Cost-sensitive active learning for computer-assisted translation

•We present a new active learning framework for computed assisted translation.•Our goal is to make the translation process as efficient as possible for human translators.•We implement efficient techniques to detect informative sentences.•We use online learning techniques to update the translation mo...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 37; pp. 124 - 134
Main Authors González-Rubio, Jesús, Casacuberta, Francisco
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We present a new active learning framework for computed assisted translation.•Our goal is to make the translation process as efficient as possible for human translators.•We implement efficient techniques to detect informative sentences.•We use online learning techniques to update the translation model with user feedback.•Results show that our method allows to double the productivity of conventional approaches. Machine translation technology is not perfect. To be successfully embedded in real-world applications, it must compensate for its imperfections by interacting intelligently with the user within a computer-assisted translation framework. The interactive–predictive paradigm, where both a statistical translation model and a human expert collaborate to generate the translation, has been shown to be an effective computer-assisted translation approach. However, the exhaustive supervision of all translations and the use of non-incremental translation models penalizes the productivity of conventional interactive–predictive systems. We propose a cost-sensitive active learning framework for computer-assisted translation whose goal is to make the translation process as painless as possible. In contrast to conventional active learning scenarios, the proposed active learning framework is designed to minimize not only how many translations the user must supervise but also how difficult each translation is to supervise. To do that, we address the two potential drawbacks of the interactive–predictive translation paradigm. On the one hand, user effort is focused to those translations whose user supervision is considered more “informative”, thus, maximizing the utility of each user interaction. On the other hand, we use a dynamic machine translation model that is continually updated with user feedback after deployment. We empirically validated each of the technical components in simulation and quantify the user effort saved. We conclude that both selective translation supervision and translation model updating lead to important user-effort reductions, and consequently to improved translation productivity.
AbstractList •We present a new active learning framework for computed assisted translation.•Our goal is to make the translation process as efficient as possible for human translators.•We implement efficient techniques to detect informative sentences.•We use online learning techniques to update the translation model with user feedback.•Results show that our method allows to double the productivity of conventional approaches. Machine translation technology is not perfect. To be successfully embedded in real-world applications, it must compensate for its imperfections by interacting intelligently with the user within a computer-assisted translation framework. The interactive–predictive paradigm, where both a statistical translation model and a human expert collaborate to generate the translation, has been shown to be an effective computer-assisted translation approach. However, the exhaustive supervision of all translations and the use of non-incremental translation models penalizes the productivity of conventional interactive–predictive systems. We propose a cost-sensitive active learning framework for computer-assisted translation whose goal is to make the translation process as painless as possible. In contrast to conventional active learning scenarios, the proposed active learning framework is designed to minimize not only how many translations the user must supervise but also how difficult each translation is to supervise. To do that, we address the two potential drawbacks of the interactive–predictive translation paradigm. On the one hand, user effort is focused to those translations whose user supervision is considered more “informative”, thus, maximizing the utility of each user interaction. On the other hand, we use a dynamic machine translation model that is continually updated with user feedback after deployment. We empirically validated each of the technical components in simulation and quantify the user effort saved. We conclude that both selective translation supervision and translation model updating lead to important user-effort reductions, and consequently to improved translation productivity.
Author González-Rubio, Jesús
Casacuberta, Francisco
Author_xml – sequence: 1
  givenname: Jesús
  surname: González-Rubio
  fullname: González-Rubio, Jesús
  email: jegonzalez@iti.upv.es
  organization: Institut Tecnológic d’Informatica, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
– sequence: 2
  givenname: Francisco
  surname: Casacuberta
  fullname: Casacuberta, Francisco
  email: fcn@iti.upv.es
  organization: D. Sistemes Informàtics i Computació, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
BookMark eNp9kMFKAzEURYNUsK3-gYv5gYwvk5lMshGlaBUKbnQdMpkXSWmTksSCf-_UunZ1N_ceLmdBZiEGJOSWQc2AibttfTAloa0bYLwGUQP0F2TOZN_QnrftjMynWk-l6Lorssh5CwCCKzknD6uYC80Ysi_-iJWxv7FDk4IPn5WLqbJxf_gqmKjJ2eeCY1WSCXlnio_hmlw6s8t485dL8vH89L56oZu39evqcUMtB1FoMzjX26GxyrUclRDKSYWOi6YFOw7ODqaRTlqEwSgnOEdpO95J1Uk0rLN8Sdoz16aYc0KnD8nvTfrWDPTJgt7qswV9sqBB6MnCNLs_z3D6dvSYdLYeg8XRT9Wix-j_B_wAZ2RrxA
CitedBy_id crossref_primary_10_1162_coli_a_00473
Cites_doi 10.3115/1067807.1067858
10.3115/1220355.1220401
10.1007/s10994-006-9612-9
10.1007/978-1-4471-2099-5_1
10.1162/coli.2007.33.1.9
10.3115/1620754.1620815
10.3115/1075096.1075117
10.3115/1118693.1118713
10.3115/1117586.1117593
10.1145/1380584.1380586
10.1007/BF00116828
10.3115/1073445.1073462
10.1145/2070481.2070514
10.1145/1390156.1390183
10.1023/B:COAT.0000010117.98933.a0
10.3115/993268.993313
10.3115/1073083.1073133
10.3115/1654650.1654666
10.3115/1626355.1626373
10.3115/1613715.1613855
10.1007/BF00993277
10.1162/coli.2008.07-055-R2-06-29
10.1023/A:1007999327580
10.3115/1073083.1073135
10.3115/1072064.1072068
10.1111/j.2517-6161.1977.tb01600.x
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.patrec.2013.06.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 134
ExternalDocumentID 10_1016_j_patrec_2013_06_007
S0167865513002407
GroupedDBID --M
.DC
.~1
0R~
123
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
WH7
XPP
ZMT
~G-
--K
1B1
29O
AAQXK
AAXKI
AAYXX
ABDPE
ACNNM
ACRPL
ADJOM
ADMUD
ADMXK
ADNMO
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
IHE
R2-
RPZ
SBC
SDS
SEW
VOH
WUQ
Y6R
ID FETCH-LOGICAL-c306t-2bff7cb2c9f43e9669f89ef36240cdbfcba28f8ce0ba9f633e8c5358958ea15c3
IEDL.DBID AIKHN
ISSN 0167-8655
IngestDate Fri Dec 06 04:03:44 EST 2024
Fri Feb 23 02:26:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Interactive machine translation
Computer-assisted translation
Active learning
Online learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-2bff7cb2c9f43e9669f89ef36240cdbfcba28f8ce0ba9f633e8c5358958ea15c3
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_patrec_2013_06_007
elsevier_sciencedirect_doi_10_1016_j_patrec_2013_06_007
PublicationCentury 2000
PublicationDate 2014-02-01
2014-2-00
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Pattern recognition letters
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Papineni, K., Roukos, S., Ward, T., Zhu, W.-J., 2002. BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the Association for Computational Linguistics, pp. 311–318.
Barrachina, Bender, Casacuberta, Civera, Cubel, Khadivi, Lagarda, Ney, Tomás, Vidal, Vilar (b0015) 2009; 35
Blatz, J., Fitzgerald, E., Foster, G., Gandrabur, S., Goutte, C., Kulesza, A., Sanchis, A., Ueffing, N., 2004. Confidence estimation for machine translation. In: Proceedings of the International Conference on Computational Linguistics, pp. 315–321.
Langlais, P., Foster, G., Lapalme, G., 2000. TransType: a computer-aided translation typing system. In: Proceedings of the Workshop of the North American Chapter of the Association for Computational Linguistics: Embedded Machine Translation Systems. Association for, Computational Linguistics, pp. 46–51.
NIST, November 2006. NIST 2006 machine translation evaluation official results.
Haffari, G., Roy, M., Sarkar, A., 2009. Active learning for statistical phrase-based machine translation. In: Proceedings of the North American Chapter of the Association for Computational Linguistics, pp. 415–423.
Vogel, S., Ney, H., Tillmann, C., 1996. HMM-based word alignment in statistical translation. In: Proceedings of the Association for Computational linguistics. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 836–841.
Och, F., Ney, H., 2002. Discriminative training and maximum entropy models for statistical machine translation. In: Proceedings of the Association for Computational Linguistics, pp. 295–302.
Ueffing, Ney (b0220) 2007; 33
Gascó, G., Rocha, M.-A., Sanchis-Trilles, G., Andrés-Ferrer, J., Casacuberta, F., 2012. Does more data always yield better translations? In: Proceedings of the European Chapter of the Association for Computational Linguistics, pp. 152–161.
Foster, G., 2002. Text prediction for translators. Ph.D. Thesis, Université de Montréal.
Cohn, Atlas, Ladner (b0055) 1994; 15
Becker, M.A., 2008. Active learning – an explicit treatment of unreliable parameters. Ph.D. Thesis, University of Edinburgh.
Chinchor, N., 1992. The statistical significance of the MUC-4 results. In: Proceedings of the Conference on Message Understanding, pp. 30–50.
Thompson, C.A., Califf, M.E., Mooney, R.J., 1999. Active learning for natural language parsing and information extraction. In: Proceedings of the International Conference on Machine Learning, Bled, Slovenia, pp. 406–414.
Langlais, Lapalme (b0135) 2002; 17
Roy, N., McCallum, A., 2001. Toward optimal active learning through sampling estimation of error reduction In: Proceedings of the International Conference on Machine Learning, pp. 441–448.
Turchi, M., De Bie, T., Cristianini, N., 2009. Learning to translate: a statistical and computational analysis. Tech. Rep., University of Bristol, URL
Ueffing, N., Ney, H., 2005. Application of word-level confidence measures in interactive statistical machine translation. In: Proceedings of the European Association for Machine Translation Conference, pp. 262–270.
Neal, Hinton (b0155) 1999
Lewis, D., Gale, W., 1994. A sequential algorithm for training text classifiers. In: Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 3–12.
Casacuberta, Vidal (b0040) 2007; 66
EC, 2009. Translating for a multilingual community. European Commission, Directorate General for Translation
Lopez (b0145) 2008; 40
Och, F., 2003. Minimum error rate training in statistical machine translation. In: Proceedings of the Association for Computational Linguistics, pp. 160–167.
Och, F.J., Zens, R., Ney, H., 2003. Efficient search for interactive statistical machine translation. In: Proceedings of the European Chapter of the Association for Computational Linguistics, pp. 387–393.
Zipf (b0230) 1935
González-Rubio, J., Ortiz-Martínez, D., Casacuberta, F., 2012. Active learning for interactive machine translation. In: Proceedings of the 13th Conference of the European Chapter of the Association for, Computational Linguistics, pp. 245–254.
Isabelle, Church (b0110) 1998; vol. 12
Dempster, Laird, Rubin (b0065) 1977; 39
Foster, Isabelle, Plamondon (b0080) January 1998; 12
Brown, Pietra, Pietra, Mercer (b0030) 1993; 19
Angluin (b0005) April 1988; 2
.
Settles, B., Craven, M., 2008. An analysis of active learning strategies for sequence labeling tasks. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1070–1079.
Koponen, M., 2012. Comparing human perceptions of post-editing effort with post-editing operations. In: Proceedings of the Workshop on Statistical Machine Translation. Association for Computational Linguistics, Montreal, Canada, pp. 181–190.
(b0045) 2006
Ortiz-Martínez, D., García-Varea, I., Casacuberta, F., 2010. Online learning for interactive statistical machine translation. In: Proceedings of the North American Chapter of the Association for Computational Linguistics. pp. 546–554.
González-Rubio, J., Ortiz-Martínez, D., Casacuberta, F., 2010. Balancing user effort and translation error in interactive machine translation via confidence measures. In: Proceedings of the Association for Computational Linguistics Conference, pp. 173–177.
Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., Schroeder, J., 2007. (Meta-) evaluation of machine translation. In: Proceedings of the Workshop on Statistical Machine Translation, pp. 136–158.
Atlas, L., Cohn, D., Ladner, R., El-Sharkawi, M.A., Marks II, R.J., 1990. Training connectionist networks with queries and selective sampling. In: Touretzky, David S. (Ed.), Advances in Neural Information Processing Systems, vol. 2 Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 566–573.
Koehn, P., Monz, C., 2006. Manual and automatic evaluation of machine translation between European languages. In: Proceedings of the Workshop on Statistical Machine Translation, pp. 102–121.
Koehn, P., Och, F.J., Marcu, D., 2003. Statistical phrase-based translation. In: Proceedings of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, pp. 48–54.
Macklovitch, E., 2006. TransType2: the last word. In: Proceedings of the Conference on International Language Resources and Evaluation, pp. 167–17.
Dasgupta, S., Hsu, D., 2008. Hierarchical sampling for active learning. In: Proceedings of the International Conference on Machine Learning, pp. 208–215.
Noreen (b0165) 1989
Haddow, B., Koehn, P., 2012. Analysing the effect of out-of-domain data on smt systems. In: Proceedings of the Workshop on Statistical Machine Translation. Association for Computational Linguistics, Montreal, Canada, pp. 422–432.
Brown (10.1016/j.patrec.2013.06.007_b0030) 1993; 19
Angluin (10.1016/j.patrec.2013.06.007_b0005) 1988; 2
10.1016/j.patrec.2013.06.007_b0205
10.1016/j.patrec.2013.06.007_b0105
Foster (10.1016/j.patrec.2013.06.007_b0080) 1998; 12
10.1016/j.patrec.2013.06.007_b0225
10.1016/j.patrec.2013.06.007_b0125
10.1016/j.patrec.2013.06.007_b0025
10.1016/j.patrec.2013.06.007_b0200
10.1016/j.patrec.2013.06.007_b0100
Noreen (10.1016/j.patrec.2013.06.007_b0165) 1989
10.1016/j.patrec.2013.06.007_b0010
10.1016/j.patrec.2013.06.007_b0175
10.1016/j.patrec.2013.06.007_b0075
10.1016/j.patrec.2013.06.007_b0130
10.1016/j.patrec.2013.06.007_b0195
10.1016/j.patrec.2013.06.007_b0095
10.1016/j.patrec.2013.06.007_b0150
10.1016/j.patrec.2013.06.007_b0050
Isabelle (10.1016/j.patrec.2013.06.007_b0110) 1998; vol. 12
10.1016/j.patrec.2013.06.007_b0170
10.1016/j.patrec.2013.06.007_b0070
Casacuberta (10.1016/j.patrec.2013.06.007_b0040) 2007; 66
10.1016/j.patrec.2013.06.007_b0190
10.1016/j.patrec.2013.06.007_b0090
Lopez (10.1016/j.patrec.2013.06.007_b0145) 2008; 40
Zipf (10.1016/j.patrec.2013.06.007_b0230) 1935
Ueffing (10.1016/j.patrec.2013.06.007_b0220) 2007; 33
Langlais (10.1016/j.patrec.2013.06.007_b0135) 2002; 17
(10.1016/j.patrec.2013.06.007_b0045) 2006
Barrachina (10.1016/j.patrec.2013.06.007_b0015) 2009; 35
10.1016/j.patrec.2013.06.007_b0215
10.1016/j.patrec.2013.06.007_b0115
Dempster (10.1016/j.patrec.2013.06.007_b0065) 1977; 39
10.1016/j.patrec.2013.06.007_b0035
10.1016/j.patrec.2013.06.007_b0210
10.1016/j.patrec.2013.06.007_b0120
10.1016/j.patrec.2013.06.007_b0020
Neal (10.1016/j.patrec.2013.06.007_b0155) 1999
10.1016/j.patrec.2013.06.007_b0185
10.1016/j.patrec.2013.06.007_b0085
10.1016/j.patrec.2013.06.007_b0140
10.1016/j.patrec.2013.06.007_b0160
10.1016/j.patrec.2013.06.007_b0060
10.1016/j.patrec.2013.06.007_b0180
Cohn (10.1016/j.patrec.2013.06.007_b0055) 1994; 15
References_xml – volume: 19
  start-page: 263
  year: 1993
  end-page: 311
  ident: b0030
  article-title: The mathematics of statistical machine translation: parameter estimation
  publication-title: Computational Linguistics
  contributor:
    fullname: Mercer
– volume: 15
  start-page: 201
  year: 1994
  end-page: 221
  ident: b0055
  article-title: Improving generalization with active learning
  publication-title: Machine Learning
  contributor:
    fullname: Ladner
– year: 2006
  ident: b0045
  publication-title: Semi-Supervised Learning
– volume: 33
  start-page: 9
  year: 2007
  end-page: 40
  ident: b0220
  article-title: Word-level confidence estimation for machine translation
  publication-title: Computational Linguistics
  contributor:
    fullname: Ney
– volume: 12
  start-page: 175
  year: January 1998
  end-page: 194
  ident: b0080
  article-title: Target-text mediated interactive machine translation
  publication-title: Machine Translation
  contributor:
    fullname: Plamondon
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: b0065
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society
  contributor:
    fullname: Rubin
– volume: 17
  start-page: 77
  year: 2002
  end-page: 98
  ident: b0135
  article-title: TransType: development-evaluation cycles to boost translator’s productivity
  publication-title: Machine Translation
  contributor:
    fullname: Lapalme
– year: 1935
  ident: b0230
  article-title: The Psychobiology of Language
  contributor:
    fullname: Zipf
– volume: 40
  start-page: 8:1
  year: 2008
  end-page: 8:49
  ident: b0145
  article-title: Statistical machine translation
  publication-title: ACM Computational Survey
  contributor:
    fullname: Lopez
– start-page: 355
  year: 1999
  end-page: 368
  ident: b0155
  article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants
  publication-title: Learning in, Graphical Models
  contributor:
    fullname: Hinton
– volume: 35
  start-page: 3
  year: 2009
  end-page: 28
  ident: b0015
  article-title: Statistical approaches to computer-assisted translation
  publication-title: Computational Linguistics
  contributor:
    fullname: Vilar
– volume: 66
  start-page: 69
  year: 2007
  end-page: 91
  ident: b0040
  article-title: Learning finite-state models for machine translation
  publication-title: Machine Learning
  contributor:
    fullname: Vidal
– year: 1989
  ident: b0165
  article-title: Computer-Intensive Methods for Testing Hypotheses: An Introduction
  publication-title: A Wiley Interscience Publication
  contributor:
    fullname: Noreen
– volume: 2
  start-page: 319
  year: April 1988
  end-page: 342
  ident: b0005
  article-title: Queries and concept learning
  publication-title: Machine Learning
  contributor:
    fullname: Angluin
– volume: vol. 12
  year: 1998
  ident: b0110
  publication-title: Special Issue on: New Tools for Human Translators
  contributor:
    fullname: Church
– volume: 19
  start-page: 263
  year: 1993
  ident: 10.1016/j.patrec.2013.06.007_b0030
  article-title: The mathematics of statistical machine translation: parameter estimation
  publication-title: Computational Linguistics
  contributor:
    fullname: Brown
– ident: 10.1016/j.patrec.2013.06.007_b0125
– ident: 10.1016/j.patrec.2013.06.007_b0150
– ident: 10.1016/j.patrec.2013.06.007_b0180
  doi: 10.3115/1067807.1067858
– ident: 10.1016/j.patrec.2013.06.007_b0020
– ident: 10.1016/j.patrec.2013.06.007_b0025
  doi: 10.3115/1220355.1220401
– volume: 66
  start-page: 69
  issue: 1
  year: 2007
  ident: 10.1016/j.patrec.2013.06.007_b0040
  article-title: Learning finite-state models for machine translation
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-9612-9
  contributor:
    fullname: Casacuberta
– ident: 10.1016/j.patrec.2013.06.007_b0140
  doi: 10.1007/978-1-4471-2099-5_1
– ident: 10.1016/j.patrec.2013.06.007_b0205
– ident: 10.1016/j.patrec.2013.06.007_b0100
– volume: 33
  start-page: 9
  year: 2007
  ident: 10.1016/j.patrec.2013.06.007_b0220
  article-title: Word-level confidence estimation for machine translation
  publication-title: Computational Linguistics
  doi: 10.1162/coli.2007.33.1.9
  contributor:
    fullname: Ueffing
– ident: 10.1016/j.patrec.2013.06.007_b0105
  doi: 10.3115/1620754.1620815
– ident: 10.1016/j.patrec.2013.06.007_b0170
  doi: 10.3115/1075096.1075117
– ident: 10.1016/j.patrec.2013.06.007_b0010
– ident: 10.1016/j.patrec.2013.06.007_b0075
  doi: 10.3115/1118693.1118713
– year: 1935
  ident: 10.1016/j.patrec.2013.06.007_b0230
  contributor:
    fullname: Zipf
– ident: 10.1016/j.patrec.2013.06.007_b0070
– ident: 10.1016/j.patrec.2013.06.007_b0185
– ident: 10.1016/j.patrec.2013.06.007_b0130
  doi: 10.3115/1117586.1117593
– volume: 40
  start-page: 8:1
  year: 2008
  ident: 10.1016/j.patrec.2013.06.007_b0145
  article-title: Statistical machine translation
  publication-title: ACM Computational Survey
  doi: 10.1145/1380584.1380586
  contributor:
    fullname: Lopez
– volume: 2
  start-page: 319
  year: 1988
  ident: 10.1016/j.patrec.2013.06.007_b0005
  article-title: Queries and concept learning
  publication-title: Machine Learning
  doi: 10.1007/BF00116828
  contributor:
    fullname: Angluin
– ident: 10.1016/j.patrec.2013.06.007_b0085
– ident: 10.1016/j.patrec.2013.06.007_b0215
– year: 2006
  ident: 10.1016/j.patrec.2013.06.007_b0045
– ident: 10.1016/j.patrec.2013.06.007_b0120
  doi: 10.3115/1073445.1073462
– ident: 10.1016/j.patrec.2013.06.007_b0095
  doi: 10.1145/2070481.2070514
– start-page: 355
  year: 1999
  ident: 10.1016/j.patrec.2013.06.007_b0155
  article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants
  publication-title: Learning in, Graphical Models
  contributor:
    fullname: Neal
– ident: 10.1016/j.patrec.2013.06.007_b0210
– ident: 10.1016/j.patrec.2013.06.007_b0060
  doi: 10.1145/1390156.1390183
– year: 1989
  ident: 10.1016/j.patrec.2013.06.007_b0165
  article-title: Computer-Intensive Methods for Testing Hypotheses: An Introduction
  contributor:
    fullname: Noreen
– volume: 17
  start-page: 77
  issue: 2
  year: 2002
  ident: 10.1016/j.patrec.2013.06.007_b0135
  article-title: TransType: development-evaluation cycles to boost translator’s productivity
  publication-title: Machine Translation
  doi: 10.1023/B:COAT.0000010117.98933.a0
  contributor:
    fullname: Langlais
– ident: 10.1016/j.patrec.2013.06.007_b0225
  doi: 10.3115/993268.993313
– ident: 10.1016/j.patrec.2013.06.007_b0175
  doi: 10.3115/1073083.1073133
– ident: 10.1016/j.patrec.2013.06.007_b0115
  doi: 10.3115/1654650.1654666
– ident: 10.1016/j.patrec.2013.06.007_b0035
  doi: 10.3115/1626355.1626373
– ident: 10.1016/j.patrec.2013.06.007_b0200
  doi: 10.3115/1613715.1613855
– volume: 15
  start-page: 201
  year: 1994
  ident: 10.1016/j.patrec.2013.06.007_b0055
  article-title: Improving generalization with active learning
  publication-title: Machine Learning
  doi: 10.1007/BF00993277
  contributor:
    fullname: Cohn
– volume: vol. 12
  year: 1998
  ident: 10.1016/j.patrec.2013.06.007_b0110
  contributor:
    fullname: Isabelle
– volume: 35
  start-page: 3
  year: 2009
  ident: 10.1016/j.patrec.2013.06.007_b0015
  article-title: Statistical approaches to computer-assisted translation
  publication-title: Computational Linguistics
  doi: 10.1162/coli.2008.07-055-R2-06-29
  contributor:
    fullname: Barrachina
– ident: 10.1016/j.patrec.2013.06.007_b0160
– volume: 12
  start-page: 175
  issue: 1/2
  year: 1998
  ident: 10.1016/j.patrec.2013.06.007_b0080
  article-title: Target-text mediated interactive machine translation
  publication-title: Machine Translation
  doi: 10.1023/A:1007999327580
  contributor:
    fullname: Foster
– ident: 10.1016/j.patrec.2013.06.007_b0190
  doi: 10.3115/1073083.1073135
– ident: 10.1016/j.patrec.2013.06.007_b0050
  doi: 10.3115/1072064.1072068
– ident: 10.1016/j.patrec.2013.06.007_b0090
  doi: 10.1145/2070481.2070514
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.patrec.2013.06.007_b0065
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1977.tb01600.x
  contributor:
    fullname: Dempster
– ident: 10.1016/j.patrec.2013.06.007_b0195
SSID ssj0006398
Score 2.189115
Snippet •We present a new active learning framework for computed assisted translation.•Our goal is to make the translation process as efficient as possible for human...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 124
SubjectTerms Active learning
Computer-assisted translation
Interactive machine translation
Online learning
Title Cost-sensitive active learning for computer-assisted translation
URI https://dx.doi.org/10.1016/j.patrec.2013.06.007
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scDAo4B4Vh5YTZM4TuyNqqIqILpApW5R7NioDG1Fw8pvx5c4qEiIgTGRHUVn5_vu4u_uAK5tYh0R5YIGhifUxRuSqlwXNEiNTDF-sAYThZ-myWQWP8z5vAWjJhcGZZUe-2tMr9Da3xl4aw7Wi8XgGQX0mFaJBzIYl7Sh6-gIz2q7w_vHyfQbkB0Ji6bEN05oMugqmRf-cjZYyzBkVSFP7Cv7G0Ntsc74APa8u0iG9RsdQssse7DftGIg_svswe5WXcEjuB2tNiXdoDYd0YzkFagR3yHilThHlWj_DOq8Z1zqgpRIW7U07hhm47uX0YT6VglUO5-_pJGyNtUq0tLGzLgQRlohjXXsFAe6UFarPBJWaBOoXNqEMSM0Z1xILkwecs1OoLNcLc0pEK6YG-7cJC7zOLZSWhWyJC44ptEqm54BbcyTreuKGFkjFXvLanNmaM6sUsy58Wljw-zHymYOtP-cef7vmRew467iWl19CZ3y_cNcOeehVH1o33yGfb9FvgCIbsVy
link.rule.ids 314,780,784,4502,24116,27924,27925,45585,45679
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYCBRwHxxgOr6cN2Ym-giqpA24VW6hbFjo3K0FY0rPx27hJHFAkxsCZ2FJ2d776Lv7sj5MZHHhxRqljLyYhBvKGZSW3GWrHTMcYP3mGi8HAU9SfiaSqnNdKtcmFQVhmwv8T0Aq3DlWawZnM5mzVfUECPaZV4IINxyQbZFBLYL2zq289vnQe4YFUV-MbhVf5cIfLCH84OKxm2eVHGE7vK_uaf1nxOb5_sBrJI78v3OSA1N2-QvaoRAw3fZYPsrFUVPCR33cUqZytUpiOW0bSANBr6Q7xSoKnUhmcw4M640BnN0WmVwrgjMuk9jLt9FholMAuMP2cd431sTcdqL7iDAEZ7pZ0H3yRaNjPemrSjvLKuZVLtI86dspJLpaVyaVtafkzq88XcnRAqDYfhQJKkToXwWnvT5pHIJCbRGh-fElaZJ1mW9TCSSij2lpTmTNCcSaGXg_FxZcPkx7omANl_zjz798xrstUfDwfJ4HH0fE624Y4oddYXpJ6_f7hLoBG5uSq2yRdPd8ZL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-sensitive+active+learning+for+computer-assisted+translation&rft.jtitle=Pattern+recognition+letters&rft.au=Gonz%C3%A1lez-Rubio%2C+Jes%C3%BAs&rft.au=Casacuberta%2C+Francisco&rft.date=2014-02-01&rft.issn=0167-8655&rft.volume=37&rft.spage=124&rft.epage=134&rft_id=info:doi/10.1016%2Fj.patrec.2013.06.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patrec_2013_06_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon