AI meets UAVs: A survey on AI empowered UAV perception systems for precision agriculture

Precision Agriculture (PA) promises to boost crop productivity while reducing agricultural costs and environmental footprints, and therefore is attracting ever-increasing interests in both academia and industry. This management strategy is underpinned by various advanced technologies including Unman...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 518; pp. 242 - 270
Main Authors Su, Jinya, Zhu, Xiaoyong, Li, Shihua, Chen, Wen-Hua
Format Journal Article
LanguageEnglish
Published Elsevier B.V 21.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Precision Agriculture (PA) promises to boost crop productivity while reducing agricultural costs and environmental footprints, and therefore is attracting ever-increasing interests in both academia and industry. This management strategy is underpinned by various advanced technologies including Unmanned Aerial Vehicle (UAV) sensing systems and Artificial Intelligence (AI) perception algorithms. In particular, due to their unique advantages such as a low cost, high spatio-temporal resolutions, flexibility, automation functions and minimized risk of operation, UAV sensing systems have been extensively applied in many civilian applications including PA since 2010. In parallel, AI algorithms (deep learning since 2012 in particular) are also drawing ever-increasing attention in different fields, since they are able to analyse an unprecedented volume/velocity/variety of data (semi-) automatically, which are also becoming computationally practical with the advancements of cloud computing, Graphics Processing Units and parallel computing. In this survey paper, therefore, a thorough review is performed on recent use of UAV sensing systems (e.g., UAV platforms, external sensing units) and AI algorithms (mainly supervised learning algorithms) in PA applications throughout the crop life-cycle, as well as the challenges and prospects for future development of UAVs and AI in agriculture sector. It is envisioned that this review is able to provide a timely technical reference, demystifying and promoting research, deployment and successful exploitation of AI empowered UAV perception systems for PA, and therefore contributing to addressing future agricultural and human nutrition challenges.
AbstractList Precision Agriculture (PA) promises to boost crop productivity while reducing agricultural costs and environmental footprints, and therefore is attracting ever-increasing interests in both academia and industry. This management strategy is underpinned by various advanced technologies including Unmanned Aerial Vehicle (UAV) sensing systems and Artificial Intelligence (AI) perception algorithms. In particular, due to their unique advantages such as a low cost, high spatio-temporal resolutions, flexibility, automation functions and minimized risk of operation, UAV sensing systems have been extensively applied in many civilian applications including PA since 2010. In parallel, AI algorithms (deep learning since 2012 in particular) are also drawing ever-increasing attention in different fields, since they are able to analyse an unprecedented volume/velocity/variety of data (semi-) automatically, which are also becoming computationally practical with the advancements of cloud computing, Graphics Processing Units and parallel computing. In this survey paper, therefore, a thorough review is performed on recent use of UAV sensing systems (e.g., UAV platforms, external sensing units) and AI algorithms (mainly supervised learning algorithms) in PA applications throughout the crop life-cycle, as well as the challenges and prospects for future development of UAVs and AI in agriculture sector. It is envisioned that this review is able to provide a timely technical reference, demystifying and promoting research, deployment and successful exploitation of AI empowered UAV perception systems for PA, and therefore contributing to addressing future agricultural and human nutrition challenges.
Author Su, Jinya
Zhu, Xiaoyong
Li, Shihua
Chen, Wen-Hua
Author_xml – sequence: 1
  givenname: Jinya
  surname: Su
  fullname: Su, Jinya
  email: sucas@seu.edu.cn
  organization: School of Automation, Southeast University, Nanjing 210096, China
– sequence: 2
  givenname: Xiaoyong
  surname: Zhu
  fullname: Zhu, Xiaoyong
  email: zxyff@ujs.edu.cn
  organization: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 3
  givenname: Shihua
  surname: Li
  fullname: Li, Shihua
  email: lsh@seu.edu.cn
  organization: School of Automation, Southeast University, Nanjing 210096, China
– sequence: 4
  givenname: Wen-Hua
  surname: Chen
  fullname: Chen, Wen-Hua
  email: W.Chen@lboro.ac.uk
  organization: Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, UK
BookMark eNqFkMtqwzAQRUVJoUnaP-hCP2BXIzm2nEXBhL4g0E1TuhOyPCoK8QPJTsnf1yZdddGuBuZyLjNnQWZN2yAht8BiYJDe7eMGB9PWMWecxwAx4-yCzEFmPJJcpjMyZzlfRVwAvyKLEPaMQQY8n5OP4oXWiH2gu-I9rGlBw-CPeKJtQ8cI6679Qo_VFNMOvcGud2MWTqHHOlDbetp5NC5MW_3pnRkO_eDxmlxafQh48zOXZPf48LZ5jravTy-bYhsZwdI-4pJbk0tZalFJLEWe51pbSBMLZWIYpihXmS21SWzGDEsEsEwkQuqyKlEiiCVZn3uNb0PwaJVxvZ5u7L12BwVMTY7UXp0dqcmRAlCjoxFOfsGdd7X2p_-w-zOG42NHh14F47AxWLlRRa-q1v1d8A2VtoX9
CitedBy_id crossref_primary_10_3390_agriculture15010036
crossref_primary_10_3390_drones9030187
crossref_primary_10_1109_ACCESS_2023_3349271
crossref_primary_10_3390_drones7090547
crossref_primary_10_3390_drones8050185
crossref_primary_10_1016_j_aei_2025_103255
crossref_primary_10_3389_frsc_2025_1561404
crossref_primary_10_1016_j_neucom_2024_127975
crossref_primary_10_3390_drones8020044
crossref_primary_10_1016_j_iot_2024_101461
crossref_primary_10_3390_aerospace10080709
crossref_primary_10_3390_s24061913
crossref_primary_10_3390_drones8100563
crossref_primary_10_1109_JSTARS_2024_3370508
crossref_primary_10_3390_electronics13224362
crossref_primary_10_3390_electronics13081558
crossref_primary_10_1016_j_vehcom_2024_100726
crossref_primary_10_3390_drones7060340
crossref_primary_10_1109_ACCESS_2024_3470509
crossref_primary_10_3390_drones8110683
crossref_primary_10_1016_j_neucom_2023_126789
crossref_primary_10_3390_agriculture13081584
crossref_primary_10_1016_j_jag_2025_104368
crossref_primary_10_1016_j_neucom_2024_128748
crossref_primary_10_1007_s00521_024_10306_y
crossref_primary_10_1016_j_neucom_2025_129703
crossref_primary_10_1109_ACCESS_2023_3339631
crossref_primary_10_3390_s23156662
crossref_primary_10_3390_earth5030027
crossref_primary_10_1088_1361_6501_adb873
crossref_primary_10_1016_j_compag_2024_109448
crossref_primary_10_1109_LRA_2024_3421188
crossref_primary_10_1016_j_imavis_2025_105485
crossref_primary_10_1142_S2301385024500237
crossref_primary_10_3389_fpls_2024_1391628
crossref_primary_10_3390_agriculture13020354
crossref_primary_10_1016_j_atech_2024_100752
crossref_primary_10_20473_jatm_v2i2_51440
crossref_primary_10_1007_s10708_023_10859_w
crossref_primary_10_1007_s11554_024_01474_0
crossref_primary_10_1007_s44212_025_00067_x
crossref_primary_10_1016_j_atech_2024_100483
crossref_primary_10_1109_LCSYS_2024_3427269
crossref_primary_10_1007_s40030_024_00816_2
crossref_primary_10_1016_j_compag_2024_109232
crossref_primary_10_1016_j_neucom_2024_129057
crossref_primary_10_1016_j_compag_2024_109631
crossref_primary_10_34133_plantphenomics_0278
crossref_primary_10_1016_j_compag_2024_108822
crossref_primary_10_3390_s24020344
crossref_primary_10_3390_rs15092450
crossref_primary_10_3390_drones7040260
crossref_primary_10_1016_j_cropro_2024_107018
crossref_primary_10_1016_j_jestch_2025_101977
crossref_primary_10_1007_s43926_024_00066_5
crossref_primary_10_59267_ekoPolj2403957S
crossref_primary_10_3390_drones7060400
crossref_primary_10_1007_s11227_025_07002_6
crossref_primary_10_1016_j_robot_2024_104629
crossref_primary_10_1016_j_eja_2024_127477
crossref_primary_10_1007_s00521_023_09230_4
crossref_primary_10_1016_j_jag_2025_104424
crossref_primary_10_1038_s41598_024_80244_1
crossref_primary_10_1063_5_0229772
crossref_primary_10_3390_aerospace10080684
crossref_primary_10_1016_j_neucom_2025_129725
crossref_primary_10_1016_j_cja_2024_09_018
crossref_primary_10_1007_s10462_024_11033_5
crossref_primary_10_1016_j_eja_2024_127440
crossref_primary_10_1080_17538947_2024_2328827
crossref_primary_10_3390_drones8110664
crossref_primary_10_1080_00207543_2023_2232470
crossref_primary_10_1142_S0218001423540241
crossref_primary_10_1016_j_compag_2024_109501
crossref_primary_10_1016_j_compag_2024_109589
crossref_primary_10_1016_j_rineng_2025_104081
crossref_primary_10_1002_adfm_202412832
crossref_primary_10_30518_jav_1332849
crossref_primary_10_1016_j_comnet_2024_110856
crossref_primary_10_3390_drones8120782
Cites_doi 10.1016/j.isprsjprs.2017.11.011
10.1016/j.neunet.2017.07.017
10.3390/rs13071358
10.1016/j.compag.2018.02.016
10.1614/WS-05-54.2.346
10.3390/rs13214387
10.1016/j.rse.2018.06.028
10.1016/j.ecolind.2016.03.036
10.3389/fpls.2017.01111
10.1016/j.heliyon.2020.e05285
10.1016/j.isprsjprs.2009.06.004
10.1002/rob.21928
10.3390/rs11121443
10.3390/rs14030731
10.1109/5.726791
10.1038/nature10452
10.1016/j.compag.2020.105836
10.31256/WP2018.2
10.1111/wre.12275
10.1371/journal.pone.0196302
10.1016/j.eja.2017.11.002
10.1016/j.autcon.2021.104110
10.1109/JSEN.2021.3049471
10.3390/rs9111110
10.3390/rs10091423
10.1007/978-3-030-01264-9_8
10.1016/j.isprsjprs.2019.04.015
10.1016/j.compag.2021.106005
10.3389/fpls.2017.02002
10.1016/j.compag.2021.106621
10.1016/j.neucom.2021.06.072
10.1080/15481603.2018.1426091
10.3390/rs11111373
10.3390/rs14030782
10.1016/j.tplants.2018.11.007
10.1016/j.compag.2021.106506
10.1142/S2301385020500053
10.1016/j.neucom.2018.05.083
10.1109/CVPR.2016.91
10.1016/j.biosystemseng.2020.10.001
10.3390/rs11030330
10.1016/j.rse.2011.10.011
10.1109/TPAMI.2015.2389824
10.1109/MGRS.2020.2998816
10.1109/CVPR.2019.00020
10.1016/j.compag.2017.05.001
10.1109/MSP.2017.2738401
10.3390/rs13193841
10.1016/j.agwat.2021.107076
10.3390/rs9060583
10.3390/rs4061519
10.1109/CVPR.2017.690
10.3390/rs11091023
10.1186/s40537-019-0197-0
10.1016/j.isprsjprs.2016.03.014
10.1109/ACCESS.2020.3031896
10.3389/fpls.2022.934450
10.1016/j.atech.2021.100028
10.1109/LRA.2017.2774979
10.1109/TPAMI.2017.2699184
10.1109/ICCV48922.2021.00986
10.1109/ICCV.2019.00867
10.1016/j.ecoinf.2022.101715
10.3390/s17122726
10.1016/B978-0-12-386473-4.00005-1
10.1016/j.neucom.2019.11.118
10.1016/j.copbio.2020.09.003
10.3390/s19163595
10.3390/rs61212037
10.1016/j.compag.2019.105035
10.1016/j.compag.2018.10.017
10.1016/j.iot.2020.100187
10.1109/ACCESS.2019.2909530
10.3389/fpls.2020.558126
10.3390/rs13081562
10.1007/s10462-020-09825-6
10.1007/s10064-020-01766-2
10.1371/journal.pone.0187470
10.1109/LGRS.2011.2172185
10.1007/s00271-012-0382-9
10.1109/JSTARS.2021.3110842
10.3390/rs9070708
10.1109/CVPR.2015.7298965
10.1016/j.cviu.2007.09.014
10.3390/rs11182075
10.1016/j.mlwa.2021.100233
10.1109/CVPR.2017.660
10.1016/j.compag.2019.105052
10.1109/CVPR.2017.243
10.1080/07038992.2021.1881464
10.1016/j.compag.2022.107268
10.1007/s11119-022-09901-7
10.3390/rs4061671
10.1016/j.eswa.2022.118029
10.1016/j.compag.2020.105504
10.1007/s11119-022-09907-1
10.1109/CVPR.2017.634
10.1016/j.compag.2021.106067
10.1007/s11119-013-9322-9
10.3390/rs14010093
10.1371/journal.pone.0223906
10.1109/CVPR.2017.351
10.1109/CVPR.2016.90
10.1016/j.imavis.2020.104046
10.3389/fpls.2016.01419
10.1007/s12518-013-0120-x
10.1109/CVPR.2018.00474
10.1109/ICCV.1999.790410
10.1016/j.jag.2020.102177
10.1016/j.compag.2022.106812
10.1155/2017/3296874
10.1093/nsr/nwx106
10.1016/j.jnca.2019.102461
10.1016/j.compag.2020.105282
10.1016/j.neucom.2020.01.085
10.3390/s17122703
10.1016/j.compag.2020.105909
10.1016/j.neunet.2018.07.011
10.3390/electronics7090162
10.1109/TII.2020.2979237
10.3390/s18010260
10.1653/024.101.0229
10.1109/ICCV.2019.00140
10.1145/3505244
10.1016/j.compag.2020.105450
10.1126/science.1183899
10.1016/j.biosystemseng.2020.02.014
10.1109/TPAMI.2016.2644615
10.1109/ICCV.2017.324
10.1016/j.compag.2021.106456
10.1016/j.jag.2021.102456
10.3390/rs11243012
10.1016/j.autcon.2021.103786
10.3390/info10110349
10.3390/rs12091491
10.1016/j.compag.2021.106465
10.1016/j.compag.2015.09.001
10.3390/rs13061204
10.5194/bg-13-6545-2016
10.3390/rs10111690
10.1080/10095020.2017.1420509
10.1007/s11119-013-9334-5
10.1139/juvs-2014-0006
10.1016/j.rse.2019.111599
10.3390/rs61110395
10.3390/rs8040329
10.1080/01431161.2017.1422875
10.1109/CVPR.2018.00716
10.1007/978-3-030-01234-2_49
10.1109/ICCV.2015.169
10.1109/CVPR.2014.81
10.1007/s10846-017-0534-5
10.3390/rs12010017
10.1109/CVPR.2015.7298594
10.1016/j.compag.2020.105845
10.3390/rs13204091
10.1016/j.compag.2020.105708
10.3390/rs9050498
10.1016/j.eja.2020.126030
10.1016/j.rse.2020.112012
10.3390/rs10101513
10.1016/j.media.2020.101759
10.3390/rs12132136
10.1109/CVPR.2017.106
10.1162/neco.1989.1.4.541
10.1016/j.compag.2020.105665
10.3390/rs13193892
10.3390/w10050655
10.1016/j.isprsjprs.2019.12.010
10.7717/peerj.13064
10.1109/ACCESS.2021.3084358
10.1109/ACCESS.2019.2932119
10.4039/tce.2016.11
10.1117/12.2028624
10.1016/j.compag.2019.104963
10.1016/j.isprsjprs.2018.09.008
10.3390/s21196540
10.1016/j.agwat.2015.01.020
10.1109/TIE.2015.2478397
10.1109/ACCESS.2019.2895243
10.1016/j.biosystemseng.2018.10.018
10.3390/rs12010146
10.1016/j.eja.2006.01.001
10.3390/rs9080828
10.1007/978-981-19-2027-1_7
10.1016/j.geoderma.2018.09.046
10.1002/ps.5845
10.3390/rs10060824
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2022.11.020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 270
ExternalDocumentID 10_1016_j_neucom_2022_11_020
S0925231222013996
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c306t-282fc988ba3d8eb3999aaf164f1b4c0e6e857fbac4f70c0431073438abdbe8e13
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Apr 24 22:57:47 EDT 2025
Tue Jul 01 04:24:51 EDT 2025
Fri Feb 23 02:37:58 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Precision agriculture
Smart agriculture
Unmanned Aerial Vehicle (UAV)
Remote sensing
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-282fc988ba3d8eb3999aaf164f1b4c0e6e857fbac4f70c0431073438abdbe8e13
PageCount 29
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2022_11_020
crossref_primary_10_1016_j_neucom_2022_11_020
elsevier_sciencedirect_doi_10_1016_j_neucom_2022_11_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-21
PublicationDateYYYYMMDD 2023-01-21
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-21
  day: 21
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dai, Li, He, Sun (b0855) 2016; 29
H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, Pyramid scene parsing network, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881–2890, 2017.
Adão, Hruška, Pádua, Bessa, Peres, Morais, Sousa (b0140) 2017; 9
Hoffmann, Jensen, Thomsen, Nieto, Rasmussen, Friborg (b0380) 2016; 13
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788, 2016.
E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q.V. Le, Autoaugment: Learning augmentation policies from data, arXiv preprint arXiv:1805.09501, 2018.
Pan, Gao, Wu, Yan, Li (b0785) 2021; 21
Blaschke (b0715) 2010; 65
Zeng, Wu, Wang, Li, Liu, Liu (b0815) 2022; 71
Zhang, Ding, Chen, Zhang, Pan, Liang (b0450) 2020; 179
S. Han, H. Mao, and W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, arXiv preprint arXiv:1510.00149, 2015.
Zeng, Wang, Liu, Zhang, Hone, Liu (b1135) 2020
He, Hao, Xin (b0920) 2020; 8
Ren, He, Girshick, Sun (b0850) 2015; 28
Y. Bai, C. Nie, H. Wang, M. Cheng, S. Liu, X. Yu, M. Shao, Z. Wang, S. Wang, N. Tuohuti, et al., A fast and robust method for plant count in sunflower and maize at different seedling stages using high-resolution uav rgb imagery, Precision Agriculture, pp. 1–23, 2022.
S. Khan, M. Naseer, M. Hayat, S.W. Zamir, F.S. Khan, and M. Shah, Transformers in vision: A survey, ACM Computing Surveys (CSUR), 2021.
Shendryk, Sofonia, Garrard, Rist, Skocaj, Thorburn (b0205) 2020; 92
Messina, Modica (b0135) 2020; 12
Lambert, Hicks, Childs, Freckleton (b0295) 2018; 58
Smith, Su, Liu, Chen (b0435) 2017; 88
S. Bittel, V. Kaiser, M. Teichmann, and M. Thoma, Pixel-wise segmentation of street with neural networks, arXiv preprint arXiv:1511.00513, 2015.
Giordan, Adams, Aicardi, Alicandro, Allasia, Baldo, De Berardinis, Dominici, Godone, Hobbs (b0415) 2020; 79
Shirzadifar, Bajwa, Nowatzki, Bazrafkan (b0500) 2020; 200
Hall, Castilla, White, Cooke, Skakun (b0260) 2016; 148
J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440, 2015.
L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in Proceedings of the European conference on computer vision (ECCV), pp. 801–818, 2018.
Chen, Yang, Zhang, Zhu, Zeng, Wang, Wang, Wang, Qi, Lan (b0365) 2020; 177
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929, 2020.
O’Mahony, Campbell, Carvalho, Harapanahalli, Hernandez, Krpalkova, Riordan, Walsh (b0585) 2019
Jiang, Zhang, Qiao, Zhang, Zhang, Song (b1080) 2020; 174
Gonzalez-Dugo, Zarco-Tejada, Nicolás, Nortes, Alarcón, Intrigliolo, Fereres (b0515) 2013; 14
Zhong, Hu, Luo, Wang, Zhao, Zhang (b1020) 2020; 250
Kim, Park, Lee (b0250) 2018; 101
Singh, Duddu, Vail, Parkin, Shirtliffe (b0410) 2021; 47
Sagan, Maimaitijiang, Sidike, Eblimit, Peterson, Hartling, Esposito, Khanal, Newcomb, Pauli (b0510) 2019; 11
Wang, Su, Zhai, Meng, Liu (b0565) 2022; 14
Ge, Ding, Jin, Wang, Chen, Li, Liu, Xie (b0180) 2021; 13
Rossel, Adamchuk, Sudduth, McKenzie, Lobsey (b0445) 2011; 113
K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, Accelerating cnn inference on fpgas: A survey, arXiv preprint arXiv:1806.01683, 2018.
X. Zhang, X. Zhou, M. Lin, and J. Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6848–6856, 2018.
Bay, Ess, Tuytelaars, Van Gool (b0595) 2008; 110
M. Jarman, J. Vesey, and P. Febvre, Unmanned aerial vehicles (uavs) for uk agriculture: Creating an invisible precision farming technology, White Paper, July 2016.
Badrinarayanan, Kendall, Cipolla (b0760) 2017; 39
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b1010) 2014
Green (b0040) 2020
Cheng, Han (b0820) 2016; 117
Yang, Tseng, Hsu, Yang, Lai, Wu (b1035) 2021; 13
Wang, Deng (b1050) 2018; 312
Junos, Mohd Khairuddin, Thannirmalai, Dahari (b0335) 2021
López-Granados, Jurado-Expósito, Peña-Barragán, García-Torres (b0395) 2006; 54
Su, Yi, Su, Mi, Liu, Hu, Xu, Guo, Chen (b0055) 2020; 17
Kellenberger, Marcos, Tuia (b1060) 2018; 216
Li, Niu, Chen, Li, Wu, Zhao (b0470) 2016; 67
Neupane, Horanont, Hung (b0900) 2019; 14
Coombes, Fletcher, Chen, Liu (b0965) 2020; 37
Boursianis, Papadopoulou, Diamantoulakis, Liopa-Tsakalidi, Barouchas, Salahas, Karagiannidis, Wan, Goudos (b0110) 2022; 18
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b0665) 2017; 30
Sa, Popović, Khanna, Chen, Lottes, Liebisch, Nieto, Stachniss, Walter, Siegwart (b1025) 2018; 10
Khan, Sohail, Zahoora, Qureshi (b0695) 2020; 53
Veeranampalayam Sivakumar, Li, Scott, Psota, Jhala, Luck, Shi (b0310) 2020; 12
Liu, Xiang, Jin, Liu, Yan, Wang (b1040) 2021; 13
Q. Yang, B. She, L. Huang, Y. Yang, G. Zhang, M. Zhang, Q. Hong, and D. Zhang, Extraction of soybean planting area based on feature fusion technology of multi-source low altitude unmanned aerial vehicle images, Ecological Informatics, p. 101715, 2022.
Zhang, Xu, Su, Yang, Liu, Chen, Li (b0770) 2021; 13
Bendig, Bolten, Bennertz, Broscheit, Eichfuss, Bareth (b0195) 2014; 6
S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, Aggregated residual transformations for deep neural networks, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1492–1500, 2017.
Sridhar, Balakrishnan, Jacob, Sillanpää, Dayanandan (b0010) 2022
Osco, Junior, Ramos, de Castro Jorge, Fatholahi, de Andrade Silva, Matsubara, Pistori, Gonçalves, Li (b0130) 2021; 102
Wang, Ge, Dai, Ahmad, Dai, Zhou, Qin, Gu (b0935) 2018; 39
Shen, Chen, Mi, Su, Huang, Song, Fang, Su (b0455) 2022; 200
T. Duckett, S. Pearson, S. Blackmore, B. Grieve, W.-H. Chen, G. Cielniak, J. Cleaversmith, J. Dai, S. Davis, C. Fox, et al., Agricultural robotics: the future of robotic agriculture, arXiv preprint arXiv:1806.06762, 2018.
Bellvert, Zarco-Tejada, Girona, Fereres (b0280) 2014; 15
Gebbers, Adamchuk (b0020) 2010; 327
Zhao, Shi, Liu, Hovis, Duan, Shi (b0170) 2019; 11
A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, et al., Searching for mobilenetv3, in Proceedings of the IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.
T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, Feature pyramid networks for object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125, 2017.
Chen, Yang, Guo, Li (b0955) 2015; 63
J. Redmon and A. Farhadi, Yolov3: An incremental improvement, arXiv preprint arXiv:1804.02767, 2018.
He, Fang, Zhao, Wu, Fu, Li, Majeed, Dhupia (b0325) 2022; 195
J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, et al., Speed/accuracy trade-offs for modern convolutional object detectors, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7310–7311, 2017.
Bai, Chen, Chen, Cui, Tai, Zhang, Cui, Ning (b0175) 2021; 190
Su, Liu, Hu, Xu, Guo, Chen (b0230) 2019; 167
H.F. Mahmoud, Parametric versus semi and nonparametric regression models, arXiv preprint arXiv:1906.10221, 2019.
Tetila, Machado, Astolfi, de Souza Belete, Amorim, Roel, Pistori (b0245) 2020; 179
Jin, Zarco-Tejada, Schmidhalter, Reynolds, Hawkesford, Varshney, Yang, Nie, Li, Ming (b0105) 2020; 9
Vanegas, Bratanov, Powell, Weiss, Gonzalez (b0240) 2018; 18
Luo, Liu, Zhang, Wang, Xi, Nie, Ma, Lin, Zhou (b0525) 2021; 182
Gago, Douthe, Coopman, Gallego, Ribas-Carbo, Flexas, Escalona, Medrano (b0270) 2015; 153
Ju, Son (b0975) 2018; 7
Mukherjee, Misra, Raghuwanshi (b0115) 2019; 148
K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, 2014.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
Ndlovu, Odindi, Sibanda, Mutanga, Clulow, Chimonyo, Mabhaudhi (b0285) 2021; 13
E. Olaniyi, D. Chen, Y. Lu, and Y. Huang, Generative adversarial networks for image augmentation in agriculture: a systematic review, arXiv preprint arXiv:2204.04707, 2022.
Huang, Deng, Lan, Yang, Deng, Zhang (b0755) 2018; 13
Whitehead, Hugenholtz (b0990) 2014; 2
Tsouros, Bibi, Sarigiannidis (b0090) 2019; 10
Bouguettaya, Zarzour, Kechida, Taberkit (b0080) 2022
Feng, Zhou, Vories, Sudduth, Zhang (b0400) 2020; 193
Ma, Liu, Zhang, Ye, Yin, Johnson (b0060) 2019; 152
Yang, Liu, Zhao, Li, Huang, Yu, Xu, Yang, Zhu, Zhang (b0100) 2017; 8
Carrio, Sampedro, Rodriguez-Ramos, Campoy (b0035) 2017; 2017
Ivushkin, Bartholomeus, Bregt, Pulatov, Franceschini, Kramer, van Loo, Roman, Finkers (b0185) 2019; 338
Watts, Ambrosia, Hinkley (b0420) 2012; 4
Yang, Huang, Kuo, Tsai, Lin (b0710) 2017; 9
Townsend, Jiya, Martinson, Bessarabov, Gouws (b0960) 2020; 6
Koparan, Koc, Privette, Sawyer, Sharp (b0985) 2018; 10
Santos, Lacerda, Rossi (b0345) 2021; 14
Lv, Ma, Chen, Pei, Zhou, Xiao, Li (b1075) 2021; 14
Baluja, Diago, Balda, Zorer, Meggio, Morales, Tardaguila (b0275) 2012; 30
Ronneberger, Fischer, Brox (b0765) 2015
Deng, Mao, Li, Hu, Duan, Yan (b0505) 2018; 146
Su, Yi, Liu, Guo, Chen (b0560) 2017; 17
Shorten, Khoshgoftaar (b0575) 2019; 6
Zhou, Yungbluth, Vong, Scaboo, Zhou (b0340) 2019; 11
Zheng, Cheng, Li, Zhou, Yao, Tian, Cao, Zhu (b0490) 2018; 10
Zhou, Lao, Yang, Zhang, Chen, Chen, Chen, Ning, Yang (b0385) 2021; 256
ten Harkel, Bartholomeus, Kooistra (b0190) 2019; 12
Cinat, Di Gennaro, Berton, Matese (b0540) 2019; 11
Audebert, Le Saux, Lefèvre (b1125) 2018; 140
Kim, Kim, Ju, Son (b0045) 2019; 7
Bah, Hafiane, Canals (b0950)
10.1016/j.neucom.2022.11.020_b0860
Zhao (10.1016/j.neucom.2022.11.020_b0170) 2019; 11
10.1016/j.neucom.2022.11.020_b0980
Mohanty (10.1016/j.neucom.2022.11.020_b1015) 2016; 7
10.1016/j.neucom.2022.11.020_b0865
10.1016/j.neucom.2022.11.020_b0620
Fu (10.1016/j.neucom.2022.11.020_b0720) 2017; 9
Längkvist (10.1016/j.neucom.2022.11.020_b0735) 2016; 8
10.1016/j.neucom.2022.11.020_b1150
Kim (10.1016/j.neucom.2022.11.020_b0250) 2018; 101
Sankaran (10.1016/j.neucom.2022.11.020_b0485) 2015; 118
Lambert (10.1016/j.neucom.2022.11.020_b0295) 2018; 58
Vaswani (10.1016/j.neucom.2022.11.020_b0665) 2017; 30
Gebbers (10.1016/j.neucom.2022.11.020_b0020) 2010; 327
10.1016/j.neucom.2022.11.020_b0745
10.1016/j.neucom.2022.11.020_b0625
Licciardi (10.1016/j.neucom.2022.11.020_b0925) 2011; 9
Pan (10.1016/j.neucom.2022.11.020_b0155) 2012; 119
10.1016/j.neucom.2022.11.020_b0750
10.1016/j.neucom.2022.11.020_b0630
10.1016/j.neucom.2022.11.020_b0870
10.1016/j.neucom.2022.11.020_b0875
Bellvert (10.1016/j.neucom.2022.11.020_b0280) 2014; 15
Zeng (10.1016/j.neucom.2022.11.020_b0815) 2022; 71
Wang (10.1016/j.neucom.2022.11.020_b0405) 2013
Zhang (10.1016/j.neucom.2022.11.020_b0770) 2021; 13
Giordan (10.1016/j.neucom.2022.11.020_b0415) 2020; 79
Shendryk (10.1016/j.neucom.2022.11.020_b0205) 2020; 92
Ronneberger (10.1016/j.neucom.2022.11.020_b0765) 2015
Torres-Sanchez (10.1016/j.neucom.2022.11.020_b0535) 2018; 176
10.1016/j.neucom.2022.11.020_b0635
Zhong (10.1016/j.neucom.2022.11.020_b1020) 2020; 250
ten Harkel (10.1016/j.neucom.2022.11.020_b0190) 2019; 12
10.1016/j.neucom.2022.11.020_b0165
Zhou (10.1016/j.neucom.2022.11.020_b1090) 2018; 5
10.1016/j.neucom.2022.11.020_b0840
Ivushkin (10.1016/j.neucom.2022.11.020_b0185) 2019; 338
Cheng (10.1016/j.neucom.2022.11.020_b0820) 2016; 117
dos Santos Ferreira (10.1016/j.neucom.2022.11.020_b0945) 2019; 165
Khanal (10.1016/j.neucom.2022.11.020_b0015) 2017; 139
López-Granados (10.1016/j.neucom.2022.11.020_b0395) 2006; 54
Su (10.1016/j.neucom.2022.11.020_b0300) 2022; 192
Gago (10.1016/j.neucom.2022.11.020_b0270) 2015; 153
Ndlovu (10.1016/j.neucom.2022.11.020_b0285) 2021; 13
Tan (10.1016/j.neucom.2022.11.020_b0650) 2019
Hasan (10.1016/j.neucom.2022.11.020_b0290) 2021; 184
Li (10.1016/j.neucom.2022.11.020_b0470) 2016; 67
Ma (10.1016/j.neucom.2022.11.020_b0060) 2019; 152
Zhou (10.1016/j.neucom.2022.11.020_b0385) 2021; 256
Carrio (10.1016/j.neucom.2022.11.020_b0035) 2017; 2017
Badrinarayanan (10.1016/j.neucom.2022.11.020_b0760) 2017; 39
Karimi (10.1016/j.neucom.2022.11.020_b0070) 2020; 65
Madec (10.1016/j.neucom.2022.11.020_b0520) 2017; 8
LeCun (10.1016/j.neucom.2022.11.020_b0615) 1989; 1
He (10.1016/j.neucom.2022.11.020_b0325) 2022; 195
Gonzalez-Dugo (10.1016/j.neucom.2022.11.020_b0515) 2013; 14
Shen (10.1016/j.neucom.2022.11.020_b0455) 2022; 200
Bhandari (10.1016/j.neucom.2022.11.020_b0225) 2020; 176
Lv (10.1016/j.neucom.2022.11.020_b1075) 2021; 14
Hoffmann (10.1016/j.neucom.2022.11.020_b0380) 2016; 13
10.1016/j.neucom.2022.11.020_b0660
Wu (10.1016/j.neucom.2022.11.020_b0825) 2020; 396
Boursianis (10.1016/j.neucom.2022.11.020_b0110) 2022; 18
Sa (10.1016/j.neucom.2022.11.020_b1025) 2018; 10
Jung (10.1016/j.neucom.2022.11.020_b0025) 2021; 70
10.1016/j.neucom.2022.11.020_b0780
Fawakherji (10.1016/j.neucom.2022.11.020_b1110) 2019
Sharma (10.1016/j.neucom.2022.11.020_b0740) 2017; 95
Audebert (10.1016/j.neucom.2022.11.020_b1125) 2018; 140
Nguyen (10.1016/j.neucom.2022.11.020_b0215) 2006; 24
Ge (10.1016/j.neucom.2022.11.020_b0180) 2021; 13
Neupane (10.1016/j.neucom.2022.11.020_b0370) 2021; 13
Osco (10.1016/j.neucom.2022.11.020_b0130) 2021; 102
Lu (10.1016/j.neucom.2022.11.020_b0480) 2018; 21
Krizhevsky (10.1016/j.neucom.2022.11.020_b0610) 2012; 25
10.1016/j.neucom.2022.11.020_b0795
Schmarje (10.1016/j.neucom.2022.11.020_b0800) 2021; 9
10.1016/j.neucom.2022.11.020_b0675
10.1016/j.neucom.2022.11.020_b0555
Yao (10.1016/j.neucom.2022.11.020_b0125) 2019; 11
Yang (10.1016/j.neucom.2022.11.020_b0100) 2017; 8
Baluja (10.1016/j.neucom.2022.11.020_b0275) 2012; 30
Khan (10.1016/j.neucom.2022.11.020_b0695) 2020; 53
10.1016/j.neucom.2022.11.020_b0670
Zhang (10.1016/j.neucom.2022.11.020_b0450) 2020; 179
Santos (10.1016/j.neucom.2022.11.020_b0345) 2021; 14
Deng (10.1016/j.neucom.2022.11.020_b1005) 2009
Bah (10.1016/j.neucom.2022.11.020_b0950) 2018; 10
Chen (10.1016/j.neucom.2022.11.020_b0365) 2020; 177
Yang (10.1016/j.neucom.2022.11.020_b0710) 2017; 9
Moeinizade (10.1016/j.neucom.2022.11.020_b0350) 2022; 7
Huang (10.1016/j.neucom.2022.11.020_b0755) 2018; 13
Pourroostaei Ardakani (10.1016/j.neucom.2022.11.020_b0550) 2021; vol. 2
Su (10.1016/j.neucom.2022.11.020_b0055) 2020; 17
10.1016/j.neucom.2022.11.020_b0640
10.1016/j.neucom.2022.11.020_b0880
10.1016/j.neucom.2022.11.020_b0645
Xi (10.1016/j.neucom.2022.11.020_b0930) 2021; 191
Yang (10.1016/j.neucom.2022.11.020_b1035) 2021; 13
Zhang (10.1016/j.neucom.2022.11.020_b1130) 2021; 180
Smith (10.1016/j.neucom.2022.11.020_b0435) 2017; 88
Chen (10.1016/j.neucom.2022.11.020_b0790) 2017; 40
Mylonas (10.1016/j.neucom.2022.11.020_b1045) 2022; 2
Ju (10.1016/j.neucom.2022.11.020_b0975) 2018; 7
Hall (10.1016/j.neucom.2022.11.020_b0260) 2016; 148
Albani (10.1016/j.neucom.2022.11.020_b0970) 2017
Su (10.1016/j.neucom.2022.11.020_b0390) 2020; 8
Mnih (10.1016/j.neucom.2022.11.020_b0730) 2013
10.1016/j.neucom.2022.11.020_b0655
Zeng (10.1016/j.neucom.2022.11.020_b1135) 2020
10.1016/j.neucom.2022.11.020_b0895
10.1016/j.neucom.2022.11.020_b0775
Wang (10.1016/j.neucom.2022.11.020_b1050) 2018; 312
Di Cicco (10.1016/j.neucom.2022.11.020_b1070) 2017
10.1016/j.neucom.2022.11.020_b0890
10.1016/j.neucom.2022.11.020_b1065
Christiansen (10.1016/j.neucom.2022.11.020_b0545) 2017; 17
Messina (10.1016/j.neucom.2022.11.020_b0135) 2020; 12
Maimaitijiang (10.1016/j.neucom.2022.11.020_b0315) 2020; 237
Tsouros (10.1016/j.neucom.2022.11.020_b0090) 2019; 10
Adão (10.1016/j.neucom.2022.11.020_b0140) 2017; 9
Su (10.1016/j.neucom.2022.11.020_b0230) 2019; 167
Blaschke (10.1016/j.neucom.2022.11.020_b0715) 2010; 65
Koparan (10.1016/j.neucom.2022.11.020_b0985) 2018; 10
Maes (10.1016/j.neucom.2022.11.020_b0095) 2019; 24
Liu (10.1016/j.neucom.2022.11.020_b0885) 2016
Yue (10.1016/j.neucom.2022.11.020_b0200) 2017; 9
Dai (10.1016/j.neucom.2022.11.020_b0855) 2016; 29
Ren (10.1016/j.neucom.2022.11.020_b0850) 2015; 28
Liu (10.1016/j.neucom.2022.11.020_b1040) 2021; 13
Foley (10.1016/j.neucom.2022.11.020_b0005) 2011; 478
10.1016/j.neucom.2022.11.020_b0460
Lin (10.1016/j.neucom.2022.11.020_b1030) 2019; 7
10.1016/j.neucom.2022.11.020_b0580
Su (10.1016/j.neucom.2022.11.020_b0150) 2018; 155
10.1016/j.neucom.2022.11.020_b0905
Coombes (10.1016/j.neucom.2022.11.020_b0965) 2020; 37
Watts (10.1016/j.neucom.2022.11.020_b0420) 2012; 4
Kellenberger (10.1016/j.neucom.2022.11.020_b1060) 2018; 216
Pan (10.1016/j.neucom.2022.11.020_b0785) 2021; 21
Shakhatreh (10.1016/j.neucom.2022.11.020_b0995) 2019; 7
Vanegas (10.1016/j.neucom.2022.11.020_b0240) 2018; 18
Shirzadifar (10.1016/j.neucom.2022.11.020_b0500) 2020; 200
10.1016/j.neucom.2022.11.020_b0590
Bouguettaya (10.1016/j.neucom.2022.11.020_b0080) 2022
Zhang (10.1016/j.neucom.2022.11.020_b0210) 2019; 167
Liu (10.1016/j.neucom.2022.11.020_b0160) 2020; 12
Green (10.1016/j.neucom.2022.11.020_b0040) 2020
Su (10.1016/j.neucom.2022.11.020_b0560) 2017; 17
Duarte-Carvajalino (10.1016/j.neucom.2022.11.020_b0220) 2018; 10
Tetila (10.1016/j.neucom.2022.11.020_b0245) 2020; 179
Kamilaris (10.1016/j.neucom.2022.11.020_b0065) 2018; 147
10.1016/j.neucom.2022.11.020_b0910
Bashar (10.1016/j.neucom.2022.11.020_b0075) 2019; 1
10.1016/j.neucom.2022.11.020_b0685
Sa (10.1016/j.neucom.2022.11.020_b0305) 2017; 3
10.1016/j.neucom.2022.11.020_b0440
Whitehead (10.1016/j.neucom.2022.11.020_b0990) 2014; 2
Jin (10.1016/j.neucom.2022.11.020_b0105) 2020; 9
10.1016/j.neucom.2022.11.020_b1095
10.1016/j.neucom.2022.11.020_b0680
Roosjen (10.1016/j.neucom.2022.11.020_b0235) 2020; 76
Lin (10.1016/j.neucom.2022.11.020_b1010) 2014
Kim (10.1016/j.neucom.2022.11.020_b0045) 2019; 7
Psiroukis (10.1016/j.neucom.2022.11.020_b0355) 2022; 14
O’Mahony (10.1016/j.neucom.2022.11.020_b0585) 2019
Maddikunta (10.1016/j.neucom.2022.11.020_b0085) 2021; 21
10.1016/j.neucom.2022.11.020_b0330
Luo (10.1016/j.neucom.2022.11.020_b0525) 2021; 182
Park (10.1016/j.neucom.2022.11.020_b0265) 2017; 9
Rossel (10.1016/j.neucom.2022.11.020_b0445) 2011; 113
10.1016/j.neucom.2022.11.020_b0570
10.1016/j.neucom.2022.11.020_b0690
Mukherjee (10.1016/j.neucom.2022.11.020_b0115) 2019; 148
He (10.1016/j.neucom.2022.11.020_b0920) 2020; 8
Hung (10.1016/j.neucom.2022.11.020_b0605) 2014; 6
Hao (10.1016/j.neucom.2022.11.020_b0705) 2020; 406
Li (10.1016/j.neucom.2022.11.020_b0475) 2021; 190
Liu (10.1016/j.neucom.2022.11.020_b0725) 2018; 55
Bendig (10.1016/j.neucom.2022.11.020_b0195) 2014; 6
Meng (10.1016/j.neucom.2022.11.020_b0145) 2022; 10
Buda (10.1016/j.neucom.2022.11.020_b0810) 2018; 106
Mi (10.1016/j.neucom.2022.11.020_b0050) 2020; 11
10.1016/j.neucom.2022.11.020_b0940
Apolo-Apolo (10.1016/j.neucom.2022.11.020_b0320) 2020; 115
Junos (10.1016/j.neucom.2022.11.020_b0335) 2021
Li (10.1016/j.neucom.2022.11.020_b0600) 2022; 207
Wu (10.1016/j.neucom.2022.11.020_b0915) 2020; 174
Wang (10.1016/j.neucom.2022.11.020_b0565) 2022; 14
Nex (10.1016/j.neucom.2022.11.020_b0430) 2014; 6
Zhang (10.1016/j.neucom.2022.11.020_b0255) 2018; 13
Abdulridha (10.1016/j.neucom.2022.11.020_b0375) 2019; 11
Bai (10.1016/j.neucom.2022.11.020_b0175) 2021; 190
Shorten (10.1016/j.neucom.2022.11.020_b0575) 2019; 6
Alsalam (10.1016/j.neucom.2022.11.020_b1145) 2017
Townsend (10.1016/j.neucom.2022.11.020_b0960) 2020; 6
Yi (10.1016/j.neucom.2022.11.020_b0465) 2021; 459
10.1016/j.neucom.2022.11.020_b1000
Mittal (10.1016/j.neucom.2022.11.020_b0830) 2020; 104
Gogoll (10.1016/j.neucom.2022.11.020_b1055) 2020
10.1016/j.neucom.2022.11.020_b0030
Delavarpour (10.1016/j.neucom.2022.11.020_b0120) 2021; 13
Bay (10.1016/j.neucom.2022.11.020_b0595) 2008; 110
10.1016/j.neucom.2022.11.020_b0835
Feng (10.1016/j.neucom.2022.11.020_b0400) 2020; 193
Veeranampalayam Sivakumar (10.1016/j.neucom.2022.11.020_b0310) 2020; 12
Zhou (10.1016/j.neucom.2022.11.020_b0340) 2019; 11
Jiang (10.1016/j.neucom.2022.11.020_b1080) 2020; 174
Wang (10.1016/j.neucom.2022.11.0
References_xml – start-page: 1
  year: 2021
  end-page: 15
  ident: b0335
  article-title: Automatic detection of oil palm fruits from uav images using an improved yolo model
  publication-title: The Visual Computer
– volume: 5
  start-page: 44
  year: 2018
  end-page: 53
  ident: b1090
  article-title: A brief introduction to weakly supervised learning
  publication-title: National science review
– volume: 13
  start-page: 6545
  year: 2016
  end-page: 6563
  ident: b0380
  article-title: Crop water stress maps for an entire growing season from visible and thermal uav imagery
  publication-title: Biogeosciences
– volume: 8
  start-page: 329
  year: 2016
  ident: b0735
  article-title: Classification and segmentation of satellite orthoimagery using convolutional neural networks
  publication-title: Remote Sensing
– year: 2013
  ident: b0730
  article-title: Machine learning for aerial image labeling
– volume: 21
  start-page: 21
  year: 2018
  end-page: 32
  ident: b0480
  article-title: A survey on vision-based uav navigation
  publication-title: Geo-spatial information science
– volume: 14
  start-page: 660
  year: 2013
  end-page: 678
  ident: b0515
  article-title: Using high resolution uav thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard
  publication-title: Precision Agriculture
– volume: 396
  start-page: 39
  year: 2020
  end-page: 64
  ident: b0825
  article-title: Recent advances in deep learning for object detection
  publication-title: Neurocomputing
– volume: 70
  start-page: 15
  year: 2021
  end-page: 22
  ident: b0025
  article-title: The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems
  publication-title: Current Opinion in Biotechnology
– volume: 34
  start-page: 96
  year: 2017
  end-page: 108
  ident: b1115
  article-title: Deep multimodal learning: A survey on recent advances and trends
  publication-title: IEEE signal processing magazine
– volume: 10
  start-page: 349
  year: 2019
  ident: b0090
  article-title: A review on uav-based applications for precision agriculture
  publication-title: Information
– reference: A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, et al., Searching for mobilenetv3, in Proceedings of the IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.
– volume: 2017
  year: 2017
  ident: b0035
  article-title: A review of deep learning methods and applications for unmanned aerial vehicles
  publication-title: Journal of Sensors
– reference: Y. Bai, C. Nie, H. Wang, M. Cheng, S. Liu, X. Yu, M. Shao, Z. Wang, S. Wang, N. Tuohuti, et al., A fast and robust method for plant count in sunflower and maize at different seedling stages using high-resolution uav rgb imagery, Precision Agriculture, pp. 1–23, 2022.
– volume: 6
  start-page: 1
  year: 2014
  end-page: 15
  ident: b0430
  article-title: Uav for 3d mapping applications: a review
  publication-title: Applied geomatics
– volume: 7
  start-page: 17736
  year: 2019
  end-page: 17749
  ident: b1030
  article-title: Fourier dense network to conduct plant classification using uav-based optical images
  publication-title: IEEE Access
– reference: T. Duckett, S. Pearson, S. Blackmore, B. Grieve, W.-H. Chen, G. Cielniak, J. Cleaversmith, J. Dai, S. Davis, C. Fox, et al., Agricultural robotics: the future of robotic agriculture, arXiv preprint arXiv:1806.06762, 2018.
– volume: 71
  start-page: 1
  year: 2022
  end-page: 14
  ident: b0815
  article-title: A small-sized object detection oriented multi-scale feature fusion approach with application to defect detection
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 76
  start-page: 2994
  year: 2020
  end-page: 3002
  ident: b0235
  article-title: Deep learning for automated detection of drosophila suzukii: potential for uav-based monitoring
  publication-title: Pest Management Science
– volume: 88
  start-page: 329
  year: 2017
  end-page: 346
  ident: b0435
  article-title: Disturbance observer based control with anti-windup applied to a small fixed wing uav for disturbance rejection
  publication-title: Journal of Intelligent & Robotic Systems
– volume: 18
  start-page: 260
  year: 2018
  ident: b0240
  article-title: A novel methodology for improving plant pest surveillance in vineyards and crops using uav-based hyperspectral and spatial data
  publication-title: Sensors
– reference: H. Le and D. Samaras, Shadow removal via shadow image decomposition, in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8578–8587, 2019.
– volume: 39
  start-page: 2079
  year: 2018
  end-page: 2088
  ident: b0935
  article-title: Unsupervised discrimination between lodged and non-lodged winter wheat: a case study using a low-cost unmanned aerial vehicle
  publication-title: International Journal of Remote Sensing
– volume: 21
  start-page: 6540
  year: 2021
  ident: b0785
  article-title: A deep-learning-based approach for wheat yellow rust disease recognition from unmanned aerial vehicle images
  publication-title: Sensors
– reference: T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, Focal loss for dense object detection, in Proceedings of the IEEE international conference on computer vision, pp. 2980–2988, 2017.
– volume: 237
  year: 2020
  ident: b0315
  article-title: Soybean yield prediction from uav using multimodal data fusion and deep learning
  publication-title: Remote sensing of environment
– volume: 58
  start-page: 35
  year: 2018
  end-page: 45
  ident: b0295
  article-title: Evaluating the potential of unmanned aerial systems for mapping weeds at field scales: a case study with alopecurus myosuroides
  publication-title: Weed research
– volume: 155
  start-page: 157
  year: 2018
  end-page: 166
  ident: b0150
  article-title: Wheat yellow rust monitoring by learning from multispectral uav aerial imagery
  publication-title: Computers and electronics in agriculture
– reference: A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929, 2020.
– reference: K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, Accelerating cnn inference on fpgas: A survey, arXiv preprint arXiv:1806.01683, 2018.
– volume: 207
  year: 2022
  ident: b0600
  article-title: Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision
  publication-title: Expert Systems with Applications
– volume: 2
  start-page: 69
  year: 2014
  end-page: 85
  ident: b0990
  article-title: Remote sensing of the environment with small unmanned aircraft systems (uass), part 1: A review of progress and challenges
  publication-title: Journal of Unmanned Vehicle Systems
– volume: 8
  start-page: 71
  year: 2020
  end-page: 83
  ident: b0390
  article-title: Machine learning-based crop drought mapping system by uav remote sensing rgb imagery
  publication-title: Unmanned systems
– start-page: 21
  year: 2016
  end-page: 37
  ident: b0885
  article-title: Ssd: Single shot multibox detector
  publication-title: European conference on computer vision
– volume: 11
  start-page: 3012
  year: 2019
  ident: b0170
  article-title: Finer classification of crops by fusing uav images and sentinel-2a data
  publication-title: Remote Sensing
– reference: J. Redmon and A. Farhadi, Yolov3: An incremental improvement, arXiv preprint arXiv:1804.02767, 2018.
– reference: X. Zhang, X. Zhou, M. Lin, and J. Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6848–6856, 2018.
– reference: L. Perez and J. Wang, The effectiveness of data augmentation in image classification using deep learning, arXiv preprint arXiv:1712.04621, 2017.
– volume: 9
  start-page: 583
  year: 2017
  ident: b0710
  article-title: Spatial and spectral hybrid image classification for rice lodging assessment through uav imagery
  publication-title: Remote Sensing
– volume: 55
  start-page: 243
  year: 2018
  end-page: 264
  ident: b0725
  article-title: Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system
  publication-title: GIScience & remote sensing
– volume: 24
  start-page: 152
  year: 2019
  end-page: 164
  ident: b0095
  article-title: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture
  publication-title: Trends in plant science
– volume: 167
  year: 2019
  ident: b0230
  article-title: Spatio-temporal monitoring of wheat yellow rust using uav multispectral imagery
  publication-title: Computers and electronics in agriculture
– reference: J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440, 2015.
– volume: 17
  start-page: 2726
  year: 2017
  ident: b0560
  article-title: Dimension reduction aided hyperspectral image classification with a small-sized training dataset: experimental comparisons
  publication-title: Sensors
– start-page: 4319
  year: 2017
  end-page: 4325
  ident: b0970
  article-title: Field coverage and weed mapping by uav swarms
  publication-title: in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– volume: 152
  start-page: 166
  year: 2019
  end-page: 177
  ident: b0060
  article-title: Deep learning in remote sensing applications: A meta-analysis and review
  publication-title: ISPRS journal of photogrammetry and remote sensing
– reference: J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788, 2016.
– volume: 117
  start-page: 11
  year: 2016
  end-page: 28
  ident: b0820
  article-title: A survey on object detection in optical remote sensing images
  publication-title: ISPRS Journal of Photogrammetry and Remote sensing
– volume: 179
  year: 2020
  ident: b0450
  article-title: Automatic extraction of wheat lodging area based on transfer learning method and deeplabv3+ network
  publication-title: Computers and Electronics in Agriculture
– reference: S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, Aggregated residual transformations for deep neural networks, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1492–1500, 2017.
– volume: 14
  start-page: 9318
  year: 2021
  end-page: 9333
  ident: b1075
  article-title: Remote sensing data augmentation through adversarial training
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 459
  start-page: 290
  year: 2021
  end-page: 301
  ident: b0465
  article-title: Probabilistic faster r-cnn with stochastic region proposing: Towards object detection and recognition in remote sensing imagery
  publication-title: Neurocomputing
– volume: 14
  start-page: 731
  year: 2022
  ident: b0355
  article-title: Assessment of different object detectors for the maturity level classification of broccoli crops using uav imagery
  publication-title: Remote Sensing
– volume: 21
  start-page: 17608
  year: 2021
  end-page: 17619
  ident: b0085
  article-title: Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges
  publication-title: IEEE Sensors Journal
– volume: 7
  start-page: 1419
  year: 2016
  ident: b1015
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Frontiers in plant science
– volume: 115
  year: 2020
  ident: b0320
  article-title: Deep learning techniques for estimation of the yield and size of citrus fruits using a uav
  publication-title: European Journal of Agronomy
– volume: 17
  start-page: 2703
  year: 2017
  ident: b0545
  article-title: Designing and testing a uav mapping system for agricultural field surveying
  publication-title: Sensors
– reference: M. Jarman, J. Vesey, and P. Febvre, Unmanned aerial vehicles (uavs) for uk agriculture: Creating an invisible precision farming technology, White Paper, July 2016.
– volume: 7
  start-page: 162
  year: 2018
  ident: b0975
  article-title: Multiple uav systems for agricultural applications: Control, implementation, and evaluation
  publication-title: Electronics
– start-page: 1
  year: 2022
  end-page: 17
  ident: b0010
  article-title: Global impact of covid-19 on agriculture: role of sustainable agriculture and digital farming
  publication-title: Environmental Science and Pollution Research
– volume: 14
  start-page: 93
  year: 2021
  ident: b0345
  article-title: L. d. A. Moreno, M.F. Oliveira, C. Pilon, R.P. Silva, and G. Vellidis, Using uav and multispectral images to estimate peanut maturity variability on irrigated and rainfed fields applying linear models and artificial neural networks
  publication-title: Remote Sensing
– volume: 8
  start-page: 189043
  year: 2020
  end-page: 189053
  ident: b0920
  article-title: A robust method for wheatear detection using uav in natural scenes
  publication-title: IEEE Access
– volume: 101
  start-page: 330
  year: 2018
  end-page: 334
  ident: b0250
  article-title: Potential of unmanned aerial sampling for monitoring insect populations in rice fields
  publication-title: Florida Entomologist
– volume: vol. 2
  start-page: 255
  year: 2021
  end-page: 270
  ident: b0550
  article-title: Reinforcement learning-enabled uav itinerary planning for remote sensing applications in smart farming
  publication-title: Telecom
– volume: 11
  start-page: 1023
  year: 2019
  ident: b0540
  article-title: Comparison of unsupervised algorithms for vineyard canopy segmentation from uav multispectral images
  publication-title: Remote Sensing
– volume: 13
  start-page: 4091
  year: 2021
  ident: b0285
  article-title: A comparative estimation of maize leaf water content using machine learning techniques and unmanned aerial vehicle (uav)-based proximal and remotely sensed data
  publication-title: Remote Sensing
– reference: G. Huang, Z. Liu, L. Van Der Maaten, and K.Q. Weinberger, Densely connected convolutional networks, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708, 2017.
– volume: 24
  start-page: 349
  year: 2006
  end-page: 356
  ident: b0215
  article-title: Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression
  publication-title: European Journal of Agronomy
– volume: 15
  start-page: 361
  year: 2014
  end-page: 376
  ident: b0280
  article-title: Mapping crop water stress index in a ‘pinot-noir’vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle
  publication-title: Precision agriculture
– volume: 176
  start-page: 172
  year: 2018
  end-page: 184
  ident: b0535
  article-title: Mapping the 3d structure of almond trees using uav acquired photogrammetric point clouds and object-based image analysis
  publication-title: Biosystems engineering
– volume: 12
  start-page: 17
  year: 2019
  ident: b0190
  article-title: Biomass and crop height estimation of different crops using uav-based lidar
  publication-title: Remote Sensing
– volume: 102
  year: 2021
  ident: b0130
  article-title: A review on deep learning in uav remote sensing
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 2
  year: 2022
  ident: b1045
  article-title: Eden library: A long-term database for storing agricultural multi-sensor datasets from uav and proximal platforms
  publication-title: Smart Agricultural Technology
– reference: Q. Yang, B. She, L. Huang, Y. Yang, G. Zhang, M. Zhang, Q. Hong, and D. Zhang, Extraction of soybean planting area based on feature fusion technology of multi-source low altitude unmanned aerial vehicle images, Ecological Informatics, p. 101715, 2022.
– volume: 190
  year: 2021
  ident: b0475
  article-title: Fast detection and location of longan fruits using uav images
  publication-title: Computers and Electronics in Agriculture
– reference: E. Olaniyi, D. Chen, Y. Lu, and Y. Huang, Generative adversarial networks for image augmentation in agriculture: a systematic review, arXiv preprint arXiv:2204.04707, 2022.
– reference: T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, Feature pyramid networks for object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125, 2017.
– volume: 312
  start-page: 135
  year: 2018
  end-page: 153
  ident: b1050
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
– reference: D.G. Lowe, Object recognition from local scale-invariant features, in Proceedings of the seventh IEEE international conference on computer vision, vol. 2, pp. 1150–1157, Ieee, 1999.
– volume: 6
  year: 2020
  ident: b0960
  article-title: A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements
  publication-title: Heliyon
– volume: 92
  start-page: 141
  year: 2018
  end-page: 152
  ident: b1140
  article-title: A review of data assimilation of remote sensing and crop models
  publication-title: European Journal of Agronomy
– volume: 118
  start-page: 372
  year: 2015
  end-page: 379
  ident: b0485
  article-title: Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand
  publication-title: Computers and electronics in agriculture
– reference: A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, Enet: A deep neural network architecture for real-time semantic segmentation, arXiv preprint arXiv:1606.02147, 2016.
– volume: 10
  start-page: 1513
  year: 2018
  ident: b0220
  article-title: Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms
  publication-title: Remote Sensing
– volume: 3
  start-page: 588
  year: 2017
  end-page: 595
  ident: b0305
  article-title: weednet: Dense semantic weed classification using multispectral images and mav for smart farming
  publication-title: IEEE robotics and automation letters
– volume: 30
  year: 2017
  ident: b0665
  article-title: Attention is all you need
  publication-title: Advances in neural information processing systems
– reference: J. Redmon and A. Farhadi, Yolo9000: better, faster, stronger, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271, 2017.
– start-page: 740
  year: 2014
  end-page: 755
  ident: b1010
  article-title: Microsoft coco: Common objects in context
  publication-title: European conference on computer vision
– volume: 147
  start-page: 70
  year: 2018
  end-page: 90
  ident: b0065
  article-title: Deep learning in agriculture: A survey
  publication-title: Computers and electronics in agriculture
– volume: 6
  start-page: 12037
  year: 2014
  end-page: 12054
  ident: b0605
  article-title: Feature learning based approach for weed classification using high resolution aerial images from a digital camera mounted on a uav
  publication-title: Remote Sensing
– reference: M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, Mobilenetv 2: Inverted residuals and linear bottlenecks, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4510–4520, 2018.
– start-page: 234
  year: 2015
  end-page: 241
  ident: b0765
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical image computing and computer-assisted intervention
– volume: 25
  year: 2012
  ident: b0610
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– volume: 174
  year: 2020
  ident: b1080
  article-title: Cnn feature based graph convolutional network for weed and crop recognition in smart farming
  publication-title: Computers and Electronics in Agriculture
– volume: 216
  start-page: 139
  year: 2018
  end-page: 153
  ident: b1060
  article-title: Detecting mammals in uav images: Best practices to address a substantially imbalanced dataset with deep learning
  publication-title: Remote sensing of environment
– volume: 200
  start-page: 200
  year: 2020
  end-page: 214
  ident: b0500
  article-title: Field identification of weed species and glyphosate-resistant weeds using high resolution imagery in early growing season
  publication-title: Biosystems Engineering
– volume: 13
  start-page: 1358
  year: 2021
  ident: b1035
  article-title: A uav open dataset of rice paddies for deep learning practice
  publication-title: Remote Sensing
– volume: 67
  start-page: 637
  year: 2016
  end-page: 648
  ident: b0470
  article-title: Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system
  publication-title: Ecological indicators
– reference: E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q.V. Le, Autoaugment: Learning augmentation policies from data, arXiv preprint arXiv:1805.09501, 2018.
– volume: 153
  start-page: 9
  year: 2015
  end-page: 19
  ident: b0270
  article-title: Uavs challenge to assess water stress for sustainable agriculture
  publication-title: Agricultural water management
– volume: 327
  start-page: 828
  year: 2010
  end-page: 831
  ident: b0020
  article-title: Precision agriculture and food security
  publication-title: Science
– volume: 13
  start-page: 1562
  year: 2021
  ident: b0180
  article-title: Estimating agricultural soil moisture content through uav-based hyperspectral images in the arid region
  publication-title: Remote Sensing
– year: 2021
  ident: b0700
  article-title: A survey of convolutional neural networks: analysis, applications, and prospects
  publication-title: IEEE transactions on neural networks and learning systems
– volume: 104
  year: 2020
  ident: b0830
  article-title: Deep learning-based object detection in low-altitude uav datasets: A survey
  publication-title: Image and Vision Computing
– volume: 8
  start-page: 1111
  year: 2017
  ident: b0100
  article-title: Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives
  publication-title: Frontiers in plant science
– volume: 54
  start-page: 346
  year: 2006
  end-page: 353
  ident: b0395
  article-title: Using remote sensing for identification of late-season grass weed patches in wheat
  publication-title: Weed Science
– volume: 10
  start-page: 1690
  year: 2018
  ident: b0950
  article-title: Deep learning with unsupervised data labeling for weed detection in line crops in uav images
  publication-title: Remote sensing
– volume: 200
  year: 2022
  ident: b0455
  article-title: Identifying veraison process of colored wine grapes in field conditions combining deep learning and image analysis
  publication-title: Computers and Electronics in Agriculture
– start-page: 1
  year: 2017
  end-page: 12
  ident: b1145
  article-title: Autonomous uav with vision based on-board decision making for remote sensing and precision agriculture
  publication-title: in 2017 IEEE Aerospace Conference
– volume: 13
  year: 2018
  ident: b0755
  article-title: A fully convolutional network for weed mapping of unmanned aerial vehicle (uav) imagery
  publication-title: PloS one
– reference: R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587, 2014.
– volume: 184
  year: 2021
  ident: b0290
  article-title: A survey of deep learning techniques for weed detection from images
  publication-title: Computers and Electronics in Agriculture
– volume: 146
  start-page: 124
  year: 2018
  end-page: 136
  ident: b0505
  article-title: Uav-based multispectral remote sensing for precision agriculture: A comparison between different cameras
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  ident: b0615
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural computation
– volume: 9
  start-page: 498
  year: 2017
  ident: b0720
  article-title: Classification for high resolution remote sensing imagery using a fully convolutional network
  publication-title: Remote Sensing
– volume: 37
  start-page: 440
  year: 2020
  end-page: 465
  ident: b0965
  article-title: Decomposition-based mission planning for fixed-wing uavs surveying in wind
  publication-title: Journal of Field Robotics
– reference: C. Qu, J. Boubin, D. Gafurov, J. Zhou, N. Aloysius, H. Nguyen, and P. Calyam, Uav swarms in smart agriculture: Experiences and opportunities.
– volume: 256
  year: 2021
  ident: b0385
  article-title: Diagnosis of winter-wheat water stress based on uav-borne multispectral image texture and vegetation indices
  publication-title: Agricultural Water Management
– volume: 110
  start-page: 346
  year: 2008
  end-page: 359
  ident: b0595
  article-title: Speeded-up robust features (surf)
  publication-title: Computer vision and image understanding
– volume: 119
  start-page: 232
  year: 2012
  end-page: 242
  ident: b0155
  article-title: Winter wheat area estimation from modis-evi time series data using the crop proportion phenology index
  publication-title: Remote Sensing of Environment
– volume: 192
  year: 2022
  ident: b0300
  article-title: Spectral analysis and mapping of blackgrass weed by leveraging machine learning and uav multispectral imagery
  publication-title: Computers and Electronics in Agriculture
– reference: M. Zhou, Z. Zhou, L. Liu, J. Huang, and Z. Lyu, Review of vertical take-off and landing fixed-wing uav and its application prospect in precision agriculture, International Journal of Precision Agricultural Aviation, vol. 3, no. 4, 2020.
– volume: 18
  year: 2022
  ident: b0110
  article-title: Internet of things (iot) and agricultural unmanned aerial vehicles (uavs) in smart farming: A comprehensive review
  publication-title: Internet of Things
– volume: 29
  year: 2016
  ident: b0855
  article-title: R-fcn: Object detection via region-based fully convolutional networks
  publication-title: Advances in neural information processing systems
– volume: 65
  start-page: 2
  year: 2010
  end-page: 16
  ident: b0715
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS journal of photogrammetry and remote sensing
– volume: 9
  start-page: 200
  year: 2020
  end-page: 231
  ident: b0105
  article-title: High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– reference: L. Shen, J. Su, R. Huang, W. Quan, Y. Song, Y. Fang, and B. Su, Fusing attention mechanism with mask r-cnn for instance segmentation of grape cluster in the field, Frontiers in plant science, p. 2528, 2022.
– reference: J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, et al., Speed/accuracy trade-offs for modern convolutional object detectors, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7310–7311, 2017.
– reference: A.A. d. Santos, J. Marcato Junior, M.S. Araújo, D.R. Di Martini, E.C. Tetila, H.L. Siqueira, C. Aoki, A. Eltner, E.T. Matsubara, H. Pistori, et al., Assessment of cnn-based methods for individual tree detection on images captured by rgb cameras attached to uavs, Sensors, vol. 19, no. 16, p. 3595, 2019.
– volume: 113
  start-page: 243
  year: 2011
  end-page: 291
  ident: b0445
  article-title: Proximal soil sensing: An effective approach for soil measurements in space and time
  publication-title: Advances in agronomy
– volume: 13
  start-page: 4387
  year: 2021
  ident: b1040
  article-title: Boost precision agriculture with unmanned aerial vehicle remote sensing and edge intelligence: A survey
  publication-title: Remote Sensing
– volume: 11
  start-page: 330
  year: 2019
  ident: b0510
  article-title: Uav-based high resolution thermal imaging for vegetation monitoring, and plant phenotyping using ici 8640 p, flir vue pro r 640, and thermomap cameras
  publication-title: Remote Sensing
– reference: K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, 2014.
– volume: 128
  year: 2021
  ident: b1085
  article-title: Semi-supervised semantic segmentation network for surface crack detection
  publication-title: Automation in Construction
– volume: 12
  start-page: 2136
  year: 2020
  ident: b0310
  article-title: Comparison of object detection and patch-based classification deep learning models on mid-to late-season weed detection in uav imagery
  publication-title: Remote Sensing
– volume: 11
  start-page: 1373
  year: 2019
  ident: b0375
  article-title: Uav-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning
  publication-title: Remote Sensing
– volume: 140
  start-page: 20
  year: 2018
  end-page: 32
  ident: b1125
  article-title: Beyond rgb: Very high resolution urban remote sensing with multimodal deep networks
  publication-title: ISPRS journal of photogrammetry and remote sensing
– volume: 13
  start-page: 3892
  year: 2021
  ident: b0770
  article-title: Ir-unet: Irregular segmentation u-shape network for wheat yellow rust detection by uav multispectral imagery
  publication-title: Remote Sensing
– reference: L.P. Osco, M. d. S. De Arruda, J.M. Junior, N.B. Da Silva, A.P.M. Ramos, É. A.S. Moryia, N.N. Imai, D.R. Pereira, J.E. Creste, E.T. Matsubara, et al., A convolutional neural network approach for counting and geolocating citrus-trees in uav multispectral imagery, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 160, pp. 97–106, 2020.
– volume: 174
  year: 2020
  ident: b0915
  article-title: Extracting apple tree crown information from remote imagery using deep learning
  publication-title: Computers and Electronics in Agriculture
– start-page: 248
  year: 2009
  end-page: 255
  ident: b1005
  article-title: Imagenet: A large-scale hierarchical image database
  publication-title: in 2009 IEEE conference on computer vision and pattern recognition
– volume: 79
  start-page: 3437
  year: 2020
  end-page: 3481
  ident: b0415
  article-title: The use of unmanned aerial vehicles (uavs) for engineering geology applications
  publication-title: Bulletin of Engineering Geology and the Environment
– year: 2020
  ident: b1135
  article-title: A dynamic neighborhood-based switching particle swarm optimization algorithm, IEEE Transactions on
  publication-title: Cybernetics
– volume: 167
  year: 2019
  ident: b0210
  article-title: Bayesian calibration of aquacrop model for winter wheat by assimilating uav multi-spectral images
  publication-title: Computers and Electronics in Agriculture
– volume: 165
  year: 2019
  ident: b0945
  article-title: Unsupervised deep learning and semi-automatic data labeling in weed discrimination
  publication-title: Computers and Electronics in Agriculture
– reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.
– volume: 180
  year: 2021
  ident: b1130
  article-title: State and parameter estimation of the aquacrop model for winter wheat using sensitivity informed particle filter
  publication-title: Computers and Electronics in Agriculture
– volume: 193
  start-page: 101
  year: 2020
  end-page: 114
  ident: b0400
  article-title: Yield estimation in cotton using uav-based multi-sensor imagery
  publication-title: Biosystems Engineering
– volume: 179
  year: 2020
  ident: b0245
  article-title: Detection and classification of soybean pests using deep learning with uav images
  publication-title: Computers and Electronics in Agriculture
– volume: 6
  start-page: 1
  year: 2019
  end-page: 48
  ident: b0575
  article-title: A survey on image data augmentation for deep learning
  publication-title: Journal of big data
– volume: 13
  start-page: 3841
  year: 2021
  ident: b0370
  article-title: Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review
  publication-title: Remote Sensing
– volume: 8
  start-page: 2002
  year: 2017
  ident: b0520
  article-title: High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground lidar estimates
  publication-title: Frontiers in plant science
– volume: 12
  start-page: 1491
  year: 2020
  ident: b0135
  article-title: Applications of uav thermal imagery in precision agriculture: State of the art and future research outlook
  publication-title: Remote Sensing
– volume: 11
  start-page: 2075
  year: 2019
  ident: b0340
  article-title: Estimation of the maturity date of soybean breeding lines using uav-based multispectral imagery
  publication-title: Remote Sensing
– reference: A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861, 2017.
– volume: 139
  start-page: 22
  year: 2017
  end-page: 32
  ident: b0015
  article-title: An overview of current and potential applications of thermal remote sensing in precision agriculture
  publication-title: Computers and Electronics in Agriculture
– start-page: 2636
  year: 2020
  end-page: 2642
  ident: b1055
  article-title: Unsupervised domain adaptation for transferring plant classification systems to new field environments, crops, and robots
  publication-title: in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– volume: 13
  start-page: 1204
  year: 2021
  ident: b0120
  article-title: A technical study on uav characteristics for precision agriculture applications and associated practical challenges
  publication-title: Remote Sensing
– reference: S. Han, H. Mao, and W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, arXiv preprint arXiv:1510.00149, 2015.
– start-page: 6105
  year: 2019
  end-page: 6114
  ident: b0650
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
  publication-title: International conference on machine learning
– reference: H.F. Mahmoud, Parametric versus semi and nonparametric regression models, arXiv preprint arXiv:1906.10221, 2019.
– reference: A. Bochkovskiy, C.-Y. Wang, and H.-Y.M. Liao, Yolov4: Optimal speed and accuracy of object detection, arXiv preprint arXiv:2004.10934, 2020.
– volume: 11
  year: 2020
  ident: b0050
  article-title: Wheat stripe rust grading by deep learning with attention mechanism and images from mobile devices
  publication-title: Frontiers in Plant Science
– reference: N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, Shufflenet v2: Practical guidelines for efficient cnn architecture design, in Proceedings of the European conference on computer vision (ECCV), pp. 116–131, 2018.
– volume: 40
  start-page: 834
  year: 2017
  end-page: 848
  ident: b0790
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– volume: 338
  start-page: 502
  year: 2019
  end-page: 512
  ident: b0185
  article-title: Uav based soil salinity assessment of cropland
  publication-title: Geoderma
– volume: 47
  start-page: 33
  year: 2021
  end-page: 47
  ident: b0410
  article-title: Uav-based hyperspectral imaging technique to estimate canola (brassica napus l.) seedpods maturity
  publication-title: Canadian Journal of Remote Sensing
– reference: Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
– reference: S. Bittel, V. Kaiser, M. Teichmann, and M. Thoma, Pixel-wise segmentation of street with neural networks, arXiv preprint arXiv:1511.00513, 2015.
– volume: 63
  start-page: 1083
  year: 2015
  end-page: 1095
  ident: b0955
  article-title: Disturbance-observer-based control and related methods–an overview
  publication-title: IEEE Transactions on industrial electronics
– volume: 170
  year: 2020
  ident: b0425
  article-title: Experimental evaluation of uav spraying for peach trees of different shapes: Effects of operational parameters on droplet distribution
  publication-title: Computers and Electronics in Agriculture
– volume: 9
  start-page: 447
  year: 2011
  end-page: 451
  ident: b0925
  article-title: Linear versus nonlinear pca for the classification of hyperspectral data based on the extended morphological profiles
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 250
  year: 2020
  ident: b1020
  article-title: Whu-hi: Uav-borne hyperspectral with high spatial resolution (h2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with crf
  publication-title: Remote Sensing of Environment
– volume: 6
  start-page: 10395
  year: 2014
  end-page: 10412
  ident: b0195
  article-title: Estimating biomass of barley using crop surface models (csms) derived from uav-based rgb imaging
  publication-title: Remote sensing
– volume: 10
  start-page: 824
  year: 2018
  ident: b0490
  article-title: Evaluation of rgb, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice
  publication-title: Remote Sensing
– volume: 148
  start-page: S296
  year: 2016
  end-page: S356
  ident: b0260
  article-title: Remote sensing of forest pest damage: A review and lessons learned from a canadian perspective
  publication-title: The Canadian Entomologist
– volume: 12
  start-page: 146
  year: 2020
  ident: b0160
  article-title: The impact of spatial resolution on the classification of vegetation types in highly fragmented planting areas based on unmanned aerial vehicle hyperspectral images
  publication-title: Remote Sensing
– volume: 190
  year: 2021
  ident: b0175
  article-title: Optimal window size selection for spectral information extraction of sampling points from uav multispectral images for soil moisture content inversion
  publication-title: Computers and Electronics in Agriculture
– reference: R. Girshick, Fast r-cnn, in Proceedings of the IEEE international conference on computer vision, pp. 1440–1448, 2015.
– volume: 9
  start-page: 708
  year: 2017
  ident: b0200
  article-title: Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models
  publication-title: Remote Sensing
– volume: 406
  start-page: 302
  year: 2020
  end-page: 321
  ident: b0705
  article-title: A brief survey on semantic segmentation with deep learning
  publication-title: Neurocomputing
– start-page: 100
  year: 2019
  end-page: 108
  ident: b1110
  article-title: Uav image based crop and weed distribution estimation on embedded gpu boards
  publication-title: International Conference on Computer Analysis of Images and Patterns
– volume: 92
  year: 2020
  ident: b0205
  article-title: Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using uav lidar and multispectral imaging
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 14
  start-page: 782
  year: 2022
  ident: b0565
  article-title: Snow coverage mapping by learning from sentinel-2 satellite multispectral images via machine learning algorithms
  publication-title: Remote Sensing
– volume: 4
  start-page: 1671
  year: 2012
  end-page: 1692
  ident: b0420
  article-title: Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use
  publication-title: Remote Sensing
– volume: 53
  start-page: 5455
  year: 2020
  end-page: 5516
  ident: b0695
  article-title: A survey of the recent architectures of deep convolutional neural networks
  publication-title: Artificial intelligence review
– volume: 17
  start-page: 2242
  year: 2020
  end-page: 2249
  ident: b0055
  article-title: Aerial visual perception in smart farming: Field study of wheat yellow rust monitoring
  publication-title: IEEE transactions on industrial informatics
– volume: 177
  year: 2020
  ident: b0365
  article-title: Early detection of bacterial wilt in peanut plants through leaf-level hyperspectral and unmanned aerial vehicle data
  publication-title: Computers and Electronics in Agriculture
– year: 2020
  ident: b0040
  article-title: Unmanned aerial remote sensing: UAS for environmental applications
– volume: 135
  year: 2022
  ident: b0805
  article-title: A. Lipani, J. Boehm: Semantic segmentation of cracks: Data challenges and architecture
  publication-title: Automation in Construction
– volume: 14
  year: 2019
  ident: b0900
  article-title: Deep learning based banana plant detection and counting using high-resolution red-green-blue (rgb) images collected from unmanned aerial vehicle (uav)
  publication-title: PloS one
– reference: L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in Proceedings of the European conference on computer vision (ECCV), pp. 801–818, 2018.
– reference: N. Lu, Y. Wu, H. Zheng, X. Yao, Y. Zhu, W. Cao, and T. Cheng, An assessment of multi-view spectral information from uav-based color-infrared images for improved estimation of nitrogen nutrition status in winter wheat, Precision Agriculture, pp. 1–22, 2022.
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b0760
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– volume: 30
  start-page: 511
  year: 2012
  end-page: 522
  ident: b0275
  article-title: Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (uav)
  publication-title: Irrigation Science
– volume: 28
  year: 2015
  ident: b0850
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Advances in neural information processing systems
– reference: C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.
– reference: S. Khan, M. Naseer, M. Hayat, S.W. Zamir, F.S. Khan, and M. Shah, Transformers in vision: A survey, ACM Computing Surveys (CSUR), 2021.
– start-page: 128
  year: 2019
  end-page: 144
  ident: b0585
  article-title: Deep learning vs
  publication-title: traditional computer vision, in Science and information conference
– start-page: 1
  year: 2022
  end-page: 26
  ident: b0080
  article-title: Deep learning techniques to classify agricultural crops through uav imagery: a review
  publication-title: Neural Computing and Applications
– volume: 1
  start-page: 73
  year: 2019
  end-page: 82
  ident: b0075
  article-title: Survey on evolving deep learning neural network architectures
  publication-title: Journal of Artificial Intelligence
– volume: 176
  year: 2020
  ident: b0225
  article-title: Assessing winter wheat foliage disease severity using aerial imagery acquired from small unmanned aerial vehicle (uav)
  publication-title: Computers and Electronics in Agriculture
– volume: 10
  year: 2022
  ident: b0145
  article-title: Uav spraying on citrus crop: impact of tank-mix adjuvant on the contact angle and droplet distribution
  publication-title: PeerJ
– volume: 7
  start-page: 105100
  year: 2019
  end-page: 105115
  ident: b0045
  article-title: Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications
  publication-title: Ieee Access
– volume: 195
  year: 2022
  ident: b0325
  article-title: Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods
  publication-title: Computers and Electronics in Agriculture
– volume: 10
  start-page: 655
  year: 2018
  ident: b0985
  article-title: Evaluation of a uav-assisted autonomous water sampling
  publication-title: Water
– reference: H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, Pyramid scene parsing network, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881–2890, 2017.
– volume: 9
  start-page: 828
  year: 2017
  ident: b0265
  article-title: Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (uav)
  publication-title: Remote Sensing
– volume: 10
  start-page: 1423
  year: 2018
  ident: b1025
  article-title: Weedmap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming
  publication-title: Remote Sensing
– volume: 9
  start-page: 82146
  year: 2021
  end-page: 82168
  ident: b0800
  article-title: A survey on semi-, self-and unsupervised learning for image classification
  publication-title: IEEE Access
– volume: 9
  start-page: 1110
  year: 2017
  ident: b0140
  article-title: Hyperspectral imaging: A review on uav-based sensors, data processing and applications for agriculture and forestry
  publication-title: Remote sensing
– volume: 106
  start-page: 249
  year: 2018
  end-page: 259
  ident: b0810
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural networks
– volume: 182
  year: 2021
  ident: b0525
  article-title: Maize and soybean heights estimation from unmanned aerial vehicle (uav) lidar data
  publication-title: Computers and Electronics in Agriculture
– volume: 11
  start-page: 1443
  year: 2019
  ident: b0125
  article-title: Unmanned aerial vehicle for remote sensing applications–a review
  publication-title: Remote Sensing
– volume: 13
  year: 2018
  ident: b0255
  article-title: Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging
  publication-title: PloS one
– volume: 7
  year: 2022
  ident: b0350
  article-title: An applied deep learning approach for estimating soybean relative maturity from uav imagery to aid plant breeding decisions
  publication-title: Machine Learning with Applications
– start-page: 5188
  year: 2017
  end-page: 5195
  ident: b1070
  article-title: Automatic model based dataset generation for fast and accurate crop and weeds detection
  publication-title: in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– volume: 7
  start-page: 48572
  year: 2019
  end-page: 48634
  ident: b0995
  article-title: Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges
  publication-title: Ieee Access
– reference: I. Pölönen, H. Saari, J. Kaivosoja, E. Honkavaara, and L. Pesonen, Hyperspectral imaging based biomass and nitrogen content estimations from light-weight uav, in Remote Sensing for Agriculture, Ecosystems, and Hydrology XV, vol. 8887, pp. 141–149, SPIE, 2013.
– volume: 191
  year: 2021
  ident: b0930
  article-title: Evaluation of dimensionality reduction methods for individual tree crown delineation using instance segmentation network and uav multispectral imagery in urban forest
  publication-title: Computers and Electronics in Agriculture
– volume: 4
  start-page: 1519
  year: 2012
  end-page: 1543
  ident: b0530
  article-title: Development of a uav-lidar system with application to forest inventory
  publication-title: Remote sensing
– start-page: 3118
  year: 2016
  end-page: 3125
  ident: b1120
  article-title: Recurrent neural networks for driver activity anticipation via sensory-fusion architecture
  publication-title: 2016 IEEE International Conference on Robotics and Automation (ICRA)
– volume: 478
  start-page: 337
  year: 2011
  end-page: 342
  ident: b0005
  article-title: Solutions for a cultivated planet
  publication-title: Nature
– volume: 65
  year: 2020
  ident: b0070
  article-title: Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis
  publication-title: Medical Image Analysis
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: b0845
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– reference: K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.
– volume: 148
  year: 2019
  ident: b0115
  article-title: A survey of unmanned aerial sensing solutions in precision agriculture
  publication-title: Journal of Network and Computer Applications
– volume: 95
  start-page: 19
  year: 2017
  end-page: 28
  ident: b0740
  article-title: A patch-based convolutional neural network for remote sensing image classification
  publication-title: Neural Networks
– reference: J. Su, C. Liu, and W.-H. Chen, Uav multispectral remote sensing for yellow rust mapping: Opportunities and challenges, Unmanned Aerial Systems in Precision Agriculture, pp. 107–122, 2022.
– start-page: 745
  year: 2013
  end-page: 758
  ident: b0405
  article-title: Automated crop yield estimation for apple orchards
  publication-title: Experimental robotics
– ident: 10.1016/j.neucom.2022.11.020_b0745
– volume: 140
  start-page: 20
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b1125
  article-title: Beyond rgb: Very high resolution urban remote sensing with multimodal deep networks
  publication-title: ISPRS journal of photogrammetry and remote sensing
  doi: 10.1016/j.isprsjprs.2017.11.011
– volume: 95
  start-page: 19
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0740
  article-title: A patch-based convolutional neural network for remote sensing image classification
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2017.07.017
– volume: 13
  start-page: 1358
  issue: 7
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b1035
  article-title: A uav open dataset of rice paddies for deep learning practice
  publication-title: Remote Sensing
  doi: 10.3390/rs13071358
– volume: 147
  start-page: 70
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0065
  article-title: Deep learning in agriculture: A survey
  publication-title: Computers and electronics in agriculture
  doi: 10.1016/j.compag.2018.02.016
– volume: 54
  start-page: 346
  issue: 2
  year: 2006
  ident: 10.1016/j.neucom.2022.11.020_b0395
  article-title: Using remote sensing for identification of late-season grass weed patches in wheat
  publication-title: Weed Science
  doi: 10.1614/WS-05-54.2.346
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.neucom.2022.11.020_b0815
  article-title: A small-sized object detection oriented multi-scale feature fusion approach with application to defect detection
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 13
  start-page: 4387
  issue: 21
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b1040
  article-title: Boost precision agriculture with unmanned aerial vehicle remote sensing and edge intelligence: A survey
  publication-title: Remote Sensing
  doi: 10.3390/rs13214387
– volume: 216
  start-page: 139
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b1060
  article-title: Detecting mammals in uav images: Best practices to address a substantially imbalanced dataset with deep learning
  publication-title: Remote sensing of environment
  doi: 10.1016/j.rse.2018.06.028
– volume: 67
  start-page: 637
  year: 2016
  ident: 10.1016/j.neucom.2022.11.020_b0470
  article-title: Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system
  publication-title: Ecological indicators
  doi: 10.1016/j.ecolind.2016.03.036
– start-page: 6105
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0650
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
– volume: 8
  start-page: 1111
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0100
  article-title: Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives
  publication-title: Frontiers in plant science
  doi: 10.3389/fpls.2017.01111
– volume: 6
  issue: 11
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0960
  article-title: A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e05285
– volume: 65
  start-page: 2
  issue: 1
  year: 2010
  ident: 10.1016/j.neucom.2022.11.020_b0715
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS journal of photogrammetry and remote sensing
  doi: 10.1016/j.isprsjprs.2009.06.004
– volume: 37
  start-page: 440
  issue: 3
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0965
  article-title: Decomposition-based mission planning for fixed-wing uavs surveying in wind
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.21928
– volume: 11
  start-page: 1443
  issue: 12
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0125
  article-title: Unmanned aerial vehicle for remote sensing applications–a review
  publication-title: Remote Sensing
  doi: 10.3390/rs11121443
– volume: 14
  start-page: 731
  issue: 3
  year: 2022
  ident: 10.1016/j.neucom.2022.11.020_b0355
  article-title: Assessment of different object detectors for the maturity level classification of broccoli crops using uav imagery
  publication-title: Remote Sensing
  doi: 10.3390/rs14030731
– ident: 10.1016/j.neucom.2022.11.020_b0620
  doi: 10.1109/5.726791
– volume: 478
  start-page: 337
  issue: 7369
  year: 2011
  ident: 10.1016/j.neucom.2022.11.020_b0005
  article-title: Solutions for a cultivated planet
  publication-title: Nature
  doi: 10.1038/nature10452
– volume: 179
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0245
  article-title: Detection and classification of soybean pests using deep learning with uav images
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105836
– ident: 10.1016/j.neucom.2022.11.020_b0030
  doi: 10.31256/WP2018.2
– volume: 58
  start-page: 35
  issue: 1
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0295
  article-title: Evaluating the potential of unmanned aerial systems for mapping weeds at field scales: a case study with alopecurus myosuroides
  publication-title: Weed research
  doi: 10.1111/wre.12275
– volume: 13
  issue: 4
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0755
  article-title: A fully convolutional network for weed mapping of unmanned aerial vehicle (uav) imagery
  publication-title: PloS one
  doi: 10.1371/journal.pone.0196302
– ident: 10.1016/j.neucom.2022.11.020_b0625
– volume: 92
  start-page: 141
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b1140
  article-title: A review of data assimilation of remote sensing and crop models
  publication-title: European Journal of Agronomy
  doi: 10.1016/j.eja.2017.11.002
– ident: 10.1016/j.neucom.2022.11.020_b0980
– volume: 135
  year: 2022
  ident: 10.1016/j.neucom.2022.11.020_b0805
  article-title: A. Lipani, J. Boehm: Semantic segmentation of cracks: Data challenges and architecture
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2021.104110
– volume: 21
  start-page: 17608
  issue: 16
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0085
  article-title: Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2021.3049471
– volume: 9
  start-page: 1110
  issue: 11
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0140
  article-title: Hyperspectral imaging: A review on uav-based sensors, data processing and applications for agriculture and forestry
  publication-title: Remote sensing
  doi: 10.3390/rs9111110
– volume: 10
  start-page: 1423
  issue: 9
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b1025
  article-title: Weedmap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming
  publication-title: Remote Sensing
  doi: 10.3390/rs10091423
– ident: 10.1016/j.neucom.2022.11.020_b0690
  doi: 10.1007/978-3-030-01264-9_8
– volume: 152
  start-page: 166
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0060
  article-title: Deep learning in remote sensing applications: A meta-analysis and review
  publication-title: ISPRS journal of photogrammetry and remote sensing
  doi: 10.1016/j.isprsjprs.2019.04.015
– volume: 182
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0525
  article-title: Maize and soybean heights estimation from unmanned aerial vehicle (uav) lidar data
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2021.106005
– volume: 8
  start-page: 2002
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0520
  article-title: High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground lidar estimates
  publication-title: Frontiers in plant science
  doi: 10.3389/fpls.2017.02002
– volume: 192
  year: 2022
  ident: 10.1016/j.neucom.2022.11.020_b0300
  article-title: Spectral analysis and mapping of blackgrass weed by leveraging machine learning and uav multispectral imagery
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2021.106621
– volume: 459
  start-page: 290
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0465
  article-title: Probabilistic faster r-cnn with stochastic region proposing: Towards object detection and recognition in remote sensing imagery
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.06.072
– start-page: 2636
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b1055
  article-title: Unsupervised domain adaptation for transferring plant classification systems to new field environments, crops, and robots
– volume: 55
  start-page: 243
  issue: 2
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0725
  article-title: Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system
  publication-title: GIScience & remote sensing
  doi: 10.1080/15481603.2018.1426091
– volume: 11
  start-page: 1373
  issue: 11
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0375
  article-title: Uav-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning
  publication-title: Remote Sensing
  doi: 10.3390/rs11111373
– volume: 14
  start-page: 782
  issue: 3
  year: 2022
  ident: 10.1016/j.neucom.2022.11.020_b0565
  article-title: Snow coverage mapping by learning from sentinel-2 satellite multispectral images via machine learning algorithms
  publication-title: Remote Sensing
  doi: 10.3390/rs14030782
– volume: 24
  start-page: 152
  issue: 2
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0095
  article-title: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture
  publication-title: Trends in plant science
  doi: 10.1016/j.tplants.2018.11.007
– volume: 191
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0930
  article-title: Evaluation of dimensionality reduction methods for individual tree crown delineation using instance segmentation network and uav multispectral imagery in urban forest
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2021.106506
– volume: 8
  start-page: 71
  issue: 01
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0390
  article-title: Machine learning-based crop drought mapping system by uav remote sensing rgb imagery
  publication-title: Unmanned systems
  doi: 10.1142/S2301385020500053
– volume: 312
  start-page: 135
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b1050
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– ident: 10.1016/j.neucom.2022.11.020_b0580
– ident: 10.1016/j.neucom.2022.11.020_b0860
  doi: 10.1109/CVPR.2016.91
– volume: 200
  start-page: 200
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0500
  article-title: Field identification of weed species and glyphosate-resistant weeds using high resolution imagery in early growing season
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2020.10.001
– volume: 11
  start-page: 330
  issue: 3
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0510
  article-title: Uav-based high resolution thermal imaging for vegetation monitoring, and plant phenotyping using ici 8640 p, flir vue pro r 640, and thermomap cameras
  publication-title: Remote Sensing
  doi: 10.3390/rs11030330
– ident: 10.1016/j.neucom.2022.11.020_b0775
– volume: 119
  start-page: 232
  year: 2012
  ident: 10.1016/j.neucom.2022.11.020_b0155
  article-title: Winter wheat area estimation from modis-evi time series data using the crop proportion phenology index
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.10.011
– start-page: 4319
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0970
  article-title: Field coverage and weed mapping by uav swarms
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 10.1016/j.neucom.2022.11.020_b0845
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2015.2389824
– volume: 9
  start-page: 200
  issue: 1
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0105
  article-title: High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms
  publication-title: IEEE Geoscience and Remote Sensing Magazine
  doi: 10.1109/MGRS.2020.2998816
– ident: 10.1016/j.neucom.2022.11.020_b1065
  doi: 10.1109/CVPR.2019.00020
– volume: 139
  start-page: 22
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0015
  article-title: An overview of current and potential applications of thermal remote sensing in precision agriculture
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2017.05.001
– volume: 34
  start-page: 96
  issue: 6
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b1115
  article-title: Deep multimodal learning: A survey on recent advances and trends
  publication-title: IEEE signal processing magazine
  doi: 10.1109/MSP.2017.2738401
– volume: 13
  start-page: 3841
  issue: 19
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0370
  article-title: Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review
  publication-title: Remote Sensing
  doi: 10.3390/rs13193841
– volume: 256
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0385
  article-title: Diagnosis of winter-wheat water stress based on uav-borne multispectral image texture and vegetation indices
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2021.107076
– start-page: 21
  year: 2016
  ident: 10.1016/j.neucom.2022.11.020_b0885
  article-title: Ssd: Single shot multibox detector
– volume: 29
  year: 2016
  ident: 10.1016/j.neucom.2022.11.020_b0855
  article-title: R-fcn: Object detection via region-based fully convolutional networks
  publication-title: Advances in neural information processing systems
– volume: 9
  start-page: 583
  issue: 6
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0710
  article-title: Spatial and spectral hybrid image classification for rice lodging assessment through uav imagery
  publication-title: Remote Sensing
  doi: 10.3390/rs9060583
– volume: 4
  start-page: 1519
  issue: 6
  year: 2012
  ident: 10.1016/j.neucom.2022.11.020_b0530
  article-title: Development of a uav-lidar system with application to forest inventory
  publication-title: Remote sensing
  doi: 10.3390/rs4061519
– ident: 10.1016/j.neucom.2022.11.020_b0865
  doi: 10.1109/CVPR.2017.690
– ident: 10.1016/j.neucom.2022.11.020_b0655
– volume: 11
  start-page: 1023
  issue: 9
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0540
  article-title: Comparison of unsupervised algorithms for vineyard canopy segmentation from uav multispectral images
  publication-title: Remote Sensing
  doi: 10.3390/rs11091023
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0575
  article-title: A survey on image data augmentation for deep learning
  publication-title: Journal of big data
  doi: 10.1186/s40537-019-0197-0
– volume: 117
  start-page: 11
  year: 2016
  ident: 10.1016/j.neucom.2022.11.020_b0820
  article-title: A survey on object detection in optical remote sensing images
  publication-title: ISPRS Journal of Photogrammetry and Remote sensing
  doi: 10.1016/j.isprsjprs.2016.03.014
– volume: 8
  start-page: 189043
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0920
  article-title: A robust method for wheatear detection using uav in natural scenes
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031896
– ident: 10.1016/j.neucom.2022.11.020_b0460
  doi: 10.3389/fpls.2022.934450
– volume: 2
  year: 2022
  ident: 10.1016/j.neucom.2022.11.020_b1045
  article-title: Eden library: A long-term database for storing agricultural multi-sensor datasets from uav and proximal platforms
  publication-title: Smart Agricultural Technology
  doi: 10.1016/j.atech.2021.100028
– ident: 10.1016/j.neucom.2022.11.020_b0440
– volume: 3
  start-page: 588
  issue: 1
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0305
  article-title: weednet: Dense semantic weed classification using multispectral images and mav for smart farming
  publication-title: IEEE robotics and automation letters
  doi: 10.1109/LRA.2017.2774979
– ident: 10.1016/j.neucom.2022.11.020_b0870
– ident: 10.1016/j.neucom.2022.11.020_b0555
– volume: 40
  start-page: 834
  issue: 4
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0790
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2017.2699184
– ident: 10.1016/j.neucom.2022.11.020_b0895
  doi: 10.1109/ICCV48922.2021.00986
– ident: 10.1016/j.neucom.2022.11.020_b1000
  doi: 10.1109/ICCV.2019.00867
– ident: 10.1016/j.neucom.2022.11.020_b0165
  doi: 10.1016/j.ecoinf.2022.101715
– volume: 17
  start-page: 2726
  issue: 12
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0560
  article-title: Dimension reduction aided hyperspectral image classification with a small-sized training dataset: experimental comparisons
  publication-title: Sensors
  doi: 10.3390/s17122726
– volume: 113
  start-page: 243
  year: 2011
  ident: 10.1016/j.neucom.2022.11.020_b0445
  article-title: Proximal soil sensing: An effective approach for soil measurements in space and time
  publication-title: Advances in agronomy
  doi: 10.1016/B978-0-12-386473-4.00005-1
– volume: 406
  start-page: 302
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0705
  article-title: A brief survey on semantic segmentation with deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.118
– volume: 70
  start-page: 15
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0025
  article-title: The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2020.09.003
– ident: 10.1016/j.neucom.2022.11.020_b0905
  doi: 10.3390/s19163595
– volume: 6
  start-page: 12037
  issue: 12
  year: 2014
  ident: 10.1016/j.neucom.2022.11.020_b0605
  article-title: Feature learning based approach for weed classification using high resolution aerial images from a digital camera mounted on a uav
  publication-title: Remote Sensing
  doi: 10.3390/rs61212037
– volume: 167
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0230
  article-title: Spatio-temporal monitoring of wheat yellow rust using uav multispectral imagery
  publication-title: Computers and electronics in agriculture
  doi: 10.1016/j.compag.2019.105035
– start-page: 1
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0335
  article-title: Automatic detection of oil palm fruits from uav images using an improved yolo model
  publication-title: The Visual Computer
– volume: 28
  year: 2015
  ident: 10.1016/j.neucom.2022.11.020_b0850
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Advances in neural information processing systems
– volume: 155
  start-page: 157
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0150
  article-title: Wheat yellow rust monitoring by learning from multispectral uav aerial imagery
  publication-title: Computers and electronics in agriculture
  doi: 10.1016/j.compag.2018.10.017
– volume: 18
  year: 2022
  ident: 10.1016/j.neucom.2022.11.020_b0110
  article-title: Internet of things (iot) and agricultural unmanned aerial vehicles (uavs) in smart farming: A comprehensive review
  publication-title: Internet of Things
  doi: 10.1016/j.iot.2020.100187
– year: 2013
  ident: 10.1016/j.neucom.2022.11.020_b0730
– volume: 7
  start-page: 48572
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0995
  article-title: Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2909530
– volume: 11
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0050
  article-title: Wheat stripe rust grading by deep learning with attention mechanism and images from mobile devices
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2020.558126
– volume: 13
  start-page: 1562
  issue: 8
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0180
  article-title: Estimating agricultural soil moisture content through uav-based hyperspectral images in the arid region
  publication-title: Remote Sensing
  doi: 10.3390/rs13081562
– volume: 53
  start-page: 5455
  issue: 8
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0695
  article-title: A survey of the recent architectures of deep convolutional neural networks
  publication-title: Artificial intelligence review
  doi: 10.1007/s10462-020-09825-6
– start-page: 234
  year: 2015
  ident: 10.1016/j.neucom.2022.11.020_b0765
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 79
  start-page: 3437
  issue: 7
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0415
  article-title: The use of unmanned aerial vehicles (uavs) for engineering geology applications
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-020-01766-2
– volume: 13
  issue: 5
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0255
  article-title: Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging
  publication-title: PloS one
  doi: 10.1371/journal.pone.0187470
– volume: 9
  start-page: 447
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2022.11.020_b0925
  article-title: Linear versus nonlinear pca for the classification of hyperspectral data based on the extended morphological profiles
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2011.2172185
– volume: 30
  start-page: 511
  issue: 6
  year: 2012
  ident: 10.1016/j.neucom.2022.11.020_b0275
  article-title: Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (uav)
  publication-title: Irrigation Science
  doi: 10.1007/s00271-012-0382-9
– volume: 14
  start-page: 9318
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b1075
  article-title: Remote sensing data augmentation through adversarial training
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2021.3110842
– volume: 9
  start-page: 708
  issue: 7
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0200
  article-title: Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models
  publication-title: Remote Sensing
  doi: 10.3390/rs9070708
– ident: 10.1016/j.neucom.2022.11.020_b0750
  doi: 10.1109/CVPR.2015.7298965
– volume: 110
  start-page: 346
  issue: 3
  year: 2008
  ident: 10.1016/j.neucom.2022.11.020_b0595
  article-title: Speeded-up robust features (surf)
  publication-title: Computer vision and image understanding
  doi: 10.1016/j.cviu.2007.09.014
– volume: 11
  start-page: 2075
  issue: 18
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0340
  article-title: Estimation of the maturity date of soybean breeding lines using uav-based multispectral imagery
  publication-title: Remote Sensing
  doi: 10.3390/rs11182075
– year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0040
– volume: 7
  year: 2022
  ident: 10.1016/j.neucom.2022.11.020_b0350
  article-title: An applied deep learning approach for estimating soybean relative maturity from uav imagery to aid plant breeding decisions
  publication-title: Machine Learning with Applications
  doi: 10.1016/j.mlwa.2021.100233
– ident: 10.1016/j.neucom.2022.11.020_b0780
  doi: 10.1109/CVPR.2017.660
– volume: 167
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0210
  article-title: Bayesian calibration of aquacrop model for winter wheat by assimilating uav multi-spectral images
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.105052
– ident: 10.1016/j.neucom.2022.11.020_b0640
  doi: 10.1109/CVPR.2017.243
– volume: 47
  start-page: 33
  issue: 1
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0410
  article-title: Uav-based hyperspectral imaging technique to estimate canola (brassica napus l.) seedpods maturity
  publication-title: Canadian Journal of Remote Sensing
  doi: 10.1080/07038992.2021.1881464
– volume: 200
  year: 2022
  ident: 10.1016/j.neucom.2022.11.020_b0455
  article-title: Identifying veraison process of colored wine grapes in field conditions combining deep learning and image analysis
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2022.107268
– year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0700
  article-title: A survey of convolutional neural networks: analysis, applications, and prospects
  publication-title: IEEE transactions on neural networks and learning systems
– ident: 10.1016/j.neucom.2022.11.020_b0495
  doi: 10.1007/s11119-022-09901-7
– start-page: 1
  year: 2022
  ident: 10.1016/j.neucom.2022.11.020_b0010
  article-title: Global impact of covid-19 on agriculture: role of sustainable agriculture and digital farming
  publication-title: Environmental Science and Pollution Research
– volume: 4
  start-page: 1671
  issue: 6
  year: 2012
  ident: 10.1016/j.neucom.2022.11.020_b0420
  article-title: Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use
  publication-title: Remote Sensing
  doi: 10.3390/rs4061671
– volume: 207
  year: 2022
  ident: 10.1016/j.neucom.2022.11.020_b0600
  article-title: Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.118029
– volume: 174
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0915
  article-title: Extracting apple tree crown information from remote imagery using deep learning
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105504
– ident: 10.1016/j.neucom.2022.11.020_b0330
  doi: 10.1007/s11119-022-09907-1
– ident: 10.1016/j.neucom.2022.11.020_b0645
  doi: 10.1109/CVPR.2017.634
– volume: vol. 2
  start-page: 255
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0550
  article-title: Reinforcement learning-enabled uav itinerary planning for remote sensing applications in smart farming
– volume: 184
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0290
  article-title: A survey of deep learning techniques for weed detection from images
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2021.106067
– volume: 14
  start-page: 660
  issue: 6
  year: 2013
  ident: 10.1016/j.neucom.2022.11.020_b0515
  article-title: Using high resolution uav thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-013-9322-9
– volume: 14
  start-page: 93
  issue: 1
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0345
  article-title: L. d. A. Moreno, M.F. Oliveira, C. Pilon, R.P. Silva, and G. Vellidis, Using uav and multispectral images to estimate peanut maturity variability on irrigated and rainfed fields applying linear models and artificial neural networks
  publication-title: Remote Sensing
  doi: 10.3390/rs14010093
– volume: 14
  issue: 10
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0900
  article-title: Deep learning based banana plant detection and counting using high-resolution red-green-blue (rgb) images collected from unmanned aerial vehicle (uav)
  publication-title: PloS one
  doi: 10.1371/journal.pone.0223906
– ident: 10.1016/j.neucom.2022.11.020_b1100
  doi: 10.1109/CVPR.2017.351
– ident: 10.1016/j.neucom.2022.11.020_b0635
  doi: 10.1109/CVPR.2016.90
– volume: 25
  year: 2012
  ident: 10.1016/j.neucom.2022.11.020_b0610
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– volume: 104
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0830
  article-title: Deep learning-based object detection in low-altitude uav datasets: A survey
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2020.104046
– volume: 7
  start-page: 1419
  year: 2016
  ident: 10.1016/j.neucom.2022.11.020_b1015
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Frontiers in plant science
  doi: 10.3389/fpls.2016.01419
– volume: 6
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2022.11.020_b0430
  article-title: Uav for 3d mapping applications: a review
  publication-title: Applied geomatics
  doi: 10.1007/s12518-013-0120-x
– ident: 10.1016/j.neucom.2022.11.020_b1105
– ident: 10.1016/j.neucom.2022.11.020_b0675
  doi: 10.1109/CVPR.2018.00474
– ident: 10.1016/j.neucom.2022.11.020_b0590
  doi: 10.1109/ICCV.1999.790410
– volume: 92
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0205
  article-title: Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using uav lidar and multispectral imaging
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2020.102177
– volume: 195
  year: 2022
  ident: 10.1016/j.neucom.2022.11.020_b0325
  article-title: Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2022.106812
– volume: 2017
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0035
  article-title: A review of deep learning methods and applications for unmanned aerial vehicles
  publication-title: Journal of Sensors
  doi: 10.1155/2017/3296874
– volume: 5
  start-page: 44
  issue: 1
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b1090
  article-title: A brief introduction to weakly supervised learning
  publication-title: National science review
  doi: 10.1093/nsr/nwx106
– year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b1135
  article-title: A dynamic neighborhood-based switching particle swarm optimization algorithm, IEEE Transactions on
  publication-title: Cybernetics
– volume: 148
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0115
  article-title: A survey of unmanned aerial sensing solutions in precision agriculture
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2019.102461
– volume: 170
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0425
  article-title: Experimental evaluation of uav spraying for peach trees of different shapes: Effects of operational parameters on droplet distribution
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105282
– volume: 396
  start-page: 39
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0825
  article-title: Recent advances in deep learning for object detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.085
– volume: 17
  start-page: 2703
  issue: 12
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0545
  article-title: Designing and testing a uav mapping system for agricultural field surveying
  publication-title: Sensors
  doi: 10.3390/s17122703
– volume: 180
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b1130
  article-title: State and parameter estimation of the aquacrop model for winter wheat using sensitivity informed particle filter
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105909
– volume: 106
  start-page: 249
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0810
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural networks
  doi: 10.1016/j.neunet.2018.07.011
– volume: 7
  start-page: 162
  issue: 9
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0975
  article-title: Multiple uav systems for agricultural applications: Control, implementation, and evaluation
  publication-title: Electronics
  doi: 10.3390/electronics7090162
– volume: 17
  start-page: 2242
  issue: 3
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0055
  article-title: Aerial visual perception in smart farming: Field study of wheat yellow rust monitoring
  publication-title: IEEE transactions on industrial informatics
  doi: 10.1109/TII.2020.2979237
– ident: 10.1016/j.neucom.2022.11.020_b1095
– start-page: 1
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b1145
  article-title: Autonomous uav with vision based on-board decision making for remote sensing and precision agriculture
– volume: 18
  start-page: 260
  issue: 1
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0240
  article-title: A novel methodology for improving plant pest surveillance in vineyards and crops using uav-based hyperspectral and spatial data
  publication-title: Sensors
  doi: 10.3390/s18010260
– volume: 101
  start-page: 330
  issue: 2
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0250
  article-title: Potential of unmanned aerial sampling for monitoring insect populations in rice fields
  publication-title: Florida Entomologist
  doi: 10.1653/024.101.0229
– ident: 10.1016/j.neucom.2022.11.020_b0680
  doi: 10.1109/ICCV.2019.00140
– start-page: 3118
  year: 2016
  ident: 10.1016/j.neucom.2022.11.020_b1120
  article-title: Recurrent neural networks for driver activity anticipation via sensory-fusion architecture
– ident: 10.1016/j.neucom.2022.11.020_b0660
  doi: 10.1145/3505244
– volume: 174
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b1080
  article-title: Cnn feature based graph convolutional network for weed and crop recognition in smart farming
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105450
– volume: 327
  start-page: 828
  issue: 5967
  year: 2010
  ident: 10.1016/j.neucom.2022.11.020_b0020
  article-title: Precision agriculture and food security
  publication-title: Science
  doi: 10.1126/science.1183899
– volume: 193
  start-page: 101
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0400
  article-title: Yield estimation in cotton using uav-based multi-sensor imagery
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2020.02.014
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0760
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2016.2644615
– ident: 10.1016/j.neucom.2022.11.020_b0890
  doi: 10.1109/ICCV.2017.324
– ident: 10.1016/j.neucom.2022.11.020_b0880
– volume: 190
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0175
  article-title: Optimal window size selection for spectral information extraction of sampling points from uav multispectral images for soil moisture content inversion
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2021.106456
– volume: 102
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0130
  article-title: A review on deep learning in uav remote sensing
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2021.102456
– volume: 11
  start-page: 3012
  issue: 24
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0170
  article-title: Finer classification of crops by fusing uav images and sentinel-2a data
  publication-title: Remote Sensing
  doi: 10.3390/rs11243012
– volume: 128
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b1085
  article-title: Semi-supervised semantic segmentation network for surface crack detection
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2021.103786
– volume: 10
  start-page: 349
  issue: 11
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0090
  article-title: A review on uav-based applications for precision agriculture
  publication-title: Information
  doi: 10.3390/info10110349
– volume: 12
  start-page: 1491
  issue: 9
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0135
  article-title: Applications of uav thermal imagery in precision agriculture: State of the art and future research outlook
  publication-title: Remote Sensing
  doi: 10.3390/rs12091491
– volume: 190
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0475
  article-title: Fast detection and location of longan fruits using uav images
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2021.106465
– volume: 118
  start-page: 372
  year: 2015
  ident: 10.1016/j.neucom.2022.11.020_b0485
  article-title: Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand
  publication-title: Computers and electronics in agriculture
  doi: 10.1016/j.compag.2015.09.001
– volume: 1
  start-page: 73
  issue: 02
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0075
  article-title: Survey on evolving deep learning neural network architectures
  publication-title: Journal of Artificial Intelligence
– start-page: 740
  year: 2014
  ident: 10.1016/j.neucom.2022.11.020_b1010
  article-title: Microsoft coco: Common objects in context
– volume: 13
  start-page: 1204
  issue: 6
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0120
  article-title: A technical study on uav characteristics for precision agriculture applications and associated practical challenges
  publication-title: Remote Sensing
  doi: 10.3390/rs13061204
– volume: 13
  start-page: 6545
  issue: 24
  year: 2016
  ident: 10.1016/j.neucom.2022.11.020_b0380
  article-title: Crop water stress maps for an entire growing season from visible and thermal uav imagery
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-6545-2016
– volume: 10
  start-page: 1690
  issue: 11
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0950
  article-title: Deep learning with unsupervised data labeling for weed detection in line crops in uav images
  publication-title: Remote sensing
  doi: 10.3390/rs10111690
– volume: 21
  start-page: 21
  issue: 1
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0480
  article-title: A survey on vision-based uav navigation
  publication-title: Geo-spatial information science
  doi: 10.1080/10095020.2017.1420509
– volume: 15
  start-page: 361
  issue: 4
  year: 2014
  ident: 10.1016/j.neucom.2022.11.020_b0280
  article-title: Mapping crop water stress index in a ‘pinot-noir’vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle
  publication-title: Precision agriculture
  doi: 10.1007/s11119-013-9334-5
– volume: 2
  start-page: 69
  issue: 3
  year: 2014
  ident: 10.1016/j.neucom.2022.11.020_b0990
  article-title: Remote sensing of the environment with small unmanned aircraft systems (uass), part 1: A review of progress and challenges
  publication-title: Journal of Unmanned Vehicle Systems
  doi: 10.1139/juvs-2014-0006
– volume: 237
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0315
  article-title: Soybean yield prediction from uav using multimodal data fusion and deep learning
  publication-title: Remote sensing of environment
  doi: 10.1016/j.rse.2019.111599
– volume: 30
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0665
  article-title: Attention is all you need
  publication-title: Advances in neural information processing systems
– ident: 10.1016/j.neucom.2022.11.020_b1150
– volume: 6
  start-page: 10395
  issue: 11
  year: 2014
  ident: 10.1016/j.neucom.2022.11.020_b0195
  article-title: Estimating biomass of barley using crop surface models (csms) derived from uav-based rgb imaging
  publication-title: Remote sensing
  doi: 10.3390/rs61110395
– volume: 8
  start-page: 329
  issue: 4
  year: 2016
  ident: 10.1016/j.neucom.2022.11.020_b0735
  article-title: Classification and segmentation of satellite orthoimagery using convolutional neural networks
  publication-title: Remote Sensing
  doi: 10.3390/rs8040329
– volume: 39
  start-page: 2079
  issue: 8
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0935
  article-title: Unsupervised discrimination between lodged and non-lodged winter wheat: a case study using a low-cost unmanned aerial vehicle
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2017.1422875
– ident: 10.1016/j.neucom.2022.11.020_b0685
  doi: 10.1109/CVPR.2018.00716
– ident: 10.1016/j.neucom.2022.11.020_b0795
  doi: 10.1007/978-3-030-01234-2_49
– ident: 10.1016/j.neucom.2022.11.020_b0840
  doi: 10.1109/ICCV.2015.169
– ident: 10.1016/j.neucom.2022.11.020_b0835
  doi: 10.1109/CVPR.2014.81
– volume: 88
  start-page: 329
  issue: 2
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0435
  article-title: Disturbance observer based control with anti-windup applied to a small fixed wing uav for disturbance rejection
  publication-title: Journal of Intelligent & Robotic Systems
  doi: 10.1007/s10846-017-0534-5
– volume: 12
  start-page: 17
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0190
  article-title: Biomass and crop height estimation of different crops using uav-based lidar
  publication-title: Remote Sensing
  doi: 10.3390/rs12010017
– ident: 10.1016/j.neucom.2022.11.020_b0630
  doi: 10.1109/CVPR.2015.7298594
– volume: 179
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0450
  article-title: Automatic extraction of wheat lodging area based on transfer learning method and deeplabv3+ network
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105845
– volume: 13
  start-page: 4091
  issue: 20
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0285
  article-title: A comparative estimation of maize leaf water content using machine learning techniques and unmanned aerial vehicle (uav)-based proximal and remotely sensed data
  publication-title: Remote Sensing
  doi: 10.3390/rs13204091
– volume: 177
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0365
  article-title: Early detection of bacterial wilt in peanut plants through leaf-level hyperspectral and unmanned aerial vehicle data
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105708
– ident: 10.1016/j.neucom.2022.11.020_b0670
– volume: 9
  start-page: 498
  issue: 5
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0720
  article-title: Classification for high resolution remote sensing imagery using a fully convolutional network
  publication-title: Remote Sensing
  doi: 10.3390/rs9050498
– start-page: 5188
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b1070
  article-title: Automatic model based dataset generation for fast and accurate crop and weeds detection
– volume: 115
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0320
  article-title: Deep learning techniques for estimation of the yield and size of citrus fruits using a uav
  publication-title: European Journal of Agronomy
  doi: 10.1016/j.eja.2020.126030
– volume: 250
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b1020
  article-title: Whu-hi: Uav-borne hyperspectral with high spatial resolution (h2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with crf
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2020.112012
– volume: 10
  start-page: 1513
  issue: 10
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0220
  article-title: Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms
  publication-title: Remote Sensing
  doi: 10.3390/rs10101513
– volume: 65
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0070
  article-title: Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101759
– volume: 12
  start-page: 2136
  issue: 13
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0310
  article-title: Comparison of object detection and patch-based classification deep learning models on mid-to late-season weed detection in uav imagery
  publication-title: Remote Sensing
  doi: 10.3390/rs12132136
– ident: 10.1016/j.neucom.2022.11.020_b0875
  doi: 10.1109/CVPR.2017.106
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 10.1016/j.neucom.2022.11.020_b0615
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural computation
  doi: 10.1162/neco.1989.1.4.541
– start-page: 128
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0585
  article-title: Deep learning vs
– volume: 176
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0225
  article-title: Assessing winter wheat foliage disease severity using aerial imagery acquired from small unmanned aerial vehicle (uav)
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105665
– volume: 13
  start-page: 3892
  issue: 19
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0770
  article-title: Ir-unet: Irregular segmentation u-shape network for wheat yellow rust detection by uav multispectral imagery
  publication-title: Remote Sensing
  doi: 10.3390/rs13193892
– volume: 10
  start-page: 655
  issue: 5
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0985
  article-title: Evaluation of a uav-assisted autonomous water sampling
  publication-title: Water
  doi: 10.3390/w10050655
– ident: 10.1016/j.neucom.2022.11.020_b0910
  doi: 10.1016/j.isprsjprs.2019.12.010
– volume: 10
  year: 2022
  ident: 10.1016/j.neucom.2022.11.020_b0145
  article-title: Uav spraying on citrus crop: impact of tank-mix adjuvant on the contact angle and droplet distribution
  publication-title: PeerJ
  doi: 10.7717/peerj.13064
– start-page: 745
  year: 2013
  ident: 10.1016/j.neucom.2022.11.020_b0405
  article-title: Automated crop yield estimation for apple orchards
– volume: 9
  start-page: 82146
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0800
  article-title: A survey on semi-, self-and unsupervised learning for image classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3084358
– volume: 7
  start-page: 105100
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0045
  article-title: Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2932119
– volume: 148
  start-page: S296
  issue: S1
  year: 2016
  ident: 10.1016/j.neucom.2022.11.020_b0260
  article-title: Remote sensing of forest pest damage: A review and lessons learned from a canadian perspective
  publication-title: The Canadian Entomologist
  doi: 10.4039/tce.2016.11
– ident: 10.1016/j.neucom.2022.11.020_b0360
  doi: 10.1117/12.2028624
– ident: 10.1016/j.neucom.2022.11.020_b0570
– volume: 165
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0945
  article-title: Unsupervised deep learning and semi-automatic data labeling in weed discrimination
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.104963
– volume: 146
  start-page: 124
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0505
  article-title: Uav-based multispectral remote sensing for precision agriculture: A comparison between different cameras
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2018.09.008
– volume: 21
  start-page: 6540
  issue: 19
  year: 2021
  ident: 10.1016/j.neucom.2022.11.020_b0785
  article-title: A deep-learning-based approach for wheat yellow rust disease recognition from unmanned aerial vehicle images
  publication-title: Sensors
  doi: 10.3390/s21196540
– volume: 153
  start-page: 9
  year: 2015
  ident: 10.1016/j.neucom.2022.11.020_b0270
  article-title: Uavs challenge to assess water stress for sustainable agriculture
  publication-title: Agricultural water management
  doi: 10.1016/j.agwat.2015.01.020
– volume: 63
  start-page: 1083
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2022.11.020_b0955
  article-title: Disturbance-observer-based control and related methods–an overview
  publication-title: IEEE Transactions on industrial electronics
  doi: 10.1109/TIE.2015.2478397
– volume: 7
  start-page: 17736
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b1030
  article-title: Fourier dense network to conduct plant classification using uav-based optical images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2895243
– start-page: 100
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b1110
  article-title: Uav image based crop and weed distribution estimation on embedded gpu boards
– volume: 176
  start-page: 172
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0535
  article-title: Mapping the 3d structure of almond trees using uav acquired photogrammetric point clouds and object-based image analysis
  publication-title: Biosystems engineering
  doi: 10.1016/j.biosystemseng.2018.10.018
– start-page: 248
  year: 2009
  ident: 10.1016/j.neucom.2022.11.020_b1005
  article-title: Imagenet: A large-scale hierarchical image database
– volume: 12
  start-page: 146
  issue: 1
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0160
  article-title: The impact of spatial resolution on the classification of vegetation types in highly fragmented planting areas based on unmanned aerial vehicle hyperspectral images
  publication-title: Remote Sensing
  doi: 10.3390/rs12010146
– volume: 24
  start-page: 349
  issue: 4
  year: 2006
  ident: 10.1016/j.neucom.2022.11.020_b0215
  article-title: Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression
  publication-title: European Journal of Agronomy
  doi: 10.1016/j.eja.2006.01.001
– start-page: 1
  year: 2022
  ident: 10.1016/j.neucom.2022.11.020_b0080
  article-title: Deep learning techniques to classify agricultural crops through uav imagery: a review
  publication-title: Neural Computing and Applications
– volume: 9
  start-page: 828
  issue: 8
  year: 2017
  ident: 10.1016/j.neucom.2022.11.020_b0265
  article-title: Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (uav)
  publication-title: Remote Sensing
  doi: 10.3390/rs9080828
– ident: 10.1016/j.neucom.2022.11.020_b0940
  doi: 10.1007/978-981-19-2027-1_7
– volume: 338
  start-page: 502
  year: 2019
  ident: 10.1016/j.neucom.2022.11.020_b0185
  article-title: Uav based soil salinity assessment of cropland
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.046
– volume: 76
  start-page: 2994
  issue: 9
  year: 2020
  ident: 10.1016/j.neucom.2022.11.020_b0235
  article-title: Deep learning for automated detection of drosophila suzukii: potential for uav-based monitoring
  publication-title: Pest Management Science
  doi: 10.1002/ps.5845
– volume: 10
  start-page: 824
  issue: 6
  year: 2018
  ident: 10.1016/j.neucom.2022.11.020_b0490
  article-title: Evaluation of rgb, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice
  publication-title: Remote Sensing
  doi: 10.3390/rs10060824
SSID ssj0017129
Score 2.6686907
Snippet Precision Agriculture (PA) promises to boost crop productivity while reducing agricultural costs and environmental footprints, and therefore is attracting...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 242
SubjectTerms Deep learning
Machine learning
Precision agriculture
Remote sensing
Smart agriculture
Unmanned Aerial Vehicle (UAV)
Title AI meets UAVs: A survey on AI empowered UAV perception systems for precision agriculture
URI https://dx.doi.org/10.1016/j.neucom.2022.11.020
Volume 518
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MFr2iSbp7dQLK1iL1rpLexuJlLRtKSt4sXf7kyzKQqi4DW7C8tkdh7Lt9_H2IVQoRKE85MAYHk6V5bUtrCILExrYWfZ6kL_dhj0R9712B83WLd-C0OwShP7q5i-itbmS8dYszObTDp3duxiF-VggqMyJibabc8LycvbH2uYhxM6bsW35_oWza6fz60wXgUsCTPiYiJrE5cnqX7_lJ6-pJzeLts2tSJPqu3ssQYU-2yn1mHg5lgesHEy4C8AizkfJQ_zS57w-bJ8hXc-LTgOEfnUG0ly0jCfrZEsvGJxnnOsW_msNGI7XD6Who8DDtmod3Xf7VtGMcFCswYLC_unXMdRpKTIImyTsfqTMseOKHeUp20IIPLDXEnt5aGtiVcHT7gnIqkyBRE44ohtFNMCjhmHMFSxECIIcJ4OIJYYinSmfd_1hYxUk4naUKk2dOKkavGc1rixp7Qyb0rmxU4jRfM2mbVeNavoNP6YH9b_IP3mFilG_F9Xnvx75SnbIk15umdxnTO2sSiXcI6Vx0K1Vq7VYpvJ4KY__AT9ddkJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFH6icGgvLKVV2X1oj2GSOCsShxGLZtguMNXcUtt5qUAQRpMZEBf-FH-Q9ybOqEiISkhcYzvLs_MW6_P3AfyUOtaScX4KEZ3AFNpRxpUOk4UZI908n2zon55FnV5w1A_7M_DUnIVhWKX1_bVPn3hre6VlrdkaXF62zt3UpyrKowDHaUwaWWTlMT7cU91W7Xb3aZJ_-f7hwcVex7HSAg49Pxo5VGgUJk0SrWSeUD1JaZJSBZUOhacD42KESRgXWpmgiF3DBDT0KwQyUTrXmKAn6b6fYC4gd8GyCduPU1yJF3t-TfDnhw6_XnNebwIqK3HMIBWfIuc2k4eyzPhr8fCfGHe4CPM2ORXt-vuXYAbLr7DQCD8I6weWod_uihvEUSV67d_VjmiLajy8wwdxWwpqYrare9YA5WYxmEJnRE0bXQlKlMVgaNV9hPo7tAQg-A16H2LH7zBb3pb4AwTGsU6llFFE_UyEqSLfZ3IThn4oVaJXQDaGyozlL2cZjeusAapdZbV5MzYvlTYZmXcFnOmoQc3f8Z_-cTMH2Yt1mFGIeXPk6rtHbsHnzsXpSXbSPTtegy8saM-bPL63DrOj4Rg3KO0Z6c3JMhPw56PX9TOzpRWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+meets+UAVs%3A+A+survey+on+AI+empowered+UAV+perception+systems+for+precision+agriculture&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Su%2C+Jinya&rft.au=Zhu%2C+Xiaoyong&rft.au=Li%2C+Shihua&rft.au=Chen%2C+Wen-Hua&rft.date=2023-01-21&rft.issn=0925-2312&rft.volume=518&rft.spage=242&rft.epage=270&rft_id=info:doi/10.1016%2Fj.neucom.2022.11.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2022_11_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon