User authorization based on hand geometry without special equipment

•We present a biometric identification protocol based on hand geometry that does not require any special devices (we use standard office scanners).•Our method offers FAR and FRR levels similar or even better than best known protocols.•The new method is based on adding characteristic features of the...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 73; pp. 189 - 201
Main Authors Klonowski, Marek, Plata, Marcin, Syga, Piotr
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We present a biometric identification protocol based on hand geometry that does not require any special devices (we use standard office scanners).•Our method offers FAR and FRR levels similar or even better than best known protocols.•The new method is based on adding characteristic features of the hand not included in previous work and very careful choice of parameters. Bioidentification is one of the most popular methods of user identification, one of the reasons is the fact that the ‘access tokens’ are part of user’s body and cannot be simply lost or forgotten. Recently, the popularity of biometric methods increases even more due to the improved accuracy of measuring devices and lower error rates offered by the algorithms. Despite the technological progress, prices of the top tier equipment remain on a constant, high level. In this paper, we propose a hand geometry user identification algorithm that utilizes data acquired by a standard office scanner, and that has reasonable execution times of both data collection and the identification process. In order to achieve an algorithm that is as accurate as current state of the art algorithms (or even outperforms them) and utilizes only devices that are commonly available in most offices we had to include several non-standard hand geometric features, e.g. the crookedness of the fingers. Our algorithm was tested on 60 volunteer adults, with age ranging from early 20s to late 50s. The most important results are False Acceptance Rate (FAR) equal to 0.0% and False Rejection Rate (FRR) at the level of 1.19%, with Equal Error Rate (EER) 0.59% during authorization (referred to as verification mode since algorithm verifies the claimed identity), when using a template derived from three images. In identification mode we got results FAR=0.0%, FRR=1.19% and ERR=0.59%. We achieved Identification Rate (IR) equal to 100.0% when taking only subjects from the database in identification mode. The subjects were not limited regarding the position of their hand on the scanner, nor were hand injuries and jewelry a disqualifying factor. Moreover, we describe the performance and time needed in a real-life experiments, showing that the algorithm may be used by people without technical background at low cost and is adequate for systems that require medium to high level of security.
AbstractList •We present a biometric identification protocol based on hand geometry that does not require any special devices (we use standard office scanners).•Our method offers FAR and FRR levels similar or even better than best known protocols.•The new method is based on adding characteristic features of the hand not included in previous work and very careful choice of parameters. Bioidentification is one of the most popular methods of user identification, one of the reasons is the fact that the ‘access tokens’ are part of user’s body and cannot be simply lost or forgotten. Recently, the popularity of biometric methods increases even more due to the improved accuracy of measuring devices and lower error rates offered by the algorithms. Despite the technological progress, prices of the top tier equipment remain on a constant, high level. In this paper, we propose a hand geometry user identification algorithm that utilizes data acquired by a standard office scanner, and that has reasonable execution times of both data collection and the identification process. In order to achieve an algorithm that is as accurate as current state of the art algorithms (or even outperforms them) and utilizes only devices that are commonly available in most offices we had to include several non-standard hand geometric features, e.g. the crookedness of the fingers. Our algorithm was tested on 60 volunteer adults, with age ranging from early 20s to late 50s. The most important results are False Acceptance Rate (FAR) equal to 0.0% and False Rejection Rate (FRR) at the level of 1.19%, with Equal Error Rate (EER) 0.59% during authorization (referred to as verification mode since algorithm verifies the claimed identity), when using a template derived from three images. In identification mode we got results FAR=0.0%, FRR=1.19% and ERR=0.59%. We achieved Identification Rate (IR) equal to 100.0% when taking only subjects from the database in identification mode. The subjects were not limited regarding the position of their hand on the scanner, nor were hand injuries and jewelry a disqualifying factor. Moreover, we describe the performance and time needed in a real-life experiments, showing that the algorithm may be used by people without technical background at low cost and is adequate for systems that require medium to high level of security.
Author Plata, Marcin
Syga, Piotr
Klonowski, Marek
Author_xml – sequence: 1
  givenname: Marek
  surname: Klonowski
  fullname: Klonowski, Marek
  email: marek.klonowski@pwr.edu.pl
– sequence: 2
  givenname: Marcin
  surname: Plata
  fullname: Plata, Marcin
  email: marcin.plata@pwr.edu.pl
– sequence: 3
  givenname: Piotr
  surname: Syga
  fullname: Syga, Piotr
  email: piotr.syga@pwr.edu.pl
BookMark eNqFkMtOwzAQRS1UJNrCH7DwDyTMxM4DFkio4iVVYkPXluNMWldtEmwXVL4el7JiAas7mrlnNHMnbNT1HTF2iZAiYHG1TgcdTL9MM8AyhSqNcsLGWJUiyVFmIzYGEJiIDMQZm3i_huiIgzGbLTw5rndh1Tv7qYPtO15rTw2PxUp3DV9Sv6Xg9vzDRtMucD-QsXrD6W1nhy114Zydtnrj6eJHp2zxcP86e0rmL4_Ps7t5YgQUIcnq1lBlqrKtSYhrMo2kgvIybzHLjKwFATYyx1JCS03sI9ZABcoCBeRGiim7Oe41rvfeUauMDd8nB6ftRiGoQxxqrY5xqEMcCioVJcLyFzw4u9Vu_x92e8QoPvZuySlvLHWGGuvIBNX09u8FXwywfzI
CitedBy_id crossref_primary_10_3390_sym11020150
crossref_primary_10_1016_j_eswa_2021_116278
crossref_primary_10_1049_bme2_12014
crossref_primary_10_3390_app9194178
crossref_primary_10_38032_jea_2022_04_001
crossref_primary_10_1109_ACCESS_2021_3089484
crossref_primary_10_1016_j_compeleceng_2024_109485
crossref_primary_10_1088_1742_6596_1804_1_012144
crossref_primary_10_1007_s11042_021_10976_z
crossref_primary_10_1016_j_cogsys_2019_01_007
crossref_primary_10_3390_s23073653
crossref_primary_10_1109_ACCESS_2021_3076756
Cites_doi 10.1049/iet-cvi.2009.0081
10.1016/j.knosys.2016.04.008
10.1109/34.879796
10.1016/j.cviu.2008.11.007
10.1016/S0167-8655(03)00087-4
10.1016/j.imavis.2007.08.010
10.1117/12.647446
10.3390/s130302895
10.1109/ACCESS.2016.2614720
10.1109/TIP.2006.873439
10.1016/j.patcog.2012.02.018
10.1049/ip-vis:20031038
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2017.08.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 201
ExternalDocumentID 10_1016_j_patcog_2017_08_017
S0031320317303278
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-2bfce8c87fbe339ecd4e6e575f122c4b3e01d451740fed57511b0e61461305c43
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Apr 24 23:13:03 EDT 2025
Tue Jul 01 02:36:26 EDT 2025
Fri Feb 23 02:25:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bioidentification
Basic devices
Pattern recognition
Palm scan
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-2bfce8c87fbe339ecd4e6e575f122c4b3e01d451740fed57511b0e61461305c43
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2017_08_017
crossref_primary_10_1016_j_patcog_2017_08_017
elsevier_sciencedirect_doi_10_1016_j_patcog_2017_08_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Oden, Ercil, Buke (bib0012) 2003; 24
Adan, Adan, Vazquez, Torres (bib0014) 2008; 26
Oloyede, Hancke (bib0027) 2016; 4
Gasparini, Schettini (bib0031) 2006; 6061
Amayeh, Bebis, Erol, Nicolescu (bib0016) 2006
SocialBehavioral and Economic Sciences Working Group United States of America (bib0032) 2010
Mansfield, Kelly, Chandler, Kane (bib0034) 2001
R.H. Ernst US, Hand id system, 1971, US Patent 3,576,537. Available from
Gupta, Srivastava, Gupta (bib0029) 2016; 103
Svoboda, Bronstein, Drahansky (bib0028) 2015
Park, Kim (bib0005) 2013; 13
Angadi, Hatture (bib0018) 2015
Ong, Connie, Jin, Ling (bib0021) 2003
Zhang, Guo, Gong (bib0025) 2016
Dale, Galiyawala, Joshi (bib0022) 2011
A. Kumar, D.C.M. Wong, H.C. Shen, A.K. Jain, Personal verification using palmprint and hand geometry biometric, Proceedings of the Fourth International Conference on Audio- and Video-based Biometric Person Authentication vol. 2688 (2003), pp. 668–678.
Jain, Ross, Pankanti (bib0008) 1999
Yoruk, Konukoglu, Sankur, Darbon (bib0033) 2006; 15
Hu, Jia, Zhang, Gui, Song (bib0013) 2012; 45
Bulatov, Jambawalikar, Kumar, Sethia (bib0011) July 15–17, 2004
Sanchez-Reillo, Sanchez-Avila, Gonzalez-Marcos (bib0009) 2000; 22
Bolle, Connell, Pankanti, Ratha, Senior (bib0001) 2003
Wong, Shi (bib0010) 2002
Rao, Ramaiah, Mohan (bib0030) 2017; 2
Ribaric, Ribaric, Pavesic (bib0003) 2003; 150
Kang, Park (bib0023) 2010; 4
.
Xiong, Xu, Ong (bib0015) 2005; 2
Varchol, Levicky (bib0002) 2007; 16
Singh, Thakur, Kumar, Baksh (bib0019) 2014; 3
Firas, Zainab (bib0020) 2014; 5
Zhang, Xu, Zuo (bib0024) 2016
Angadi, Hatture (bib0026) 2016; 8
R.P. Miller, Finger dimension comparison identification system, 1971, US Patent 3,576,538. Available from
Amayeh, Bebis, Erol, Nicolescu (bib0017) 2009; 113
Ribaric (10.1016/j.patcog.2017.08.017_bib0003) 2003; 150
Adan (10.1016/j.patcog.2017.08.017_bib0014) 2008; 26
Wong (10.1016/j.patcog.2017.08.017_bib0010) 2002
Amayeh (10.1016/j.patcog.2017.08.017_bib0017) 2009; 113
Angadi (10.1016/j.patcog.2017.08.017_bib0018) 2015
Varchol (10.1016/j.patcog.2017.08.017_bib0002) 2007; 16
Mansfield (10.1016/j.patcog.2017.08.017_bib0034) 2001
Zhang (10.1016/j.patcog.2017.08.017_bib0024) 2016
Park (10.1016/j.patcog.2017.08.017_bib0005) 2013; 13
10.1016/j.patcog.2017.08.017_bib0007
10.1016/j.patcog.2017.08.017_bib0006
Bulatov (10.1016/j.patcog.2017.08.017_bib0011) 2004
10.1016/j.patcog.2017.08.017_bib0004
Oden (10.1016/j.patcog.2017.08.017_bib0012) 2003; 24
Firas (10.1016/j.patcog.2017.08.017_bib0020) 2014; 5
Jain (10.1016/j.patcog.2017.08.017_bib0008) 1999
Amayeh (10.1016/j.patcog.2017.08.017_bib0016) 2006
Gasparini (10.1016/j.patcog.2017.08.017_bib0031) 2006; 6061
Rao (10.1016/j.patcog.2017.08.017_bib0030) 2017; 2
Ong (10.1016/j.patcog.2017.08.017_bib0021) 2003
Svoboda (10.1016/j.patcog.2017.08.017_bib0028) 2015
Hu (10.1016/j.patcog.2017.08.017_bib0013) 2012; 45
SocialBehavioral and Economic Sciences Working Group United States of America (10.1016/j.patcog.2017.08.017_bib0032) 2010
Gupta (10.1016/j.patcog.2017.08.017_bib0029) 2016; 103
Xiong (10.1016/j.patcog.2017.08.017_bib0015) 2005; 2
Oloyede (10.1016/j.patcog.2017.08.017_bib0027) 2016; 4
Singh (10.1016/j.patcog.2017.08.017_bib0019) 2014; 3
Kang (10.1016/j.patcog.2017.08.017_bib0023) 2010; 4
Bolle (10.1016/j.patcog.2017.08.017_bib0001) 2003
Dale (10.1016/j.patcog.2017.08.017_bib0022) 2011
Zhang (10.1016/j.patcog.2017.08.017_bib0025) 2016
Sanchez-Reillo (10.1016/j.patcog.2017.08.017_bib0009) 2000; 22
Angadi (10.1016/j.patcog.2017.08.017_bib0026) 2016; 8
Yoruk (10.1016/j.patcog.2017.08.017_bib0033) 2006; 15
References_xml – start-page: 452
  year: 2015
  end-page: 457
  ident: bib0028
  article-title: Contactless biometric hand geometry recognition using a low-cost 3D camera
  publication-title: Proceedings of the 2015 International Conference on Biometrics (ICB)
– year: 2001
  ident: bib0034
  article-title: Biometric Product Testing Final Report
– volume: 2
  start-page: 117
  year: 2017
  end-page: 126
  ident: bib0030
  article-title: Palmprint recognition based on minutiae quadruplets
  publication-title: Proceedings of the 2017 International Conference on Computer Vision and Image Processing, CVIP 2016
– volume: 150
  start-page: 409
  year: 2003
  end-page: 416
  ident: bib0003
  article-title: Multimodal biometric user-identification system for network-based applications
  publication-title: IEE Proc. Vis. Image Signal Process.
– volume: 24
  start-page: 2145
  year: 2003
  end-page: 2152
  ident: bib0012
  article-title: Combining implicit polynomials and geometric features for hand recognition
  publication-title: Pattern Recognit. Lett.
– start-page: 40
  year: 2006
  ident: bib0016
  article-title: Peg-free hand shape verification using high order Zernike moments
  publication-title: Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06)
– reference: A. Kumar, D.C.M. Wong, H.C. Shen, A.K. Jain, Personal verification using palmprint and hand geometry biometric, Proceedings of the Fourth International Conference on Audio- and Video-based Biometric Person Authentication vol. 2688 (2003), pp. 668–678.
– volume: 113
  start-page: 477
  year: 2009
  end-page: 501
  ident: bib0017
  article-title: Hand-based verification and identification using palm-finger segmentation and fusion
  publication-title: Comput. Vis. Image Underst.
– volume: 45
  start-page: 3348
  year: 2012
  end-page: 3359
  ident: bib0013
  article-title: Hand shape recognition based on coherent distance shape contexts
  publication-title: Pattern Recognit.
– year: 2010
  ident: bib0032
  article-title: Introduction to Biometrics
– volume: 13
  start-page: 2895
  year: 2013
  ident: bib0005
  article-title: Hand biometric recognition based on fused hand geometry and vascular patterns
  publication-title: Sensors
– volume: 4
  start-page: 7532
  year: 2016
  end-page: 7555
  ident: bib0027
  article-title: Unimodal and multimodal biometric sensing systems: a review
  publication-title: IEEE Access
– volume: 5
  start-page: 232
  year: 2014
  end-page: 337
  ident: bib0020
  article-title: A new features extracted for recognizing a hand geometry using BPNN
  publication-title: Int. J. Sci. Eng. Res.
– volume: 8
  start-page: 48
  year: 2016
  end-page: 58
  ident: bib0026
  article-title: Biometric person identification system: a multimodal approach employing spectral graph characteristics of hand geometry and palmprint
  publication-title: Int. J. Intell. Syst. Appl.
– volume: 15
  start-page: 1803
  year: 2006
  end-page: 1815
  ident: bib0033
  article-title: Shape-based hand recognition
  publication-title: IEEE Trans. Image Process.
– volume: 26
  start-page: 451
  year: 2008
  end-page: 465
  ident: bib0014
  article-title: Biometric verification/identification based on hands natural layout
  publication-title: Image Vis. Comput.
– start-page: 100
  year: 2003
  end-page: 106
  ident: bib0021
  article-title: A single-sensor hand geometry and palmprint verification system
  publication-title: Proceedings of the 2003 ACM SIGMM Workshop on Biometrics Methods and Applications, WBMA ’03
– volume: 6061
  year: 2006
  ident: bib0031
  article-title: Skin segmentation using multiple thresholding
  publication-title: Proc. SPIE
– start-page: 166
  year: 1999
  end-page: 177
  ident: bib0008
  article-title: A prototype hand geometry-based verification system
  publication-title: Proceedings of the Second International Conference on Audio- and Video-based Biometric Person Authentication (AVBPA)
– volume: 4
  start-page: 209
  year: 2010
  end-page: 217
  ident: bib0023
  article-title: Multimodal biometric method based on vein and geometry of a single finger
  publication-title: IET Comput. Vis.
– volume: 22
  start-page: 1168
  year: 2000
  end-page: 1171
  ident: bib0009
  article-title: Biometric identification through hand geometry measurements
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: R.H. Ernst US, Hand id system, 1971, US Patent 3,576,537. Available from
– volume: 3
  start-page: 317
  year: 2014
  end-page: 322
  ident: bib0019
  article-title: User authentication using hand images
  publication-title: Int. J. Sci. Res.
– year: 2003
  ident: bib0001
  article-title: Guide to Biometrics
– reference: .
– start-page: 281
  year: 2002
  end-page: 284
  ident: bib0010
  article-title: Peg-free hand geometry recognition using hierarchical geometry and shape matching
  publication-title: Proceedings of the 2002 IAPR Workshop on Machine Vision Applications, Nara
– start-page: 147
  year: 2016
  end-page: 164
  ident: bib0024
  article-title: Multifeature palmprint authentication
  publication-title: Discriminative Learning in Biometrics
– reference: R.P. Miller, Finger dimension comparison identification system, 1971, US Patent 3,576,538. Available from
– volume: 103
  start-page: 143
  year: 2016
  end-page: 155
  ident: bib0029
  article-title: An accurate infrared hand geometry and vein pattern based authentication system
  publication-title: Knowl. Based Syst.
– volume: 16
  start-page: 82
  year: 2007
  end-page: 86
  ident: bib0002
  article-title: Using of hand geometry in biometric security systems
  publication-title: Radioengineering
– start-page: 753
  year: July 15–17, 2004
  end-page: 759
  ident: bib0011
  article-title: Hand recognition using geometric classifiers
  publication-title: Proceedings of the First International Conference on Biometric Authentication (ICBA 2004), Hong Kong, China
– start-page: 828
  year: 2015
  end-page: 835
  ident: bib0018
  article-title: User identification using wavelet features of hand geometry graph
  publication-title: Proceedings of the 2015 SAI Intelligent Systems Conference (IntelliSys)
– volume: 2
  start-page: 77
  year: 2005
  end-page: 80
  ident: bib0015
  article-title: Peg-free human hand shape analysis and recognition
  publication-title: Proceedings of the 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’05)
– start-page: 86
  year: 2011
  end-page: 91
  ident: bib0022
  article-title: A new bimodal identification based on hand-geometry and palm-print
  publication-title: Proceedings of the First International Conference on Contours of Computing Technology, ThinkQuest 2010
– start-page: 139
  year: 2016
  end-page: 151
  ident: bib0025
  article-title: Empirical study of light source selection for palmprint recognition
  publication-title: Multispectral Biometrics: Systems and Applications
– volume: 5
  start-page: 232
  issue: 9
  year: 2014
  ident: 10.1016/j.patcog.2017.08.017_bib0020
  article-title: A new features extracted for recognizing a hand geometry using BPNN
  publication-title: Int. J. Sci. Eng. Res.
– start-page: 828
  year: 2015
  ident: 10.1016/j.patcog.2017.08.017_bib0018
  article-title: User identification using wavelet features of hand geometry graph
– volume: 4
  start-page: 209
  issue: 3
  year: 2010
  ident: 10.1016/j.patcog.2017.08.017_bib0023
  article-title: Multimodal biometric method based on vein and geometry of a single finger
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2009.0081
– volume: 103
  start-page: 143
  year: 2016
  ident: 10.1016/j.patcog.2017.08.017_bib0029
  article-title: An accurate infrared hand geometry and vein pattern based authentication system
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.04.008
– volume: 22
  start-page: 1168
  issue: 10
  year: 2000
  ident: 10.1016/j.patcog.2017.08.017_bib0009
  article-title: Biometric identification through hand geometry measurements
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.879796
– volume: 8
  start-page: 48
  issue: 3
  year: 2016
  ident: 10.1016/j.patcog.2017.08.017_bib0026
  article-title: Biometric person identification system: a multimodal approach employing spectral graph characteristics of hand geometry and palmprint
  publication-title: Int. J. Intell. Syst. Appl.
– ident: 10.1016/j.patcog.2017.08.017_bib0007
– start-page: 40
  year: 2006
  ident: 10.1016/j.patcog.2017.08.017_bib0016
  article-title: Peg-free hand shape verification using high order Zernike moments
– year: 2010
  ident: 10.1016/j.patcog.2017.08.017_bib0032
– year: 2001
  ident: 10.1016/j.patcog.2017.08.017_bib0034
– start-page: 452
  year: 2015
  ident: 10.1016/j.patcog.2017.08.017_bib0028
  article-title: Contactless biometric hand geometry recognition using a low-cost 3D camera
– volume: 16
  start-page: 82
  issue: 4
  year: 2007
  ident: 10.1016/j.patcog.2017.08.017_bib0002
  article-title: Using of hand geometry in biometric security systems
  publication-title: Radioengineering
– volume: 113
  start-page: 477
  issue: 4
  year: 2009
  ident: 10.1016/j.patcog.2017.08.017_bib0017
  article-title: Hand-based verification and identification using palm-finger segmentation and fusion
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2008.11.007
– start-page: 281
  year: 2002
  ident: 10.1016/j.patcog.2017.08.017_bib0010
  article-title: Peg-free hand geometry recognition using hierarchical geometry and shape matching
– volume: 24
  start-page: 2145
  issue: 13
  year: 2003
  ident: 10.1016/j.patcog.2017.08.017_bib0012
  article-title: Combining implicit polynomials and geometric features for hand recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(03)00087-4
– volume: 2
  start-page: 117
  year: 2017
  ident: 10.1016/j.patcog.2017.08.017_bib0030
  article-title: Palmprint recognition based on minutiae quadruplets
– start-page: 753
  year: 2004
  ident: 10.1016/j.patcog.2017.08.017_bib0011
  article-title: Hand recognition using geometric classifiers
– start-page: 147
  year: 2016
  ident: 10.1016/j.patcog.2017.08.017_bib0024
  article-title: Multifeature palmprint authentication
– ident: 10.1016/j.patcog.2017.08.017_bib0004
– volume: 26
  start-page: 451
  issue: 4
  year: 2008
  ident: 10.1016/j.patcog.2017.08.017_bib0014
  article-title: Biometric verification/identification based on hands natural layout
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2007.08.010
– volume: 3
  start-page: 317
  issue: 3
  year: 2014
  ident: 10.1016/j.patcog.2017.08.017_bib0019
  article-title: User authentication using hand images
  publication-title: Int. J. Sci. Res.
– start-page: 139
  year: 2016
  ident: 10.1016/j.patcog.2017.08.017_bib0025
  article-title: Empirical study of light source selection for palmprint recognition
– volume: 6061
  year: 2006
  ident: 10.1016/j.patcog.2017.08.017_bib0031
  article-title: Skin segmentation using multiple thresholding
  publication-title: Proc. SPIE
  doi: 10.1117/12.647446
– ident: 10.1016/j.patcog.2017.08.017_bib0006
– volume: 2
  start-page: 77
  year: 2005
  ident: 10.1016/j.patcog.2017.08.017_bib0015
  article-title: Peg-free human hand shape analysis and recognition
– volume: 13
  start-page: 2895
  issue: 3
  year: 2013
  ident: 10.1016/j.patcog.2017.08.017_bib0005
  article-title: Hand biometric recognition based on fused hand geometry and vascular patterns
  publication-title: Sensors
  doi: 10.3390/s130302895
– volume: 4
  start-page: 7532
  year: 2016
  ident: 10.1016/j.patcog.2017.08.017_bib0027
  article-title: Unimodal and multimodal biometric sensing systems: a review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2614720
– volume: 15
  start-page: 1803
  issue: 7
  year: 2006
  ident: 10.1016/j.patcog.2017.08.017_bib0033
  article-title: Shape-based hand recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.873439
– year: 2003
  ident: 10.1016/j.patcog.2017.08.017_bib0001
– start-page: 166
  year: 1999
  ident: 10.1016/j.patcog.2017.08.017_bib0008
  article-title: A prototype hand geometry-based verification system
– volume: 45
  start-page: 3348
  issue: 9
  year: 2012
  ident: 10.1016/j.patcog.2017.08.017_bib0013
  article-title: Hand shape recognition based on coherent distance shape contexts
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.02.018
– volume: 150
  start-page: 409
  issue: 6
  year: 2003
  ident: 10.1016/j.patcog.2017.08.017_bib0003
  article-title: Multimodal biometric user-identification system for network-based applications
  publication-title: IEE Proc. Vis. Image Signal Process.
  doi: 10.1049/ip-vis:20031038
– start-page: 100
  year: 2003
  ident: 10.1016/j.patcog.2017.08.017_bib0021
  article-title: A single-sensor hand geometry and palmprint verification system
– start-page: 86
  year: 2011
  ident: 10.1016/j.patcog.2017.08.017_bib0022
  article-title: A new bimodal identification based on hand-geometry and palm-print
SSID ssj0017142
Score 2.332604
Snippet •We present a biometric identification protocol based on hand geometry that does not require any special devices (we use standard office scanners).•Our method...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 189
SubjectTerms Basic devices
Bioidentification
Palm scan
Pattern recognition
Title User authorization based on hand geometry without special equipment
URI https://dx.doi.org/10.1016/j.patcog.2017.08.017
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw5cw9oma9PjNDENEDsxabeqSZ0xBOsY7YELv524TSeQEEhcqraKpcpybNfx54-Qy9QPIyN1yJQxmonAA6ZslmCdoQp9w4VRFTz6fhKOp-J21p-1yLDBwmBbpfP9tU-vvLV703Pa7K0WC8T44thBe7FGyoMIAb9CRGjlVx-bNg_k964nhnOf4eoGPlf1eK2su8vn2OAVVYM8K9qyH8LTl5Az2iM7Llekg_pz9kkLlgdkt-FhoG5bHpLh1NoRTcviMV87WCXF6JRRe4OVcTqH_AWK9TvFsmteFvStpp2n8Fouqo6hIzIdXT8Mx8yRIzBts_yCBcpokFpGRgHnMehMQAg2-TJ-EGihOHh-JnAOtWcgw9MVX3kQIo233eJa8GPSXuZLOCG074dpLCU3VpXC_j-kIgWJmYns61THcYfwRieJdpPDkcDiOWlaxJ6SWpMJajJBXks_6hC2kVrVkzP-WB816k6-WUBinfuvkqf_ljwj2_ZJ1iWVc9Iu1iVc2CSjUN3Kirpka3BzN558AuWl0Yg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6I8PbBGjWM3ccaqokrpY2qlblHs2KUImlKSgX-PnTgIJAQSSxQlOSn6dL472XffB3CXYD9QTPgOV0o41HOlw3WVoIMh97EiVPFyPHoy9aM5fVh0Fw3o17Mwpq3Sxv4qppfR2j7pWDQ7m9XKzPga2kF90U5KvIDtQMuwU3Wb0OoNR9H08zAhwLQiDSfYMQb1BF3Z5rXRES9bmh6voOTyLJXLfshQX7LO4BD2bbmIetUfHUFDro_hoJZiQHZlnkB_rl0JJUX-mG3tZCUyCSpF-sZsjqOlzF5kvn1HZuc1K3L0VinPI_larMqmoVOYD-5n_cix-giO0IV-7nhcCckECxSXhIRSpFT6UtdfCnueoJxIF6fUUFG7SqbmgAVzV_pGyVuvckHJGTTX2VqeA-piPwkZI0qjqSFkCU0kM8UJ64pEhGEbSI1JLCx5uNGweI7rLrGnuEIyNkjGRtoSB21wPq02FXnGH98HNdzxNyeIdXz_1fLi35a3sBvNJuN4PJyOLmFPv2HVDssVNPNtIa91zZHzG-tTHyO81Dk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=User+authorization+based+on+hand+geometry+without+special+equipment&rft.jtitle=Pattern+recognition&rft.au=Klonowski%2C+Marek&rft.au=Plata%2C+Marcin&rft.au=Syga%2C+Piotr&rft.date=2018-01-01&rft.issn=0031-3203&rft.volume=73&rft.spage=189&rft.epage=201&rft_id=info:doi/10.1016%2Fj.patcog.2017.08.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2017_08_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon