COF-C4N Nanosheets with uniformly anchored single metal sites for electrocatalytic OER: From theoretical screening to target synthesis
COF-C4N, an effective oxygen evolution reaction (OER) electrocatalyst with a low overpotential, has ideal N-edge cavities for anchoring transition metal (TM) sites to achieve single atom catalysts (SACs) with higher OER activity. To screen out the optimal TM, two descriptors for characterizing the O...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 325; p. 122366 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | COF-C4N, an effective oxygen evolution reaction (OER) electrocatalyst with a low overpotential, has ideal N-edge cavities for anchoring transition metal (TM) sites to achieve single atom catalysts (SACs) with higher OER activity. To screen out the optimal TM, two descriptors for characterizing the OER activities are proposed based on systematic density-functional theory calculations for two different classes of COF, TM-COF-C4N and TM-Aza-CMP. Among them, Co-COF-C4N and Ni-COF-C4N are theoretically suggested to be highly active and low-cost OER SACs for target synthesis. Followed by a series of structural characterizations (PXRD, XPS, FT-IR, EXAFS, ICP, TEM and SEM) as well as OER performance measurement, it is confirmed that Co-COF-C4N exhibits excellent OER activity with an overpotential of 280 mV at 10 mA cm−2, more active than most of previously reported OER electrocatalysts. The molecular mechanism underlying the high activity is explored.
[Display omitted]
•Two descriptors for characterizing OER activities were developed for SACs TM-COF-C4N.•Descriptors are generalized to other nanosheets with N-edge cavities like TM-Aza-CMP.•Co/Ni-COF-C4N are targeted synthesized as predicted low-cost efficient OER catalysts•Co-COF-C4N is verified with a very low OER overpotential of 280 mV at 10 mA cm−2.•The molecular mechanism is explored based on computed electronic properties. |
---|---|
AbstractList | COF-C4N, an effective oxygen evolution reaction (OER) electrocatalyst with a low overpotential, has ideal N-edge cavities for anchoring transition metal (TM) sites to achieve single atom catalysts (SACs) with higher OER activity. To screen out the optimal TM, two descriptors for characterizing the OER activities are proposed based on systematic density-functional theory calculations for two different classes of COF, TM-COF-C4N and TM-Aza-CMP. Among them, Co-COF-C4N and Ni-COF-C4N are theoretically suggested to be highly active and low-cost OER SACs for target synthesis. Followed by a series of structural characterizations (PXRD, XPS, FT-IR, EXAFS, ICP, TEM and SEM) as well as OER performance measurement, it is confirmed that Co-COF-C4N exhibits excellent OER activity with an overpotential of 280 mV at 10 mA cm−2, more active than most of previously reported OER electrocatalysts. The molecular mechanism underlying the high activity is explored.
[Display omitted]
•Two descriptors for characterizing OER activities were developed for SACs TM-COF-C4N.•Descriptors are generalized to other nanosheets with N-edge cavities like TM-Aza-CMP.•Co/Ni-COF-C4N are targeted synthesized as predicted low-cost efficient OER catalysts•Co-COF-C4N is verified with a very low OER overpotential of 280 mV at 10 mA cm−2.•The molecular mechanism is explored based on computed electronic properties. |
ArticleNumber | 122366 |
Author | Yang, Zhao-Di Liu, Wenshan Zhang, Guiling Zhang, Rui Zhang, Feng-Ming Zeng, Xiao Cheng |
Author_xml | – sequence: 1 givenname: Rui surname: Zhang fullname: Zhang, Rui organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China – sequence: 2 givenname: Wenshan surname: Liu fullname: Liu, Wenshan organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China – sequence: 3 givenname: Feng-Ming orcidid: 0000-0002-2738-306X surname: Zhang fullname: Zhang, Feng-Ming organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China – sequence: 4 givenname: Zhao-Di surname: Yang fullname: Yang, Zhao-Di email: yangzhaodi@163.com organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China – sequence: 5 givenname: Guiling surname: Zhang fullname: Zhang, Guiling email: guiling-002@163.com organization: Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China – sequence: 6 givenname: Xiao Cheng orcidid: 0000-0003-4672-8585 surname: Zeng fullname: Zeng, Xiao Cheng email: xzeng26@cityu.edu.hk organization: Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States |
BookMark | eNqFkMFOAjEURRuDiYD-gYv-wGBnCqWwMDEE1IRAYnTdlDevUDK0pK2a-QG_2xJcudBV0-aem97TIx3nHRJyW7JByUpxtx_oI-i0GVSs4oOyqrgQF6RbyjEvuJS8Q7psUomC8zG_Ir0Y94zlZCW75Gu2XhSz4YqutPNxh5gi_bRpR9-dNT4cmpZqBzsfsKbRum2D9IBJN_mSMNIcodggpODzB3TTJgt0PX-Z0kXwB5p2mMn8dgIgILpcQZOnSYctJhpblyPRxmtyaXQT8ebn7JO3xfx19lQs14_Ps4dlAZyJVFQItcmrTJmX1sIIlIi4ATPaTIQwWlQGAISWUGtWjjbaDGspzZAhA8O15H0yPfdC8DEGNAps0sl6l4K2jSqZOhlVe3U2qk5G1dlohoe_4GOwBx3a_7D7M4Z52IfFoCJYdIC1Ddmcqr39u-AbBsaYow |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_146753 crossref_primary_10_1016_j_mcat_2023_113464 crossref_primary_10_1016_j_ijhydene_2024_11_348 crossref_primary_10_1002_adma_202306309 crossref_primary_10_1016_j_ceja_2024_100691 crossref_primary_10_1016_j_jes_2024_05_004 crossref_primary_10_1021_acsanm_4c00397 crossref_primary_10_1007_s12274_024_6775_2 crossref_primary_10_1016_j_ijhydene_2024_08_401 crossref_primary_10_3390_catal15030205 crossref_primary_10_1039_D3CS00727H crossref_primary_10_1016_j_cplett_2024_141750 crossref_primary_10_3390_nano14231907 crossref_primary_10_1039_D3NR04396G crossref_primary_10_20517_energymater_2023_72 crossref_primary_10_3390_catal14050324 crossref_primary_10_3390_nano13132012 crossref_primary_10_1016_j_checat_2024_101091 crossref_primary_10_1039_D4EE01912A crossref_primary_10_1002_adma_202410295 crossref_primary_10_1002_aenm_202401619 crossref_primary_10_1016_j_commatsci_2024_113452 crossref_primary_10_1021_acsanm_4c02100 crossref_primary_10_1002_cplu_202400069 crossref_primary_10_1039_D4CC05747C crossref_primary_10_1016_j_colsurfa_2023_133093 crossref_primary_10_1016_j_ijhydene_2024_06_111 crossref_primary_10_1039_D4SC01696C crossref_primary_10_1016_j_cej_2024_157208 crossref_primary_10_1016_j_microc_2024_110399 crossref_primary_10_1016_j_flatc_2025_100840 crossref_primary_10_1002_smll_202412000 crossref_primary_10_1016_j_jcis_2023_07_083 crossref_primary_10_1002_aenm_202304546 crossref_primary_10_1016_j_apcatb_2024_124114 crossref_primary_10_1039_D4EE03704A crossref_primary_10_1039_D4TA03069A crossref_primary_10_1021_acsaem_4c00299 crossref_primary_10_1007_s43979_024_00117_4 crossref_primary_10_1016_j_ijhydene_2024_08_026 crossref_primary_10_1039_D4CC03535F crossref_primary_10_1021_acsami_3c09114 crossref_primary_10_1002_bkcs_12790 crossref_primary_10_1016_j_ijhydene_2024_09_267 crossref_primary_10_1002_adma_202420565 crossref_primary_10_1021_acssuschemeng_4c01787 crossref_primary_10_1021_acsami_3c17662 crossref_primary_10_1016_j_fuel_2024_131462 crossref_primary_10_1016_j_nanoen_2023_109155 crossref_primary_10_1039_D3DT03330A crossref_primary_10_1016_j_mcat_2023_113579 crossref_primary_10_1088_1361_6463_ad5f39 crossref_primary_10_1016_j_jcis_2023_06_039 crossref_primary_10_1016_j_ijhydene_2024_09_365 crossref_primary_10_1038_s41929_023_01106_z crossref_primary_10_1002_cctc_202400100 crossref_primary_10_1016_j_jcis_2025_01_251 crossref_primary_10_1002_cey2_583 crossref_primary_10_1002_aenm_202405749 crossref_primary_10_1016_j_jcis_2023_04_115 crossref_primary_10_1021_acsnano_4c18951 crossref_primary_10_3390_inorganics11110424 |
Cites_doi | 10.1016/S1872-2067(18)63057-8 10.1038/s41929-018-0063-z 10.1038/s41929-018-0158-6 10.1016/j.gee.2021.11.005 10.1016/0039-6028(96)80007-0 10.1016/0039-6028(82)90702-6 10.1016/j.ccr.2022.214563 10.1039/C7TA02108A 10.1021/acssuschemeng.9b02705 10.1021/jacs.9b03811 10.1038/s41929-022-00783-6 10.1016/0927-0256(96)00008-0 10.1038/s41467-019-09394-5 10.1002/adma.201703646 10.1021/cr1002326 10.1002/adma.201905679 10.1002/anie.201814262 10.1021/jp047349j 10.1039/C9CS00869A 10.1002/adma.201606635 10.1038/s41467-022-28409-2 10.1021/jacs.0c00564 10.1016/j.gee.2020.11.023 10.1002/smtd.202100945 10.1002/chem.201805550 10.1039/c2cs35157a 10.1103/PhysRevB.54.11169 10.1021/acs.chemrev.9b00550 10.1002/jcc.20495 10.1021/ja500432h 10.1021/ar300361m 10.1021/acs.chemmater.6b01370 10.1021/acsenergylett.9b01691 10.1039/D1TA00396H 10.1021/acscatal.2c00429 10.1002/aenm.201601189 10.1016/S0360-0564(02)45013-4 10.1039/C5NR00302D 10.1103/PhysRevB.59.1758 10.1039/c0ee00071j 10.1002/adfm.202008533 10.1021/jacs.6b13100 10.1016/j.ijhydene.2021.09.063 10.1016/j.cclet.2020.04.055 10.1016/j.nanoen.2020.104525 10.1002/adfm.202103290 10.1039/C8CC01291A 10.1002/aesr.202000090 10.1103/PhysRevB.50.17953 10.1103/PhysRevLett.77.3865 10.1021/acscatal.9b05470 10.1039/D1TA06568H 10.1039/D0NR03521A |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apcatb.2023.122366 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2023_122366 S0926337323000097 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPD SSG SSZ T5K ~02 ~G- 53G AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SSH VH1 WUQ XPP |
ID | FETCH-LOGICAL-c306t-2ecdf873f1202d6f6e8eeebcf5b966fa62fccc6a8cda015baf4d88f40e0cf3a83 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Tue Jul 01 04:35:27 EDT 2025 Thu Apr 24 22:52:21 EDT 2025 Sat Mar 02 16:01:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Covalent organic framework Single metal atom catalysts Descriptor Electrocatalytic OER performance Experimental verification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-2ecdf873f1202d6f6e8eeebcf5b966fa62fccc6a8cda015baf4d88f40e0cf3a83 |
ORCID | 0000-0002-2738-306X 0000-0003-4672-8585 |
ParticipantIDs | crossref_citationtrail_10_1016_j_apcatb_2023_122366 crossref_primary_10_1016_j_apcatb_2023_122366 elsevier_sciencedirect_doi_10_1016_j_apcatb_2023_122366 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-15 |
PublicationDateYYYYMMDD | 2023-05-15 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kresse, Furthmüller (bib38) 1996; 54 Xu, Cheng, Cao, Zeng, Universal (bib35) 2018; 1 Singh, Roy, Das, Samanta, Maji (bib18) 2018; 54 Cao, Peng, Zhang, Zhu, Fan (bib13) 2021 Allangwi, Mamood, Ayub, Gilani (bib26) 2023; 153 Kresse, Joubert (bib40) 1999; 59 Pan, Abdellah, Cao, Lin, Liu, Meng, Zhou, Zhao, Yan, Li, Cui, Cao, Fang, Tanner, Abdel-Hafiez, Zhou, Pullerits, Canton, Xu, Zheng (bib29) 2022; 13 Jo, Moru, Tonda (bib19) 2019; 7 Yang, Li, Zhan, Liu, Li, Meng, Kravchenko, Liu, Yang, Fang, Wang, Guan, Furó, Ahlquist, Sun (bib54) 2022; 5 Diao, Qiu, Liu, Wang, Chen, Li, Yuan, Qu, Guo (bib7) 2020; 32 Zhang, Feng, Rao, Deng, Cai, Qiu, Long, Xiong, Lu, Chai (bib47) 2020; 11 Ullah, Ayub, Mahmood (bib27) 2021; 46 Ouyang, Ye, Wu, Xiao, Liu (bib10) 2019; 58 Yang, Yang, Dong, Sun, Lu, Zhang, Zhang (bib33) 2019; 4 Zheng, Jiao, Zhu, Cai, Vasileff, Li, Han, Chen, Qiao (bib21) 2017; 139 Saddeler, Bendt, Salamon, Haase, Landers, Timoshenko, Rettenmaier, Jeon, Bergmann, Wende, Cuenya, Schulz (bib9) 2021; 9 Tang, Su, Shao (bib11) 2021; 5 Ma, Zhi, Gong, Shen, Sun, Guo, Zhang, Xia (bib36) 2020; 12 Hammer, Nørskov (bib53) 1995; 343 Wang, Yuan, Li, Chen (bib15) 2015; 7 Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (bib44) 2010; 3 Kim, Kim, Lee, Lee, Ng (bib17) 2021; 31 Ren, Yao, Yuan (bib6) 2020; 6 Nandi, Singh, Mullangi, Illathvalappil, George, Vinod, Kurungot, Vaidhyanathan (bib22) 2016; 6 Aiyappa, Thote, Shinde, Banerjee, Kurungot (bib28) 2016; 28 Walter, Warren, McKone, Boettcher, Mi, Santori, Lewis (bib5) 2010; 110 Geng, He, Liu, Dalapati, Tan, Li, Tao, Gong, Jiang, Jiang (bib23) 2020; 120 Zhang, Jian, Yang, Bai (bib34) 2020; 31 Guan, Duan, Zhang, Kelly, Si, Dupuis, Huang, Chen, Tang, Li (bib8) 2018; 1 Hou, Qiu, Kim, Liu, Nam, Zhang, Zhuang, Yang, Cho, Chen, Yuan, Lei, Feng (bib48) 2019; 10 Perdew, Burke, Ernzerhof (bib41) 1996; 77 Lin, Zhang, Zhao, Xia (bib1) 2017; 30 Yang, Wang, Qiao, Li, Liu, Zhang (bib30) 2013; 46 Grimme (bib42) 2006; 27 Cui, Lei, Wang, Gao, Zhang, Yang, Lin (bib14) 2020; 70 Blöchl (bib39) 1994 1795; 50 Wan, Wang, Xu, Wu, Yang (bib3) 2020; 142 Niu, Zhang, Wang, Wan, Shao, Guo (bib55) 2021; 31 Wang, Zheng, Zhao, Fan (bib51) 2022; 12 Huang, Chen, Li (bib16) 2022; 464 Hammer, Nørskov (bib52) 2000; 45 Wu, Xu, Qian, Li, Sun (bib31) 2019; 25 Du, Zhang, Xing, Xu (bib50) 2017; 5 Mondal, Mohanty, Nurhuda, Dalapati, Jana, Addicoat, Datta, Jena, Bhaumik, Thiadiazole-based (bib25) 2020; 10 Hosokawa, Tsuji, Tsuchida, Iwase, Harada, Nakanishi, Kamiya (bib32) 2021; 9 Nørskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard, Jónsson (bib43) 2004; 108 De Paula (bib46) 2010 Zhang, Zhu, Schmidt, Chen, Zhang (bib4) 2021; 2 Kresse, Furthmüller (bib37) 1996; 6 Lin, Zhang, Zhao, Xia (bib20) 2017; 29 Feng, Ding, Jiang (bib2) 2012; 41 Jiao, Zheng, Jaroniec, Qiao (bib49) 2014; 136 Hu, Yan, Ge, Gao (bib12) 2018; 39 Zhao, Zhuang, Cao, Zhang, Peng, Chen, Li (bib24) 2020; 49 Ertl, Lee, Weiss (bib45) 1982; 114 Liu, Jiao, Zheng, Jaroniec, Qiao (bib56) 2019; 141 Perdew (10.1016/j.apcatb.2023.122366_bib41) 1996; 77 Zhang (10.1016/j.apcatb.2023.122366_bib4) 2021; 2 Feng (10.1016/j.apcatb.2023.122366_bib2) 2012; 41 Kresse (10.1016/j.apcatb.2023.122366_bib40) 1999; 59 Walter (10.1016/j.apcatb.2023.122366_bib5) 2010; 110 Yang (10.1016/j.apcatb.2023.122366_bib33) 2019; 4 Geng (10.1016/j.apcatb.2023.122366_bib23) 2020; 120 Guan (10.1016/j.apcatb.2023.122366_bib8) 2018; 1 Nørskov (10.1016/j.apcatb.2023.122366_bib43) 2004; 108 Kresse (10.1016/j.apcatb.2023.122366_bib38) 1996; 54 Huang (10.1016/j.apcatb.2023.122366_bib16) 2022; 464 Allangwi (10.1016/j.apcatb.2023.122366_bib26) 2023; 153 Singh (10.1016/j.apcatb.2023.122366_bib18) 2018; 54 Hammer (10.1016/j.apcatb.2023.122366_bib53) 1995; 343 Ouyang (10.1016/j.apcatb.2023.122366_bib10) 2019; 58 Zhang (10.1016/j.apcatb.2023.122366_bib47) 2020; 11 De Paula (10.1016/j.apcatb.2023.122366_bib46) 2010 Wang (10.1016/j.apcatb.2023.122366_bib15) 2015; 7 Kim (10.1016/j.apcatb.2023.122366_bib17) 2021; 31 Yang (10.1016/j.apcatb.2023.122366_bib30) 2013; 46 Kresse (10.1016/j.apcatb.2023.122366_bib37) 1996; 6 Zhao (10.1016/j.apcatb.2023.122366_bib24) 2020; 49 Blöchl (10.1016/j.apcatb.2023.122366_bib39) 1994; 50 Du (10.1016/j.apcatb.2023.122366_bib50) 2017; 5 Ullah (10.1016/j.apcatb.2023.122366_bib27) 2021; 46 Saddeler (10.1016/j.apcatb.2023.122366_bib9) 2021; 9 Niu (10.1016/j.apcatb.2023.122366_bib55) 2021; 31 Lin (10.1016/j.apcatb.2023.122366_bib20) 2017; 29 Hou (10.1016/j.apcatb.2023.122366_bib48) 2019; 10 Pan (10.1016/j.apcatb.2023.122366_bib29) 2022; 13 Hu (10.1016/j.apcatb.2023.122366_bib12) 2018; 39 Wu (10.1016/j.apcatb.2023.122366_bib31) 2019; 25 Lin (10.1016/j.apcatb.2023.122366_bib1) 2017; 30 Cao (10.1016/j.apcatb.2023.122366_bib13) 2021 Wang (10.1016/j.apcatb.2023.122366_bib51) 2022; 12 Nandi (10.1016/j.apcatb.2023.122366_bib22) 2016; 6 Aiyappa (10.1016/j.apcatb.2023.122366_bib28) 2016; 28 Tang (10.1016/j.apcatb.2023.122366_bib11) 2021; 5 Hosokawa (10.1016/j.apcatb.2023.122366_bib32) 2021; 9 Ertl (10.1016/j.apcatb.2023.122366_bib45) 1982; 114 Cui (10.1016/j.apcatb.2023.122366_bib14) 2020; 70 Ren (10.1016/j.apcatb.2023.122366_bib6) 2020; 6 Mondal (10.1016/j.apcatb.2023.122366_bib25) 2020; 10 Jiao (10.1016/j.apcatb.2023.122366_bib49) 2014; 136 Zheng (10.1016/j.apcatb.2023.122366_bib21) 2017; 139 Jo (10.1016/j.apcatb.2023.122366_bib19) 2019; 7 Liu (10.1016/j.apcatb.2023.122366_bib56) 2019; 141 Zhang (10.1016/j.apcatb.2023.122366_bib34) 2020; 31 Peterson (10.1016/j.apcatb.2023.122366_bib44) 2010; 3 Xu (10.1016/j.apcatb.2023.122366_bib35) 2018; 1 Grimme (10.1016/j.apcatb.2023.122366_bib42) 2006; 27 Diao (10.1016/j.apcatb.2023.122366_bib7) 2020; 32 Ma (10.1016/j.apcatb.2023.122366_bib36) 2020; 12 Wan (10.1016/j.apcatb.2023.122366_bib3) 2020; 142 Yang (10.1016/j.apcatb.2023.122366_bib54) 2022; 5 Hammer (10.1016/j.apcatb.2023.122366_bib52) 2000; 45 |
References_xml | – volume: 4 start-page: 2251 year: 2019 end-page: 2258 ident: bib33 article-title: Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER publication-title: ACS Energy Lett. – volume: 29 start-page: 1606635 year: 2017 ident: bib20 article-title: Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production publication-title: Adv. Mater. – volume: 31 start-page: 1319 year: 2020 end-page: 2324 ident: bib34 article-title: Insights into the photocatalytic mechanism of the C publication-title: Chin. Chem. Lett. – volume: 46 start-page: 1740 year: 2013 end-page: 1748 ident: bib30 article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis publication-title: Acc. Chem. Res. – volume: 7 start-page: 11633 year: 2015 ident: bib15 article-title: Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study publication-title: Nanoscale – volume: 9 start-page: 11073 year: 2021 end-page: 11080 ident: bib32 article-title: Metal-doped bipyridine linked covalent organic framework films as a platform for photoelectrocatalysts publication-title: J. Mater. Chem. A – volume: 10 start-page: 1 year: 2019 end-page: 9 ident: bib48 article-title: Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation publication-title: Nat. Commun. – volume: 13 start-page: 845 year: 2022 ident: bib29 article-title: Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst publication-title: Nat. Comm. – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: bib42 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. – volume: 12 start-page: 5441 year: 2022 end-page: 5454 ident: bib51 article-title: Structure-performance descriptors and the role of the axial oxygen atom on M-N publication-title: ACS Catal. – volume: 6 start-page: 1601189 year: 2016 ident: bib22 article-title: Low band gap benzimidazole COF supported Ni3N as highly active OER catalyst publication-title: Adv. Energy Mater. – volume: 11 start-page: 1 year: 2020 end-page: 11 ident: bib47 article-title: Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation publication-title: Nat. Commun. – volume: 41 start-page: 6010 year: 2012 end-page: 6022 ident: bib2 article-title: Covalent organic frameworks publication-title: Chem. Soc. Rev. – volume: 464 year: 2022 ident: bib16 article-title: Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis publication-title: Coor. Chem. Rev. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib41 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 6 start-page: 620 year: 2020 end-page: 643 ident: bib6 article-title: Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances publication-title: Green. Energy Environ. – volume: 6 start-page: 15 year: 1996 end-page: 20 ident: bib37 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: bib38 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 2 start-page: 2000090 year: 2021 ident: bib4 article-title: Covalent organic frameworks for efficient energy electrocatalysis: rational design and progress publication-title: Adv. Energy Sustain. Res – volume: 114 start-page: 515 year: 1982 end-page: 526 ident: bib45 article-title: Kinetics of nitrogen adsorption on Fe(111) publication-title: Surf. Sci. – volume: 70 year: 2020 ident: bib14 article-title: Emerging covalent organic frameworks tailored materials for electrocatalysis publication-title: Nano Energy – year: 2010 ident: bib46 article-title: Atkins’ Physical Chemistry – volume: 120 start-page: 8814 year: 2020 end-page: 8933 ident: bib23 article-title: Covalent organic frameworks: design, synthesis, and functions publication-title: Chem. Rev. – volume: 39 start-page: 1167 year: 2018 end-page: 1179 ident: bib12 article-title: Covalent organic frameworks as heterogeneous catalysts publication-title: Chin. J. Cata – volume: 54 start-page: 4465 year: 2018 ident: bib18 article-title: Metallophthalocyanine-based redox active metal-organic conjugated microporous polymers for OER catalysis publication-title: Chem. Commun. – volume: 1 start-page: 339 year: 2018 end-page: 348 ident: bib35 article-title: Principle for a rational design of single-atom electrocatalysts publication-title: Nat. Catal. – volume: 136 start-page: 4394 year: 2014 end-page: 4403 ident: bib49 article-title: Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1311 year: 2010 end-page: 1315 ident: bib44 article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels publication-title: Energy Environ. Sci. – volume: 46 start-page: 37814 year: 2021 end-page: 37823 ident: bib27 article-title: High performance SACs for HER process using late first-row transition metals anchored on graphyne support: a DFT insight publication-title: Int. J. Hydrog. Energy – volume: 153 year: 2023 ident: bib26 article-title: Anchoring the late first row transition metals with B12P12 nanocage to act as single atom catalysts toward oxygen evolution reaction (OER) publication-title: Mater. Sci. Semicond. Proc. – volume: 142 start-page: 4508 year: 2020 end-page: 4516 ident: bib3 article-title: A simple molecular design strategy for two-dimensional covalent organic framework capable of visible-light-driven water splitting publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 25381 year: 2021 ident: bib9 article-title: Influence of the cobalt content in cobalt iron oxides on the electrocatalytic OER publication-title: Act., J. Mater. Chem. A – volume: 28 start-page: 4375 year: 2016 end-page: 4379 ident: bib28 article-title: Cobalt modified covalent organic framework as a robust water oxidation electrocatalyst publication-title: Chem. Mater. – volume: 5 start-page: 2100945 year: 2021 ident: bib11 article-title: Covalent organic framework (COF)-based hybrids for electrocatalysis: recent advances and perspectives publication-title: Small Methods – volume: 12 start-page: 19375 year: 2020 ident: bib36 article-title: Universal descriptor based on pz-orbitals for the catalytic activity of multi-doped carbon bifunctional catalysts for oxygen reduction and evolution publication-title: Nanoscale – volume: 30 start-page: 1703646 year: 2017 ident: bib1 article-title: Covalent organic framework electrocatalysts for clean energy conversion publication-title: Adv. Mater. – year: 2021 ident: bib13 article-title: Atomically dispersed metal sites in COF-based nanomaterials for electrochemical energy conversion publication-title: Green. Energy Environ. Press – volume: 7 start-page: 15373 year: 2019 end-page: 15384 ident: bib19 article-title: Cobalt-coordinated sulfur-doped graphitic carbon nitride on reduced graphene oxide: an efficient metal−(N,S)−C-class bifunctional electrocatalyst for overall water splitting in alkaline media publication-title: ACS Sustain. Chem. Eng. – volume: 59 start-page: 1758 year: 1999 end-page: 1779 ident: bib40 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – volume: 10 start-page: 5623 year: 2020 end-page: 5630 ident: bib25 article-title: Covalent organic framework: a metal-free electrocatalyst toward oxygen evolution reaction publication-title: ACS Catal. – volume: 1 start-page: 870 year: 2018 end-page: 877 ident: bib8 article-title: Water oxidation on a mononuclear manganese heterogeneous catalyst publication-title: Nat. Catal. – volume: 49 start-page: 2215 year: 2020 end-page: 2264 ident: bib24 article-title: Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation publication-title: Chem. Soc. Rev. – volume: 32 start-page: 1905679 year: 2020 ident: bib7 article-title: Interfacial engineering of W publication-title: Adv. Mater. – volume: 31 start-page: 2103290 year: 2021 ident: bib17 article-title: Tuning the electrochemical properties of polymeric cobalt phthalocyanines for efficient water splitting publication-title: Adv. Funct. Mater. – volume: 58 start-page: 4923 year: 2019 end-page: 4928 ident: bib10 article-title: Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and b-Mo publication-title: Angew. Chem. Int. Ed. – volume: 139 start-page: 3336 year: 2017 end-page: 3339 ident: bib21 article-title: olecule-Level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 3 year: 1994 1795 end-page: 17979 ident: bib39 article-title: Projector augmented-wave method publication-title: Phys. Rev. B – volume: 45 start-page: 71 year: 2000 end-page: 129 ident: bib52 article-title: Theoretical surface science and catalysis-calculations and concepts publication-title: Adv. Catal. – volume: 141 start-page: 9664 year: 2019 end-page: 9672 ident: bib56 article-title: Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single atom catalysts publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 2008533 year: 2021 ident: bib55 article-title: Theoretical Insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts publication-title: Adv. Funct. Mater. – volume: 343 start-page: 211 year: 1995 end-page: 220 ident: bib53 article-title: Electronic factors determining the reactivity of metal surfaces publication-title: Surf. Sci. – volume: 5 start-page: 9210 year: 2017 end-page: 9216 ident: bib50 article-title: Hierarchical porous Fe publication-title: J. Mater. Chem. A – volume: 108 start-page: 17886 year: 2004 end-page: 17892 ident: bib43 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J. Phys. Chem. B – volume: 110 start-page: 6446 year: 2010 end-page: 6473 ident: bib5 article-title: Solar water splitting cells publication-title: Chem. Rev. – volume: 25 start-page: 3105 year: 2019 end-page: 3111 ident: bib31 article-title: Bimetallic covalent organic frameworks for constructing multifunctional electrocatalyst publication-title: Chem. Eur. J. – volume: 5 start-page: 414 year: 2022 end-page: 429 ident: bib54 article-title: Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites publication-title: Nat. Cat. – volume: 39 start-page: 1167 year: 2018 ident: 10.1016/j.apcatb.2023.122366_bib12 article-title: Covalent organic frameworks as heterogeneous catalysts publication-title: Chin. J. Cata doi: 10.1016/S1872-2067(18)63057-8 – volume: 1 start-page: 339 year: 2018 ident: 10.1016/j.apcatb.2023.122366_bib35 article-title: Principle for a rational design of single-atom electrocatalysts publication-title: Nat. Catal. doi: 10.1038/s41929-018-0063-z – volume: 1 start-page: 870 year: 2018 ident: 10.1016/j.apcatb.2023.122366_bib8 article-title: Water oxidation on a mononuclear manganese heterogeneous catalyst publication-title: Nat. Catal. doi: 10.1038/s41929-018-0158-6 – year: 2021 ident: 10.1016/j.apcatb.2023.122366_bib13 article-title: Atomically dispersed metal sites in COF-based nanomaterials for electrochemical energy conversion publication-title: Green. Energy Environ. Press doi: 10.1016/j.gee.2021.11.005 – volume: 343 start-page: 211 year: 1995 ident: 10.1016/j.apcatb.2023.122366_bib53 article-title: Electronic factors determining the reactivity of metal surfaces publication-title: Surf. Sci. doi: 10.1016/0039-6028(96)80007-0 – volume: 114 start-page: 515 year: 1982 ident: 10.1016/j.apcatb.2023.122366_bib45 article-title: Kinetics of nitrogen adsorption on Fe(111) publication-title: Surf. Sci. doi: 10.1016/0039-6028(82)90702-6 – volume: 464 year: 2022 ident: 10.1016/j.apcatb.2023.122366_bib16 article-title: Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis publication-title: Coor. Chem. Rev. doi: 10.1016/j.ccr.2022.214563 – volume: 5 start-page: 9210 year: 2017 ident: 10.1016/j.apcatb.2023.122366_bib50 article-title: Hierarchical porous Fe3O4/Co3S4 nanosheets as an efficient electrocatalyst for the oxygen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02108A – volume: 7 start-page: 15373 year: 2019 ident: 10.1016/j.apcatb.2023.122366_bib19 article-title: Cobalt-coordinated sulfur-doped graphitic carbon nitride on reduced graphene oxide: an efficient metal−(N,S)−C-class bifunctional electrocatalyst for overall water splitting in alkaline media publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02705 – volume: 141 start-page: 9664 year: 2019 ident: 10.1016/j.apcatb.2023.122366_bib56 article-title: Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single atom catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03811 – volume: 5 start-page: 414 year: 2022 ident: 10.1016/j.apcatb.2023.122366_bib54 article-title: Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites publication-title: Nat. Cat. doi: 10.1038/s41929-022-00783-6 – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.apcatb.2023.122366_bib37 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.apcatb.2023.122366_bib48 article-title: Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-019-09394-5 – volume: 30 start-page: 1703646 year: 2017 ident: 10.1016/j.apcatb.2023.122366_bib1 article-title: Covalent organic framework electrocatalysts for clean energy conversion publication-title: Adv. Mater. doi: 10.1002/adma.201703646 – volume: 110 start-page: 6446 year: 2010 ident: 10.1016/j.apcatb.2023.122366_bib5 article-title: Solar water splitting cells publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 32 start-page: 1905679 year: 2020 ident: 10.1016/j.apcatb.2023.122366_bib7 article-title: Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER publication-title: Adv. Mater. doi: 10.1002/adma.201905679 – volume: 58 start-page: 4923 year: 2019 ident: 10.1016/j.apcatb.2023.122366_bib10 article-title: Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and b-Mo2C nanoparticles as bifunctional electrodes for water splitting publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201814262 – volume: 108 start-page: 17886 year: 2004 ident: 10.1016/j.apcatb.2023.122366_bib43 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 49 start-page: 2215 year: 2020 ident: 10.1016/j.apcatb.2023.122366_bib24 article-title: Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00869A – volume: 29 start-page: 1606635 year: 2017 ident: 10.1016/j.apcatb.2023.122366_bib20 article-title: Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production publication-title: Adv. Mater. doi: 10.1002/adma.201606635 – volume: 13 start-page: 845 year: 2022 ident: 10.1016/j.apcatb.2023.122366_bib29 article-title: Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst publication-title: Nat. Comm. doi: 10.1038/s41467-022-28409-2 – volume: 142 start-page: 4508 year: 2020 ident: 10.1016/j.apcatb.2023.122366_bib3 article-title: A simple molecular design strategy for two-dimensional covalent organic framework capable of visible-light-driven water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00564 – volume: 6 start-page: 620 year: 2020 ident: 10.1016/j.apcatb.2023.122366_bib6 article-title: Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances publication-title: Green. Energy Environ. doi: 10.1016/j.gee.2020.11.023 – volume: 5 start-page: 2100945 year: 2021 ident: 10.1016/j.apcatb.2023.122366_bib11 article-title: Covalent organic framework (COF)-based hybrids for electrocatalysis: recent advances and perspectives publication-title: Small Methods doi: 10.1002/smtd.202100945 – volume: 25 start-page: 3105 year: 2019 ident: 10.1016/j.apcatb.2023.122366_bib31 article-title: Bimetallic covalent organic frameworks for constructing multifunctional electrocatalyst publication-title: Chem. Eur. J. doi: 10.1002/chem.201805550 – volume: 41 start-page: 6010 year: 2012 ident: 10.1016/j.apcatb.2023.122366_bib2 article-title: Covalent organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35157a – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.apcatb.2023.122366_bib38 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 120 start-page: 8814 year: 2020 ident: 10.1016/j.apcatb.2023.122366_bib23 article-title: Covalent organic frameworks: design, synthesis, and functions publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00550 – volume: 27 start-page: 1787 year: 2006 ident: 10.1016/j.apcatb.2023.122366_bib42 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 136 start-page: 4394 year: 2014 ident: 10.1016/j.apcatb.2023.122366_bib49 article-title: Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500432h – volume: 46 start-page: 1740 year: 2013 ident: 10.1016/j.apcatb.2023.122366_bib30 article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 28 start-page: 4375 year: 2016 ident: 10.1016/j.apcatb.2023.122366_bib28 article-title: Cobalt modified covalent organic framework as a robust water oxidation electrocatalyst publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01370 – volume: 4 start-page: 2251 year: 2019 ident: 10.1016/j.apcatb.2023.122366_bib33 article-title: Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01691 – volume: 9 start-page: 11073 year: 2021 ident: 10.1016/j.apcatb.2023.122366_bib32 article-title: Metal-doped bipyridine linked covalent organic framework films as a platform for photoelectrocatalysts publication-title: J. Mater. Chem. A doi: 10.1039/D1TA00396H – volume: 12 start-page: 5441 year: 2022 ident: 10.1016/j.apcatb.2023.122366_bib51 article-title: Structure-performance descriptors and the role of the axial oxygen atom on M-N4-C single-atom catalysts for electrochemical CO2 reduction publication-title: ACS Catal. doi: 10.1021/acscatal.2c00429 – volume: 6 start-page: 1601189 year: 2016 ident: 10.1016/j.apcatb.2023.122366_bib22 article-title: Low band gap benzimidazole COF supported Ni3N as highly active OER catalyst publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601189 – volume: 45 start-page: 71 year: 2000 ident: 10.1016/j.apcatb.2023.122366_bib52 article-title: Theoretical surface science and catalysis-calculations and concepts publication-title: Adv. Catal. doi: 10.1016/S0360-0564(02)45013-4 – volume: 7 start-page: 11633 year: 2015 ident: 10.1016/j.apcatb.2023.122366_bib15 article-title: Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study publication-title: Nanoscale doi: 10.1039/C5NR00302D – volume: 59 start-page: 1758 year: 1999 ident: 10.1016/j.apcatb.2023.122366_bib40 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 3 start-page: 1311 year: 2010 ident: 10.1016/j.apcatb.2023.122366_bib44 article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00071j – volume: 153 year: 2023 ident: 10.1016/j.apcatb.2023.122366_bib26 article-title: Anchoring the late first row transition metals with B12P12 nanocage to act as single atom catalysts toward oxygen evolution reaction (OER) publication-title: Mater. Sci. Semicond. Proc. – volume: 31 start-page: 2008533 year: 2021 ident: 10.1016/j.apcatb.2023.122366_bib55 article-title: Theoretical Insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008533 – volume: 139 start-page: 3336 year: 2017 ident: 10.1016/j.apcatb.2023.122366_bib21 article-title: olecule-Level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b13100 – volume: 46 start-page: 37814 year: 2021 ident: 10.1016/j.apcatb.2023.122366_bib27 article-title: High performance SACs for HER process using late first-row transition metals anchored on graphyne support: a DFT insight publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.09.063 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.apcatb.2023.122366_bib47 article-title: Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation publication-title: Nat. Commun. – volume: 31 start-page: 1319 year: 2020 ident: 10.1016/j.apcatb.2023.122366_bib34 article-title: Insights into the photocatalytic mechanism of the C4N/MoS2 heterostructure: a first-principle study publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.04.055 – volume: 70 year: 2020 ident: 10.1016/j.apcatb.2023.122366_bib14 article-title: Emerging covalent organic frameworks tailored materials for electrocatalysis publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104525 – volume: 31 start-page: 2103290 year: 2021 ident: 10.1016/j.apcatb.2023.122366_bib17 article-title: Tuning the electrochemical properties of polymeric cobalt phthalocyanines for efficient water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103290 – volume: 54 start-page: 4465 year: 2018 ident: 10.1016/j.apcatb.2023.122366_bib18 article-title: Metallophthalocyanine-based redox active metal-organic conjugated microporous polymers for OER catalysis publication-title: Chem. Commun. doi: 10.1039/C8CC01291A – year: 2010 ident: 10.1016/j.apcatb.2023.122366_bib46 – volume: 2 start-page: 2000090 year: 2021 ident: 10.1016/j.apcatb.2023.122366_bib4 article-title: Covalent organic frameworks for efficient energy electrocatalysis: rational design and progress publication-title: Adv. Energy Sustain. Res doi: 10.1002/aesr.202000090 – volume: 50 start-page: 3 year: 1994 ident: 10.1016/j.apcatb.2023.122366_bib39 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.apcatb.2023.122366_bib41 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 10 start-page: 5623 year: 2020 ident: 10.1016/j.apcatb.2023.122366_bib25 article-title: Covalent organic framework: a metal-free electrocatalyst toward oxygen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.9b05470 – volume: 9 start-page: 25381 year: 2021 ident: 10.1016/j.apcatb.2023.122366_bib9 article-title: Influence of the cobalt content in cobalt iron oxides on the electrocatalytic OER publication-title: Act., J. Mater. Chem. A doi: 10.1039/D1TA06568H – volume: 12 start-page: 19375 year: 2020 ident: 10.1016/j.apcatb.2023.122366_bib36 article-title: Universal descriptor based on pz-orbitals for the catalytic activity of multi-doped carbon bifunctional catalysts for oxygen reduction and evolution publication-title: Nanoscale doi: 10.1039/D0NR03521A |
SSID | ssj0002328 |
Score | 2.6305716 |
Snippet | COF-C4N, an effective oxygen evolution reaction (OER) electrocatalyst with a low overpotential, has ideal N-edge cavities for anchoring transition metal (TM)... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 122366 |
SubjectTerms | Covalent organic framework Descriptor Electrocatalytic OER performance Experimental verification Single metal atom catalysts |
Title | COF-C4N Nanosheets with uniformly anchored single metal sites for electrocatalytic OER: From theoretical screening to target synthesis |
URI | https://dx.doi.org/10.1016/j.apcatb.2023.122366 |
Volume | 325 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5Cemh6CK2b0KRtmEOva8taaS31FoSN24IDTQK5iX0SB1sylnLwpcf-7s7q0bhQGuhRYmYRO7sz367mmwH4FNJmDk2aslg4yyItQpamoWWK4L1Og1iNdZNtsRDz2-jrXXx3AFnPhfFplZ3vb3164627N6NuNkeb5XJ0HaSh4HzCCUQ3dATPYI8mfpUPfzyleRBiaLwxCTMv3dPnmhwvudGyVkPfQnw4pkDZ1Er8S3jaCzmz13DcYUW8bD_nDRzYYgAvs75F2wBe7VUTHMDp9Im0Rmrdrq3ews_sasayaIHkSsvq3tq6Qn__io-F52WtVzsk29-XW2vQXx2sLK6tH8L_Wa6QRLDrltNc9uzoc_Bq-v0zzrblGveokEg-iM7FNATWJbZJ5ljtChKpltUJ3M6mN9mcdf0XmKaDRM1Cq41LJtyNaYKMcMIm1lqlXazokOSkCJ3WWshEG0moQkkXmSRxUWAD7bhM-CkcFmVh3wGaQHJpZCzJZFFqjDQ8UCp0hFcEF6k5A95Pe6674uS-R8Yq77PQHvLWWLk3Vt4a6wzYb61NW5zjGflJb9H8j0WWU_z4p-b5f2u-hyP_5BMOxvEHOKy3j_Yj4ZhaXTQL9QJeXH75Nl_8Aqxq9mg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH4a4zA4oFGYNmDgAxzdpnbiJkgcptKqY6OTYJN2C45_aEVtUjWZUC8c-Yf4B_ecOKxICCSkXRM_y_F7fu-z8z0_gNcMFzPTSUIjYQ0NlWA0SZihGcJ7lQRR1lc122IqJhfhh8vocgt-trkwjlbpfX_j02tv7Z_0_Gz2lrNZ73OQMMH5gCOIrtMRPLPyxKy_4b6tfHf8HpX8hrHx6Hw4ob60AFWIkSvKjNI2HnDbx82_FlaY2BiTKRtliP-tFMwqpYSMlZYYMDNpQx3HNgxMoCyXMcd-78H9EN2FK5vQ_X7LK0GIUrt_HB11w2vz9WpSmVwqWWVdV7O828fIXF_O-Id4uBHjxrvwyINTctR8_2PYMnkHdoZtTbgOPNy4vrADe6PbLDkU826ifAI_hmdjOgynBH13UV4ZU5XEHfiS69wlgi3ma4LGdlWsjCburGJuyMK4Ltyv7JJgE-LL89SnS2scDjkbfXpLxqtiQTZyLwk6PdyIYxekKkjDaiflOscm5ax8Chd3opU92M6L3OwD0YHkUstIoo2EidZS8yDLmEWAJLhI9AHwdtpT5W9Dd0U55mlLe_uaNspKnbLSRlkHQH9JLZvbQP7RftBqNP3NqlMMWH-VfPbfkq9gZ3L-8TQ9PZ6ePIcH7o1jO_SjF7Bdra7NIYKoKntZGy2BL3e9Sm4Ahbo1oQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COF-C4N+Nanosheets+with+uniformly+anchored+single+metal+sites+for+electrocatalytic+OER%3A+From+theoretical+screening+to+target+synthesis&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Zhang%2C+Rui&rft.au=Liu%2C+Wenshan&rft.au=Zhang%2C+Feng-Ming&rft.au=Yang%2C+Zhao-Di&rft.date=2023-05-15&rft.issn=0926-3373&rft.volume=325&rft.spage=122366&rft_id=info:doi/10.1016%2Fj.apcatb.2023.122366&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2023_122366 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |