COF-C4N Nanosheets with uniformly anchored single metal sites for electrocatalytic OER: From theoretical screening to target synthesis

COF-C4N, an effective oxygen evolution reaction (OER) electrocatalyst with a low overpotential, has ideal N-edge cavities for anchoring transition metal (TM) sites to achieve single atom catalysts (SACs) with higher OER activity. To screen out the optimal TM, two descriptors for characterizing the O...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 325; p. 122366
Main Authors Zhang, Rui, Liu, Wenshan, Zhang, Feng-Ming, Yang, Zhao-Di, Zhang, Guiling, Zeng, Xiao Cheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract COF-C4N, an effective oxygen evolution reaction (OER) electrocatalyst with a low overpotential, has ideal N-edge cavities for anchoring transition metal (TM) sites to achieve single atom catalysts (SACs) with higher OER activity. To screen out the optimal TM, two descriptors for characterizing the OER activities are proposed based on systematic density-functional theory calculations for two different classes of COF, TM-COF-C4N and TM-Aza-CMP. Among them, Co-COF-C4N and Ni-COF-C4N are theoretically suggested to be highly active and low-cost OER SACs for target synthesis. Followed by a series of structural characterizations (PXRD, XPS, FT-IR, EXAFS, ICP, TEM and SEM) as well as OER performance measurement, it is confirmed that Co-COF-C4N exhibits excellent OER activity with an overpotential of 280 mV at 10 mA cm−2, more active than most of previously reported OER electrocatalysts. The molecular mechanism underlying the high activity is explored. [Display omitted] •Two descriptors for characterizing OER activities were developed for SACs TM-COF-C4N.•Descriptors are generalized to other nanosheets with N-edge cavities like TM-Aza-CMP.•Co/Ni-COF-C4N are targeted synthesized as predicted low-cost efficient OER catalysts•Co-COF-C4N is verified with a very low OER overpotential of 280 mV at 10 mA cm−2.•The molecular mechanism is explored based on computed electronic properties.
AbstractList COF-C4N, an effective oxygen evolution reaction (OER) electrocatalyst with a low overpotential, has ideal N-edge cavities for anchoring transition metal (TM) sites to achieve single atom catalysts (SACs) with higher OER activity. To screen out the optimal TM, two descriptors for characterizing the OER activities are proposed based on systematic density-functional theory calculations for two different classes of COF, TM-COF-C4N and TM-Aza-CMP. Among them, Co-COF-C4N and Ni-COF-C4N are theoretically suggested to be highly active and low-cost OER SACs for target synthesis. Followed by a series of structural characterizations (PXRD, XPS, FT-IR, EXAFS, ICP, TEM and SEM) as well as OER performance measurement, it is confirmed that Co-COF-C4N exhibits excellent OER activity with an overpotential of 280 mV at 10 mA cm−2, more active than most of previously reported OER electrocatalysts. The molecular mechanism underlying the high activity is explored. [Display omitted] •Two descriptors for characterizing OER activities were developed for SACs TM-COF-C4N.•Descriptors are generalized to other nanosheets with N-edge cavities like TM-Aza-CMP.•Co/Ni-COF-C4N are targeted synthesized as predicted low-cost efficient OER catalysts•Co-COF-C4N is verified with a very low OER overpotential of 280 mV at 10 mA cm−2.•The molecular mechanism is explored based on computed electronic properties.
ArticleNumber 122366
Author Yang, Zhao-Di
Liu, Wenshan
Zhang, Guiling
Zhang, Rui
Zhang, Feng-Ming
Zeng, Xiao Cheng
Author_xml – sequence: 1
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
– sequence: 2
  givenname: Wenshan
  surname: Liu
  fullname: Liu, Wenshan
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
– sequence: 3
  givenname: Feng-Ming
  orcidid: 0000-0002-2738-306X
  surname: Zhang
  fullname: Zhang, Feng-Ming
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
– sequence: 4
  givenname: Zhao-Di
  surname: Yang
  fullname: Yang, Zhao-Di
  email: yangzhaodi@163.com
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
– sequence: 5
  givenname: Guiling
  surname: Zhang
  fullname: Zhang, Guiling
  email: guiling-002@163.com
  organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
– sequence: 6
  givenname: Xiao Cheng
  orcidid: 0000-0003-4672-8585
  surname: Zeng
  fullname: Zeng, Xiao Cheng
  email: xzeng26@cityu.edu.hk
  organization: Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
BookMark eNqFkMFOAjEURRuDiYD-gYv-wGBnCqWwMDEE1IRAYnTdlDevUDK0pK2a-QG_2xJcudBV0-aem97TIx3nHRJyW7JByUpxtx_oI-i0GVSs4oOyqrgQF6RbyjEvuJS8Q7psUomC8zG_Ir0Y94zlZCW75Gu2XhSz4YqutPNxh5gi_bRpR9-dNT4cmpZqBzsfsKbRum2D9IBJN_mSMNIcodggpODzB3TTJgt0PX-Z0kXwB5p2mMn8dgIgILpcQZOnSYctJhpblyPRxmtyaXQT8ebn7JO3xfx19lQs14_Ps4dlAZyJVFQItcmrTJmX1sIIlIi4ATPaTIQwWlQGAISWUGtWjjbaDGspzZAhA8O15H0yPfdC8DEGNAps0sl6l4K2jSqZOhlVe3U2qk5G1dlohoe_4GOwBx3a_7D7M4Z52IfFoCJYdIC1Ddmcqr39u-AbBsaYow
CitedBy_id crossref_primary_10_1016_j_cej_2023_146753
crossref_primary_10_1016_j_mcat_2023_113464
crossref_primary_10_1016_j_ijhydene_2024_11_348
crossref_primary_10_1002_adma_202306309
crossref_primary_10_1016_j_ceja_2024_100691
crossref_primary_10_1016_j_jes_2024_05_004
crossref_primary_10_1021_acsanm_4c00397
crossref_primary_10_1007_s12274_024_6775_2
crossref_primary_10_1016_j_ijhydene_2024_08_401
crossref_primary_10_3390_catal15030205
crossref_primary_10_1039_D3CS00727H
crossref_primary_10_1016_j_cplett_2024_141750
crossref_primary_10_3390_nano14231907
crossref_primary_10_1039_D3NR04396G
crossref_primary_10_20517_energymater_2023_72
crossref_primary_10_3390_catal14050324
crossref_primary_10_3390_nano13132012
crossref_primary_10_1016_j_checat_2024_101091
crossref_primary_10_1039_D4EE01912A
crossref_primary_10_1002_adma_202410295
crossref_primary_10_1002_aenm_202401619
crossref_primary_10_1016_j_commatsci_2024_113452
crossref_primary_10_1021_acsanm_4c02100
crossref_primary_10_1002_cplu_202400069
crossref_primary_10_1039_D4CC05747C
crossref_primary_10_1016_j_colsurfa_2023_133093
crossref_primary_10_1016_j_ijhydene_2024_06_111
crossref_primary_10_1039_D4SC01696C
crossref_primary_10_1016_j_cej_2024_157208
crossref_primary_10_1016_j_microc_2024_110399
crossref_primary_10_1016_j_flatc_2025_100840
crossref_primary_10_1002_smll_202412000
crossref_primary_10_1016_j_jcis_2023_07_083
crossref_primary_10_1002_aenm_202304546
crossref_primary_10_1016_j_apcatb_2024_124114
crossref_primary_10_1039_D4EE03704A
crossref_primary_10_1039_D4TA03069A
crossref_primary_10_1021_acsaem_4c00299
crossref_primary_10_1007_s43979_024_00117_4
crossref_primary_10_1016_j_ijhydene_2024_08_026
crossref_primary_10_1039_D4CC03535F
crossref_primary_10_1021_acsami_3c09114
crossref_primary_10_1002_bkcs_12790
crossref_primary_10_1016_j_ijhydene_2024_09_267
crossref_primary_10_1002_adma_202420565
crossref_primary_10_1021_acssuschemeng_4c01787
crossref_primary_10_1021_acsami_3c17662
crossref_primary_10_1016_j_fuel_2024_131462
crossref_primary_10_1016_j_nanoen_2023_109155
crossref_primary_10_1039_D3DT03330A
crossref_primary_10_1016_j_mcat_2023_113579
crossref_primary_10_1088_1361_6463_ad5f39
crossref_primary_10_1016_j_jcis_2023_06_039
crossref_primary_10_1016_j_ijhydene_2024_09_365
crossref_primary_10_1038_s41929_023_01106_z
crossref_primary_10_1002_cctc_202400100
crossref_primary_10_1016_j_jcis_2025_01_251
crossref_primary_10_1002_cey2_583
crossref_primary_10_1002_aenm_202405749
crossref_primary_10_1016_j_jcis_2023_04_115
crossref_primary_10_1021_acsnano_4c18951
crossref_primary_10_3390_inorganics11110424
Cites_doi 10.1016/S1872-2067(18)63057-8
10.1038/s41929-018-0063-z
10.1038/s41929-018-0158-6
10.1016/j.gee.2021.11.005
10.1016/0039-6028(96)80007-0
10.1016/0039-6028(82)90702-6
10.1016/j.ccr.2022.214563
10.1039/C7TA02108A
10.1021/acssuschemeng.9b02705
10.1021/jacs.9b03811
10.1038/s41929-022-00783-6
10.1016/0927-0256(96)00008-0
10.1038/s41467-019-09394-5
10.1002/adma.201703646
10.1021/cr1002326
10.1002/adma.201905679
10.1002/anie.201814262
10.1021/jp047349j
10.1039/C9CS00869A
10.1002/adma.201606635
10.1038/s41467-022-28409-2
10.1021/jacs.0c00564
10.1016/j.gee.2020.11.023
10.1002/smtd.202100945
10.1002/chem.201805550
10.1039/c2cs35157a
10.1103/PhysRevB.54.11169
10.1021/acs.chemrev.9b00550
10.1002/jcc.20495
10.1021/ja500432h
10.1021/ar300361m
10.1021/acs.chemmater.6b01370
10.1021/acsenergylett.9b01691
10.1039/D1TA00396H
10.1021/acscatal.2c00429
10.1002/aenm.201601189
10.1016/S0360-0564(02)45013-4
10.1039/C5NR00302D
10.1103/PhysRevB.59.1758
10.1039/c0ee00071j
10.1002/adfm.202008533
10.1021/jacs.6b13100
10.1016/j.ijhydene.2021.09.063
10.1016/j.cclet.2020.04.055
10.1016/j.nanoen.2020.104525
10.1002/adfm.202103290
10.1039/C8CC01291A
10.1002/aesr.202000090
10.1103/PhysRevB.50.17953
10.1103/PhysRevLett.77.3865
10.1021/acscatal.9b05470
10.1039/D1TA06568H
10.1039/D0NR03521A
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apcatb.2023.122366
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2023_122366
S0926337323000097
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
~02
~G-
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SSH
VH1
WUQ
XPP
ID FETCH-LOGICAL-c306t-2ecdf873f1202d6f6e8eeebcf5b966fa62fccc6a8cda015baf4d88f40e0cf3a83
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Tue Jul 01 04:35:27 EDT 2025
Thu Apr 24 22:52:21 EDT 2025
Sat Mar 02 16:01:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Covalent organic framework
Single metal atom catalysts
Descriptor
Electrocatalytic OER performance
Experimental verification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-2ecdf873f1202d6f6e8eeebcf5b966fa62fccc6a8cda015baf4d88f40e0cf3a83
ORCID 0000-0002-2738-306X
0000-0003-4672-8585
ParticipantIDs crossref_citationtrail_10_1016_j_apcatb_2023_122366
crossref_primary_10_1016_j_apcatb_2023_122366
elsevier_sciencedirect_doi_10_1016_j_apcatb_2023_122366
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kresse, Furthmüller (bib38) 1996; 54
Xu, Cheng, Cao, Zeng, Universal (bib35) 2018; 1
Singh, Roy, Das, Samanta, Maji (bib18) 2018; 54
Cao, Peng, Zhang, Zhu, Fan (bib13) 2021
Allangwi, Mamood, Ayub, Gilani (bib26) 2023; 153
Kresse, Joubert (bib40) 1999; 59
Pan, Abdellah, Cao, Lin, Liu, Meng, Zhou, Zhao, Yan, Li, Cui, Cao, Fang, Tanner, Abdel-Hafiez, Zhou, Pullerits, Canton, Xu, Zheng (bib29) 2022; 13
Jo, Moru, Tonda (bib19) 2019; 7
Yang, Li, Zhan, Liu, Li, Meng, Kravchenko, Liu, Yang, Fang, Wang, Guan, Furó, Ahlquist, Sun (bib54) 2022; 5
Diao, Qiu, Liu, Wang, Chen, Li, Yuan, Qu, Guo (bib7) 2020; 32
Zhang, Feng, Rao, Deng, Cai, Qiu, Long, Xiong, Lu, Chai (bib47) 2020; 11
Ullah, Ayub, Mahmood (bib27) 2021; 46
Ouyang, Ye, Wu, Xiao, Liu (bib10) 2019; 58
Yang, Yang, Dong, Sun, Lu, Zhang, Zhang (bib33) 2019; 4
Zheng, Jiao, Zhu, Cai, Vasileff, Li, Han, Chen, Qiao (bib21) 2017; 139
Saddeler, Bendt, Salamon, Haase, Landers, Timoshenko, Rettenmaier, Jeon, Bergmann, Wende, Cuenya, Schulz (bib9) 2021; 9
Tang, Su, Shao (bib11) 2021; 5
Ma, Zhi, Gong, Shen, Sun, Guo, Zhang, Xia (bib36) 2020; 12
Hammer, Nørskov (bib53) 1995; 343
Wang, Yuan, Li, Chen (bib15) 2015; 7
Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (bib44) 2010; 3
Kim, Kim, Lee, Lee, Ng (bib17) 2021; 31
Ren, Yao, Yuan (bib6) 2020; 6
Nandi, Singh, Mullangi, Illathvalappil, George, Vinod, Kurungot, Vaidhyanathan (bib22) 2016; 6
Aiyappa, Thote, Shinde, Banerjee, Kurungot (bib28) 2016; 28
Walter, Warren, McKone, Boettcher, Mi, Santori, Lewis (bib5) 2010; 110
Geng, He, Liu, Dalapati, Tan, Li, Tao, Gong, Jiang, Jiang (bib23) 2020; 120
Zhang, Jian, Yang, Bai (bib34) 2020; 31
Guan, Duan, Zhang, Kelly, Si, Dupuis, Huang, Chen, Tang, Li (bib8) 2018; 1
Hou, Qiu, Kim, Liu, Nam, Zhang, Zhuang, Yang, Cho, Chen, Yuan, Lei, Feng (bib48) 2019; 10
Perdew, Burke, Ernzerhof (bib41) 1996; 77
Lin, Zhang, Zhao, Xia (bib1) 2017; 30
Yang, Wang, Qiao, Li, Liu, Zhang (bib30) 2013; 46
Grimme (bib42) 2006; 27
Cui, Lei, Wang, Gao, Zhang, Yang, Lin (bib14) 2020; 70
Blöchl (bib39) 1994 1795; 50
Wan, Wang, Xu, Wu, Yang (bib3) 2020; 142
Niu, Zhang, Wang, Wan, Shao, Guo (bib55) 2021; 31
Wang, Zheng, Zhao, Fan (bib51) 2022; 12
Huang, Chen, Li (bib16) 2022; 464
Hammer, Nørskov (bib52) 2000; 45
Wu, Xu, Qian, Li, Sun (bib31) 2019; 25
Du, Zhang, Xing, Xu (bib50) 2017; 5
Mondal, Mohanty, Nurhuda, Dalapati, Jana, Addicoat, Datta, Jena, Bhaumik, Thiadiazole-based (bib25) 2020; 10
Hosokawa, Tsuji, Tsuchida, Iwase, Harada, Nakanishi, Kamiya (bib32) 2021; 9
Nørskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard, Jónsson (bib43) 2004; 108
De Paula (bib46) 2010
Zhang, Zhu, Schmidt, Chen, Zhang (bib4) 2021; 2
Kresse, Furthmüller (bib37) 1996; 6
Lin, Zhang, Zhao, Xia (bib20) 2017; 29
Feng, Ding, Jiang (bib2) 2012; 41
Jiao, Zheng, Jaroniec, Qiao (bib49) 2014; 136
Hu, Yan, Ge, Gao (bib12) 2018; 39
Zhao, Zhuang, Cao, Zhang, Peng, Chen, Li (bib24) 2020; 49
Ertl, Lee, Weiss (bib45) 1982; 114
Liu, Jiao, Zheng, Jaroniec, Qiao (bib56) 2019; 141
Perdew (10.1016/j.apcatb.2023.122366_bib41) 1996; 77
Zhang (10.1016/j.apcatb.2023.122366_bib4) 2021; 2
Feng (10.1016/j.apcatb.2023.122366_bib2) 2012; 41
Kresse (10.1016/j.apcatb.2023.122366_bib40) 1999; 59
Walter (10.1016/j.apcatb.2023.122366_bib5) 2010; 110
Yang (10.1016/j.apcatb.2023.122366_bib33) 2019; 4
Geng (10.1016/j.apcatb.2023.122366_bib23) 2020; 120
Guan (10.1016/j.apcatb.2023.122366_bib8) 2018; 1
Nørskov (10.1016/j.apcatb.2023.122366_bib43) 2004; 108
Kresse (10.1016/j.apcatb.2023.122366_bib38) 1996; 54
Huang (10.1016/j.apcatb.2023.122366_bib16) 2022; 464
Allangwi (10.1016/j.apcatb.2023.122366_bib26) 2023; 153
Singh (10.1016/j.apcatb.2023.122366_bib18) 2018; 54
Hammer (10.1016/j.apcatb.2023.122366_bib53) 1995; 343
Ouyang (10.1016/j.apcatb.2023.122366_bib10) 2019; 58
Zhang (10.1016/j.apcatb.2023.122366_bib47) 2020; 11
De Paula (10.1016/j.apcatb.2023.122366_bib46) 2010
Wang (10.1016/j.apcatb.2023.122366_bib15) 2015; 7
Kim (10.1016/j.apcatb.2023.122366_bib17) 2021; 31
Yang (10.1016/j.apcatb.2023.122366_bib30) 2013; 46
Kresse (10.1016/j.apcatb.2023.122366_bib37) 1996; 6
Zhao (10.1016/j.apcatb.2023.122366_bib24) 2020; 49
Blöchl (10.1016/j.apcatb.2023.122366_bib39) 1994; 50
Du (10.1016/j.apcatb.2023.122366_bib50) 2017; 5
Ullah (10.1016/j.apcatb.2023.122366_bib27) 2021; 46
Saddeler (10.1016/j.apcatb.2023.122366_bib9) 2021; 9
Niu (10.1016/j.apcatb.2023.122366_bib55) 2021; 31
Lin (10.1016/j.apcatb.2023.122366_bib20) 2017; 29
Hou (10.1016/j.apcatb.2023.122366_bib48) 2019; 10
Pan (10.1016/j.apcatb.2023.122366_bib29) 2022; 13
Hu (10.1016/j.apcatb.2023.122366_bib12) 2018; 39
Wu (10.1016/j.apcatb.2023.122366_bib31) 2019; 25
Lin (10.1016/j.apcatb.2023.122366_bib1) 2017; 30
Cao (10.1016/j.apcatb.2023.122366_bib13) 2021
Wang (10.1016/j.apcatb.2023.122366_bib51) 2022; 12
Nandi (10.1016/j.apcatb.2023.122366_bib22) 2016; 6
Aiyappa (10.1016/j.apcatb.2023.122366_bib28) 2016; 28
Tang (10.1016/j.apcatb.2023.122366_bib11) 2021; 5
Hosokawa (10.1016/j.apcatb.2023.122366_bib32) 2021; 9
Ertl (10.1016/j.apcatb.2023.122366_bib45) 1982; 114
Cui (10.1016/j.apcatb.2023.122366_bib14) 2020; 70
Ren (10.1016/j.apcatb.2023.122366_bib6) 2020; 6
Mondal (10.1016/j.apcatb.2023.122366_bib25) 2020; 10
Jiao (10.1016/j.apcatb.2023.122366_bib49) 2014; 136
Zheng (10.1016/j.apcatb.2023.122366_bib21) 2017; 139
Jo (10.1016/j.apcatb.2023.122366_bib19) 2019; 7
Liu (10.1016/j.apcatb.2023.122366_bib56) 2019; 141
Zhang (10.1016/j.apcatb.2023.122366_bib34) 2020; 31
Peterson (10.1016/j.apcatb.2023.122366_bib44) 2010; 3
Xu (10.1016/j.apcatb.2023.122366_bib35) 2018; 1
Grimme (10.1016/j.apcatb.2023.122366_bib42) 2006; 27
Diao (10.1016/j.apcatb.2023.122366_bib7) 2020; 32
Ma (10.1016/j.apcatb.2023.122366_bib36) 2020; 12
Wan (10.1016/j.apcatb.2023.122366_bib3) 2020; 142
Yang (10.1016/j.apcatb.2023.122366_bib54) 2022; 5
Hammer (10.1016/j.apcatb.2023.122366_bib52) 2000; 45
References_xml – volume: 4
  start-page: 2251
  year: 2019
  end-page: 2258
  ident: bib33
  article-title: Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER
  publication-title: ACS Energy Lett.
– volume: 29
  start-page: 1606635
  year: 2017
  ident: bib20
  article-title: Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production
  publication-title: Adv. Mater.
– volume: 31
  start-page: 1319
  year: 2020
  end-page: 2324
  ident: bib34
  article-title: Insights into the photocatalytic mechanism of the C
  publication-title: Chin. Chem. Lett.
– volume: 46
  start-page: 1740
  year: 2013
  end-page: 1748
  ident: bib30
  article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 11633
  year: 2015
  ident: bib15
  article-title: Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study
  publication-title: Nanoscale
– volume: 9
  start-page: 11073
  year: 2021
  end-page: 11080
  ident: bib32
  article-title: Metal-doped bipyridine linked covalent organic framework films as a platform for photoelectrocatalysts
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib48
  article-title: Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation
  publication-title: Nat. Commun.
– volume: 13
  start-page: 845
  year: 2022
  ident: bib29
  article-title: Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst
  publication-title: Nat. Comm.
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: bib42
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
– volume: 12
  start-page: 5441
  year: 2022
  end-page: 5454
  ident: bib51
  article-title: Structure-performance descriptors and the role of the axial oxygen atom on M-N
  publication-title: ACS Catal.
– volume: 6
  start-page: 1601189
  year: 2016
  ident: bib22
  article-title: Low band gap benzimidazole COF supported Ni3N as highly active OER catalyst
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib47
  article-title: Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation
  publication-title: Nat. Commun.
– volume: 41
  start-page: 6010
  year: 2012
  end-page: 6022
  ident: bib2
  article-title: Covalent organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 464
  year: 2022
  ident: bib16
  article-title: Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis
  publication-title: Coor. Chem. Rev.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib41
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 620
  year: 2020
  end-page: 643
  ident: bib6
  article-title: Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances
  publication-title: Green. Energy Environ.
– volume: 6
  start-page: 15
  year: 1996
  end-page: 20
  ident: bib37
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: bib38
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 2000090
  year: 2021
  ident: bib4
  article-title: Covalent organic frameworks for efficient energy electrocatalysis: rational design and progress
  publication-title: Adv. Energy Sustain. Res
– volume: 114
  start-page: 515
  year: 1982
  end-page: 526
  ident: bib45
  article-title: Kinetics of nitrogen adsorption on Fe(111)
  publication-title: Surf. Sci.
– volume: 70
  year: 2020
  ident: bib14
  article-title: Emerging covalent organic frameworks tailored materials for electrocatalysis
  publication-title: Nano Energy
– year: 2010
  ident: bib46
  article-title: Atkins’ Physical Chemistry
– volume: 120
  start-page: 8814
  year: 2020
  end-page: 8933
  ident: bib23
  article-title: Covalent organic frameworks: design, synthesis, and functions
  publication-title: Chem. Rev.
– volume: 39
  start-page: 1167
  year: 2018
  end-page: 1179
  ident: bib12
  article-title: Covalent organic frameworks as heterogeneous catalysts
  publication-title: Chin. J. Cata
– volume: 54
  start-page: 4465
  year: 2018
  ident: bib18
  article-title: Metallophthalocyanine-based redox active metal-organic conjugated microporous polymers for OER catalysis
  publication-title: Chem. Commun.
– volume: 1
  start-page: 339
  year: 2018
  end-page: 348
  ident: bib35
  article-title: Principle for a rational design of single-atom electrocatalysts
  publication-title: Nat. Catal.
– volume: 136
  start-page: 4394
  year: 2014
  end-page: 4403
  ident: bib49
  article-title: Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1311
  year: 2010
  end-page: 1315
  ident: bib44
  article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 37814
  year: 2021
  end-page: 37823
  ident: bib27
  article-title: High performance SACs for HER process using late first-row transition metals anchored on graphyne support: a DFT insight
  publication-title: Int. J. Hydrog. Energy
– volume: 153
  year: 2023
  ident: bib26
  article-title: Anchoring the late first row transition metals with B12P12 nanocage to act as single atom catalysts toward oxygen evolution reaction (OER)
  publication-title: Mater. Sci. Semicond. Proc.
– volume: 142
  start-page: 4508
  year: 2020
  end-page: 4516
  ident: bib3
  article-title: A simple molecular design strategy for two-dimensional covalent organic framework capable of visible-light-driven water splitting
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 25381
  year: 2021
  ident: bib9
  article-title: Influence of the cobalt content in cobalt iron oxides on the electrocatalytic OER
  publication-title: Act., J. Mater. Chem. A
– volume: 28
  start-page: 4375
  year: 2016
  end-page: 4379
  ident: bib28
  article-title: Cobalt modified covalent organic framework as a robust water oxidation electrocatalyst
  publication-title: Chem. Mater.
– volume: 5
  start-page: 2100945
  year: 2021
  ident: bib11
  article-title: Covalent organic framework (COF)-based hybrids for electrocatalysis: recent advances and perspectives
  publication-title: Small Methods
– volume: 12
  start-page: 19375
  year: 2020
  ident: bib36
  article-title: Universal descriptor based on pz-orbitals for the catalytic activity of multi-doped carbon bifunctional catalysts for oxygen reduction and evolution
  publication-title: Nanoscale
– volume: 30
  start-page: 1703646
  year: 2017
  ident: bib1
  article-title: Covalent organic framework electrocatalysts for clean energy conversion
  publication-title: Adv. Mater.
– year: 2021
  ident: bib13
  article-title: Atomically dispersed metal sites in COF-based nanomaterials for electrochemical energy conversion
  publication-title: Green. Energy Environ. Press
– volume: 7
  start-page: 15373
  year: 2019
  end-page: 15384
  ident: bib19
  article-title: Cobalt-coordinated sulfur-doped graphitic carbon nitride on reduced graphene oxide: an efficient metal−(N,S)−C-class bifunctional electrocatalyst for overall water splitting in alkaline media
  publication-title: ACS Sustain. Chem. Eng.
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1779
  ident: bib40
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 5623
  year: 2020
  end-page: 5630
  ident: bib25
  article-title: Covalent organic framework: a metal-free electrocatalyst toward oxygen evolution reaction
  publication-title: ACS Catal.
– volume: 1
  start-page: 870
  year: 2018
  end-page: 877
  ident: bib8
  article-title: Water oxidation on a mononuclear manganese heterogeneous catalyst
  publication-title: Nat. Catal.
– volume: 49
  start-page: 2215
  year: 2020
  end-page: 2264
  ident: bib24
  article-title: Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation
  publication-title: Chem. Soc. Rev.
– volume: 32
  start-page: 1905679
  year: 2020
  ident: bib7
  article-title: Interfacial engineering of W
  publication-title: Adv. Mater.
– volume: 31
  start-page: 2103290
  year: 2021
  ident: bib17
  article-title: Tuning the electrochemical properties of polymeric cobalt phthalocyanines for efficient water splitting
  publication-title: Adv. Funct. Mater.
– volume: 58
  start-page: 4923
  year: 2019
  end-page: 4928
  ident: bib10
  article-title: Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and b-Mo
  publication-title: Angew. Chem. Int. Ed.
– volume: 139
  start-page: 3336
  year: 2017
  end-page: 3339
  ident: bib21
  article-title: olecule-Level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 3
  year: 1994 1795
  end-page: 17979
  ident: bib39
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 45
  start-page: 71
  year: 2000
  end-page: 129
  ident: bib52
  article-title: Theoretical surface science and catalysis-calculations and concepts
  publication-title: Adv. Catal.
– volume: 141
  start-page: 9664
  year: 2019
  end-page: 9672
  ident: bib56
  article-title: Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single atom catalysts
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 2008533
  year: 2021
  ident: bib55
  article-title: Theoretical Insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts
  publication-title: Adv. Funct. Mater.
– volume: 343
  start-page: 211
  year: 1995
  end-page: 220
  ident: bib53
  article-title: Electronic factors determining the reactivity of metal surfaces
  publication-title: Surf. Sci.
– volume: 5
  start-page: 9210
  year: 2017
  end-page: 9216
  ident: bib50
  article-title: Hierarchical porous Fe
  publication-title: J. Mater. Chem. A
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  ident: bib43
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode
  publication-title: J. Phys. Chem. B
– volume: 110
  start-page: 6446
  year: 2010
  end-page: 6473
  ident: bib5
  article-title: Solar water splitting cells
  publication-title: Chem. Rev.
– volume: 25
  start-page: 3105
  year: 2019
  end-page: 3111
  ident: bib31
  article-title: Bimetallic covalent organic frameworks for constructing multifunctional electrocatalyst
  publication-title: Chem. Eur. J.
– volume: 5
  start-page: 414
  year: 2022
  end-page: 429
  ident: bib54
  article-title: Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites
  publication-title: Nat. Cat.
– volume: 39
  start-page: 1167
  year: 2018
  ident: 10.1016/j.apcatb.2023.122366_bib12
  article-title: Covalent organic frameworks as heterogeneous catalysts
  publication-title: Chin. J. Cata
  doi: 10.1016/S1872-2067(18)63057-8
– volume: 1
  start-page: 339
  year: 2018
  ident: 10.1016/j.apcatb.2023.122366_bib35
  article-title: Principle for a rational design of single-atom electrocatalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0063-z
– volume: 1
  start-page: 870
  year: 2018
  ident: 10.1016/j.apcatb.2023.122366_bib8
  article-title: Water oxidation on a mononuclear manganese heterogeneous catalyst
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0158-6
– year: 2021
  ident: 10.1016/j.apcatb.2023.122366_bib13
  article-title: Atomically dispersed metal sites in COF-based nanomaterials for electrochemical energy conversion
  publication-title: Green. Energy Environ. Press
  doi: 10.1016/j.gee.2021.11.005
– volume: 343
  start-page: 211
  year: 1995
  ident: 10.1016/j.apcatb.2023.122366_bib53
  article-title: Electronic factors determining the reactivity of metal surfaces
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(96)80007-0
– volume: 114
  start-page: 515
  year: 1982
  ident: 10.1016/j.apcatb.2023.122366_bib45
  article-title: Kinetics of nitrogen adsorption on Fe(111)
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(82)90702-6
– volume: 464
  year: 2022
  ident: 10.1016/j.apcatb.2023.122366_bib16
  article-title: Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis
  publication-title: Coor. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214563
– volume: 5
  start-page: 9210
  year: 2017
  ident: 10.1016/j.apcatb.2023.122366_bib50
  article-title: Hierarchical porous Fe3O4/Co3S4 nanosheets as an efficient electrocatalyst for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02108A
– volume: 7
  start-page: 15373
  year: 2019
  ident: 10.1016/j.apcatb.2023.122366_bib19
  article-title: Cobalt-coordinated sulfur-doped graphitic carbon nitride on reduced graphene oxide: an efficient metal−(N,S)−C-class bifunctional electrocatalyst for overall water splitting in alkaline media
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b02705
– volume: 141
  start-page: 9664
  year: 2019
  ident: 10.1016/j.apcatb.2023.122366_bib56
  article-title: Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single atom catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03811
– volume: 5
  start-page: 414
  year: 2022
  ident: 10.1016/j.apcatb.2023.122366_bib54
  article-title: Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites
  publication-title: Nat. Cat.
  doi: 10.1038/s41929-022-00783-6
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.apcatb.2023.122366_bib37
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.apcatb.2023.122366_bib48
  article-title: Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09394-5
– volume: 30
  start-page: 1703646
  year: 2017
  ident: 10.1016/j.apcatb.2023.122366_bib1
  article-title: Covalent organic framework electrocatalysts for clean energy conversion
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703646
– volume: 110
  start-page: 6446
  year: 2010
  ident: 10.1016/j.apcatb.2023.122366_bib5
  article-title: Solar water splitting cells
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 32
  start-page: 1905679
  year: 2020
  ident: 10.1016/j.apcatb.2023.122366_bib7
  article-title: Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905679
– volume: 58
  start-page: 4923
  year: 2019
  ident: 10.1016/j.apcatb.2023.122366_bib10
  article-title: Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and b-Mo2C nanoparticles as bifunctional electrodes for water splitting
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201814262
– volume: 108
  start-page: 17886
  year: 2004
  ident: 10.1016/j.apcatb.2023.122366_bib43
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 49
  start-page: 2215
  year: 2020
  ident: 10.1016/j.apcatb.2023.122366_bib24
  article-title: Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00869A
– volume: 29
  start-page: 1606635
  year: 2017
  ident: 10.1016/j.apcatb.2023.122366_bib20
  article-title: Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606635
– volume: 13
  start-page: 845
  year: 2022
  ident: 10.1016/j.apcatb.2023.122366_bib29
  article-title: Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst
  publication-title: Nat. Comm.
  doi: 10.1038/s41467-022-28409-2
– volume: 142
  start-page: 4508
  year: 2020
  ident: 10.1016/j.apcatb.2023.122366_bib3
  article-title: A simple molecular design strategy for two-dimensional covalent organic framework capable of visible-light-driven water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00564
– volume: 6
  start-page: 620
  year: 2020
  ident: 10.1016/j.apcatb.2023.122366_bib6
  article-title: Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances
  publication-title: Green. Energy Environ.
  doi: 10.1016/j.gee.2020.11.023
– volume: 5
  start-page: 2100945
  year: 2021
  ident: 10.1016/j.apcatb.2023.122366_bib11
  article-title: Covalent organic framework (COF)-based hybrids for electrocatalysis: recent advances and perspectives
  publication-title: Small Methods
  doi: 10.1002/smtd.202100945
– volume: 25
  start-page: 3105
  year: 2019
  ident: 10.1016/j.apcatb.2023.122366_bib31
  article-title: Bimetallic covalent organic frameworks for constructing multifunctional electrocatalyst
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201805550
– volume: 41
  start-page: 6010
  year: 2012
  ident: 10.1016/j.apcatb.2023.122366_bib2
  article-title: Covalent organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35157a
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.apcatb.2023.122366_bib38
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 120
  start-page: 8814
  year: 2020
  ident: 10.1016/j.apcatb.2023.122366_bib23
  article-title: Covalent organic frameworks: design, synthesis, and functions
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00550
– volume: 27
  start-page: 1787
  year: 2006
  ident: 10.1016/j.apcatb.2023.122366_bib42
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 136
  start-page: 4394
  year: 2014
  ident: 10.1016/j.apcatb.2023.122366_bib49
  article-title: Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500432h
– volume: 46
  start-page: 1740
  year: 2013
  ident: 10.1016/j.apcatb.2023.122366_bib30
  article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300361m
– volume: 28
  start-page: 4375
  year: 2016
  ident: 10.1016/j.apcatb.2023.122366_bib28
  article-title: Cobalt modified covalent organic framework as a robust water oxidation electrocatalyst
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01370
– volume: 4
  start-page: 2251
  year: 2019
  ident: 10.1016/j.apcatb.2023.122366_bib33
  article-title: Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01691
– volume: 9
  start-page: 11073
  year: 2021
  ident: 10.1016/j.apcatb.2023.122366_bib32
  article-title: Metal-doped bipyridine linked covalent organic framework films as a platform for photoelectrocatalysts
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA00396H
– volume: 12
  start-page: 5441
  year: 2022
  ident: 10.1016/j.apcatb.2023.122366_bib51
  article-title: Structure-performance descriptors and the role of the axial oxygen atom on M-N4-C single-atom catalysts for electrochemical CO2 reduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c00429
– volume: 6
  start-page: 1601189
  year: 2016
  ident: 10.1016/j.apcatb.2023.122366_bib22
  article-title: Low band gap benzimidazole COF supported Ni3N as highly active OER catalyst
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601189
– volume: 45
  start-page: 71
  year: 2000
  ident: 10.1016/j.apcatb.2023.122366_bib52
  article-title: Theoretical surface science and catalysis-calculations and concepts
  publication-title: Adv. Catal.
  doi: 10.1016/S0360-0564(02)45013-4
– volume: 7
  start-page: 11633
  year: 2015
  ident: 10.1016/j.apcatb.2023.122366_bib15
  article-title: Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study
  publication-title: Nanoscale
  doi: 10.1039/C5NR00302D
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.apcatb.2023.122366_bib40
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 3
  start-page: 1311
  year: 2010
  ident: 10.1016/j.apcatb.2023.122366_bib44
  article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00071j
– volume: 153
  year: 2023
  ident: 10.1016/j.apcatb.2023.122366_bib26
  article-title: Anchoring the late first row transition metals with B12P12 nanocage to act as single atom catalysts toward oxygen evolution reaction (OER)
  publication-title: Mater. Sci. Semicond. Proc.
– volume: 31
  start-page: 2008533
  year: 2021
  ident: 10.1016/j.apcatb.2023.122366_bib55
  article-title: Theoretical Insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008533
– volume: 139
  start-page: 3336
  year: 2017
  ident: 10.1016/j.apcatb.2023.122366_bib21
  article-title: olecule-Level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b13100
– volume: 46
  start-page: 37814
  year: 2021
  ident: 10.1016/j.apcatb.2023.122366_bib27
  article-title: High performance SACs for HER process using late first-row transition metals anchored on graphyne support: a DFT insight
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.09.063
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.apcatb.2023.122366_bib47
  article-title: Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation
  publication-title: Nat. Commun.
– volume: 31
  start-page: 1319
  year: 2020
  ident: 10.1016/j.apcatb.2023.122366_bib34
  article-title: Insights into the photocatalytic mechanism of the C4N/MoS2 heterostructure: a first-principle study
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.04.055
– volume: 70
  year: 2020
  ident: 10.1016/j.apcatb.2023.122366_bib14
  article-title: Emerging covalent organic frameworks tailored materials for electrocatalysis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104525
– volume: 31
  start-page: 2103290
  year: 2021
  ident: 10.1016/j.apcatb.2023.122366_bib17
  article-title: Tuning the electrochemical properties of polymeric cobalt phthalocyanines for efficient water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103290
– volume: 54
  start-page: 4465
  year: 2018
  ident: 10.1016/j.apcatb.2023.122366_bib18
  article-title: Metallophthalocyanine-based redox active metal-organic conjugated microporous polymers for OER catalysis
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC01291A
– year: 2010
  ident: 10.1016/j.apcatb.2023.122366_bib46
– volume: 2
  start-page: 2000090
  year: 2021
  ident: 10.1016/j.apcatb.2023.122366_bib4
  article-title: Covalent organic frameworks for efficient energy electrocatalysis: rational design and progress
  publication-title: Adv. Energy Sustain. Res
  doi: 10.1002/aesr.202000090
– volume: 50
  start-page: 3
  year: 1994
  ident: 10.1016/j.apcatb.2023.122366_bib39
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.apcatb.2023.122366_bib41
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 10
  start-page: 5623
  year: 2020
  ident: 10.1016/j.apcatb.2023.122366_bib25
  article-title: Covalent organic framework: a metal-free electrocatalyst toward oxygen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05470
– volume: 9
  start-page: 25381
  year: 2021
  ident: 10.1016/j.apcatb.2023.122366_bib9
  article-title: Influence of the cobalt content in cobalt iron oxides on the electrocatalytic OER
  publication-title: Act., J. Mater. Chem. A
  doi: 10.1039/D1TA06568H
– volume: 12
  start-page: 19375
  year: 2020
  ident: 10.1016/j.apcatb.2023.122366_bib36
  article-title: Universal descriptor based on pz-orbitals for the catalytic activity of multi-doped carbon bifunctional catalysts for oxygen reduction and evolution
  publication-title: Nanoscale
  doi: 10.1039/D0NR03521A
SSID ssj0002328
Score 2.6305716
Snippet COF-C4N, an effective oxygen evolution reaction (OER) electrocatalyst with a low overpotential, has ideal N-edge cavities for anchoring transition metal (TM)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122366
SubjectTerms Covalent organic framework
Descriptor
Electrocatalytic OER performance
Experimental verification
Single metal atom catalysts
Title COF-C4N Nanosheets with uniformly anchored single metal sites for electrocatalytic OER: From theoretical screening to target synthesis
URI https://dx.doi.org/10.1016/j.apcatb.2023.122366
Volume 325
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5Cemh6CK2b0KRtmEOva8taaS31FoSN24IDTQK5iX0SB1sylnLwpcf-7s7q0bhQGuhRYmYRO7sz367mmwH4FNJmDk2aslg4yyItQpamoWWK4L1Og1iNdZNtsRDz2-jrXXx3AFnPhfFplZ3vb3164627N6NuNkeb5XJ0HaSh4HzCCUQ3dATPYI8mfpUPfzyleRBiaLwxCTMv3dPnmhwvudGyVkPfQnw4pkDZ1Er8S3jaCzmz13DcYUW8bD_nDRzYYgAvs75F2wBe7VUTHMDp9Im0Rmrdrq3ews_sasayaIHkSsvq3tq6Qn__io-F52WtVzsk29-XW2vQXx2sLK6tH8L_Wa6QRLDrltNc9uzoc_Bq-v0zzrblGveokEg-iM7FNATWJbZJ5ljtChKpltUJ3M6mN9mcdf0XmKaDRM1Cq41LJtyNaYKMcMIm1lqlXazokOSkCJ3WWshEG0moQkkXmSRxUWAD7bhM-CkcFmVh3wGaQHJpZCzJZFFqjDQ8UCp0hFcEF6k5A95Pe6674uS-R8Yq77PQHvLWWLk3Vt4a6wzYb61NW5zjGflJb9H8j0WWU_z4p-b5f2u-hyP_5BMOxvEHOKy3j_Yj4ZhaXTQL9QJeXH75Nl_8Aqxq9mg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH4a4zA4oFGYNmDgAxzdpnbiJkgcptKqY6OTYJN2C45_aEVtUjWZUC8c-Yf4B_ecOKxICCSkXRM_y_F7fu-z8z0_gNcMFzPTSUIjYQ0NlWA0SZihGcJ7lQRR1lc122IqJhfhh8vocgt-trkwjlbpfX_j02tv7Z_0_Gz2lrNZ73OQMMH5gCOIrtMRPLPyxKy_4b6tfHf8HpX8hrHx6Hw4ob60AFWIkSvKjNI2HnDbx82_FlaY2BiTKRtliP-tFMwqpYSMlZYYMDNpQx3HNgxMoCyXMcd-78H9EN2FK5vQ_X7LK0GIUrt_HB11w2vz9WpSmVwqWWVdV7O828fIXF_O-Id4uBHjxrvwyINTctR8_2PYMnkHdoZtTbgOPNy4vrADe6PbLDkU826ifAI_hmdjOgynBH13UV4ZU5XEHfiS69wlgi3ma4LGdlWsjCburGJuyMK4Ltyv7JJgE-LL89SnS2scDjkbfXpLxqtiQTZyLwk6PdyIYxekKkjDaiflOscm5ax8Chd3opU92M6L3OwD0YHkUstIoo2EidZS8yDLmEWAJLhI9AHwdtpT5W9Dd0U55mlLe_uaNspKnbLSRlkHQH9JLZvbQP7RftBqNP3NqlMMWH-VfPbfkq9gZ3L-8TQ9PZ6ePIcH7o1jO_SjF7Bdra7NIYKoKntZGy2BL3e9Sm4Ahbo1oQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COF-C4N+Nanosheets+with+uniformly+anchored+single+metal+sites+for+electrocatalytic+OER%3A+From+theoretical+screening+to+target+synthesis&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Zhang%2C+Rui&rft.au=Liu%2C+Wenshan&rft.au=Zhang%2C+Feng-Ming&rft.au=Yang%2C+Zhao-Di&rft.date=2023-05-15&rft.issn=0926-3373&rft.volume=325&rft.spage=122366&rft_id=info:doi/10.1016%2Fj.apcatb.2023.122366&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2023_122366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon