AI meets UAVs: A survey on AI empowered UAV perception systems for precision agriculture
Precision Agriculture (PA) promises to boost crop productivity while reducing agricultural costs and environmental footprints, and therefore is attracting ever-increasing interests in both academia and industry. This management strategy is underpinned by various advanced technologies including Unman...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 518; pp. 242 - 270 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
21.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Precision Agriculture (PA) promises to boost crop productivity while reducing agricultural costs and environmental footprints, and therefore is attracting ever-increasing interests in both academia and industry. This management strategy is underpinned by various advanced technologies including Unmanned Aerial Vehicle (UAV) sensing systems and Artificial Intelligence (AI) perception algorithms. In particular, due to their unique advantages such as a low cost, high spatio-temporal resolutions, flexibility, automation functions and minimized risk of operation, UAV sensing systems have been extensively applied in many civilian applications including PA since 2010. In parallel, AI algorithms (deep learning since 2012 in particular) are also drawing ever-increasing attention in different fields, since they are able to analyse an unprecedented volume/velocity/variety of data (semi-) automatically, which are also becoming computationally practical with the advancements of cloud computing, Graphics Processing Units and parallel computing. In this survey paper, therefore, a thorough review is performed on recent use of UAV sensing systems (e.g., UAV platforms, external sensing units) and AI algorithms (mainly supervised learning algorithms) in PA applications throughout the crop life-cycle, as well as the challenges and prospects for future development of UAVs and AI in agriculture sector. It is envisioned that this review is able to provide a timely technical reference, demystifying and promoting research, deployment and successful exploitation of AI empowered UAV perception systems for PA, and therefore contributing to addressing future agricultural and human nutrition challenges. |
---|---|
AbstractList | Precision Agriculture (PA) promises to boost crop productivity while reducing agricultural costs and environmental footprints, and therefore is attracting ever-increasing interests in both academia and industry. This management strategy is underpinned by various advanced technologies including Unmanned Aerial Vehicle (UAV) sensing systems and Artificial Intelligence (AI) perception algorithms. In particular, due to their unique advantages such as a low cost, high spatio-temporal resolutions, flexibility, automation functions and minimized risk of operation, UAV sensing systems have been extensively applied in many civilian applications including PA since 2010. In parallel, AI algorithms (deep learning since 2012 in particular) are also drawing ever-increasing attention in different fields, since they are able to analyse an unprecedented volume/velocity/variety of data (semi-) automatically, which are also becoming computationally practical with the advancements of cloud computing, Graphics Processing Units and parallel computing. In this survey paper, therefore, a thorough review is performed on recent use of UAV sensing systems (e.g., UAV platforms, external sensing units) and AI algorithms (mainly supervised learning algorithms) in PA applications throughout the crop life-cycle, as well as the challenges and prospects for future development of UAVs and AI in agriculture sector. It is envisioned that this review is able to provide a timely technical reference, demystifying and promoting research, deployment and successful exploitation of AI empowered UAV perception systems for PA, and therefore contributing to addressing future agricultural and human nutrition challenges. |
Author | Su, Jinya Zhu, Xiaoyong Li, Shihua Chen, Wen-Hua |
Author_xml | – sequence: 1 givenname: Jinya surname: Su fullname: Su, Jinya email: sucas@seu.edu.cn organization: School of Automation, Southeast University, Nanjing 210096, China – sequence: 2 givenname: Xiaoyong surname: Zhu fullname: Zhu, Xiaoyong email: zxyff@ujs.edu.cn organization: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 3 givenname: Shihua surname: Li fullname: Li, Shihua email: lsh@seu.edu.cn organization: School of Automation, Southeast University, Nanjing 210096, China – sequence: 4 givenname: Wen-Hua surname: Chen fullname: Chen, Wen-Hua email: W.Chen@lboro.ac.uk organization: Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, UK |
BookMark | eNqFkMtqwzAQRUVJoUnaP-hCP2BXIzm2nEXBhL4g0E1TuhOyPCoK8QPJTsnf1yZdddGuBuZyLjNnQWZN2yAht8BiYJDe7eMGB9PWMWecxwAx4-yCzEFmPJJcpjMyZzlfRVwAvyKLEPaMQQY8n5OP4oXWiH2gu-I9rGlBw-CPeKJtQ8cI6679Qo_VFNMOvcGud2MWTqHHOlDbetp5NC5MW_3pnRkO_eDxmlxafQh48zOXZPf48LZ5jravTy-bYhsZwdI-4pJbk0tZalFJLEWe51pbSBMLZWIYpihXmS21SWzGDEsEsEwkQuqyKlEiiCVZn3uNb0PwaJVxvZ5u7L12BwVMTY7UXp0dqcmRAlCjoxFOfsGdd7X2p_-w-zOG42NHh14F47AxWLlRRa-q1v1d8A2VtoX9 |
CitedBy_id | crossref_primary_10_3390_agriculture15010036 crossref_primary_10_3390_drones9030187 crossref_primary_10_1109_ACCESS_2023_3349271 crossref_primary_10_3390_drones7090547 crossref_primary_10_3390_drones8050185 crossref_primary_10_1016_j_aei_2025_103255 crossref_primary_10_3389_frsc_2025_1561404 crossref_primary_10_1016_j_neucom_2024_127975 crossref_primary_10_3390_drones8020044 crossref_primary_10_1016_j_iot_2024_101461 crossref_primary_10_3390_aerospace10080709 crossref_primary_10_3390_s24061913 crossref_primary_10_3390_drones8100563 crossref_primary_10_1109_JSTARS_2024_3370508 crossref_primary_10_3390_electronics13224362 crossref_primary_10_3390_electronics13081558 crossref_primary_10_1016_j_vehcom_2024_100726 crossref_primary_10_3390_drones7060340 crossref_primary_10_1109_ACCESS_2024_3470509 crossref_primary_10_3390_drones8110683 crossref_primary_10_1016_j_neucom_2023_126789 crossref_primary_10_3390_agriculture13081584 crossref_primary_10_1016_j_jag_2025_104368 crossref_primary_10_1016_j_neucom_2024_128748 crossref_primary_10_1007_s00521_024_10306_y crossref_primary_10_1016_j_neucom_2025_129703 crossref_primary_10_1109_ACCESS_2023_3339631 crossref_primary_10_3390_s23156662 crossref_primary_10_3390_earth5030027 crossref_primary_10_1088_1361_6501_adb873 crossref_primary_10_1016_j_compag_2024_109448 crossref_primary_10_1109_LRA_2024_3421188 crossref_primary_10_1016_j_imavis_2025_105485 crossref_primary_10_1142_S2301385024500237 crossref_primary_10_3389_fpls_2024_1391628 crossref_primary_10_3390_agriculture13020354 crossref_primary_10_1016_j_atech_2024_100752 crossref_primary_10_20473_jatm_v2i2_51440 crossref_primary_10_1007_s10708_023_10859_w crossref_primary_10_1007_s11554_024_01474_0 crossref_primary_10_1007_s44212_025_00067_x crossref_primary_10_1016_j_atech_2024_100483 crossref_primary_10_1109_LCSYS_2024_3427269 crossref_primary_10_1007_s40030_024_00816_2 crossref_primary_10_1016_j_compag_2024_109232 crossref_primary_10_1016_j_neucom_2024_129057 crossref_primary_10_1016_j_compag_2024_109631 crossref_primary_10_34133_plantphenomics_0278 crossref_primary_10_1016_j_compag_2024_108822 crossref_primary_10_3390_s24020344 crossref_primary_10_3390_rs15092450 crossref_primary_10_3390_drones7040260 crossref_primary_10_1016_j_cropro_2024_107018 crossref_primary_10_1016_j_jestch_2025_101977 crossref_primary_10_1007_s43926_024_00066_5 crossref_primary_10_59267_ekoPolj2403957S crossref_primary_10_3390_drones7060400 crossref_primary_10_1007_s11227_025_07002_6 crossref_primary_10_1016_j_robot_2024_104629 crossref_primary_10_1016_j_eja_2024_127477 crossref_primary_10_1007_s00521_023_09230_4 crossref_primary_10_1016_j_jag_2025_104424 crossref_primary_10_1038_s41598_024_80244_1 crossref_primary_10_1063_5_0229772 crossref_primary_10_3390_aerospace10080684 crossref_primary_10_1016_j_neucom_2025_129725 crossref_primary_10_1016_j_cja_2024_09_018 crossref_primary_10_1007_s10462_024_11033_5 crossref_primary_10_1016_j_eja_2024_127440 crossref_primary_10_1080_17538947_2024_2328827 crossref_primary_10_3390_drones8110664 crossref_primary_10_1080_00207543_2023_2232470 crossref_primary_10_1142_S0218001423540241 crossref_primary_10_1016_j_compag_2024_109501 crossref_primary_10_1016_j_compag_2024_109589 crossref_primary_10_1016_j_rineng_2025_104081 crossref_primary_10_1002_adfm_202412832 crossref_primary_10_30518_jav_1332849 crossref_primary_10_1016_j_comnet_2024_110856 crossref_primary_10_3390_drones8120782 |
Cites_doi | 10.1016/j.isprsjprs.2017.11.011 10.1016/j.neunet.2017.07.017 10.3390/rs13071358 10.1016/j.compag.2018.02.016 10.1614/WS-05-54.2.346 10.3390/rs13214387 10.1016/j.rse.2018.06.028 10.1016/j.ecolind.2016.03.036 10.3389/fpls.2017.01111 10.1016/j.heliyon.2020.e05285 10.1016/j.isprsjprs.2009.06.004 10.1002/rob.21928 10.3390/rs11121443 10.3390/rs14030731 10.1109/5.726791 10.1038/nature10452 10.1016/j.compag.2020.105836 10.31256/WP2018.2 10.1111/wre.12275 10.1371/journal.pone.0196302 10.1016/j.eja.2017.11.002 10.1016/j.autcon.2021.104110 10.1109/JSEN.2021.3049471 10.3390/rs9111110 10.3390/rs10091423 10.1007/978-3-030-01264-9_8 10.1016/j.isprsjprs.2019.04.015 10.1016/j.compag.2021.106005 10.3389/fpls.2017.02002 10.1016/j.compag.2021.106621 10.1016/j.neucom.2021.06.072 10.1080/15481603.2018.1426091 10.3390/rs11111373 10.3390/rs14030782 10.1016/j.tplants.2018.11.007 10.1016/j.compag.2021.106506 10.1142/S2301385020500053 10.1016/j.neucom.2018.05.083 10.1109/CVPR.2016.91 10.1016/j.biosystemseng.2020.10.001 10.3390/rs11030330 10.1016/j.rse.2011.10.011 10.1109/TPAMI.2015.2389824 10.1109/MGRS.2020.2998816 10.1109/CVPR.2019.00020 10.1016/j.compag.2017.05.001 10.1109/MSP.2017.2738401 10.3390/rs13193841 10.1016/j.agwat.2021.107076 10.3390/rs9060583 10.3390/rs4061519 10.1109/CVPR.2017.690 10.3390/rs11091023 10.1186/s40537-019-0197-0 10.1016/j.isprsjprs.2016.03.014 10.1109/ACCESS.2020.3031896 10.3389/fpls.2022.934450 10.1016/j.atech.2021.100028 10.1109/LRA.2017.2774979 10.1109/TPAMI.2017.2699184 10.1109/ICCV48922.2021.00986 10.1109/ICCV.2019.00867 10.1016/j.ecoinf.2022.101715 10.3390/s17122726 10.1016/B978-0-12-386473-4.00005-1 10.1016/j.neucom.2019.11.118 10.1016/j.copbio.2020.09.003 10.3390/s19163595 10.3390/rs61212037 10.1016/j.compag.2019.105035 10.1016/j.compag.2018.10.017 10.1016/j.iot.2020.100187 10.1109/ACCESS.2019.2909530 10.3389/fpls.2020.558126 10.3390/rs13081562 10.1007/s10462-020-09825-6 10.1007/s10064-020-01766-2 10.1371/journal.pone.0187470 10.1109/LGRS.2011.2172185 10.1007/s00271-012-0382-9 10.1109/JSTARS.2021.3110842 10.3390/rs9070708 10.1109/CVPR.2015.7298965 10.1016/j.cviu.2007.09.014 10.3390/rs11182075 10.1016/j.mlwa.2021.100233 10.1109/CVPR.2017.660 10.1016/j.compag.2019.105052 10.1109/CVPR.2017.243 10.1080/07038992.2021.1881464 10.1016/j.compag.2022.107268 10.1007/s11119-022-09901-7 10.3390/rs4061671 10.1016/j.eswa.2022.118029 10.1016/j.compag.2020.105504 10.1007/s11119-022-09907-1 10.1109/CVPR.2017.634 10.1016/j.compag.2021.106067 10.1007/s11119-013-9322-9 10.3390/rs14010093 10.1371/journal.pone.0223906 10.1109/CVPR.2017.351 10.1109/CVPR.2016.90 10.1016/j.imavis.2020.104046 10.3389/fpls.2016.01419 10.1007/s12518-013-0120-x 10.1109/CVPR.2018.00474 10.1109/ICCV.1999.790410 10.1016/j.jag.2020.102177 10.1016/j.compag.2022.106812 10.1155/2017/3296874 10.1093/nsr/nwx106 10.1016/j.jnca.2019.102461 10.1016/j.compag.2020.105282 10.1016/j.neucom.2020.01.085 10.3390/s17122703 10.1016/j.compag.2020.105909 10.1016/j.neunet.2018.07.011 10.3390/electronics7090162 10.1109/TII.2020.2979237 10.3390/s18010260 10.1653/024.101.0229 10.1109/ICCV.2019.00140 10.1145/3505244 10.1016/j.compag.2020.105450 10.1126/science.1183899 10.1016/j.biosystemseng.2020.02.014 10.1109/TPAMI.2016.2644615 10.1109/ICCV.2017.324 10.1016/j.compag.2021.106456 10.1016/j.jag.2021.102456 10.3390/rs11243012 10.1016/j.autcon.2021.103786 10.3390/info10110349 10.3390/rs12091491 10.1016/j.compag.2021.106465 10.1016/j.compag.2015.09.001 10.3390/rs13061204 10.5194/bg-13-6545-2016 10.3390/rs10111690 10.1080/10095020.2017.1420509 10.1007/s11119-013-9334-5 10.1139/juvs-2014-0006 10.1016/j.rse.2019.111599 10.3390/rs61110395 10.3390/rs8040329 10.1080/01431161.2017.1422875 10.1109/CVPR.2018.00716 10.1007/978-3-030-01234-2_49 10.1109/ICCV.2015.169 10.1109/CVPR.2014.81 10.1007/s10846-017-0534-5 10.3390/rs12010017 10.1109/CVPR.2015.7298594 10.1016/j.compag.2020.105845 10.3390/rs13204091 10.1016/j.compag.2020.105708 10.3390/rs9050498 10.1016/j.eja.2020.126030 10.1016/j.rse.2020.112012 10.3390/rs10101513 10.1016/j.media.2020.101759 10.3390/rs12132136 10.1109/CVPR.2017.106 10.1162/neco.1989.1.4.541 10.1016/j.compag.2020.105665 10.3390/rs13193892 10.3390/w10050655 10.1016/j.isprsjprs.2019.12.010 10.7717/peerj.13064 10.1109/ACCESS.2021.3084358 10.1109/ACCESS.2019.2932119 10.4039/tce.2016.11 10.1117/12.2028624 10.1016/j.compag.2019.104963 10.1016/j.isprsjprs.2018.09.008 10.3390/s21196540 10.1016/j.agwat.2015.01.020 10.1109/TIE.2015.2478397 10.1109/ACCESS.2019.2895243 10.1016/j.biosystemseng.2018.10.018 10.3390/rs12010146 10.1016/j.eja.2006.01.001 10.3390/rs9080828 10.1007/978-981-19-2027-1_7 10.1016/j.geoderma.2018.09.046 10.1002/ps.5845 10.3390/rs10060824 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2022.11.020 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 270 |
ExternalDocumentID | 10_1016_j_neucom_2022_11_020 S0925231222013996 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c306t-282fc988ba3d8eb3999aaf164f1b4c0e6e857fbac4f70c0431073438abdbe8e13 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Thu Apr 24 22:57:47 EDT 2025 Tue Jul 01 04:24:51 EDT 2025 Fri Feb 23 02:37:58 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Precision agriculture Smart agriculture Unmanned Aerial Vehicle (UAV) Remote sensing Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-282fc988ba3d8eb3999aaf164f1b4c0e6e857fbac4f70c0431073438abdbe8e13 |
PageCount | 29 |
ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2022_11_020 crossref_primary_10_1016_j_neucom_2022_11_020 elsevier_sciencedirect_doi_10_1016_j_neucom_2022_11_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-21 |
PublicationDateYYYYMMDD | 2023-01-21 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dai, Li, He, Sun (b0855) 2016; 29 H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, Pyramid scene parsing network, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881–2890, 2017. Adão, Hruška, Pádua, Bessa, Peres, Morais, Sousa (b0140) 2017; 9 Hoffmann, Jensen, Thomsen, Nieto, Rasmussen, Friborg (b0380) 2016; 13 J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788, 2016. E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q.V. Le, Autoaugment: Learning augmentation policies from data, arXiv preprint arXiv:1805.09501, 2018. Pan, Gao, Wu, Yan, Li (b0785) 2021; 21 Blaschke (b0715) 2010; 65 Zeng, Wu, Wang, Li, Liu, Liu (b0815) 2022; 71 Zhang, Ding, Chen, Zhang, Pan, Liang (b0450) 2020; 179 S. Han, H. Mao, and W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, arXiv preprint arXiv:1510.00149, 2015. Zeng, Wang, Liu, Zhang, Hone, Liu (b1135) 2020 He, Hao, Xin (b0920) 2020; 8 Ren, He, Girshick, Sun (b0850) 2015; 28 Y. Bai, C. Nie, H. Wang, M. Cheng, S. Liu, X. Yu, M. Shao, Z. Wang, S. Wang, N. Tuohuti, et al., A fast and robust method for plant count in sunflower and maize at different seedling stages using high-resolution uav rgb imagery, Precision Agriculture, pp. 1–23, 2022. S. Khan, M. Naseer, M. Hayat, S.W. Zamir, F.S. Khan, and M. Shah, Transformers in vision: A survey, ACM Computing Surveys (CSUR), 2021. Shendryk, Sofonia, Garrard, Rist, Skocaj, Thorburn (b0205) 2020; 92 Messina, Modica (b0135) 2020; 12 Lambert, Hicks, Childs, Freckleton (b0295) 2018; 58 Smith, Su, Liu, Chen (b0435) 2017; 88 S. Bittel, V. Kaiser, M. Teichmann, and M. Thoma, Pixel-wise segmentation of street with neural networks, arXiv preprint arXiv:1511.00513, 2015. Giordan, Adams, Aicardi, Alicandro, Allasia, Baldo, De Berardinis, Dominici, Godone, Hobbs (b0415) 2020; 79 Shirzadifar, Bajwa, Nowatzki, Bazrafkan (b0500) 2020; 200 Hall, Castilla, White, Cooke, Skakun (b0260) 2016; 148 J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440, 2015. L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in Proceedings of the European conference on computer vision (ECCV), pp. 801–818, 2018. Chen, Yang, Zhang, Zhu, Zeng, Wang, Wang, Wang, Qi, Lan (b0365) 2020; 177 A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929, 2020. O’Mahony, Campbell, Carvalho, Harapanahalli, Hernandez, Krpalkova, Riordan, Walsh (b0585) 2019 Jiang, Zhang, Qiao, Zhang, Zhang, Song (b1080) 2020; 174 Gonzalez-Dugo, Zarco-Tejada, Nicolás, Nortes, Alarcón, Intrigliolo, Fereres (b0515) 2013; 14 Zhong, Hu, Luo, Wang, Zhao, Zhang (b1020) 2020; 250 Kim, Park, Lee (b0250) 2018; 101 Singh, Duddu, Vail, Parkin, Shirtliffe (b0410) 2021; 47 Sagan, Maimaitijiang, Sidike, Eblimit, Peterson, Hartling, Esposito, Khanal, Newcomb, Pauli (b0510) 2019; 11 Wang, Su, Zhai, Meng, Liu (b0565) 2022; 14 Ge, Ding, Jin, Wang, Chen, Li, Liu, Xie (b0180) 2021; 13 Rossel, Adamchuk, Sudduth, McKenzie, Lobsey (b0445) 2011; 113 K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, Accelerating cnn inference on fpgas: A survey, arXiv preprint arXiv:1806.01683, 2018. X. Zhang, X. Zhou, M. Lin, and J. Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6848–6856, 2018. Bay, Ess, Tuytelaars, Van Gool (b0595) 2008; 110 M. Jarman, J. Vesey, and P. Febvre, Unmanned aerial vehicles (uavs) for uk agriculture: Creating an invisible precision farming technology, White Paper, July 2016. Badrinarayanan, Kendall, Cipolla (b0760) 2017; 39 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b1010) 2014 Green (b0040) 2020 Cheng, Han (b0820) 2016; 117 Yang, Tseng, Hsu, Yang, Lai, Wu (b1035) 2021; 13 Wang, Deng (b1050) 2018; 312 Junos, Mohd Khairuddin, Thannirmalai, Dahari (b0335) 2021 López-Granados, Jurado-Expósito, Peña-Barragán, García-Torres (b0395) 2006; 54 Su, Yi, Su, Mi, Liu, Hu, Xu, Guo, Chen (b0055) 2020; 17 Kellenberger, Marcos, Tuia (b1060) 2018; 216 Li, Niu, Chen, Li, Wu, Zhao (b0470) 2016; 67 Neupane, Horanont, Hung (b0900) 2019; 14 Coombes, Fletcher, Chen, Liu (b0965) 2020; 37 Boursianis, Papadopoulou, Diamantoulakis, Liopa-Tsakalidi, Barouchas, Salahas, Karagiannidis, Wan, Goudos (b0110) 2022; 18 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b0665) 2017; 30 Sa, Popović, Khanna, Chen, Lottes, Liebisch, Nieto, Stachniss, Walter, Siegwart (b1025) 2018; 10 Khan, Sohail, Zahoora, Qureshi (b0695) 2020; 53 Veeranampalayam Sivakumar, Li, Scott, Psota, Jhala, Luck, Shi (b0310) 2020; 12 Liu, Xiang, Jin, Liu, Yan, Wang (b1040) 2021; 13 Q. Yang, B. She, L. Huang, Y. Yang, G. Zhang, M. Zhang, Q. Hong, and D. Zhang, Extraction of soybean planting area based on feature fusion technology of multi-source low altitude unmanned aerial vehicle images, Ecological Informatics, p. 101715, 2022. Zhang, Xu, Su, Yang, Liu, Chen, Li (b0770) 2021; 13 Bendig, Bolten, Bennertz, Broscheit, Eichfuss, Bareth (b0195) 2014; 6 S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, Aggregated residual transformations for deep neural networks, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1492–1500, 2017. Sridhar, Balakrishnan, Jacob, Sillanpää, Dayanandan (b0010) 2022 Osco, Junior, Ramos, de Castro Jorge, Fatholahi, de Andrade Silva, Matsubara, Pistori, Gonçalves, Li (b0130) 2021; 102 Wang, Ge, Dai, Ahmad, Dai, Zhou, Qin, Gu (b0935) 2018; 39 Shen, Chen, Mi, Su, Huang, Song, Fang, Su (b0455) 2022; 200 T. Duckett, S. Pearson, S. Blackmore, B. Grieve, W.-H. Chen, G. Cielniak, J. Cleaversmith, J. Dai, S. Davis, C. Fox, et al., Agricultural robotics: the future of robotic agriculture, arXiv preprint arXiv:1806.06762, 2018. Bellvert, Zarco-Tejada, Girona, Fereres (b0280) 2014; 15 Gebbers, Adamchuk (b0020) 2010; 327 Zhao, Shi, Liu, Hovis, Duan, Shi (b0170) 2019; 11 A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, et al., Searching for mobilenetv3, in Proceedings of the IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019. T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, Feature pyramid networks for object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125, 2017. Chen, Yang, Guo, Li (b0955) 2015; 63 J. Redmon and A. Farhadi, Yolov3: An incremental improvement, arXiv preprint arXiv:1804.02767, 2018. He, Fang, Zhao, Wu, Fu, Li, Majeed, Dhupia (b0325) 2022; 195 J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, et al., Speed/accuracy trade-offs for modern convolutional object detectors, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7310–7311, 2017. Bai, Chen, Chen, Cui, Tai, Zhang, Cui, Ning (b0175) 2021; 190 Su, Liu, Hu, Xu, Guo, Chen (b0230) 2019; 167 H.F. Mahmoud, Parametric versus semi and nonparametric regression models, arXiv preprint arXiv:1906.10221, 2019. Tetila, Machado, Astolfi, de Souza Belete, Amorim, Roel, Pistori (b0245) 2020; 179 Jin, Zarco-Tejada, Schmidhalter, Reynolds, Hawkesford, Varshney, Yang, Nie, Li, Ming (b0105) 2020; 9 Vanegas, Bratanov, Powell, Weiss, Gonzalez (b0240) 2018; 18 Luo, Liu, Zhang, Wang, Xi, Nie, Ma, Lin, Zhou (b0525) 2021; 182 Gago, Douthe, Coopman, Gallego, Ribas-Carbo, Flexas, Escalona, Medrano (b0270) 2015; 153 Ju, Son (b0975) 2018; 7 Mukherjee, Misra, Raghuwanshi (b0115) 2019; 148 K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, 2014. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. Ndlovu, Odindi, Sibanda, Mutanga, Clulow, Chimonyo, Mabhaudhi (b0285) 2021; 13 E. Olaniyi, D. Chen, Y. Lu, and Y. Huang, Generative adversarial networks for image augmentation in agriculture: a systematic review, arXiv preprint arXiv:2204.04707, 2022. Huang, Deng, Lan, Yang, Deng, Zhang (b0755) 2018; 13 Whitehead, Hugenholtz (b0990) 2014; 2 Tsouros, Bibi, Sarigiannidis (b0090) 2019; 10 Bouguettaya, Zarzour, Kechida, Taberkit (b0080) 2022 Feng, Zhou, Vories, Sudduth, Zhang (b0400) 2020; 193 Ma, Liu, Zhang, Ye, Yin, Johnson (b0060) 2019; 152 Yang, Liu, Zhao, Li, Huang, Yu, Xu, Yang, Zhu, Zhang (b0100) 2017; 8 Carrio, Sampedro, Rodriguez-Ramos, Campoy (b0035) 2017; 2017 Ivushkin, Bartholomeus, Bregt, Pulatov, Franceschini, Kramer, van Loo, Roman, Finkers (b0185) 2019; 338 Watts, Ambrosia, Hinkley (b0420) 2012; 4 Yang, Huang, Kuo, Tsai, Lin (b0710) 2017; 9 Townsend, Jiya, Martinson, Bessarabov, Gouws (b0960) 2020; 6 Koparan, Koc, Privette, Sawyer, Sharp (b0985) 2018; 10 Santos, Lacerda, Rossi (b0345) 2021; 14 Lv, Ma, Chen, Pei, Zhou, Xiao, Li (b1075) 2021; 14 Baluja, Diago, Balda, Zorer, Meggio, Morales, Tardaguila (b0275) 2012; 30 Ronneberger, Fischer, Brox (b0765) 2015 Deng, Mao, Li, Hu, Duan, Yan (b0505) 2018; 146 Su, Yi, Liu, Guo, Chen (b0560) 2017; 17 Shorten, Khoshgoftaar (b0575) 2019; 6 Zhou, Yungbluth, Vong, Scaboo, Zhou (b0340) 2019; 11 Zheng, Cheng, Li, Zhou, Yao, Tian, Cao, Zhu (b0490) 2018; 10 Zhou, Lao, Yang, Zhang, Chen, Chen, Chen, Ning, Yang (b0385) 2021; 256 ten Harkel, Bartholomeus, Kooistra (b0190) 2019; 12 Cinat, Di Gennaro, Berton, Matese (b0540) 2019; 11 Audebert, Le Saux, Lefèvre (b1125) 2018; 140 Kim, Kim, Ju, Son (b0045) 2019; 7 Bah, Hafiane, Canals (b0950) 10.1016/j.neucom.2022.11.020_b0860 Zhao (10.1016/j.neucom.2022.11.020_b0170) 2019; 11 10.1016/j.neucom.2022.11.020_b0980 Mohanty (10.1016/j.neucom.2022.11.020_b1015) 2016; 7 10.1016/j.neucom.2022.11.020_b0865 10.1016/j.neucom.2022.11.020_b0620 Fu (10.1016/j.neucom.2022.11.020_b0720) 2017; 9 Längkvist (10.1016/j.neucom.2022.11.020_b0735) 2016; 8 10.1016/j.neucom.2022.11.020_b1150 Kim (10.1016/j.neucom.2022.11.020_b0250) 2018; 101 Sankaran (10.1016/j.neucom.2022.11.020_b0485) 2015; 118 Lambert (10.1016/j.neucom.2022.11.020_b0295) 2018; 58 Vaswani (10.1016/j.neucom.2022.11.020_b0665) 2017; 30 Gebbers (10.1016/j.neucom.2022.11.020_b0020) 2010; 327 10.1016/j.neucom.2022.11.020_b0745 10.1016/j.neucom.2022.11.020_b0625 Licciardi (10.1016/j.neucom.2022.11.020_b0925) 2011; 9 Pan (10.1016/j.neucom.2022.11.020_b0155) 2012; 119 10.1016/j.neucom.2022.11.020_b0750 10.1016/j.neucom.2022.11.020_b0630 10.1016/j.neucom.2022.11.020_b0870 10.1016/j.neucom.2022.11.020_b0875 Bellvert (10.1016/j.neucom.2022.11.020_b0280) 2014; 15 Zeng (10.1016/j.neucom.2022.11.020_b0815) 2022; 71 Wang (10.1016/j.neucom.2022.11.020_b0405) 2013 Zhang (10.1016/j.neucom.2022.11.020_b0770) 2021; 13 Giordan (10.1016/j.neucom.2022.11.020_b0415) 2020; 79 Shendryk (10.1016/j.neucom.2022.11.020_b0205) 2020; 92 Ronneberger (10.1016/j.neucom.2022.11.020_b0765) 2015 Torres-Sanchez (10.1016/j.neucom.2022.11.020_b0535) 2018; 176 10.1016/j.neucom.2022.11.020_b0635 Zhong (10.1016/j.neucom.2022.11.020_b1020) 2020; 250 ten Harkel (10.1016/j.neucom.2022.11.020_b0190) 2019; 12 10.1016/j.neucom.2022.11.020_b0165 Zhou (10.1016/j.neucom.2022.11.020_b1090) 2018; 5 10.1016/j.neucom.2022.11.020_b0840 Ivushkin (10.1016/j.neucom.2022.11.020_b0185) 2019; 338 Cheng (10.1016/j.neucom.2022.11.020_b0820) 2016; 117 dos Santos Ferreira (10.1016/j.neucom.2022.11.020_b0945) 2019; 165 Khanal (10.1016/j.neucom.2022.11.020_b0015) 2017; 139 López-Granados (10.1016/j.neucom.2022.11.020_b0395) 2006; 54 Su (10.1016/j.neucom.2022.11.020_b0300) 2022; 192 Gago (10.1016/j.neucom.2022.11.020_b0270) 2015; 153 Ndlovu (10.1016/j.neucom.2022.11.020_b0285) 2021; 13 Tan (10.1016/j.neucom.2022.11.020_b0650) 2019 Hasan (10.1016/j.neucom.2022.11.020_b0290) 2021; 184 Li (10.1016/j.neucom.2022.11.020_b0470) 2016; 67 Ma (10.1016/j.neucom.2022.11.020_b0060) 2019; 152 Zhou (10.1016/j.neucom.2022.11.020_b0385) 2021; 256 Carrio (10.1016/j.neucom.2022.11.020_b0035) 2017; 2017 Badrinarayanan (10.1016/j.neucom.2022.11.020_b0760) 2017; 39 Karimi (10.1016/j.neucom.2022.11.020_b0070) 2020; 65 Madec (10.1016/j.neucom.2022.11.020_b0520) 2017; 8 LeCun (10.1016/j.neucom.2022.11.020_b0615) 1989; 1 He (10.1016/j.neucom.2022.11.020_b0325) 2022; 195 Gonzalez-Dugo (10.1016/j.neucom.2022.11.020_b0515) 2013; 14 Shen (10.1016/j.neucom.2022.11.020_b0455) 2022; 200 Bhandari (10.1016/j.neucom.2022.11.020_b0225) 2020; 176 Lv (10.1016/j.neucom.2022.11.020_b1075) 2021; 14 Hoffmann (10.1016/j.neucom.2022.11.020_b0380) 2016; 13 10.1016/j.neucom.2022.11.020_b0660 Wu (10.1016/j.neucom.2022.11.020_b0825) 2020; 396 Boursianis (10.1016/j.neucom.2022.11.020_b0110) 2022; 18 Sa (10.1016/j.neucom.2022.11.020_b1025) 2018; 10 Jung (10.1016/j.neucom.2022.11.020_b0025) 2021; 70 10.1016/j.neucom.2022.11.020_b0780 Fawakherji (10.1016/j.neucom.2022.11.020_b1110) 2019 Sharma (10.1016/j.neucom.2022.11.020_b0740) 2017; 95 Audebert (10.1016/j.neucom.2022.11.020_b1125) 2018; 140 Nguyen (10.1016/j.neucom.2022.11.020_b0215) 2006; 24 Ge (10.1016/j.neucom.2022.11.020_b0180) 2021; 13 Neupane (10.1016/j.neucom.2022.11.020_b0370) 2021; 13 Osco (10.1016/j.neucom.2022.11.020_b0130) 2021; 102 Lu (10.1016/j.neucom.2022.11.020_b0480) 2018; 21 Krizhevsky (10.1016/j.neucom.2022.11.020_b0610) 2012; 25 10.1016/j.neucom.2022.11.020_b0795 Schmarje (10.1016/j.neucom.2022.11.020_b0800) 2021; 9 10.1016/j.neucom.2022.11.020_b0675 10.1016/j.neucom.2022.11.020_b0555 Yao (10.1016/j.neucom.2022.11.020_b0125) 2019; 11 Yang (10.1016/j.neucom.2022.11.020_b0100) 2017; 8 Baluja (10.1016/j.neucom.2022.11.020_b0275) 2012; 30 Khan (10.1016/j.neucom.2022.11.020_b0695) 2020; 53 10.1016/j.neucom.2022.11.020_b0670 Zhang (10.1016/j.neucom.2022.11.020_b0450) 2020; 179 Santos (10.1016/j.neucom.2022.11.020_b0345) 2021; 14 Deng (10.1016/j.neucom.2022.11.020_b1005) 2009 Bah (10.1016/j.neucom.2022.11.020_b0950) 2018; 10 Chen (10.1016/j.neucom.2022.11.020_b0365) 2020; 177 Yang (10.1016/j.neucom.2022.11.020_b0710) 2017; 9 Moeinizade (10.1016/j.neucom.2022.11.020_b0350) 2022; 7 Huang (10.1016/j.neucom.2022.11.020_b0755) 2018; 13 Pourroostaei Ardakani (10.1016/j.neucom.2022.11.020_b0550) 2021; vol. 2 Su (10.1016/j.neucom.2022.11.020_b0055) 2020; 17 10.1016/j.neucom.2022.11.020_b0640 10.1016/j.neucom.2022.11.020_b0880 10.1016/j.neucom.2022.11.020_b0645 Xi (10.1016/j.neucom.2022.11.020_b0930) 2021; 191 Yang (10.1016/j.neucom.2022.11.020_b1035) 2021; 13 Zhang (10.1016/j.neucom.2022.11.020_b1130) 2021; 180 Smith (10.1016/j.neucom.2022.11.020_b0435) 2017; 88 Chen (10.1016/j.neucom.2022.11.020_b0790) 2017; 40 Mylonas (10.1016/j.neucom.2022.11.020_b1045) 2022; 2 Ju (10.1016/j.neucom.2022.11.020_b0975) 2018; 7 Hall (10.1016/j.neucom.2022.11.020_b0260) 2016; 148 Albani (10.1016/j.neucom.2022.11.020_b0970) 2017 Su (10.1016/j.neucom.2022.11.020_b0390) 2020; 8 Mnih (10.1016/j.neucom.2022.11.020_b0730) 2013 10.1016/j.neucom.2022.11.020_b0655 Zeng (10.1016/j.neucom.2022.11.020_b1135) 2020 10.1016/j.neucom.2022.11.020_b0895 10.1016/j.neucom.2022.11.020_b0775 Wang (10.1016/j.neucom.2022.11.020_b1050) 2018; 312 Di Cicco (10.1016/j.neucom.2022.11.020_b1070) 2017 10.1016/j.neucom.2022.11.020_b0890 10.1016/j.neucom.2022.11.020_b1065 Christiansen (10.1016/j.neucom.2022.11.020_b0545) 2017; 17 Messina (10.1016/j.neucom.2022.11.020_b0135) 2020; 12 Maimaitijiang (10.1016/j.neucom.2022.11.020_b0315) 2020; 237 Tsouros (10.1016/j.neucom.2022.11.020_b0090) 2019; 10 Adão (10.1016/j.neucom.2022.11.020_b0140) 2017; 9 Su (10.1016/j.neucom.2022.11.020_b0230) 2019; 167 Blaschke (10.1016/j.neucom.2022.11.020_b0715) 2010; 65 Koparan (10.1016/j.neucom.2022.11.020_b0985) 2018; 10 Maes (10.1016/j.neucom.2022.11.020_b0095) 2019; 24 Liu (10.1016/j.neucom.2022.11.020_b0885) 2016 Yue (10.1016/j.neucom.2022.11.020_b0200) 2017; 9 Dai (10.1016/j.neucom.2022.11.020_b0855) 2016; 29 Ren (10.1016/j.neucom.2022.11.020_b0850) 2015; 28 Liu (10.1016/j.neucom.2022.11.020_b1040) 2021; 13 Foley (10.1016/j.neucom.2022.11.020_b0005) 2011; 478 10.1016/j.neucom.2022.11.020_b0460 Lin (10.1016/j.neucom.2022.11.020_b1030) 2019; 7 10.1016/j.neucom.2022.11.020_b0580 Su (10.1016/j.neucom.2022.11.020_b0150) 2018; 155 10.1016/j.neucom.2022.11.020_b0905 Coombes (10.1016/j.neucom.2022.11.020_b0965) 2020; 37 Watts (10.1016/j.neucom.2022.11.020_b0420) 2012; 4 Kellenberger (10.1016/j.neucom.2022.11.020_b1060) 2018; 216 Pan (10.1016/j.neucom.2022.11.020_b0785) 2021; 21 Shakhatreh (10.1016/j.neucom.2022.11.020_b0995) 2019; 7 Vanegas (10.1016/j.neucom.2022.11.020_b0240) 2018; 18 Shirzadifar (10.1016/j.neucom.2022.11.020_b0500) 2020; 200 10.1016/j.neucom.2022.11.020_b0590 Bouguettaya (10.1016/j.neucom.2022.11.020_b0080) 2022 Zhang (10.1016/j.neucom.2022.11.020_b0210) 2019; 167 Liu (10.1016/j.neucom.2022.11.020_b0160) 2020; 12 Green (10.1016/j.neucom.2022.11.020_b0040) 2020 Su (10.1016/j.neucom.2022.11.020_b0560) 2017; 17 Duarte-Carvajalino (10.1016/j.neucom.2022.11.020_b0220) 2018; 10 Tetila (10.1016/j.neucom.2022.11.020_b0245) 2020; 179 Kamilaris (10.1016/j.neucom.2022.11.020_b0065) 2018; 147 10.1016/j.neucom.2022.11.020_b0910 Bashar (10.1016/j.neucom.2022.11.020_b0075) 2019; 1 10.1016/j.neucom.2022.11.020_b0685 Sa (10.1016/j.neucom.2022.11.020_b0305) 2017; 3 10.1016/j.neucom.2022.11.020_b0440 Whitehead (10.1016/j.neucom.2022.11.020_b0990) 2014; 2 Jin (10.1016/j.neucom.2022.11.020_b0105) 2020; 9 10.1016/j.neucom.2022.11.020_b1095 10.1016/j.neucom.2022.11.020_b0680 Roosjen (10.1016/j.neucom.2022.11.020_b0235) 2020; 76 Lin (10.1016/j.neucom.2022.11.020_b1010) 2014 Kim (10.1016/j.neucom.2022.11.020_b0045) 2019; 7 Psiroukis (10.1016/j.neucom.2022.11.020_b0355) 2022; 14 O’Mahony (10.1016/j.neucom.2022.11.020_b0585) 2019 Maddikunta (10.1016/j.neucom.2022.11.020_b0085) 2021; 21 10.1016/j.neucom.2022.11.020_b0330 Luo (10.1016/j.neucom.2022.11.020_b0525) 2021; 182 Park (10.1016/j.neucom.2022.11.020_b0265) 2017; 9 Rossel (10.1016/j.neucom.2022.11.020_b0445) 2011; 113 10.1016/j.neucom.2022.11.020_b0570 10.1016/j.neucom.2022.11.020_b0690 Mukherjee (10.1016/j.neucom.2022.11.020_b0115) 2019; 148 He (10.1016/j.neucom.2022.11.020_b0920) 2020; 8 Hung (10.1016/j.neucom.2022.11.020_b0605) 2014; 6 Hao (10.1016/j.neucom.2022.11.020_b0705) 2020; 406 Li (10.1016/j.neucom.2022.11.020_b0475) 2021; 190 Liu (10.1016/j.neucom.2022.11.020_b0725) 2018; 55 Bendig (10.1016/j.neucom.2022.11.020_b0195) 2014; 6 Meng (10.1016/j.neucom.2022.11.020_b0145) 2022; 10 Buda (10.1016/j.neucom.2022.11.020_b0810) 2018; 106 Mi (10.1016/j.neucom.2022.11.020_b0050) 2020; 11 10.1016/j.neucom.2022.11.020_b0940 Apolo-Apolo (10.1016/j.neucom.2022.11.020_b0320) 2020; 115 Junos (10.1016/j.neucom.2022.11.020_b0335) 2021 Li (10.1016/j.neucom.2022.11.020_b0600) 2022; 207 Wu (10.1016/j.neucom.2022.11.020_b0915) 2020; 174 Wang (10.1016/j.neucom.2022.11.020_b0565) 2022; 14 Nex (10.1016/j.neucom.2022.11.020_b0430) 2014; 6 Zhang (10.1016/j.neucom.2022.11.020_b0255) 2018; 13 Abdulridha (10.1016/j.neucom.2022.11.020_b0375) 2019; 11 Bai (10.1016/j.neucom.2022.11.020_b0175) 2021; 190 Shorten (10.1016/j.neucom.2022.11.020_b0575) 2019; 6 Alsalam (10.1016/j.neucom.2022.11.020_b1145) 2017 Townsend (10.1016/j.neucom.2022.11.020_b0960) 2020; 6 Yi (10.1016/j.neucom.2022.11.020_b0465) 2021; 459 10.1016/j.neucom.2022.11.020_b1000 Mittal (10.1016/j.neucom.2022.11.020_b0830) 2020; 104 Gogoll (10.1016/j.neucom.2022.11.020_b1055) 2020 10.1016/j.neucom.2022.11.020_b0030 Delavarpour (10.1016/j.neucom.2022.11.020_b0120) 2021; 13 Bay (10.1016/j.neucom.2022.11.020_b0595) 2008; 110 10.1016/j.neucom.2022.11.020_b0835 Feng (10.1016/j.neucom.2022.11.020_b0400) 2020; 193 Veeranampalayam Sivakumar (10.1016/j.neucom.2022.11.020_b0310) 2020; 12 Zhou (10.1016/j.neucom.2022.11.020_b0340) 2019; 11 Jiang (10.1016/j.neucom.2022.11.020_b1080) 2020; 174 Wang (10.1016/j.neucom.2022.11.0 |
References_xml | – start-page: 1 year: 2021 end-page: 15 ident: b0335 article-title: Automatic detection of oil palm fruits from uav images using an improved yolo model publication-title: The Visual Computer – volume: 5 start-page: 44 year: 2018 end-page: 53 ident: b1090 article-title: A brief introduction to weakly supervised learning publication-title: National science review – volume: 13 start-page: 6545 year: 2016 end-page: 6563 ident: b0380 article-title: Crop water stress maps for an entire growing season from visible and thermal uav imagery publication-title: Biogeosciences – volume: 8 start-page: 329 year: 2016 ident: b0735 article-title: Classification and segmentation of satellite orthoimagery using convolutional neural networks publication-title: Remote Sensing – year: 2013 ident: b0730 article-title: Machine learning for aerial image labeling – volume: 21 start-page: 21 year: 2018 end-page: 32 ident: b0480 article-title: A survey on vision-based uav navigation publication-title: Geo-spatial information science – volume: 14 start-page: 660 year: 2013 end-page: 678 ident: b0515 article-title: Using high resolution uav thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard publication-title: Precision Agriculture – volume: 396 start-page: 39 year: 2020 end-page: 64 ident: b0825 article-title: Recent advances in deep learning for object detection publication-title: Neurocomputing – volume: 70 start-page: 15 year: 2021 end-page: 22 ident: b0025 article-title: The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems publication-title: Current Opinion in Biotechnology – volume: 34 start-page: 96 year: 2017 end-page: 108 ident: b1115 article-title: Deep multimodal learning: A survey on recent advances and trends publication-title: IEEE signal processing magazine – volume: 10 start-page: 349 year: 2019 ident: b0090 article-title: A review on uav-based applications for precision agriculture publication-title: Information – reference: A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, et al., Searching for mobilenetv3, in Proceedings of the IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019. – volume: 2017 year: 2017 ident: b0035 article-title: A review of deep learning methods and applications for unmanned aerial vehicles publication-title: Journal of Sensors – reference: Y. Bai, C. Nie, H. Wang, M. Cheng, S. Liu, X. Yu, M. Shao, Z. Wang, S. Wang, N. Tuohuti, et al., A fast and robust method for plant count in sunflower and maize at different seedling stages using high-resolution uav rgb imagery, Precision Agriculture, pp. 1–23, 2022. – volume: 6 start-page: 1 year: 2014 end-page: 15 ident: b0430 article-title: Uav for 3d mapping applications: a review publication-title: Applied geomatics – volume: 7 start-page: 17736 year: 2019 end-page: 17749 ident: b1030 article-title: Fourier dense network to conduct plant classification using uav-based optical images publication-title: IEEE Access – reference: T. Duckett, S. Pearson, S. Blackmore, B. Grieve, W.-H. Chen, G. Cielniak, J. Cleaversmith, J. Dai, S. Davis, C. Fox, et al., Agricultural robotics: the future of robotic agriculture, arXiv preprint arXiv:1806.06762, 2018. – volume: 71 start-page: 1 year: 2022 end-page: 14 ident: b0815 article-title: A small-sized object detection oriented multi-scale feature fusion approach with application to defect detection publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 76 start-page: 2994 year: 2020 end-page: 3002 ident: b0235 article-title: Deep learning for automated detection of drosophila suzukii: potential for uav-based monitoring publication-title: Pest Management Science – volume: 88 start-page: 329 year: 2017 end-page: 346 ident: b0435 article-title: Disturbance observer based control with anti-windup applied to a small fixed wing uav for disturbance rejection publication-title: Journal of Intelligent & Robotic Systems – volume: 18 start-page: 260 year: 2018 ident: b0240 article-title: A novel methodology for improving plant pest surveillance in vineyards and crops using uav-based hyperspectral and spatial data publication-title: Sensors – reference: H. Le and D. Samaras, Shadow removal via shadow image decomposition, in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8578–8587, 2019. – volume: 39 start-page: 2079 year: 2018 end-page: 2088 ident: b0935 article-title: Unsupervised discrimination between lodged and non-lodged winter wheat: a case study using a low-cost unmanned aerial vehicle publication-title: International Journal of Remote Sensing – volume: 21 start-page: 6540 year: 2021 ident: b0785 article-title: A deep-learning-based approach for wheat yellow rust disease recognition from unmanned aerial vehicle images publication-title: Sensors – reference: T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, Focal loss for dense object detection, in Proceedings of the IEEE international conference on computer vision, pp. 2980–2988, 2017. – volume: 237 year: 2020 ident: b0315 article-title: Soybean yield prediction from uav using multimodal data fusion and deep learning publication-title: Remote sensing of environment – volume: 58 start-page: 35 year: 2018 end-page: 45 ident: b0295 article-title: Evaluating the potential of unmanned aerial systems for mapping weeds at field scales: a case study with alopecurus myosuroides publication-title: Weed research – volume: 155 start-page: 157 year: 2018 end-page: 166 ident: b0150 article-title: Wheat yellow rust monitoring by learning from multispectral uav aerial imagery publication-title: Computers and electronics in agriculture – reference: A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929, 2020. – reference: K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, Accelerating cnn inference on fpgas: A survey, arXiv preprint arXiv:1806.01683, 2018. – volume: 207 year: 2022 ident: b0600 article-title: Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision publication-title: Expert Systems with Applications – volume: 2 start-page: 69 year: 2014 end-page: 85 ident: b0990 article-title: Remote sensing of the environment with small unmanned aircraft systems (uass), part 1: A review of progress and challenges publication-title: Journal of Unmanned Vehicle Systems – volume: 8 start-page: 71 year: 2020 end-page: 83 ident: b0390 article-title: Machine learning-based crop drought mapping system by uav remote sensing rgb imagery publication-title: Unmanned systems – start-page: 21 year: 2016 end-page: 37 ident: b0885 article-title: Ssd: Single shot multibox detector publication-title: European conference on computer vision – volume: 11 start-page: 3012 year: 2019 ident: b0170 article-title: Finer classification of crops by fusing uav images and sentinel-2a data publication-title: Remote Sensing – reference: J. Redmon and A. Farhadi, Yolov3: An incremental improvement, arXiv preprint arXiv:1804.02767, 2018. – reference: X. Zhang, X. Zhou, M. Lin, and J. Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6848–6856, 2018. – reference: L. Perez and J. Wang, The effectiveness of data augmentation in image classification using deep learning, arXiv preprint arXiv:1712.04621, 2017. – volume: 9 start-page: 583 year: 2017 ident: b0710 article-title: Spatial and spectral hybrid image classification for rice lodging assessment through uav imagery publication-title: Remote Sensing – volume: 55 start-page: 243 year: 2018 end-page: 264 ident: b0725 article-title: Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system publication-title: GIScience & remote sensing – volume: 24 start-page: 152 year: 2019 end-page: 164 ident: b0095 article-title: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture publication-title: Trends in plant science – volume: 167 year: 2019 ident: b0230 article-title: Spatio-temporal monitoring of wheat yellow rust using uav multispectral imagery publication-title: Computers and electronics in agriculture – reference: J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440, 2015. – volume: 17 start-page: 2726 year: 2017 ident: b0560 article-title: Dimension reduction aided hyperspectral image classification with a small-sized training dataset: experimental comparisons publication-title: Sensors – start-page: 4319 year: 2017 end-page: 4325 ident: b0970 article-title: Field coverage and weed mapping by uav swarms publication-title: in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – volume: 152 start-page: 166 year: 2019 end-page: 177 ident: b0060 article-title: Deep learning in remote sensing applications: A meta-analysis and review publication-title: ISPRS journal of photogrammetry and remote sensing – reference: J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788, 2016. – volume: 117 start-page: 11 year: 2016 end-page: 28 ident: b0820 article-title: A survey on object detection in optical remote sensing images publication-title: ISPRS Journal of Photogrammetry and Remote sensing – volume: 179 year: 2020 ident: b0450 article-title: Automatic extraction of wheat lodging area based on transfer learning method and deeplabv3+ network publication-title: Computers and Electronics in Agriculture – reference: S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, Aggregated residual transformations for deep neural networks, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1492–1500, 2017. – volume: 14 start-page: 9318 year: 2021 end-page: 9333 ident: b1075 article-title: Remote sensing data augmentation through adversarial training publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 459 start-page: 290 year: 2021 end-page: 301 ident: b0465 article-title: Probabilistic faster r-cnn with stochastic region proposing: Towards object detection and recognition in remote sensing imagery publication-title: Neurocomputing – volume: 14 start-page: 731 year: 2022 ident: b0355 article-title: Assessment of different object detectors for the maturity level classification of broccoli crops using uav imagery publication-title: Remote Sensing – volume: 21 start-page: 17608 year: 2021 end-page: 17619 ident: b0085 article-title: Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges publication-title: IEEE Sensors Journal – volume: 7 start-page: 1419 year: 2016 ident: b1015 article-title: Using deep learning for image-based plant disease detection publication-title: Frontiers in plant science – volume: 115 year: 2020 ident: b0320 article-title: Deep learning techniques for estimation of the yield and size of citrus fruits using a uav publication-title: European Journal of Agronomy – volume: 17 start-page: 2703 year: 2017 ident: b0545 article-title: Designing and testing a uav mapping system for agricultural field surveying publication-title: Sensors – reference: M. Jarman, J. Vesey, and P. Febvre, Unmanned aerial vehicles (uavs) for uk agriculture: Creating an invisible precision farming technology, White Paper, July 2016. – volume: 7 start-page: 162 year: 2018 ident: b0975 article-title: Multiple uav systems for agricultural applications: Control, implementation, and evaluation publication-title: Electronics – start-page: 1 year: 2022 end-page: 17 ident: b0010 article-title: Global impact of covid-19 on agriculture: role of sustainable agriculture and digital farming publication-title: Environmental Science and Pollution Research – volume: 14 start-page: 93 year: 2021 ident: b0345 article-title: L. d. A. Moreno, M.F. Oliveira, C. Pilon, R.P. Silva, and G. Vellidis, Using uav and multispectral images to estimate peanut maturity variability on irrigated and rainfed fields applying linear models and artificial neural networks publication-title: Remote Sensing – volume: 8 start-page: 189043 year: 2020 end-page: 189053 ident: b0920 article-title: A robust method for wheatear detection using uav in natural scenes publication-title: IEEE Access – volume: 101 start-page: 330 year: 2018 end-page: 334 ident: b0250 article-title: Potential of unmanned aerial sampling for monitoring insect populations in rice fields publication-title: Florida Entomologist – volume: vol. 2 start-page: 255 year: 2021 end-page: 270 ident: b0550 article-title: Reinforcement learning-enabled uav itinerary planning for remote sensing applications in smart farming publication-title: Telecom – volume: 11 start-page: 1023 year: 2019 ident: b0540 article-title: Comparison of unsupervised algorithms for vineyard canopy segmentation from uav multispectral images publication-title: Remote Sensing – volume: 13 start-page: 4091 year: 2021 ident: b0285 article-title: A comparative estimation of maize leaf water content using machine learning techniques and unmanned aerial vehicle (uav)-based proximal and remotely sensed data publication-title: Remote Sensing – reference: G. Huang, Z. Liu, L. Van Der Maaten, and K.Q. Weinberger, Densely connected convolutional networks, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708, 2017. – volume: 24 start-page: 349 year: 2006 end-page: 356 ident: b0215 article-title: Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression publication-title: European Journal of Agronomy – volume: 15 start-page: 361 year: 2014 end-page: 376 ident: b0280 article-title: Mapping crop water stress index in a ‘pinot-noir’vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle publication-title: Precision agriculture – volume: 176 start-page: 172 year: 2018 end-page: 184 ident: b0535 article-title: Mapping the 3d structure of almond trees using uav acquired photogrammetric point clouds and object-based image analysis publication-title: Biosystems engineering – volume: 12 start-page: 17 year: 2019 ident: b0190 article-title: Biomass and crop height estimation of different crops using uav-based lidar publication-title: Remote Sensing – volume: 102 year: 2021 ident: b0130 article-title: A review on deep learning in uav remote sensing publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 2 year: 2022 ident: b1045 article-title: Eden library: A long-term database for storing agricultural multi-sensor datasets from uav and proximal platforms publication-title: Smart Agricultural Technology – reference: Q. Yang, B. She, L. Huang, Y. Yang, G. Zhang, M. Zhang, Q. Hong, and D. Zhang, Extraction of soybean planting area based on feature fusion technology of multi-source low altitude unmanned aerial vehicle images, Ecological Informatics, p. 101715, 2022. – volume: 190 year: 2021 ident: b0475 article-title: Fast detection and location of longan fruits using uav images publication-title: Computers and Electronics in Agriculture – reference: E. Olaniyi, D. Chen, Y. Lu, and Y. Huang, Generative adversarial networks for image augmentation in agriculture: a systematic review, arXiv preprint arXiv:2204.04707, 2022. – reference: T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, Feature pyramid networks for object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125, 2017. – volume: 312 start-page: 135 year: 2018 end-page: 153 ident: b1050 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing – reference: D.G. Lowe, Object recognition from local scale-invariant features, in Proceedings of the seventh IEEE international conference on computer vision, vol. 2, pp. 1150–1157, Ieee, 1999. – volume: 6 year: 2020 ident: b0960 article-title: A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements publication-title: Heliyon – volume: 92 start-page: 141 year: 2018 end-page: 152 ident: b1140 article-title: A review of data assimilation of remote sensing and crop models publication-title: European Journal of Agronomy – volume: 118 start-page: 372 year: 2015 end-page: 379 ident: b0485 article-title: Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand publication-title: Computers and electronics in agriculture – reference: A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, Enet: A deep neural network architecture for real-time semantic segmentation, arXiv preprint arXiv:1606.02147, 2016. – volume: 10 start-page: 1513 year: 2018 ident: b0220 article-title: Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms publication-title: Remote Sensing – volume: 3 start-page: 588 year: 2017 end-page: 595 ident: b0305 article-title: weednet: Dense semantic weed classification using multispectral images and mav for smart farming publication-title: IEEE robotics and automation letters – volume: 30 year: 2017 ident: b0665 article-title: Attention is all you need publication-title: Advances in neural information processing systems – reference: J. Redmon and A. Farhadi, Yolo9000: better, faster, stronger, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271, 2017. – start-page: 740 year: 2014 end-page: 755 ident: b1010 article-title: Microsoft coco: Common objects in context publication-title: European conference on computer vision – volume: 147 start-page: 70 year: 2018 end-page: 90 ident: b0065 article-title: Deep learning in agriculture: A survey publication-title: Computers and electronics in agriculture – volume: 6 start-page: 12037 year: 2014 end-page: 12054 ident: b0605 article-title: Feature learning based approach for weed classification using high resolution aerial images from a digital camera mounted on a uav publication-title: Remote Sensing – reference: M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, Mobilenetv 2: Inverted residuals and linear bottlenecks, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4510–4520, 2018. – start-page: 234 year: 2015 end-page: 241 ident: b0765 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical image computing and computer-assisted intervention – volume: 25 year: 2012 ident: b0610 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems – volume: 174 year: 2020 ident: b1080 article-title: Cnn feature based graph convolutional network for weed and crop recognition in smart farming publication-title: Computers and Electronics in Agriculture – volume: 216 start-page: 139 year: 2018 end-page: 153 ident: b1060 article-title: Detecting mammals in uav images: Best practices to address a substantially imbalanced dataset with deep learning publication-title: Remote sensing of environment – volume: 200 start-page: 200 year: 2020 end-page: 214 ident: b0500 article-title: Field identification of weed species and glyphosate-resistant weeds using high resolution imagery in early growing season publication-title: Biosystems Engineering – volume: 13 start-page: 1358 year: 2021 ident: b1035 article-title: A uav open dataset of rice paddies for deep learning practice publication-title: Remote Sensing – volume: 67 start-page: 637 year: 2016 end-page: 648 ident: b0470 article-title: Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system publication-title: Ecological indicators – reference: E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q.V. Le, Autoaugment: Learning augmentation policies from data, arXiv preprint arXiv:1805.09501, 2018. – volume: 153 start-page: 9 year: 2015 end-page: 19 ident: b0270 article-title: Uavs challenge to assess water stress for sustainable agriculture publication-title: Agricultural water management – volume: 327 start-page: 828 year: 2010 end-page: 831 ident: b0020 article-title: Precision agriculture and food security publication-title: Science – volume: 13 start-page: 1562 year: 2021 ident: b0180 article-title: Estimating agricultural soil moisture content through uav-based hyperspectral images in the arid region publication-title: Remote Sensing – year: 2021 ident: b0700 article-title: A survey of convolutional neural networks: analysis, applications, and prospects publication-title: IEEE transactions on neural networks and learning systems – volume: 104 year: 2020 ident: b0830 article-title: Deep learning-based object detection in low-altitude uav datasets: A survey publication-title: Image and Vision Computing – volume: 8 start-page: 1111 year: 2017 ident: b0100 article-title: Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives publication-title: Frontiers in plant science – volume: 54 start-page: 346 year: 2006 end-page: 353 ident: b0395 article-title: Using remote sensing for identification of late-season grass weed patches in wheat publication-title: Weed Science – volume: 10 start-page: 1690 year: 2018 ident: b0950 article-title: Deep learning with unsupervised data labeling for weed detection in line crops in uav images publication-title: Remote sensing – volume: 200 year: 2022 ident: b0455 article-title: Identifying veraison process of colored wine grapes in field conditions combining deep learning and image analysis publication-title: Computers and Electronics in Agriculture – start-page: 1 year: 2017 end-page: 12 ident: b1145 article-title: Autonomous uav with vision based on-board decision making for remote sensing and precision agriculture publication-title: in 2017 IEEE Aerospace Conference – volume: 13 year: 2018 ident: b0755 article-title: A fully convolutional network for weed mapping of unmanned aerial vehicle (uav) imagery publication-title: PloS one – reference: R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587, 2014. – volume: 184 year: 2021 ident: b0290 article-title: A survey of deep learning techniques for weed detection from images publication-title: Computers and Electronics in Agriculture – volume: 146 start-page: 124 year: 2018 end-page: 136 ident: b0505 article-title: Uav-based multispectral remote sensing for precision agriculture: A comparison between different cameras publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 1 start-page: 541 year: 1989 end-page: 551 ident: b0615 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural computation – volume: 9 start-page: 498 year: 2017 ident: b0720 article-title: Classification for high resolution remote sensing imagery using a fully convolutional network publication-title: Remote Sensing – volume: 37 start-page: 440 year: 2020 end-page: 465 ident: b0965 article-title: Decomposition-based mission planning for fixed-wing uavs surveying in wind publication-title: Journal of Field Robotics – reference: C. Qu, J. Boubin, D. Gafurov, J. Zhou, N. Aloysius, H. Nguyen, and P. Calyam, Uav swarms in smart agriculture: Experiences and opportunities. – volume: 256 year: 2021 ident: b0385 article-title: Diagnosis of winter-wheat water stress based on uav-borne multispectral image texture and vegetation indices publication-title: Agricultural Water Management – volume: 110 start-page: 346 year: 2008 end-page: 359 ident: b0595 article-title: Speeded-up robust features (surf) publication-title: Computer vision and image understanding – volume: 119 start-page: 232 year: 2012 end-page: 242 ident: b0155 article-title: Winter wheat area estimation from modis-evi time series data using the crop proportion phenology index publication-title: Remote Sensing of Environment – volume: 192 year: 2022 ident: b0300 article-title: Spectral analysis and mapping of blackgrass weed by leveraging machine learning and uav multispectral imagery publication-title: Computers and Electronics in Agriculture – reference: M. Zhou, Z. Zhou, L. Liu, J. Huang, and Z. Lyu, Review of vertical take-off and landing fixed-wing uav and its application prospect in precision agriculture, International Journal of Precision Agricultural Aviation, vol. 3, no. 4, 2020. – volume: 18 year: 2022 ident: b0110 article-title: Internet of things (iot) and agricultural unmanned aerial vehicles (uavs) in smart farming: A comprehensive review publication-title: Internet of Things – volume: 29 year: 2016 ident: b0855 article-title: R-fcn: Object detection via region-based fully convolutional networks publication-title: Advances in neural information processing systems – volume: 65 start-page: 2 year: 2010 end-page: 16 ident: b0715 article-title: Object based image analysis for remote sensing publication-title: ISPRS journal of photogrammetry and remote sensing – volume: 9 start-page: 200 year: 2020 end-page: 231 ident: b0105 article-title: High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms publication-title: IEEE Geoscience and Remote Sensing Magazine – reference: L. Shen, J. Su, R. Huang, W. Quan, Y. Song, Y. Fang, and B. Su, Fusing attention mechanism with mask r-cnn for instance segmentation of grape cluster in the field, Frontiers in plant science, p. 2528, 2022. – reference: J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, et al., Speed/accuracy trade-offs for modern convolutional object detectors, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7310–7311, 2017. – reference: A.A. d. Santos, J. Marcato Junior, M.S. Araújo, D.R. Di Martini, E.C. Tetila, H.L. Siqueira, C. Aoki, A. Eltner, E.T. Matsubara, H. Pistori, et al., Assessment of cnn-based methods for individual tree detection on images captured by rgb cameras attached to uavs, Sensors, vol. 19, no. 16, p. 3595, 2019. – volume: 113 start-page: 243 year: 2011 end-page: 291 ident: b0445 article-title: Proximal soil sensing: An effective approach for soil measurements in space and time publication-title: Advances in agronomy – volume: 13 start-page: 4387 year: 2021 ident: b1040 article-title: Boost precision agriculture with unmanned aerial vehicle remote sensing and edge intelligence: A survey publication-title: Remote Sensing – volume: 11 start-page: 330 year: 2019 ident: b0510 article-title: Uav-based high resolution thermal imaging for vegetation monitoring, and plant phenotyping using ici 8640 p, flir vue pro r 640, and thermomap cameras publication-title: Remote Sensing – reference: K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, 2014. – volume: 128 year: 2021 ident: b1085 article-title: Semi-supervised semantic segmentation network for surface crack detection publication-title: Automation in Construction – volume: 12 start-page: 2136 year: 2020 ident: b0310 article-title: Comparison of object detection and patch-based classification deep learning models on mid-to late-season weed detection in uav imagery publication-title: Remote Sensing – volume: 11 start-page: 1373 year: 2019 ident: b0375 article-title: Uav-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning publication-title: Remote Sensing – volume: 140 start-page: 20 year: 2018 end-page: 32 ident: b1125 article-title: Beyond rgb: Very high resolution urban remote sensing with multimodal deep networks publication-title: ISPRS journal of photogrammetry and remote sensing – volume: 13 start-page: 3892 year: 2021 ident: b0770 article-title: Ir-unet: Irregular segmentation u-shape network for wheat yellow rust detection by uav multispectral imagery publication-title: Remote Sensing – reference: L.P. Osco, M. d. S. De Arruda, J.M. Junior, N.B. Da Silva, A.P.M. Ramos, É. A.S. Moryia, N.N. Imai, D.R. Pereira, J.E. Creste, E.T. Matsubara, et al., A convolutional neural network approach for counting and geolocating citrus-trees in uav multispectral imagery, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 160, pp. 97–106, 2020. – volume: 174 year: 2020 ident: b0915 article-title: Extracting apple tree crown information from remote imagery using deep learning publication-title: Computers and Electronics in Agriculture – start-page: 248 year: 2009 end-page: 255 ident: b1005 article-title: Imagenet: A large-scale hierarchical image database publication-title: in 2009 IEEE conference on computer vision and pattern recognition – volume: 79 start-page: 3437 year: 2020 end-page: 3481 ident: b0415 article-title: The use of unmanned aerial vehicles (uavs) for engineering geology applications publication-title: Bulletin of Engineering Geology and the Environment – year: 2020 ident: b1135 article-title: A dynamic neighborhood-based switching particle swarm optimization algorithm, IEEE Transactions on publication-title: Cybernetics – volume: 167 year: 2019 ident: b0210 article-title: Bayesian calibration of aquacrop model for winter wheat by assimilating uav multi-spectral images publication-title: Computers and Electronics in Agriculture – volume: 165 year: 2019 ident: b0945 article-title: Unsupervised deep learning and semi-automatic data labeling in weed discrimination publication-title: Computers and Electronics in Agriculture – reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021. – volume: 180 year: 2021 ident: b1130 article-title: State and parameter estimation of the aquacrop model for winter wheat using sensitivity informed particle filter publication-title: Computers and Electronics in Agriculture – volume: 193 start-page: 101 year: 2020 end-page: 114 ident: b0400 article-title: Yield estimation in cotton using uav-based multi-sensor imagery publication-title: Biosystems Engineering – volume: 179 year: 2020 ident: b0245 article-title: Detection and classification of soybean pests using deep learning with uav images publication-title: Computers and Electronics in Agriculture – volume: 6 start-page: 1 year: 2019 end-page: 48 ident: b0575 article-title: A survey on image data augmentation for deep learning publication-title: Journal of big data – volume: 13 start-page: 3841 year: 2021 ident: b0370 article-title: Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review publication-title: Remote Sensing – volume: 8 start-page: 2002 year: 2017 ident: b0520 article-title: High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground lidar estimates publication-title: Frontiers in plant science – volume: 12 start-page: 1491 year: 2020 ident: b0135 article-title: Applications of uav thermal imagery in precision agriculture: State of the art and future research outlook publication-title: Remote Sensing – volume: 11 start-page: 2075 year: 2019 ident: b0340 article-title: Estimation of the maturity date of soybean breeding lines using uav-based multispectral imagery publication-title: Remote Sensing – reference: A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861, 2017. – volume: 139 start-page: 22 year: 2017 end-page: 32 ident: b0015 article-title: An overview of current and potential applications of thermal remote sensing in precision agriculture publication-title: Computers and Electronics in Agriculture – start-page: 2636 year: 2020 end-page: 2642 ident: b1055 article-title: Unsupervised domain adaptation for transferring plant classification systems to new field environments, crops, and robots publication-title: in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – volume: 13 start-page: 1204 year: 2021 ident: b0120 article-title: A technical study on uav characteristics for precision agriculture applications and associated practical challenges publication-title: Remote Sensing – reference: S. Han, H. Mao, and W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, arXiv preprint arXiv:1510.00149, 2015. – start-page: 6105 year: 2019 end-page: 6114 ident: b0650 article-title: Efficientnet: Rethinking model scaling for convolutional neural networks publication-title: International conference on machine learning – reference: H.F. Mahmoud, Parametric versus semi and nonparametric regression models, arXiv preprint arXiv:1906.10221, 2019. – reference: A. Bochkovskiy, C.-Y. Wang, and H.-Y.M. Liao, Yolov4: Optimal speed and accuracy of object detection, arXiv preprint arXiv:2004.10934, 2020. – volume: 11 year: 2020 ident: b0050 article-title: Wheat stripe rust grading by deep learning with attention mechanism and images from mobile devices publication-title: Frontiers in Plant Science – reference: N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, Shufflenet v2: Practical guidelines for efficient cnn architecture design, in Proceedings of the European conference on computer vision (ECCV), pp. 116–131, 2018. – volume: 40 start-page: 834 year: 2017 end-page: 848 ident: b0790 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE transactions on pattern analysis and machine intelligence – volume: 338 start-page: 502 year: 2019 end-page: 512 ident: b0185 article-title: Uav based soil salinity assessment of cropland publication-title: Geoderma – volume: 47 start-page: 33 year: 2021 end-page: 47 ident: b0410 article-title: Uav-based hyperspectral imaging technique to estimate canola (brassica napus l.) seedpods maturity publication-title: Canadian Journal of Remote Sensing – reference: Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. – reference: S. Bittel, V. Kaiser, M. Teichmann, and M. Thoma, Pixel-wise segmentation of street with neural networks, arXiv preprint arXiv:1511.00513, 2015. – volume: 63 start-page: 1083 year: 2015 end-page: 1095 ident: b0955 article-title: Disturbance-observer-based control and related methods–an overview publication-title: IEEE Transactions on industrial electronics – volume: 170 year: 2020 ident: b0425 article-title: Experimental evaluation of uav spraying for peach trees of different shapes: Effects of operational parameters on droplet distribution publication-title: Computers and Electronics in Agriculture – volume: 9 start-page: 447 year: 2011 end-page: 451 ident: b0925 article-title: Linear versus nonlinear pca for the classification of hyperspectral data based on the extended morphological profiles publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 250 year: 2020 ident: b1020 article-title: Whu-hi: Uav-borne hyperspectral with high spatial resolution (h2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with crf publication-title: Remote Sensing of Environment – volume: 6 start-page: 10395 year: 2014 end-page: 10412 ident: b0195 article-title: Estimating biomass of barley using crop surface models (csms) derived from uav-based rgb imaging publication-title: Remote sensing – volume: 10 start-page: 824 year: 2018 ident: b0490 article-title: Evaluation of rgb, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice publication-title: Remote Sensing – volume: 148 start-page: S296 year: 2016 end-page: S356 ident: b0260 article-title: Remote sensing of forest pest damage: A review and lessons learned from a canadian perspective publication-title: The Canadian Entomologist – volume: 12 start-page: 146 year: 2020 ident: b0160 article-title: The impact of spatial resolution on the classification of vegetation types in highly fragmented planting areas based on unmanned aerial vehicle hyperspectral images publication-title: Remote Sensing – volume: 190 year: 2021 ident: b0175 article-title: Optimal window size selection for spectral information extraction of sampling points from uav multispectral images for soil moisture content inversion publication-title: Computers and Electronics in Agriculture – reference: R. Girshick, Fast r-cnn, in Proceedings of the IEEE international conference on computer vision, pp. 1440–1448, 2015. – volume: 9 start-page: 708 year: 2017 ident: b0200 article-title: Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models publication-title: Remote Sensing – volume: 406 start-page: 302 year: 2020 end-page: 321 ident: b0705 article-title: A brief survey on semantic segmentation with deep learning publication-title: Neurocomputing – start-page: 100 year: 2019 end-page: 108 ident: b1110 article-title: Uav image based crop and weed distribution estimation on embedded gpu boards publication-title: International Conference on Computer Analysis of Images and Patterns – volume: 92 year: 2020 ident: b0205 article-title: Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using uav lidar and multispectral imaging publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 14 start-page: 782 year: 2022 ident: b0565 article-title: Snow coverage mapping by learning from sentinel-2 satellite multispectral images via machine learning algorithms publication-title: Remote Sensing – volume: 4 start-page: 1671 year: 2012 end-page: 1692 ident: b0420 article-title: Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use publication-title: Remote Sensing – volume: 53 start-page: 5455 year: 2020 end-page: 5516 ident: b0695 article-title: A survey of the recent architectures of deep convolutional neural networks publication-title: Artificial intelligence review – volume: 17 start-page: 2242 year: 2020 end-page: 2249 ident: b0055 article-title: Aerial visual perception in smart farming: Field study of wheat yellow rust monitoring publication-title: IEEE transactions on industrial informatics – volume: 177 year: 2020 ident: b0365 article-title: Early detection of bacterial wilt in peanut plants through leaf-level hyperspectral and unmanned aerial vehicle data publication-title: Computers and Electronics in Agriculture – year: 2020 ident: b0040 article-title: Unmanned aerial remote sensing: UAS for environmental applications – volume: 135 year: 2022 ident: b0805 article-title: A. Lipani, J. Boehm: Semantic segmentation of cracks: Data challenges and architecture publication-title: Automation in Construction – volume: 14 year: 2019 ident: b0900 article-title: Deep learning based banana plant detection and counting using high-resolution red-green-blue (rgb) images collected from unmanned aerial vehicle (uav) publication-title: PloS one – reference: L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in Proceedings of the European conference on computer vision (ECCV), pp. 801–818, 2018. – reference: N. Lu, Y. Wu, H. Zheng, X. Yao, Y. Zhu, W. Cao, and T. Cheng, An assessment of multi-view spectral information from uav-based color-infrared images for improved estimation of nitrogen nutrition status in winter wheat, Precision Agriculture, pp. 1–22, 2022. – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b0760 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE transactions on pattern analysis and machine intelligence – volume: 30 start-page: 511 year: 2012 end-page: 522 ident: b0275 article-title: Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (uav) publication-title: Irrigation Science – volume: 28 year: 2015 ident: b0850 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Advances in neural information processing systems – reference: C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015. – reference: S. Khan, M. Naseer, M. Hayat, S.W. Zamir, F.S. Khan, and M. Shah, Transformers in vision: A survey, ACM Computing Surveys (CSUR), 2021. – start-page: 128 year: 2019 end-page: 144 ident: b0585 article-title: Deep learning vs publication-title: traditional computer vision, in Science and information conference – start-page: 1 year: 2022 end-page: 26 ident: b0080 article-title: Deep learning techniques to classify agricultural crops through uav imagery: a review publication-title: Neural Computing and Applications – volume: 1 start-page: 73 year: 2019 end-page: 82 ident: b0075 article-title: Survey on evolving deep learning neural network architectures publication-title: Journal of Artificial Intelligence – volume: 176 year: 2020 ident: b0225 article-title: Assessing winter wheat foliage disease severity using aerial imagery acquired from small unmanned aerial vehicle (uav) publication-title: Computers and Electronics in Agriculture – volume: 10 year: 2022 ident: b0145 article-title: Uav spraying on citrus crop: impact of tank-mix adjuvant on the contact angle and droplet distribution publication-title: PeerJ – volume: 7 start-page: 105100 year: 2019 end-page: 105115 ident: b0045 article-title: Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications publication-title: Ieee Access – volume: 195 year: 2022 ident: b0325 article-title: Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods publication-title: Computers and Electronics in Agriculture – volume: 10 start-page: 655 year: 2018 ident: b0985 article-title: Evaluation of a uav-assisted autonomous water sampling publication-title: Water – reference: H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, Pyramid scene parsing network, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881–2890, 2017. – volume: 9 start-page: 828 year: 2017 ident: b0265 article-title: Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (uav) publication-title: Remote Sensing – volume: 10 start-page: 1423 year: 2018 ident: b1025 article-title: Weedmap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming publication-title: Remote Sensing – volume: 9 start-page: 82146 year: 2021 end-page: 82168 ident: b0800 article-title: A survey on semi-, self-and unsupervised learning for image classification publication-title: IEEE Access – volume: 9 start-page: 1110 year: 2017 ident: b0140 article-title: Hyperspectral imaging: A review on uav-based sensors, data processing and applications for agriculture and forestry publication-title: Remote sensing – volume: 106 start-page: 249 year: 2018 end-page: 259 ident: b0810 article-title: A systematic study of the class imbalance problem in convolutional neural networks publication-title: Neural networks – volume: 182 year: 2021 ident: b0525 article-title: Maize and soybean heights estimation from unmanned aerial vehicle (uav) lidar data publication-title: Computers and Electronics in Agriculture – volume: 11 start-page: 1443 year: 2019 ident: b0125 article-title: Unmanned aerial vehicle for remote sensing applications–a review publication-title: Remote Sensing – volume: 13 year: 2018 ident: b0255 article-title: Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging publication-title: PloS one – volume: 7 year: 2022 ident: b0350 article-title: An applied deep learning approach for estimating soybean relative maturity from uav imagery to aid plant breeding decisions publication-title: Machine Learning with Applications – start-page: 5188 year: 2017 end-page: 5195 ident: b1070 article-title: Automatic model based dataset generation for fast and accurate crop and weeds detection publication-title: in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – volume: 7 start-page: 48572 year: 2019 end-page: 48634 ident: b0995 article-title: Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges publication-title: Ieee Access – reference: I. Pölönen, H. Saari, J. Kaivosoja, E. Honkavaara, and L. Pesonen, Hyperspectral imaging based biomass and nitrogen content estimations from light-weight uav, in Remote Sensing for Agriculture, Ecosystems, and Hydrology XV, vol. 8887, pp. 141–149, SPIE, 2013. – volume: 191 year: 2021 ident: b0930 article-title: Evaluation of dimensionality reduction methods for individual tree crown delineation using instance segmentation network and uav multispectral imagery in urban forest publication-title: Computers and Electronics in Agriculture – volume: 4 start-page: 1519 year: 2012 end-page: 1543 ident: b0530 article-title: Development of a uav-lidar system with application to forest inventory publication-title: Remote sensing – start-page: 3118 year: 2016 end-page: 3125 ident: b1120 article-title: Recurrent neural networks for driver activity anticipation via sensory-fusion architecture publication-title: 2016 IEEE International Conference on Robotics and Automation (ICRA) – volume: 478 start-page: 337 year: 2011 end-page: 342 ident: b0005 article-title: Solutions for a cultivated planet publication-title: Nature – volume: 65 year: 2020 ident: b0070 article-title: Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis publication-title: Medical Image Analysis – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: b0845 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE transactions on pattern analysis and machine intelligence – reference: K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016. – volume: 148 year: 2019 ident: b0115 article-title: A survey of unmanned aerial sensing solutions in precision agriculture publication-title: Journal of Network and Computer Applications – volume: 95 start-page: 19 year: 2017 end-page: 28 ident: b0740 article-title: A patch-based convolutional neural network for remote sensing image classification publication-title: Neural Networks – reference: J. Su, C. Liu, and W.-H. Chen, Uav multispectral remote sensing for yellow rust mapping: Opportunities and challenges, Unmanned Aerial Systems in Precision Agriculture, pp. 107–122, 2022. – start-page: 745 year: 2013 end-page: 758 ident: b0405 article-title: Automated crop yield estimation for apple orchards publication-title: Experimental robotics – ident: 10.1016/j.neucom.2022.11.020_b0745 – volume: 140 start-page: 20 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b1125 article-title: Beyond rgb: Very high resolution urban remote sensing with multimodal deep networks publication-title: ISPRS journal of photogrammetry and remote sensing doi: 10.1016/j.isprsjprs.2017.11.011 – volume: 95 start-page: 19 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0740 article-title: A patch-based convolutional neural network for remote sensing image classification publication-title: Neural Networks doi: 10.1016/j.neunet.2017.07.017 – volume: 13 start-page: 1358 issue: 7 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b1035 article-title: A uav open dataset of rice paddies for deep learning practice publication-title: Remote Sensing doi: 10.3390/rs13071358 – volume: 147 start-page: 70 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0065 article-title: Deep learning in agriculture: A survey publication-title: Computers and electronics in agriculture doi: 10.1016/j.compag.2018.02.016 – volume: 54 start-page: 346 issue: 2 year: 2006 ident: 10.1016/j.neucom.2022.11.020_b0395 article-title: Using remote sensing for identification of late-season grass weed patches in wheat publication-title: Weed Science doi: 10.1614/WS-05-54.2.346 – volume: 71 start-page: 1 year: 2022 ident: 10.1016/j.neucom.2022.11.020_b0815 article-title: A small-sized object detection oriented multi-scale feature fusion approach with application to defect detection publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 13 start-page: 4387 issue: 21 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b1040 article-title: Boost precision agriculture with unmanned aerial vehicle remote sensing and edge intelligence: A survey publication-title: Remote Sensing doi: 10.3390/rs13214387 – volume: 216 start-page: 139 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b1060 article-title: Detecting mammals in uav images: Best practices to address a substantially imbalanced dataset with deep learning publication-title: Remote sensing of environment doi: 10.1016/j.rse.2018.06.028 – volume: 67 start-page: 637 year: 2016 ident: 10.1016/j.neucom.2022.11.020_b0470 article-title: Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system publication-title: Ecological indicators doi: 10.1016/j.ecolind.2016.03.036 – start-page: 6105 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0650 article-title: Efficientnet: Rethinking model scaling for convolutional neural networks – volume: 8 start-page: 1111 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0100 article-title: Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives publication-title: Frontiers in plant science doi: 10.3389/fpls.2017.01111 – volume: 6 issue: 11 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0960 article-title: A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e05285 – volume: 65 start-page: 2 issue: 1 year: 2010 ident: 10.1016/j.neucom.2022.11.020_b0715 article-title: Object based image analysis for remote sensing publication-title: ISPRS journal of photogrammetry and remote sensing doi: 10.1016/j.isprsjprs.2009.06.004 – volume: 37 start-page: 440 issue: 3 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0965 article-title: Decomposition-based mission planning for fixed-wing uavs surveying in wind publication-title: Journal of Field Robotics doi: 10.1002/rob.21928 – volume: 11 start-page: 1443 issue: 12 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0125 article-title: Unmanned aerial vehicle for remote sensing applications–a review publication-title: Remote Sensing doi: 10.3390/rs11121443 – volume: 14 start-page: 731 issue: 3 year: 2022 ident: 10.1016/j.neucom.2022.11.020_b0355 article-title: Assessment of different object detectors for the maturity level classification of broccoli crops using uav imagery publication-title: Remote Sensing doi: 10.3390/rs14030731 – ident: 10.1016/j.neucom.2022.11.020_b0620 doi: 10.1109/5.726791 – volume: 478 start-page: 337 issue: 7369 year: 2011 ident: 10.1016/j.neucom.2022.11.020_b0005 article-title: Solutions for a cultivated planet publication-title: Nature doi: 10.1038/nature10452 – volume: 179 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0245 article-title: Detection and classification of soybean pests using deep learning with uav images publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105836 – ident: 10.1016/j.neucom.2022.11.020_b0030 doi: 10.31256/WP2018.2 – volume: 58 start-page: 35 issue: 1 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0295 article-title: Evaluating the potential of unmanned aerial systems for mapping weeds at field scales: a case study with alopecurus myosuroides publication-title: Weed research doi: 10.1111/wre.12275 – volume: 13 issue: 4 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0755 article-title: A fully convolutional network for weed mapping of unmanned aerial vehicle (uav) imagery publication-title: PloS one doi: 10.1371/journal.pone.0196302 – ident: 10.1016/j.neucom.2022.11.020_b0625 – volume: 92 start-page: 141 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b1140 article-title: A review of data assimilation of remote sensing and crop models publication-title: European Journal of Agronomy doi: 10.1016/j.eja.2017.11.002 – ident: 10.1016/j.neucom.2022.11.020_b0980 – volume: 135 year: 2022 ident: 10.1016/j.neucom.2022.11.020_b0805 article-title: A. Lipani, J. Boehm: Semantic segmentation of cracks: Data challenges and architecture publication-title: Automation in Construction doi: 10.1016/j.autcon.2021.104110 – volume: 21 start-page: 17608 issue: 16 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0085 article-title: Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2021.3049471 – volume: 9 start-page: 1110 issue: 11 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0140 article-title: Hyperspectral imaging: A review on uav-based sensors, data processing and applications for agriculture and forestry publication-title: Remote sensing doi: 10.3390/rs9111110 – volume: 10 start-page: 1423 issue: 9 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b1025 article-title: Weedmap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming publication-title: Remote Sensing doi: 10.3390/rs10091423 – ident: 10.1016/j.neucom.2022.11.020_b0690 doi: 10.1007/978-3-030-01264-9_8 – volume: 152 start-page: 166 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0060 article-title: Deep learning in remote sensing applications: A meta-analysis and review publication-title: ISPRS journal of photogrammetry and remote sensing doi: 10.1016/j.isprsjprs.2019.04.015 – volume: 182 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0525 article-title: Maize and soybean heights estimation from unmanned aerial vehicle (uav) lidar data publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2021.106005 – volume: 8 start-page: 2002 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0520 article-title: High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground lidar estimates publication-title: Frontiers in plant science doi: 10.3389/fpls.2017.02002 – volume: 192 year: 2022 ident: 10.1016/j.neucom.2022.11.020_b0300 article-title: Spectral analysis and mapping of blackgrass weed by leveraging machine learning and uav multispectral imagery publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2021.106621 – volume: 459 start-page: 290 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0465 article-title: Probabilistic faster r-cnn with stochastic region proposing: Towards object detection and recognition in remote sensing imagery publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.06.072 – start-page: 2636 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b1055 article-title: Unsupervised domain adaptation for transferring plant classification systems to new field environments, crops, and robots – volume: 55 start-page: 243 issue: 2 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0725 article-title: Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system publication-title: GIScience & remote sensing doi: 10.1080/15481603.2018.1426091 – volume: 11 start-page: 1373 issue: 11 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0375 article-title: Uav-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning publication-title: Remote Sensing doi: 10.3390/rs11111373 – volume: 14 start-page: 782 issue: 3 year: 2022 ident: 10.1016/j.neucom.2022.11.020_b0565 article-title: Snow coverage mapping by learning from sentinel-2 satellite multispectral images via machine learning algorithms publication-title: Remote Sensing doi: 10.3390/rs14030782 – volume: 24 start-page: 152 issue: 2 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0095 article-title: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture publication-title: Trends in plant science doi: 10.1016/j.tplants.2018.11.007 – volume: 191 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0930 article-title: Evaluation of dimensionality reduction methods for individual tree crown delineation using instance segmentation network and uav multispectral imagery in urban forest publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2021.106506 – volume: 8 start-page: 71 issue: 01 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0390 article-title: Machine learning-based crop drought mapping system by uav remote sensing rgb imagery publication-title: Unmanned systems doi: 10.1142/S2301385020500053 – volume: 312 start-page: 135 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b1050 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.083 – ident: 10.1016/j.neucom.2022.11.020_b0580 – ident: 10.1016/j.neucom.2022.11.020_b0860 doi: 10.1109/CVPR.2016.91 – volume: 200 start-page: 200 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0500 article-title: Field identification of weed species and glyphosate-resistant weeds using high resolution imagery in early growing season publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2020.10.001 – volume: 11 start-page: 330 issue: 3 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0510 article-title: Uav-based high resolution thermal imaging for vegetation monitoring, and plant phenotyping using ici 8640 p, flir vue pro r 640, and thermomap cameras publication-title: Remote Sensing doi: 10.3390/rs11030330 – ident: 10.1016/j.neucom.2022.11.020_b0775 – volume: 119 start-page: 232 year: 2012 ident: 10.1016/j.neucom.2022.11.020_b0155 article-title: Winter wheat area estimation from modis-evi time series data using the crop proportion phenology index publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.10.011 – start-page: 4319 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0970 article-title: Field coverage and weed mapping by uav swarms – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 10.1016/j.neucom.2022.11.020_b0845 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2015.2389824 – volume: 9 start-page: 200 issue: 1 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0105 article-title: High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms publication-title: IEEE Geoscience and Remote Sensing Magazine doi: 10.1109/MGRS.2020.2998816 – ident: 10.1016/j.neucom.2022.11.020_b1065 doi: 10.1109/CVPR.2019.00020 – volume: 139 start-page: 22 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0015 article-title: An overview of current and potential applications of thermal remote sensing in precision agriculture publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2017.05.001 – volume: 34 start-page: 96 issue: 6 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b1115 article-title: Deep multimodal learning: A survey on recent advances and trends publication-title: IEEE signal processing magazine doi: 10.1109/MSP.2017.2738401 – volume: 13 start-page: 3841 issue: 19 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0370 article-title: Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review publication-title: Remote Sensing doi: 10.3390/rs13193841 – volume: 256 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0385 article-title: Diagnosis of winter-wheat water stress based on uav-borne multispectral image texture and vegetation indices publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2021.107076 – start-page: 21 year: 2016 ident: 10.1016/j.neucom.2022.11.020_b0885 article-title: Ssd: Single shot multibox detector – volume: 29 year: 2016 ident: 10.1016/j.neucom.2022.11.020_b0855 article-title: R-fcn: Object detection via region-based fully convolutional networks publication-title: Advances in neural information processing systems – volume: 9 start-page: 583 issue: 6 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0710 article-title: Spatial and spectral hybrid image classification for rice lodging assessment through uav imagery publication-title: Remote Sensing doi: 10.3390/rs9060583 – volume: 4 start-page: 1519 issue: 6 year: 2012 ident: 10.1016/j.neucom.2022.11.020_b0530 article-title: Development of a uav-lidar system with application to forest inventory publication-title: Remote sensing doi: 10.3390/rs4061519 – ident: 10.1016/j.neucom.2022.11.020_b0865 doi: 10.1109/CVPR.2017.690 – ident: 10.1016/j.neucom.2022.11.020_b0655 – volume: 11 start-page: 1023 issue: 9 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0540 article-title: Comparison of unsupervised algorithms for vineyard canopy segmentation from uav multispectral images publication-title: Remote Sensing doi: 10.3390/rs11091023 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0575 article-title: A survey on image data augmentation for deep learning publication-title: Journal of big data doi: 10.1186/s40537-019-0197-0 – volume: 117 start-page: 11 year: 2016 ident: 10.1016/j.neucom.2022.11.020_b0820 article-title: A survey on object detection in optical remote sensing images publication-title: ISPRS Journal of Photogrammetry and Remote sensing doi: 10.1016/j.isprsjprs.2016.03.014 – volume: 8 start-page: 189043 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0920 article-title: A robust method for wheatear detection using uav in natural scenes publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031896 – ident: 10.1016/j.neucom.2022.11.020_b0460 doi: 10.3389/fpls.2022.934450 – volume: 2 year: 2022 ident: 10.1016/j.neucom.2022.11.020_b1045 article-title: Eden library: A long-term database for storing agricultural multi-sensor datasets from uav and proximal platforms publication-title: Smart Agricultural Technology doi: 10.1016/j.atech.2021.100028 – ident: 10.1016/j.neucom.2022.11.020_b0440 – volume: 3 start-page: 588 issue: 1 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0305 article-title: weednet: Dense semantic weed classification using multispectral images and mav for smart farming publication-title: IEEE robotics and automation letters doi: 10.1109/LRA.2017.2774979 – ident: 10.1016/j.neucom.2022.11.020_b0870 – ident: 10.1016/j.neucom.2022.11.020_b0555 – volume: 40 start-page: 834 issue: 4 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0790 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2017.2699184 – ident: 10.1016/j.neucom.2022.11.020_b0895 doi: 10.1109/ICCV48922.2021.00986 – ident: 10.1016/j.neucom.2022.11.020_b1000 doi: 10.1109/ICCV.2019.00867 – ident: 10.1016/j.neucom.2022.11.020_b0165 doi: 10.1016/j.ecoinf.2022.101715 – volume: 17 start-page: 2726 issue: 12 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0560 article-title: Dimension reduction aided hyperspectral image classification with a small-sized training dataset: experimental comparisons publication-title: Sensors doi: 10.3390/s17122726 – volume: 113 start-page: 243 year: 2011 ident: 10.1016/j.neucom.2022.11.020_b0445 article-title: Proximal soil sensing: An effective approach for soil measurements in space and time publication-title: Advances in agronomy doi: 10.1016/B978-0-12-386473-4.00005-1 – volume: 406 start-page: 302 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0705 article-title: A brief survey on semantic segmentation with deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.118 – volume: 70 start-page: 15 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0025 article-title: The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems publication-title: Current Opinion in Biotechnology doi: 10.1016/j.copbio.2020.09.003 – ident: 10.1016/j.neucom.2022.11.020_b0905 doi: 10.3390/s19163595 – volume: 6 start-page: 12037 issue: 12 year: 2014 ident: 10.1016/j.neucom.2022.11.020_b0605 article-title: Feature learning based approach for weed classification using high resolution aerial images from a digital camera mounted on a uav publication-title: Remote Sensing doi: 10.3390/rs61212037 – volume: 167 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0230 article-title: Spatio-temporal monitoring of wheat yellow rust using uav multispectral imagery publication-title: Computers and electronics in agriculture doi: 10.1016/j.compag.2019.105035 – start-page: 1 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0335 article-title: Automatic detection of oil palm fruits from uav images using an improved yolo model publication-title: The Visual Computer – volume: 28 year: 2015 ident: 10.1016/j.neucom.2022.11.020_b0850 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Advances in neural information processing systems – volume: 155 start-page: 157 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0150 article-title: Wheat yellow rust monitoring by learning from multispectral uav aerial imagery publication-title: Computers and electronics in agriculture doi: 10.1016/j.compag.2018.10.017 – volume: 18 year: 2022 ident: 10.1016/j.neucom.2022.11.020_b0110 article-title: Internet of things (iot) and agricultural unmanned aerial vehicles (uavs) in smart farming: A comprehensive review publication-title: Internet of Things doi: 10.1016/j.iot.2020.100187 – year: 2013 ident: 10.1016/j.neucom.2022.11.020_b0730 – volume: 7 start-page: 48572 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0995 article-title: Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges publication-title: Ieee Access doi: 10.1109/ACCESS.2019.2909530 – volume: 11 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0050 article-title: Wheat stripe rust grading by deep learning with attention mechanism and images from mobile devices publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2020.558126 – volume: 13 start-page: 1562 issue: 8 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0180 article-title: Estimating agricultural soil moisture content through uav-based hyperspectral images in the arid region publication-title: Remote Sensing doi: 10.3390/rs13081562 – volume: 53 start-page: 5455 issue: 8 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0695 article-title: A survey of the recent architectures of deep convolutional neural networks publication-title: Artificial intelligence review doi: 10.1007/s10462-020-09825-6 – start-page: 234 year: 2015 ident: 10.1016/j.neucom.2022.11.020_b0765 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 79 start-page: 3437 issue: 7 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0415 article-title: The use of unmanned aerial vehicles (uavs) for engineering geology applications publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-020-01766-2 – volume: 13 issue: 5 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0255 article-title: Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging publication-title: PloS one doi: 10.1371/journal.pone.0187470 – volume: 9 start-page: 447 issue: 3 year: 2011 ident: 10.1016/j.neucom.2022.11.020_b0925 article-title: Linear versus nonlinear pca for the classification of hyperspectral data based on the extended morphological profiles publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2011.2172185 – volume: 30 start-page: 511 issue: 6 year: 2012 ident: 10.1016/j.neucom.2022.11.020_b0275 article-title: Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (uav) publication-title: Irrigation Science doi: 10.1007/s00271-012-0382-9 – volume: 14 start-page: 9318 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b1075 article-title: Remote sensing data augmentation through adversarial training publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2021.3110842 – volume: 9 start-page: 708 issue: 7 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0200 article-title: Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models publication-title: Remote Sensing doi: 10.3390/rs9070708 – ident: 10.1016/j.neucom.2022.11.020_b0750 doi: 10.1109/CVPR.2015.7298965 – volume: 110 start-page: 346 issue: 3 year: 2008 ident: 10.1016/j.neucom.2022.11.020_b0595 article-title: Speeded-up robust features (surf) publication-title: Computer vision and image understanding doi: 10.1016/j.cviu.2007.09.014 – volume: 11 start-page: 2075 issue: 18 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0340 article-title: Estimation of the maturity date of soybean breeding lines using uav-based multispectral imagery publication-title: Remote Sensing doi: 10.3390/rs11182075 – year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0040 – volume: 7 year: 2022 ident: 10.1016/j.neucom.2022.11.020_b0350 article-title: An applied deep learning approach for estimating soybean relative maturity from uav imagery to aid plant breeding decisions publication-title: Machine Learning with Applications doi: 10.1016/j.mlwa.2021.100233 – ident: 10.1016/j.neucom.2022.11.020_b0780 doi: 10.1109/CVPR.2017.660 – volume: 167 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0210 article-title: Bayesian calibration of aquacrop model for winter wheat by assimilating uav multi-spectral images publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.105052 – ident: 10.1016/j.neucom.2022.11.020_b0640 doi: 10.1109/CVPR.2017.243 – volume: 47 start-page: 33 issue: 1 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0410 article-title: Uav-based hyperspectral imaging technique to estimate canola (brassica napus l.) seedpods maturity publication-title: Canadian Journal of Remote Sensing doi: 10.1080/07038992.2021.1881464 – volume: 200 year: 2022 ident: 10.1016/j.neucom.2022.11.020_b0455 article-title: Identifying veraison process of colored wine grapes in field conditions combining deep learning and image analysis publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2022.107268 – year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0700 article-title: A survey of convolutional neural networks: analysis, applications, and prospects publication-title: IEEE transactions on neural networks and learning systems – ident: 10.1016/j.neucom.2022.11.020_b0495 doi: 10.1007/s11119-022-09901-7 – start-page: 1 year: 2022 ident: 10.1016/j.neucom.2022.11.020_b0010 article-title: Global impact of covid-19 on agriculture: role of sustainable agriculture and digital farming publication-title: Environmental Science and Pollution Research – volume: 4 start-page: 1671 issue: 6 year: 2012 ident: 10.1016/j.neucom.2022.11.020_b0420 article-title: Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use publication-title: Remote Sensing doi: 10.3390/rs4061671 – volume: 207 year: 2022 ident: 10.1016/j.neucom.2022.11.020_b0600 article-title: Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.118029 – volume: 174 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0915 article-title: Extracting apple tree crown information from remote imagery using deep learning publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105504 – ident: 10.1016/j.neucom.2022.11.020_b0330 doi: 10.1007/s11119-022-09907-1 – ident: 10.1016/j.neucom.2022.11.020_b0645 doi: 10.1109/CVPR.2017.634 – volume: vol. 2 start-page: 255 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0550 article-title: Reinforcement learning-enabled uav itinerary planning for remote sensing applications in smart farming – volume: 184 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0290 article-title: A survey of deep learning techniques for weed detection from images publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2021.106067 – volume: 14 start-page: 660 issue: 6 year: 2013 ident: 10.1016/j.neucom.2022.11.020_b0515 article-title: Using high resolution uav thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard publication-title: Precision Agriculture doi: 10.1007/s11119-013-9322-9 – volume: 14 start-page: 93 issue: 1 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0345 article-title: L. d. A. Moreno, M.F. Oliveira, C. Pilon, R.P. Silva, and G. Vellidis, Using uav and multispectral images to estimate peanut maturity variability on irrigated and rainfed fields applying linear models and artificial neural networks publication-title: Remote Sensing doi: 10.3390/rs14010093 – volume: 14 issue: 10 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0900 article-title: Deep learning based banana plant detection and counting using high-resolution red-green-blue (rgb) images collected from unmanned aerial vehicle (uav) publication-title: PloS one doi: 10.1371/journal.pone.0223906 – ident: 10.1016/j.neucom.2022.11.020_b1100 doi: 10.1109/CVPR.2017.351 – ident: 10.1016/j.neucom.2022.11.020_b0635 doi: 10.1109/CVPR.2016.90 – volume: 25 year: 2012 ident: 10.1016/j.neucom.2022.11.020_b0610 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems – volume: 104 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0830 article-title: Deep learning-based object detection in low-altitude uav datasets: A survey publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2020.104046 – volume: 7 start-page: 1419 year: 2016 ident: 10.1016/j.neucom.2022.11.020_b1015 article-title: Using deep learning for image-based plant disease detection publication-title: Frontiers in plant science doi: 10.3389/fpls.2016.01419 – volume: 6 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.neucom.2022.11.020_b0430 article-title: Uav for 3d mapping applications: a review publication-title: Applied geomatics doi: 10.1007/s12518-013-0120-x – ident: 10.1016/j.neucom.2022.11.020_b1105 – ident: 10.1016/j.neucom.2022.11.020_b0675 doi: 10.1109/CVPR.2018.00474 – ident: 10.1016/j.neucom.2022.11.020_b0590 doi: 10.1109/ICCV.1999.790410 – volume: 92 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0205 article-title: Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using uav lidar and multispectral imaging publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2020.102177 – volume: 195 year: 2022 ident: 10.1016/j.neucom.2022.11.020_b0325 article-title: Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2022.106812 – volume: 2017 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0035 article-title: A review of deep learning methods and applications for unmanned aerial vehicles publication-title: Journal of Sensors doi: 10.1155/2017/3296874 – volume: 5 start-page: 44 issue: 1 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b1090 article-title: A brief introduction to weakly supervised learning publication-title: National science review doi: 10.1093/nsr/nwx106 – year: 2020 ident: 10.1016/j.neucom.2022.11.020_b1135 article-title: A dynamic neighborhood-based switching particle swarm optimization algorithm, IEEE Transactions on publication-title: Cybernetics – volume: 148 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0115 article-title: A survey of unmanned aerial sensing solutions in precision agriculture publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2019.102461 – volume: 170 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0425 article-title: Experimental evaluation of uav spraying for peach trees of different shapes: Effects of operational parameters on droplet distribution publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105282 – volume: 396 start-page: 39 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0825 article-title: Recent advances in deep learning for object detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.085 – volume: 17 start-page: 2703 issue: 12 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0545 article-title: Designing and testing a uav mapping system for agricultural field surveying publication-title: Sensors doi: 10.3390/s17122703 – volume: 180 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b1130 article-title: State and parameter estimation of the aquacrop model for winter wheat using sensitivity informed particle filter publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105909 – volume: 106 start-page: 249 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0810 article-title: A systematic study of the class imbalance problem in convolutional neural networks publication-title: Neural networks doi: 10.1016/j.neunet.2018.07.011 – volume: 7 start-page: 162 issue: 9 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0975 article-title: Multiple uav systems for agricultural applications: Control, implementation, and evaluation publication-title: Electronics doi: 10.3390/electronics7090162 – volume: 17 start-page: 2242 issue: 3 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0055 article-title: Aerial visual perception in smart farming: Field study of wheat yellow rust monitoring publication-title: IEEE transactions on industrial informatics doi: 10.1109/TII.2020.2979237 – ident: 10.1016/j.neucom.2022.11.020_b1095 – start-page: 1 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b1145 article-title: Autonomous uav with vision based on-board decision making for remote sensing and precision agriculture – volume: 18 start-page: 260 issue: 1 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0240 article-title: A novel methodology for improving plant pest surveillance in vineyards and crops using uav-based hyperspectral and spatial data publication-title: Sensors doi: 10.3390/s18010260 – volume: 101 start-page: 330 issue: 2 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0250 article-title: Potential of unmanned aerial sampling for monitoring insect populations in rice fields publication-title: Florida Entomologist doi: 10.1653/024.101.0229 – ident: 10.1016/j.neucom.2022.11.020_b0680 doi: 10.1109/ICCV.2019.00140 – start-page: 3118 year: 2016 ident: 10.1016/j.neucom.2022.11.020_b1120 article-title: Recurrent neural networks for driver activity anticipation via sensory-fusion architecture – ident: 10.1016/j.neucom.2022.11.020_b0660 doi: 10.1145/3505244 – volume: 174 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b1080 article-title: Cnn feature based graph convolutional network for weed and crop recognition in smart farming publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105450 – volume: 327 start-page: 828 issue: 5967 year: 2010 ident: 10.1016/j.neucom.2022.11.020_b0020 article-title: Precision agriculture and food security publication-title: Science doi: 10.1126/science.1183899 – volume: 193 start-page: 101 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0400 article-title: Yield estimation in cotton using uav-based multi-sensor imagery publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2020.02.014 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0760 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2016.2644615 – ident: 10.1016/j.neucom.2022.11.020_b0890 doi: 10.1109/ICCV.2017.324 – ident: 10.1016/j.neucom.2022.11.020_b0880 – volume: 190 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0175 article-title: Optimal window size selection for spectral information extraction of sampling points from uav multispectral images for soil moisture content inversion publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2021.106456 – volume: 102 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0130 article-title: A review on deep learning in uav remote sensing publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2021.102456 – volume: 11 start-page: 3012 issue: 24 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0170 article-title: Finer classification of crops by fusing uav images and sentinel-2a data publication-title: Remote Sensing doi: 10.3390/rs11243012 – volume: 128 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b1085 article-title: Semi-supervised semantic segmentation network for surface crack detection publication-title: Automation in Construction doi: 10.1016/j.autcon.2021.103786 – volume: 10 start-page: 349 issue: 11 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0090 article-title: A review on uav-based applications for precision agriculture publication-title: Information doi: 10.3390/info10110349 – volume: 12 start-page: 1491 issue: 9 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0135 article-title: Applications of uav thermal imagery in precision agriculture: State of the art and future research outlook publication-title: Remote Sensing doi: 10.3390/rs12091491 – volume: 190 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0475 article-title: Fast detection and location of longan fruits using uav images publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2021.106465 – volume: 118 start-page: 372 year: 2015 ident: 10.1016/j.neucom.2022.11.020_b0485 article-title: Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand publication-title: Computers and electronics in agriculture doi: 10.1016/j.compag.2015.09.001 – volume: 1 start-page: 73 issue: 02 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0075 article-title: Survey on evolving deep learning neural network architectures publication-title: Journal of Artificial Intelligence – start-page: 740 year: 2014 ident: 10.1016/j.neucom.2022.11.020_b1010 article-title: Microsoft coco: Common objects in context – volume: 13 start-page: 1204 issue: 6 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0120 article-title: A technical study on uav characteristics for precision agriculture applications and associated practical challenges publication-title: Remote Sensing doi: 10.3390/rs13061204 – volume: 13 start-page: 6545 issue: 24 year: 2016 ident: 10.1016/j.neucom.2022.11.020_b0380 article-title: Crop water stress maps for an entire growing season from visible and thermal uav imagery publication-title: Biogeosciences doi: 10.5194/bg-13-6545-2016 – volume: 10 start-page: 1690 issue: 11 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0950 article-title: Deep learning with unsupervised data labeling for weed detection in line crops in uav images publication-title: Remote sensing doi: 10.3390/rs10111690 – volume: 21 start-page: 21 issue: 1 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0480 article-title: A survey on vision-based uav navigation publication-title: Geo-spatial information science doi: 10.1080/10095020.2017.1420509 – volume: 15 start-page: 361 issue: 4 year: 2014 ident: 10.1016/j.neucom.2022.11.020_b0280 article-title: Mapping crop water stress index in a ‘pinot-noir’vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle publication-title: Precision agriculture doi: 10.1007/s11119-013-9334-5 – volume: 2 start-page: 69 issue: 3 year: 2014 ident: 10.1016/j.neucom.2022.11.020_b0990 article-title: Remote sensing of the environment with small unmanned aircraft systems (uass), part 1: A review of progress and challenges publication-title: Journal of Unmanned Vehicle Systems doi: 10.1139/juvs-2014-0006 – volume: 237 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0315 article-title: Soybean yield prediction from uav using multimodal data fusion and deep learning publication-title: Remote sensing of environment doi: 10.1016/j.rse.2019.111599 – volume: 30 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0665 article-title: Attention is all you need publication-title: Advances in neural information processing systems – ident: 10.1016/j.neucom.2022.11.020_b1150 – volume: 6 start-page: 10395 issue: 11 year: 2014 ident: 10.1016/j.neucom.2022.11.020_b0195 article-title: Estimating biomass of barley using crop surface models (csms) derived from uav-based rgb imaging publication-title: Remote sensing doi: 10.3390/rs61110395 – volume: 8 start-page: 329 issue: 4 year: 2016 ident: 10.1016/j.neucom.2022.11.020_b0735 article-title: Classification and segmentation of satellite orthoimagery using convolutional neural networks publication-title: Remote Sensing doi: 10.3390/rs8040329 – volume: 39 start-page: 2079 issue: 8 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0935 article-title: Unsupervised discrimination between lodged and non-lodged winter wheat: a case study using a low-cost unmanned aerial vehicle publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2017.1422875 – ident: 10.1016/j.neucom.2022.11.020_b0685 doi: 10.1109/CVPR.2018.00716 – ident: 10.1016/j.neucom.2022.11.020_b0795 doi: 10.1007/978-3-030-01234-2_49 – ident: 10.1016/j.neucom.2022.11.020_b0840 doi: 10.1109/ICCV.2015.169 – ident: 10.1016/j.neucom.2022.11.020_b0835 doi: 10.1109/CVPR.2014.81 – volume: 88 start-page: 329 issue: 2 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0435 article-title: Disturbance observer based control with anti-windup applied to a small fixed wing uav for disturbance rejection publication-title: Journal of Intelligent & Robotic Systems doi: 10.1007/s10846-017-0534-5 – volume: 12 start-page: 17 issue: 1 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0190 article-title: Biomass and crop height estimation of different crops using uav-based lidar publication-title: Remote Sensing doi: 10.3390/rs12010017 – ident: 10.1016/j.neucom.2022.11.020_b0630 doi: 10.1109/CVPR.2015.7298594 – volume: 179 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0450 article-title: Automatic extraction of wheat lodging area based on transfer learning method and deeplabv3+ network publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105845 – volume: 13 start-page: 4091 issue: 20 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0285 article-title: A comparative estimation of maize leaf water content using machine learning techniques and unmanned aerial vehicle (uav)-based proximal and remotely sensed data publication-title: Remote Sensing doi: 10.3390/rs13204091 – volume: 177 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0365 article-title: Early detection of bacterial wilt in peanut plants through leaf-level hyperspectral and unmanned aerial vehicle data publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105708 – ident: 10.1016/j.neucom.2022.11.020_b0670 – volume: 9 start-page: 498 issue: 5 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0720 article-title: Classification for high resolution remote sensing imagery using a fully convolutional network publication-title: Remote Sensing doi: 10.3390/rs9050498 – start-page: 5188 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b1070 article-title: Automatic model based dataset generation for fast and accurate crop and weeds detection – volume: 115 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0320 article-title: Deep learning techniques for estimation of the yield and size of citrus fruits using a uav publication-title: European Journal of Agronomy doi: 10.1016/j.eja.2020.126030 – volume: 250 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b1020 article-title: Whu-hi: Uav-borne hyperspectral with high spatial resolution (h2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with crf publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2020.112012 – volume: 10 start-page: 1513 issue: 10 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0220 article-title: Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms publication-title: Remote Sensing doi: 10.3390/rs10101513 – volume: 65 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0070 article-title: Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101759 – volume: 12 start-page: 2136 issue: 13 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0310 article-title: Comparison of object detection and patch-based classification deep learning models on mid-to late-season weed detection in uav imagery publication-title: Remote Sensing doi: 10.3390/rs12132136 – ident: 10.1016/j.neucom.2022.11.020_b0875 doi: 10.1109/CVPR.2017.106 – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 10.1016/j.neucom.2022.11.020_b0615 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural computation doi: 10.1162/neco.1989.1.4.541 – start-page: 128 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0585 article-title: Deep learning vs – volume: 176 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0225 article-title: Assessing winter wheat foliage disease severity using aerial imagery acquired from small unmanned aerial vehicle (uav) publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105665 – volume: 13 start-page: 3892 issue: 19 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0770 article-title: Ir-unet: Irregular segmentation u-shape network for wheat yellow rust detection by uav multispectral imagery publication-title: Remote Sensing doi: 10.3390/rs13193892 – volume: 10 start-page: 655 issue: 5 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0985 article-title: Evaluation of a uav-assisted autonomous water sampling publication-title: Water doi: 10.3390/w10050655 – ident: 10.1016/j.neucom.2022.11.020_b0910 doi: 10.1016/j.isprsjprs.2019.12.010 – volume: 10 year: 2022 ident: 10.1016/j.neucom.2022.11.020_b0145 article-title: Uav spraying on citrus crop: impact of tank-mix adjuvant on the contact angle and droplet distribution publication-title: PeerJ doi: 10.7717/peerj.13064 – start-page: 745 year: 2013 ident: 10.1016/j.neucom.2022.11.020_b0405 article-title: Automated crop yield estimation for apple orchards – volume: 9 start-page: 82146 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0800 article-title: A survey on semi-, self-and unsupervised learning for image classification publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3084358 – volume: 7 start-page: 105100 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0045 article-title: Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications publication-title: Ieee Access doi: 10.1109/ACCESS.2019.2932119 – volume: 148 start-page: S296 issue: S1 year: 2016 ident: 10.1016/j.neucom.2022.11.020_b0260 article-title: Remote sensing of forest pest damage: A review and lessons learned from a canadian perspective publication-title: The Canadian Entomologist doi: 10.4039/tce.2016.11 – ident: 10.1016/j.neucom.2022.11.020_b0360 doi: 10.1117/12.2028624 – ident: 10.1016/j.neucom.2022.11.020_b0570 – volume: 165 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0945 article-title: Unsupervised deep learning and semi-automatic data labeling in weed discrimination publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.104963 – volume: 146 start-page: 124 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0505 article-title: Uav-based multispectral remote sensing for precision agriculture: A comparison between different cameras publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2018.09.008 – volume: 21 start-page: 6540 issue: 19 year: 2021 ident: 10.1016/j.neucom.2022.11.020_b0785 article-title: A deep-learning-based approach for wheat yellow rust disease recognition from unmanned aerial vehicle images publication-title: Sensors doi: 10.3390/s21196540 – volume: 153 start-page: 9 year: 2015 ident: 10.1016/j.neucom.2022.11.020_b0270 article-title: Uavs challenge to assess water stress for sustainable agriculture publication-title: Agricultural water management doi: 10.1016/j.agwat.2015.01.020 – volume: 63 start-page: 1083 issue: 2 year: 2015 ident: 10.1016/j.neucom.2022.11.020_b0955 article-title: Disturbance-observer-based control and related methods–an overview publication-title: IEEE Transactions on industrial electronics doi: 10.1109/TIE.2015.2478397 – volume: 7 start-page: 17736 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b1030 article-title: Fourier dense network to conduct plant classification using uav-based optical images publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2895243 – start-page: 100 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b1110 article-title: Uav image based crop and weed distribution estimation on embedded gpu boards – volume: 176 start-page: 172 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0535 article-title: Mapping the 3d structure of almond trees using uav acquired photogrammetric point clouds and object-based image analysis publication-title: Biosystems engineering doi: 10.1016/j.biosystemseng.2018.10.018 – start-page: 248 year: 2009 ident: 10.1016/j.neucom.2022.11.020_b1005 article-title: Imagenet: A large-scale hierarchical image database – volume: 12 start-page: 146 issue: 1 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0160 article-title: The impact of spatial resolution on the classification of vegetation types in highly fragmented planting areas based on unmanned aerial vehicle hyperspectral images publication-title: Remote Sensing doi: 10.3390/rs12010146 – volume: 24 start-page: 349 issue: 4 year: 2006 ident: 10.1016/j.neucom.2022.11.020_b0215 article-title: Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression publication-title: European Journal of Agronomy doi: 10.1016/j.eja.2006.01.001 – start-page: 1 year: 2022 ident: 10.1016/j.neucom.2022.11.020_b0080 article-title: Deep learning techniques to classify agricultural crops through uav imagery: a review publication-title: Neural Computing and Applications – volume: 9 start-page: 828 issue: 8 year: 2017 ident: 10.1016/j.neucom.2022.11.020_b0265 article-title: Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (uav) publication-title: Remote Sensing doi: 10.3390/rs9080828 – ident: 10.1016/j.neucom.2022.11.020_b0940 doi: 10.1007/978-981-19-2027-1_7 – volume: 338 start-page: 502 year: 2019 ident: 10.1016/j.neucom.2022.11.020_b0185 article-title: Uav based soil salinity assessment of cropland publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.046 – volume: 76 start-page: 2994 issue: 9 year: 2020 ident: 10.1016/j.neucom.2022.11.020_b0235 article-title: Deep learning for automated detection of drosophila suzukii: potential for uav-based monitoring publication-title: Pest Management Science doi: 10.1002/ps.5845 – volume: 10 start-page: 824 issue: 6 year: 2018 ident: 10.1016/j.neucom.2022.11.020_b0490 article-title: Evaluation of rgb, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice publication-title: Remote Sensing doi: 10.3390/rs10060824 |
SSID | ssj0017129 |
Score | 2.6686907 |
Snippet | Precision Agriculture (PA) promises to boost crop productivity while reducing agricultural costs and environmental footprints, and therefore is attracting... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 242 |
SubjectTerms | Deep learning Machine learning Precision agriculture Remote sensing Smart agriculture Unmanned Aerial Vehicle (UAV) |
Title | AI meets UAVs: A survey on AI empowered UAV perception systems for precision agriculture |
URI | https://dx.doi.org/10.1016/j.neucom.2022.11.020 |
Volume | 518 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MFr2iSbp7dQLK1iL1rpLexuJlLRtKSt4sXf7kyzKQqi4DW7C8tkdh7Lt9_H2IVQoRKE85MAYHk6V5bUtrCILExrYWfZ6kL_dhj0R9712B83WLd-C0OwShP7q5i-itbmS8dYszObTDp3duxiF-VggqMyJibabc8LycvbH2uYhxM6bsW35_oWza6fz60wXgUsCTPiYiJrE5cnqX7_lJ6-pJzeLts2tSJPqu3ssQYU-2yn1mHg5lgesHEy4C8AizkfJQ_zS57w-bJ8hXc-LTgOEfnUG0ly0jCfrZEsvGJxnnOsW_msNGI7XD6Who8DDtmod3Xf7VtGMcFCswYLC_unXMdRpKTIImyTsfqTMseOKHeUp20IIPLDXEnt5aGtiVcHT7gnIqkyBRE44ohtFNMCjhmHMFSxECIIcJ4OIJYYinSmfd_1hYxUk4naUKk2dOKkavGc1rixp7Qyb0rmxU4jRfM2mbVeNavoNP6YH9b_IP3mFilG_F9Xnvx75SnbIk15umdxnTO2sSiXcI6Vx0K1Vq7VYpvJ4KY__AT9ddkJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFH6icGgvLKVV2X1oj2GSOCsShxGLZtguMNXcUtt5qUAQRpMZEBf-FH-Q9ybOqEiISkhcYzvLs_MW6_P3AfyUOtaScX4KEZ3AFNpRxpUOk4UZI908n2zon55FnV5w1A_7M_DUnIVhWKX1_bVPn3hre6VlrdkaXF62zt3UpyrKowDHaUwaWWTlMT7cU91W7Xb3aZJ_-f7hwcVex7HSAg49Pxo5VGgUJk0SrWSeUD1JaZJSBZUOhacD42KESRgXWpmgiF3DBDT0KwQyUTrXmKAn6b6fYC4gd8GyCduPU1yJF3t-TfDnhw6_XnNebwIqK3HMIBWfIuc2k4eyzPhr8fCfGHe4CPM2ORXt-vuXYAbLr7DQCD8I6weWod_uihvEUSV67d_VjmiLajy8wwdxWwpqYrare9YA5WYxmEJnRE0bXQlKlMVgaNV9hPo7tAQg-A16H2LH7zBb3pb4AwTGsU6llFFE_UyEqSLfZ3IThn4oVaJXQDaGyozlL2cZjeusAapdZbV5MzYvlTYZmXcFnOmoQc3f8Z_-cTMH2Yt1mFGIeXPk6rtHbsHnzsXpSXbSPTtegy8saM-bPL63DrOj4Rg3KO0Z6c3JMhPw56PX9TOzpRWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+meets+UAVs%3A+A+survey+on+AI+empowered+UAV+perception+systems+for+precision+agriculture&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Su%2C+Jinya&rft.au=Zhu%2C+Xiaoyong&rft.au=Li%2C+Shihua&rft.au=Chen%2C+Wen-Hua&rft.date=2023-01-21&rft.issn=0925-2312&rft.volume=518&rft.spage=242&rft.epage=270&rft_id=info:doi/10.1016%2Fj.neucom.2022.11.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2022_11_020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |