Cost-sensitive active learning for computer-assisted translation
•We present a new active learning framework for computed assisted translation.•Our goal is to make the translation process as efficient as possible for human translators.•We implement efficient techniques to detect informative sentences.•We use online learning techniques to update the translation mo...
Saved in:
Published in | Pattern recognition letters Vol. 37; pp. 124 - 134 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We present a new active learning framework for computed assisted translation.•Our goal is to make the translation process as efficient as possible for human translators.•We implement efficient techniques to detect informative sentences.•We use online learning techniques to update the translation model with user feedback.•Results show that our method allows to double the productivity of conventional approaches.
Machine translation technology is not perfect. To be successfully embedded in real-world applications, it must compensate for its imperfections by interacting intelligently with the user within a computer-assisted translation framework. The interactive–predictive paradigm, where both a statistical translation model and a human expert collaborate to generate the translation, has been shown to be an effective computer-assisted translation approach. However, the exhaustive supervision of all translations and the use of non-incremental translation models penalizes the productivity of conventional interactive–predictive systems.
We propose a cost-sensitive active learning framework for computer-assisted translation whose goal is to make the translation process as painless as possible. In contrast to conventional active learning scenarios, the proposed active learning framework is designed to minimize not only how many translations the user must supervise but also how difficult each translation is to supervise. To do that, we address the two potential drawbacks of the interactive–predictive translation paradigm. On the one hand, user effort is focused to those translations whose user supervision is considered more “informative”, thus, maximizing the utility of each user interaction. On the other hand, we use a dynamic machine translation model that is continually updated with user feedback after deployment. We empirically validated each of the technical components in simulation and quantify the user effort saved. We conclude that both selective translation supervision and translation model updating lead to important user-effort reductions, and consequently to improved translation productivity. |
---|---|
AbstractList | •We present a new active learning framework for computed assisted translation.•Our goal is to make the translation process as efficient as possible for human translators.•We implement efficient techniques to detect informative sentences.•We use online learning techniques to update the translation model with user feedback.•Results show that our method allows to double the productivity of conventional approaches.
Machine translation technology is not perfect. To be successfully embedded in real-world applications, it must compensate for its imperfections by interacting intelligently with the user within a computer-assisted translation framework. The interactive–predictive paradigm, where both a statistical translation model and a human expert collaborate to generate the translation, has been shown to be an effective computer-assisted translation approach. However, the exhaustive supervision of all translations and the use of non-incremental translation models penalizes the productivity of conventional interactive–predictive systems.
We propose a cost-sensitive active learning framework for computer-assisted translation whose goal is to make the translation process as painless as possible. In contrast to conventional active learning scenarios, the proposed active learning framework is designed to minimize not only how many translations the user must supervise but also how difficult each translation is to supervise. To do that, we address the two potential drawbacks of the interactive–predictive translation paradigm. On the one hand, user effort is focused to those translations whose user supervision is considered more “informative”, thus, maximizing the utility of each user interaction. On the other hand, we use a dynamic machine translation model that is continually updated with user feedback after deployment. We empirically validated each of the technical components in simulation and quantify the user effort saved. We conclude that both selective translation supervision and translation model updating lead to important user-effort reductions, and consequently to improved translation productivity. |
Author | González-Rubio, Jesús Casacuberta, Francisco |
Author_xml | – sequence: 1 givenname: Jesús surname: González-Rubio fullname: González-Rubio, Jesús email: jegonzalez@iti.upv.es organization: Institut Tecnológic d’Informatica, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain – sequence: 2 givenname: Francisco surname: Casacuberta fullname: Casacuberta, Francisco email: fcn@iti.upv.es organization: D. Sistemes Informàtics i Computació, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain |
BookMark | eNp9kMFKAzEURYNUsK3-gYv5gYwvk5lMshGlaBUKbnQdMpkXSWmTksSCf-_UunZ1N_ceLmdBZiEGJOSWQc2AibttfTAloa0bYLwGUQP0F2TOZN_QnrftjMynWk-l6Lorssh5CwCCKzknD6uYC80Ysi_-iJWxv7FDk4IPn5WLqbJxf_gqmKjJ2eeCY1WSCXlnio_hmlw6s8t485dL8vH89L56oZu39evqcUMtB1FoMzjX26GxyrUclRDKSYWOi6YFOw7ODqaRTlqEwSgnOEdpO95J1Uk0rLN8Sdoz16aYc0KnD8nvTfrWDPTJgt7qswV9sqBB6MnCNLs_z3D6dvSYdLYeg8XRT9Wix-j_B_wAZ2RrxA |
CitedBy_id | crossref_primary_10_1162_coli_a_00473 |
Cites_doi | 10.3115/1067807.1067858 10.3115/1220355.1220401 10.1007/s10994-006-9612-9 10.1007/978-1-4471-2099-5_1 10.1162/coli.2007.33.1.9 10.3115/1620754.1620815 10.3115/1075096.1075117 10.3115/1118693.1118713 10.3115/1117586.1117593 10.1145/1380584.1380586 10.1007/BF00116828 10.3115/1073445.1073462 10.1145/2070481.2070514 10.1145/1390156.1390183 10.1023/B:COAT.0000010117.98933.a0 10.3115/993268.993313 10.3115/1073083.1073133 10.3115/1654650.1654666 10.3115/1626355.1626373 10.3115/1613715.1613855 10.1007/BF00993277 10.1162/coli.2008.07-055-R2-06-29 10.1023/A:1007999327580 10.3115/1073083.1073135 10.3115/1072064.1072068 10.1111/j.2517-6161.1977.tb01600.x |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. |
Copyright_xml | – notice: 2013 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patrec.2013.06.007 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1872-7344 |
EndPage | 134 |
ExternalDocumentID | 10_1016_j_patrec_2013_06_007 S0167865513002407 |
GroupedDBID | --M .DC .~1 0R~ 123 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K TN5 UNMZH WH7 XPP ZMT ~G- --K 1B1 29O AAQXK AAXKI AAYXX ABDPE ACNNM ACRPL ADJOM ADMUD ADMXK ADNMO AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ IHE R2- RPZ SBC SDS SEW VOH WUQ Y6R |
ID | FETCH-LOGICAL-c306t-2bff7cb2c9f43e9669f89ef36240cdbfcba28f8ce0ba9f633e8c5358958ea15c3 |
IEDL.DBID | AIKHN |
ISSN | 0167-8655 |
IngestDate | Fri Dec 06 04:03:44 EST 2024 Fri Feb 23 02:26:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Interactive machine translation Computer-assisted translation Active learning Online learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-2bff7cb2c9f43e9669f89ef36240cdbfcba28f8ce0ba9f633e8c5358958ea15c3 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_patrec_2013_06_007 elsevier_sciencedirect_doi_10_1016_j_patrec_2013_06_007 |
PublicationCentury | 2000 |
PublicationDate | 2014-02-01 2014-2-00 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Pattern recognition letters |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Papineni, K., Roukos, S., Ward, T., Zhu, W.-J., 2002. BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the Association for Computational Linguistics, pp. 311–318. Barrachina, Bender, Casacuberta, Civera, Cubel, Khadivi, Lagarda, Ney, Tomás, Vidal, Vilar (b0015) 2009; 35 Blatz, J., Fitzgerald, E., Foster, G., Gandrabur, S., Goutte, C., Kulesza, A., Sanchis, A., Ueffing, N., 2004. Confidence estimation for machine translation. In: Proceedings of the International Conference on Computational Linguistics, pp. 315–321. Langlais, P., Foster, G., Lapalme, G., 2000. TransType: a computer-aided translation typing system. In: Proceedings of the Workshop of the North American Chapter of the Association for Computational Linguistics: Embedded Machine Translation Systems. Association for, Computational Linguistics, pp. 46–51. NIST, November 2006. NIST 2006 machine translation evaluation official results. Haffari, G., Roy, M., Sarkar, A., 2009. Active learning for statistical phrase-based machine translation. In: Proceedings of the North American Chapter of the Association for Computational Linguistics, pp. 415–423. Vogel, S., Ney, H., Tillmann, C., 1996. HMM-based word alignment in statistical translation. In: Proceedings of the Association for Computational linguistics. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 836–841. Och, F., Ney, H., 2002. Discriminative training and maximum entropy models for statistical machine translation. In: Proceedings of the Association for Computational Linguistics, pp. 295–302. Ueffing, Ney (b0220) 2007; 33 Gascó, G., Rocha, M.-A., Sanchis-Trilles, G., Andrés-Ferrer, J., Casacuberta, F., 2012. Does more data always yield better translations? In: Proceedings of the European Chapter of the Association for Computational Linguistics, pp. 152–161. Foster, G., 2002. Text prediction for translators. Ph.D. Thesis, Université de Montréal. Cohn, Atlas, Ladner (b0055) 1994; 15 Becker, M.A., 2008. Active learning – an explicit treatment of unreliable parameters. Ph.D. Thesis, University of Edinburgh. Chinchor, N., 1992. The statistical significance of the MUC-4 results. In: Proceedings of the Conference on Message Understanding, pp. 30–50. Thompson, C.A., Califf, M.E., Mooney, R.J., 1999. Active learning for natural language parsing and information extraction. In: Proceedings of the International Conference on Machine Learning, Bled, Slovenia, pp. 406–414. Langlais, Lapalme (b0135) 2002; 17 Roy, N., McCallum, A., 2001. Toward optimal active learning through sampling estimation of error reduction In: Proceedings of the International Conference on Machine Learning, pp. 441–448. Turchi, M., De Bie, T., Cristianini, N., 2009. Learning to translate: a statistical and computational analysis. Tech. Rep., University of Bristol, URL Ueffing, N., Ney, H., 2005. Application of word-level confidence measures in interactive statistical machine translation. In: Proceedings of the European Association for Machine Translation Conference, pp. 262–270. Neal, Hinton (b0155) 1999 Lewis, D., Gale, W., 1994. A sequential algorithm for training text classifiers. In: Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 3–12. Casacuberta, Vidal (b0040) 2007; 66 EC, 2009. Translating for a multilingual community. European Commission, Directorate General for Translation Lopez (b0145) 2008; 40 Och, F., 2003. Minimum error rate training in statistical machine translation. In: Proceedings of the Association for Computational Linguistics, pp. 160–167. Och, F.J., Zens, R., Ney, H., 2003. Efficient search for interactive statistical machine translation. In: Proceedings of the European Chapter of the Association for Computational Linguistics, pp. 387–393. Zipf (b0230) 1935 González-Rubio, J., Ortiz-Martínez, D., Casacuberta, F., 2012. Active learning for interactive machine translation. In: Proceedings of the 13th Conference of the European Chapter of the Association for, Computational Linguistics, pp. 245–254. Isabelle, Church (b0110) 1998; vol. 12 Dempster, Laird, Rubin (b0065) 1977; 39 Foster, Isabelle, Plamondon (b0080) January 1998; 12 Brown, Pietra, Pietra, Mercer (b0030) 1993; 19 Angluin (b0005) April 1988; 2 . Settles, B., Craven, M., 2008. An analysis of active learning strategies for sequence labeling tasks. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1070–1079. Koponen, M., 2012. Comparing human perceptions of post-editing effort with post-editing operations. In: Proceedings of the Workshop on Statistical Machine Translation. Association for Computational Linguistics, Montreal, Canada, pp. 181–190. (b0045) 2006 Ortiz-Martínez, D., García-Varea, I., Casacuberta, F., 2010. Online learning for interactive statistical machine translation. In: Proceedings of the North American Chapter of the Association for Computational Linguistics. pp. 546–554. González-Rubio, J., Ortiz-Martínez, D., Casacuberta, F., 2010. Balancing user effort and translation error in interactive machine translation via confidence measures. In: Proceedings of the Association for Computational Linguistics Conference, pp. 173–177. Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., Schroeder, J., 2007. (Meta-) evaluation of machine translation. In: Proceedings of the Workshop on Statistical Machine Translation, pp. 136–158. Atlas, L., Cohn, D., Ladner, R., El-Sharkawi, M.A., Marks II, R.J., 1990. Training connectionist networks with queries and selective sampling. In: Touretzky, David S. (Ed.), Advances in Neural Information Processing Systems, vol. 2 Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 566–573. Koehn, P., Monz, C., 2006. Manual and automatic evaluation of machine translation between European languages. In: Proceedings of the Workshop on Statistical Machine Translation, pp. 102–121. Koehn, P., Och, F.J., Marcu, D., 2003. Statistical phrase-based translation. In: Proceedings of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, pp. 48–54. Macklovitch, E., 2006. TransType2: the last word. In: Proceedings of the Conference on International Language Resources and Evaluation, pp. 167–17. Dasgupta, S., Hsu, D., 2008. Hierarchical sampling for active learning. In: Proceedings of the International Conference on Machine Learning, pp. 208–215. Noreen (b0165) 1989 Haddow, B., Koehn, P., 2012. Analysing the effect of out-of-domain data on smt systems. In: Proceedings of the Workshop on Statistical Machine Translation. Association for Computational Linguistics, Montreal, Canada, pp. 422–432. Brown (10.1016/j.patrec.2013.06.007_b0030) 1993; 19 Angluin (10.1016/j.patrec.2013.06.007_b0005) 1988; 2 10.1016/j.patrec.2013.06.007_b0205 10.1016/j.patrec.2013.06.007_b0105 Foster (10.1016/j.patrec.2013.06.007_b0080) 1998; 12 10.1016/j.patrec.2013.06.007_b0225 10.1016/j.patrec.2013.06.007_b0125 10.1016/j.patrec.2013.06.007_b0025 10.1016/j.patrec.2013.06.007_b0200 10.1016/j.patrec.2013.06.007_b0100 Noreen (10.1016/j.patrec.2013.06.007_b0165) 1989 10.1016/j.patrec.2013.06.007_b0010 10.1016/j.patrec.2013.06.007_b0175 10.1016/j.patrec.2013.06.007_b0075 10.1016/j.patrec.2013.06.007_b0130 10.1016/j.patrec.2013.06.007_b0195 10.1016/j.patrec.2013.06.007_b0095 10.1016/j.patrec.2013.06.007_b0150 10.1016/j.patrec.2013.06.007_b0050 Isabelle (10.1016/j.patrec.2013.06.007_b0110) 1998; vol. 12 10.1016/j.patrec.2013.06.007_b0170 10.1016/j.patrec.2013.06.007_b0070 Casacuberta (10.1016/j.patrec.2013.06.007_b0040) 2007; 66 10.1016/j.patrec.2013.06.007_b0190 10.1016/j.patrec.2013.06.007_b0090 Lopez (10.1016/j.patrec.2013.06.007_b0145) 2008; 40 Zipf (10.1016/j.patrec.2013.06.007_b0230) 1935 Ueffing (10.1016/j.patrec.2013.06.007_b0220) 2007; 33 Langlais (10.1016/j.patrec.2013.06.007_b0135) 2002; 17 (10.1016/j.patrec.2013.06.007_b0045) 2006 Barrachina (10.1016/j.patrec.2013.06.007_b0015) 2009; 35 10.1016/j.patrec.2013.06.007_b0215 10.1016/j.patrec.2013.06.007_b0115 Dempster (10.1016/j.patrec.2013.06.007_b0065) 1977; 39 10.1016/j.patrec.2013.06.007_b0035 10.1016/j.patrec.2013.06.007_b0210 10.1016/j.patrec.2013.06.007_b0120 10.1016/j.patrec.2013.06.007_b0020 Neal (10.1016/j.patrec.2013.06.007_b0155) 1999 10.1016/j.patrec.2013.06.007_b0185 10.1016/j.patrec.2013.06.007_b0085 10.1016/j.patrec.2013.06.007_b0140 10.1016/j.patrec.2013.06.007_b0160 10.1016/j.patrec.2013.06.007_b0060 10.1016/j.patrec.2013.06.007_b0180 Cohn (10.1016/j.patrec.2013.06.007_b0055) 1994; 15 |
References_xml | – volume: 19 start-page: 263 year: 1993 end-page: 311 ident: b0030 article-title: The mathematics of statistical machine translation: parameter estimation publication-title: Computational Linguistics contributor: fullname: Mercer – volume: 15 start-page: 201 year: 1994 end-page: 221 ident: b0055 article-title: Improving generalization with active learning publication-title: Machine Learning contributor: fullname: Ladner – year: 2006 ident: b0045 publication-title: Semi-Supervised Learning – volume: 33 start-page: 9 year: 2007 end-page: 40 ident: b0220 article-title: Word-level confidence estimation for machine translation publication-title: Computational Linguistics contributor: fullname: Ney – volume: 12 start-page: 175 year: January 1998 end-page: 194 ident: b0080 article-title: Target-text mediated interactive machine translation publication-title: Machine Translation contributor: fullname: Plamondon – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: b0065 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society contributor: fullname: Rubin – volume: 17 start-page: 77 year: 2002 end-page: 98 ident: b0135 article-title: TransType: development-evaluation cycles to boost translator’s productivity publication-title: Machine Translation contributor: fullname: Lapalme – year: 1935 ident: b0230 article-title: The Psychobiology of Language contributor: fullname: Zipf – volume: 40 start-page: 8:1 year: 2008 end-page: 8:49 ident: b0145 article-title: Statistical machine translation publication-title: ACM Computational Survey contributor: fullname: Lopez – start-page: 355 year: 1999 end-page: 368 ident: b0155 article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants publication-title: Learning in, Graphical Models contributor: fullname: Hinton – volume: 35 start-page: 3 year: 2009 end-page: 28 ident: b0015 article-title: Statistical approaches to computer-assisted translation publication-title: Computational Linguistics contributor: fullname: Vilar – volume: 66 start-page: 69 year: 2007 end-page: 91 ident: b0040 article-title: Learning finite-state models for machine translation publication-title: Machine Learning contributor: fullname: Vidal – year: 1989 ident: b0165 article-title: Computer-Intensive Methods for Testing Hypotheses: An Introduction publication-title: A Wiley Interscience Publication contributor: fullname: Noreen – volume: 2 start-page: 319 year: April 1988 end-page: 342 ident: b0005 article-title: Queries and concept learning publication-title: Machine Learning contributor: fullname: Angluin – volume: vol. 12 year: 1998 ident: b0110 publication-title: Special Issue on: New Tools for Human Translators contributor: fullname: Church – volume: 19 start-page: 263 year: 1993 ident: 10.1016/j.patrec.2013.06.007_b0030 article-title: The mathematics of statistical machine translation: parameter estimation publication-title: Computational Linguistics contributor: fullname: Brown – ident: 10.1016/j.patrec.2013.06.007_b0125 – ident: 10.1016/j.patrec.2013.06.007_b0150 – ident: 10.1016/j.patrec.2013.06.007_b0180 doi: 10.3115/1067807.1067858 – ident: 10.1016/j.patrec.2013.06.007_b0020 – ident: 10.1016/j.patrec.2013.06.007_b0025 doi: 10.3115/1220355.1220401 – volume: 66 start-page: 69 issue: 1 year: 2007 ident: 10.1016/j.patrec.2013.06.007_b0040 article-title: Learning finite-state models for machine translation publication-title: Machine Learning doi: 10.1007/s10994-006-9612-9 contributor: fullname: Casacuberta – ident: 10.1016/j.patrec.2013.06.007_b0140 doi: 10.1007/978-1-4471-2099-5_1 – ident: 10.1016/j.patrec.2013.06.007_b0205 – ident: 10.1016/j.patrec.2013.06.007_b0100 – volume: 33 start-page: 9 year: 2007 ident: 10.1016/j.patrec.2013.06.007_b0220 article-title: Word-level confidence estimation for machine translation publication-title: Computational Linguistics doi: 10.1162/coli.2007.33.1.9 contributor: fullname: Ueffing – ident: 10.1016/j.patrec.2013.06.007_b0105 doi: 10.3115/1620754.1620815 – ident: 10.1016/j.patrec.2013.06.007_b0170 doi: 10.3115/1075096.1075117 – ident: 10.1016/j.patrec.2013.06.007_b0010 – ident: 10.1016/j.patrec.2013.06.007_b0075 doi: 10.3115/1118693.1118713 – year: 1935 ident: 10.1016/j.patrec.2013.06.007_b0230 contributor: fullname: Zipf – ident: 10.1016/j.patrec.2013.06.007_b0070 – ident: 10.1016/j.patrec.2013.06.007_b0185 – ident: 10.1016/j.patrec.2013.06.007_b0130 doi: 10.3115/1117586.1117593 – volume: 40 start-page: 8:1 year: 2008 ident: 10.1016/j.patrec.2013.06.007_b0145 article-title: Statistical machine translation publication-title: ACM Computational Survey doi: 10.1145/1380584.1380586 contributor: fullname: Lopez – volume: 2 start-page: 319 year: 1988 ident: 10.1016/j.patrec.2013.06.007_b0005 article-title: Queries and concept learning publication-title: Machine Learning doi: 10.1007/BF00116828 contributor: fullname: Angluin – ident: 10.1016/j.patrec.2013.06.007_b0085 – ident: 10.1016/j.patrec.2013.06.007_b0215 – year: 2006 ident: 10.1016/j.patrec.2013.06.007_b0045 – ident: 10.1016/j.patrec.2013.06.007_b0120 doi: 10.3115/1073445.1073462 – ident: 10.1016/j.patrec.2013.06.007_b0095 doi: 10.1145/2070481.2070514 – start-page: 355 year: 1999 ident: 10.1016/j.patrec.2013.06.007_b0155 article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants publication-title: Learning in, Graphical Models contributor: fullname: Neal – ident: 10.1016/j.patrec.2013.06.007_b0210 – ident: 10.1016/j.patrec.2013.06.007_b0060 doi: 10.1145/1390156.1390183 – year: 1989 ident: 10.1016/j.patrec.2013.06.007_b0165 article-title: Computer-Intensive Methods for Testing Hypotheses: An Introduction contributor: fullname: Noreen – volume: 17 start-page: 77 issue: 2 year: 2002 ident: 10.1016/j.patrec.2013.06.007_b0135 article-title: TransType: development-evaluation cycles to boost translator’s productivity publication-title: Machine Translation doi: 10.1023/B:COAT.0000010117.98933.a0 contributor: fullname: Langlais – ident: 10.1016/j.patrec.2013.06.007_b0225 doi: 10.3115/993268.993313 – ident: 10.1016/j.patrec.2013.06.007_b0175 doi: 10.3115/1073083.1073133 – ident: 10.1016/j.patrec.2013.06.007_b0115 doi: 10.3115/1654650.1654666 – ident: 10.1016/j.patrec.2013.06.007_b0035 doi: 10.3115/1626355.1626373 – ident: 10.1016/j.patrec.2013.06.007_b0200 doi: 10.3115/1613715.1613855 – volume: 15 start-page: 201 year: 1994 ident: 10.1016/j.patrec.2013.06.007_b0055 article-title: Improving generalization with active learning publication-title: Machine Learning doi: 10.1007/BF00993277 contributor: fullname: Cohn – volume: vol. 12 year: 1998 ident: 10.1016/j.patrec.2013.06.007_b0110 contributor: fullname: Isabelle – volume: 35 start-page: 3 year: 2009 ident: 10.1016/j.patrec.2013.06.007_b0015 article-title: Statistical approaches to computer-assisted translation publication-title: Computational Linguistics doi: 10.1162/coli.2008.07-055-R2-06-29 contributor: fullname: Barrachina – ident: 10.1016/j.patrec.2013.06.007_b0160 – volume: 12 start-page: 175 issue: 1/2 year: 1998 ident: 10.1016/j.patrec.2013.06.007_b0080 article-title: Target-text mediated interactive machine translation publication-title: Machine Translation doi: 10.1023/A:1007999327580 contributor: fullname: Foster – ident: 10.1016/j.patrec.2013.06.007_b0190 doi: 10.3115/1073083.1073135 – ident: 10.1016/j.patrec.2013.06.007_b0050 doi: 10.3115/1072064.1072068 – ident: 10.1016/j.patrec.2013.06.007_b0090 doi: 10.1145/2070481.2070514 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.patrec.2013.06.007_b0065 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1977.tb01600.x contributor: fullname: Dempster – ident: 10.1016/j.patrec.2013.06.007_b0195 |
SSID | ssj0006398 |
Score | 2.189115 |
Snippet | •We present a new active learning framework for computed assisted translation.•Our goal is to make the translation process as efficient as possible for human... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 124 |
SubjectTerms | Active learning Computer-assisted translation Interactive machine translation Online learning |
Title | Cost-sensitive active learning for computer-assisted translation |
URI | https://dx.doi.org/10.1016/j.patrec.2013.06.007 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scDAo4B4Vh5YTZM4TuyNqqIqILpApW5R7NioDG1Fw8pvx5c4qEiIgTGRHUVn5_vu4u_uAK5tYh0R5YIGhifUxRuSqlwXNEiNTDF-sAYThZ-myWQWP8z5vAWjJhcGZZUe-2tMr9Da3xl4aw7Wi8XgGQX0mFaJBzIYl7Sh6-gIz2q7w_vHyfQbkB0Ji6bEN05oMugqmRf-cjZYyzBkVSFP7Cv7G0Ntsc74APa8u0iG9RsdQssse7DftGIg_svswe5WXcEjuB2tNiXdoDYd0YzkFagR3yHilThHlWj_DOq8Z1zqgpRIW7U07hhm47uX0YT6VglUO5-_pJGyNtUq0tLGzLgQRlohjXXsFAe6UFarPBJWaBOoXNqEMSM0Z1xILkwecs1OoLNcLc0pEK6YG-7cJC7zOLZSWhWyJC44ptEqm54BbcyTreuKGFkjFXvLanNmaM6sUsy58Wljw-zHymYOtP-cef7vmRew467iWl19CZ3y_cNcOeehVH1o33yGfb9FvgCIbsVy |
link.rule.ids | 314,780,784,4502,24116,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYCBRwHxxgOr6cN2Ym-giqpA24VW6hbFjo3K0FY0rPx27hJHFAkxsCZ2FJ2d776Lv7sj5MZHHhxRqljLyYhBvKGZSW3GWrHTMcYP3mGi8HAU9SfiaSqnNdKtcmFQVhmwv8T0Aq3DlWawZnM5mzVfUECPaZV4IINxyQbZFBLYL2zq289vnQe4YFUV-MbhVf5cIfLCH84OKxm2eVHGE7vK_uaf1nxOb5_sBrJI78v3OSA1N2-QvaoRAw3fZYPsrFUVPCR33cUqZytUpiOW0bSANBr6Q7xSoKnUhmcw4M640BnN0WmVwrgjMuk9jLt9FholMAuMP2cd431sTcdqL7iDAEZ7pZ0H3yRaNjPemrSjvLKuZVLtI86dspJLpaVyaVtafkzq88XcnRAqDYfhQJKkToXwWnvT5pHIJCbRGh-fElaZJ1mW9TCSSij2lpTmTNCcSaGXg_FxZcPkx7omANl_zjz798xrstUfDwfJ4HH0fE624Y4oddYXpJ6_f7hLoBG5uSq2yRdPd8ZL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-sensitive+active+learning+for+computer-assisted+translation&rft.jtitle=Pattern+recognition+letters&rft.au=Gonz%C3%A1lez-Rubio%2C+Jes%C3%BAs&rft.au=Casacuberta%2C+Francisco&rft.date=2014-02-01&rft.issn=0167-8655&rft.volume=37&rft.spage=124&rft.epage=134&rft_id=info:doi/10.1016%2Fj.patrec.2013.06.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patrec_2013_06_007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |