0085) 2015
References_xml – start-page: 4510
  year: 2018
  end-page: 4520
  ident: bib0095
  article-title: MobileNetV2: inverted residuals and linear bottlenecks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 6
  start-page: 41
  year: 2009
  end-page: 43
  ident: bib0005
  article-title: The method of recognition of damage by disease and insect based on laminae
  publication-title: J. Agric. Mech. Res.
– volume: 8
  start-page: 1852
  year: 2017
  ident: bib0080
  article-title: Deep learning for image-based cassava disease detection
  publication-title: Front. Plant Sci.
– volume: 43
  start-page: 193
  year: 2007
  end-page: 195
  ident: bib0010
  article-title: Bayesian classifier method on maize leaf disease identifying based images
  publication-title: Comput. Eng. Appl.
– volume: 1704
  year: 2017
  ident: bib0090
  article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv preprint arXiv
– volume: 151
  start-page: 72
  year: 2016
  end-page: 80
  ident: bib0050
  article-title: Plant species classification using deep convolutional neural network
  publication-title: Biosyst. Eng.
– volume: 7
  start-page: 1419
  year: 2016
  ident: bib0075
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Front. Plant Sci.
– volume: 156
  start-page: 96
  year: 2019
  end-page: 104
  ident: bib0035
  article-title: Automated leaf disease detection in different crop species through image features analysis and one class classifiers
  publication-title: Comput. Electron. Agric.
– volume: 141
  start-page: 351
  year: 2017
  end-page: 356
  ident: bib0055
  article-title: Pest identification via deep residual learning in complex background
  publication-title: Comput. Electron. Agric.
– start-page: 689
  year: 2015
  end-page: 692
  ident: bib0085
  article-title: Convolutional neural networks for matlab
  publication-title: Proceedings of the 23rd ACM International Conference on Multimedia
– volume: 157
  start-page: 102
  year: 2019
  end-page: 109
  ident: bib0015
  article-title: SLIC_SVM based leaf diseases saliency map extraction of tea plant
  publication-title: Comput. Electron. Agric.
– volume: 122
  start-page: 881
  year: 2017
  end-page: 887
  ident: bib0040
  article-title: Precision sugarcane monitoring using SVM classifier
  publication-title: Procedia Comput. Sci.
– volume: 11
  year: 2016
  ident: bib0030
  article-title: Identification of alfalfa leaf diseases using image recognition technology
  publication-title: PLoS One
– volume: 6
  start-page: 30370
  year: 2018
  end-page: 30377
  ident: bib0070
  article-title: Identification of maize leaf diseases using improved deep convolutional neural networks
  publication-title: IEEE Access
– volume: 1901
  start-page: 94
  year: 2019
  ident: bib0060
  article-title: Image recognition of tea leaf diseases based on convolutional neural network
  publication-title: arXiv preprint arXiv
– volume: 114
  year: 2015
  ident: bib0025
  article-title: Tea leaf diseases recognition using neural network ensemble
  publication-title: Int. J. Comput. Appl.
– start-page: 150
  year: 2018
  end-page: 154
  ident: bib0020
  article-title: Recognition and detection of tea leaf’s diseases using support vector machine
  publication-title: 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA)
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0045
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib0065
  article-title: Automatic image-based plant disease severity estimation using deep learning
  publication-title: Comput. Intell. Neurosci.
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.suscom.2019.100353_bib0045
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– start-page: 4510
  year: 2018
  ident: 10.1016/j.suscom.2019.100353_bib0095
  article-title: MobileNetV2: inverted residuals and linear bottlenecks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 1901
  start-page: 94
  issue: 026
  year: 2019
  ident: 10.1016/j.suscom.2019.100353_bib0060
  article-title: Image recognition of tea leaf diseases based on convolutional neural network
  publication-title: arXiv preprint arXiv
– start-page: 689
  year: 2015
  ident: 10.1016/j.suscom.2019.100353_bib0085
  article-title: Convolutional neural networks for matlab
– volume: 1704
  issue: 04861
  year: 2017
  ident: 10.1016/j.suscom.2019.100353_bib0090
  article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv preprint arXiv
– volume: 11
  issue: 12
  year: 2016
  ident: 10.1016/j.suscom.2019.100353_bib0030
  article-title: Identification of alfalfa leaf diseases using image recognition technology
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0168274
– volume: 122
  start-page: 881
  year: 2017
  ident: 10.1016/j.suscom.2019.100353_bib0040
  article-title: Precision sugarcane monitoring using SVM classifier
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.11.450
– volume: 6
  start-page: 30370
  year: 2018
  ident: 10.1016/j.suscom.2019.100353_bib0070
  article-title: Identification of maize leaf diseases using improved deep convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2844405
– volume: 156
  start-page: 96
  year: 2019
  ident: 10.1016/j.suscom.2019.100353_bib0035
  article-title: Automated leaf disease detection in different crop species through image features analysis and one class classifiers
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.11.005
– volume: 8
  start-page: 1852
  year: 2017
  ident: 10.1016/j.suscom.2019.100353_bib0080
  article-title: Deep learning for image-based cassava disease detection
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01852
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.suscom.2019.100353_bib0065
  article-title: Automatic image-based plant disease severity estimation using deep learning
  publication-title: Comput. Intell. Neurosci.
– start-page: 150
  year: 2018
  ident: 10.1016/j.suscom.2019.100353_bib0020
  article-title: Recognition and detection of tea leaf’s diseases using support vector machine
– volume: 7
  start-page: 1419
  year: 2016
  ident: 10.1016/j.suscom.2019.100353_bib0075
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01419
– volume: 141
  start-page: 351
  year: 2017
  ident: 10.1016/j.suscom.2019.100353_bib0055
  article-title: Pest identification via deep residual learning in complex background
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.08.005
– volume: 6
  start-page: 41
  year: 2009
  ident: 10.1016/j.suscom.2019.100353_bib0005
  article-title: The method of recognition of damage by disease and insect based on laminae
  publication-title: J. Agric. Mech. Res.
– volume: 114
  issue: 17
  year: 2015
  ident: 10.1016/j.suscom.2019.100353_bib0025
  article-title: Tea leaf diseases recognition using neural network ensemble
  publication-title: Int. J. Comput. Appl.
– volume: 157
  start-page: 102
  year: 2019
  ident: 10.1016/j.suscom.2019.100353_bib0015
  article-title: SLIC_SVM based leaf diseases saliency map extraction of tea plant
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.12.042
– volume: 43
  start-page: 193
  issue: 5
  year: 2007
  ident: 10.1016/j.suscom.2019.100353_bib0010
  article-title: Bayesian classifier method on maize leaf disease identifying based images
  publication-title: Comput. Eng. Appl.
– volume: 151
  start-page: 72
  year: 2016
  ident: 10.1016/j.suscom.2019.100353_bib0050
  article-title: Plant species classification using deep convolutional neural network
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.08.024
SSID ssj0000561934
Score 2.5133524
Snippet •A method for identifying tea diseases with low cost and high identification accuracy is proposed.•Multiscale feature extraction is introduced to distinguish...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100353
SubjectTerms Depthwise separable convolution
Machine learning
Neural network
Target identification
Tea leaf disease
Title Identification of tea leaf diseases by using an improved deep convolutional neural network
URI https://dx.doi.org/10.1016/j.suscom.2019.100353
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YHVNPEjiceqAhUQXaBSxRLFL1RUpRVtBxZ-O77EqUBCIDFFiXyJdb6cP5-_OyN0qfwc5xyUQrRUEU4jTqSOBElspDxKcioWkCj8MEqGY343EZMWGjS5MECrDL6_9umVtw5PekGbvcV02nukfrUiWCo9BPGYJ55ABjtPwcqvPuJNnAUQsqw2l6E9AYEmg66ieS3XS6CN-BdIYAwwwX6eob7MOjd7aCfARdyve7SPWrY8QLvNUQw4_JmH6LlOuHUhAofnDvvRwzNbOBz2YJZYvWOgub_gosTTKphgDTbWLjBwz4MN-q9BjcvqUjHEj9D45vppMCTh2ASiPf5fEeqE135WFMwpEyljRBpJJT0uK6i0sGJKitRwYeLUKJqYlOsscy5imS5soiJ2jNrlvLQnCFvumzqeWR5LnnGmmNDKLwF1JjWjjnYQa1SV61BTHI62mOUNeew1rxWcg4LzWsEdRDZSi7qmxh_t02YU8m-2kXu3_6vk6b8lz9A23NXElXPUXr2t7YWHHyvVreyri7b6t_fD0Sdovds5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6I8PbBGTWI7iceqomrpY6GVKpYofqGiKq1oO_DvsROnAgmBxBQp8SXW2Tl_d_7uDPDAzRqntS2FqELukdAnHhM-9SLlc4OSNA-oTRQejaPelDzN6KwGnSoXxtIqne0vbXphrd2dltNmazWft55D461QHDMDQQzmCWZ70LDVqWgdGu3-oDfehVosSGbF_rIV8axMlURXML3W27Vljph3MEsawBT_vEh9WXi6x3DoECNql506gZrKT-GoOo0BuZ_zDF7KnFvtgnBoqZEZQLRQmUZuG2aN-AeyTPdXlOVoXsQTlERSqRWy9HM3Dc3XbJnL4lKQxM9h2n2cdHqeOznBE8YF2HihpmYAkizDmkufS0ljn3FmoFkWMmWdpiiLJaEyiCUPIxkTkSRa-zgRmYq4jy-gni9zdQlIEdNUk0SRgJGEYI6p4MYLFAkTONRhE3ClqlS4suL2dItFWvHH3tJSwalVcFoquAneTmpVltX4o31cjUL6bXqkxvL_Knn1b8l72O9NRsN02B8PruHAPil5LDdQ37xv1a1BIxt-52bbJ_Sr3eo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+tea+leaf+diseases+by+using+an+improved+deep+convolutional+neural+network&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=Hu%2C+Gensheng&rft.au=Yang%2C+Xiaowei&rft.au=Zhang%2C+Yan&rft.au=Wan%2C+Mingzhu&rft.date=2019-12-01&rft.issn=2210-5379&rft.volume=24&rft.spage=100353&rft_id=info:doi/10.1016%2Fj.suscom.2019.100353&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_suscom_2019_100353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon