A survey of deep learning techniques for vehicle detection from UAV images

“Unmanned aerial vehicles” (UAVs) are now being used for a wide range of surveillance applications. Specifically, the detection of on-ground vehicles from UAV images has attracted significant attention due to its potential in applications such as traffic management, parking lot management, and facil...

Full description

Saved in:
Bibliographic Details
Published inJournal of systems architecture Vol. 117; p. 102152
Main Authors Srivastava, Srishti, Narayan, Sarthak, Mittal, Sparsh
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract “Unmanned aerial vehicles” (UAVs) are now being used for a wide range of surveillance applications. Specifically, the detection of on-ground vehicles from UAV images has attracted significant attention due to its potential in applications such as traffic management, parking lot management, and facilitating rescue operations in disaster zones and rugged terrains. This paper presents a survey of deep learning techniques for performing on-ground vehicle detection from aerial imagery captured using UAVs (also known as drones). We review the works in terms of their approach to improve accuracy and reduce computation overhead and their optimization objective. We show the similarities and differences of various techniques and also highlight the future challenges in this area. This survey will benefit researchers in the area of artificial intelligence, traffic surveillance, and applications of UAVs.
AbstractList “Unmanned aerial vehicles” (UAVs) are now being used for a wide range of surveillance applications. Specifically, the detection of on-ground vehicles from UAV images has attracted significant attention due to its potential in applications such as traffic management, parking lot management, and facilitating rescue operations in disaster zones and rugged terrains. This paper presents a survey of deep learning techniques for performing on-ground vehicle detection from aerial imagery captured using UAVs (also known as drones). We review the works in terms of their approach to improve accuracy and reduce computation overhead and their optimization objective. We show the similarities and differences of various techniques and also highlight the future challenges in this area. This survey will benefit researchers in the area of artificial intelligence, traffic surveillance, and applications of UAVs.
ArticleNumber 102152
Author Srivastava, Srishti
Mittal, Sparsh
Narayan, Sarthak
Author_xml – sequence: 1
  givenname: Srishti
  orcidid: 0000-0003-3634-7279
  surname: Srivastava
  fullname: Srivastava, Srishti
  email: srishtisrivastava.ai@gmail.com
  organization: CSE Department, IIT Dharwad, India
– sequence: 2
  givenname: Sarthak
  surname: Narayan
  fullname: Narayan, Sarthak
  email: sarthak.narayan.nitt@gmail.com
  organization: ECE Department, NIT Trichy, India
– sequence: 3
  givenname: Sparsh
  orcidid: 0000-0002-2908-993X
  surname: Mittal
  fullname: Mittal, Sparsh
  email: sparshfec@iitr.ac.in
  organization: ECE Department, IIT Roorkee, India
BookMark eNqFkE1PAjEQhhuDiYD-Aw_9A4v9oO3iwYQQP0PiRbw23e4USpYutgsJ_96S9eRBTzOZmffNO88IDUIbAKFbSiaUUHm3naRTMtFOGGE0jxgV7AINaal4IakUg9zzkhdKMnqFRiltCSFCUDZEb3OcDvEIJ9w6XAPscQMmBh_WuAO7Cf7rAAm7NuIjbLxtIB_lRefbgF1sd3g1_8R-Z9aQrtGlM02Cm586Rqunx4_FS7F8f35dzJeF5UR2BZNMKsGsraASkldOEkGm1pKSK87MrFYzzlVFHGdTR0VpaW0pM6V0UNYcFB-j-97XxjalCE5b35lzoi4a32hK9JmK3uqeij5T0T2VLJ7-Eu9jjh9P_8keehnkx44eok7WQ7BQ-5hp6Lr1fxt8A1b7gAk
CitedBy_id crossref_primary_10_1007_s11042_022_12447_5
crossref_primary_10_1016_j_jafr_2024_101350
crossref_primary_10_1109_COMST_2023_3312221
crossref_primary_10_3390_rs16050879
crossref_primary_10_3390_drones7060339
crossref_primary_10_3390_drones7020117
crossref_primary_10_3390_s23218723
crossref_primary_10_1049_tje2_70033
crossref_primary_10_12720_jait_14_6_1221_1229
crossref_primary_10_1016_j_autcon_2024_105418
crossref_primary_10_1155_2022_1828848
crossref_primary_10_1016_j_procs_2024_04_132
crossref_primary_10_1007_s13177_025_00479_8
crossref_primary_10_1038_s41598_024_55570_z
crossref_primary_10_1080_03772063_2021_1962418
crossref_primary_10_1109_MGRS_2021_3115137
crossref_primary_10_3390_rs14153689
crossref_primary_10_1007_s12145_022_00871_y
crossref_primary_10_1109_JIOT_2024_3435130
crossref_primary_10_11834_jig_220836
crossref_primary_10_1007_s12530_023_09533_w
crossref_primary_10_1016_j_sysarc_2022_102775
crossref_primary_10_1109_ACCESS_2023_3273780
crossref_primary_10_3390_s23115086
crossref_primary_10_1016_j_engappai_2023_107667
crossref_primary_10_1016_j_sysarc_2022_102584
crossref_primary_10_1007_s40747_024_01429_9
crossref_primary_10_1016_j_sysarc_2021_102163
crossref_primary_10_1515_geo_2022_0645
crossref_primary_10_3390_s22145278
crossref_primary_10_1117_1_JEI_32_1_013014
crossref_primary_10_3390_drones8100573
crossref_primary_10_12677_SEA_2023_125068
crossref_primary_10_3390_s24113286
crossref_primary_10_1007_s42979_023_02592_5
crossref_primary_10_3390_drones7040227
crossref_primary_10_1016_j_phycom_2024_102460
crossref_primary_10_3390_s23125634
crossref_primary_10_1007_s11760_024_03332_9
crossref_primary_10_3390_app13063995
crossref_primary_10_1007_s00521_024_10440_7
crossref_primary_10_3390_su151914564
crossref_primary_10_1109_JSEN_2021_3139124
crossref_primary_10_1016_j_engappai_2023_107513
crossref_primary_10_1111_tgis_13208
crossref_primary_10_1016_j_eswa_2023_120845
crossref_primary_10_1145_3571728
crossref_primary_10_1007_s12559_024_10290_4
crossref_primary_10_1145_3697830
crossref_primary_10_1177_30504554251319452
crossref_primary_10_1145_3664598
crossref_primary_10_1109_TGRS_2025_3532612
crossref_primary_10_3390_drones6060147
crossref_primary_10_1080_08839514_2021_2018184
crossref_primary_10_1109_ACCESS_2023_3326101
crossref_primary_10_14358_PERS_22_00101R2
crossref_primary_10_3390_rs15153778
crossref_primary_10_1007_s11370_022_00452_4
crossref_primary_10_1016_j_measurement_2024_116579
crossref_primary_10_3390_e26100882
crossref_primary_10_3390_rs13214196
crossref_primary_10_1109_ACCESS_2023_3296309
crossref_primary_10_32604_cmc_2023_033422
crossref_primary_10_1016_j_eswa_2022_119243
crossref_primary_10_1016_j_sysarc_2022_102675
crossref_primary_10_2478_logi_2022_0015
crossref_primary_10_1016_j_sysarc_2023_102851
crossref_primary_10_1007_s10668_024_04790_4
crossref_primary_10_2139_ssrn_4158164
crossref_primary_10_1007_s10846_023_01889_0
crossref_primary_10_3390_drones6120406
crossref_primary_10_1016_j_eij_2024_100523
crossref_primary_10_3390_app13179881
crossref_primary_10_3390_electronics12010146
crossref_primary_10_1109_TGRS_2024_3391621
crossref_primary_10_3390_rs14030620
crossref_primary_10_1007_s44163_024_00209_1
crossref_primary_10_3233_HIS_210003
Cites_doi 10.1109/BigMM.2018.8499466
10.1109/CVPR.2019.00296
10.3390/rs9111170
10.1162/089976602760128018
10.1155/2017/2823617
10.1109/CVPR.2016.89
10.1016/j.sysarc.2019.101635
10.1145/2893356
10.1109/LGRS.2014.2309695
10.1109/34.969114
10.3390/rs9040312
10.1016/j.sysarc.2019.101689
10.1109/CVPR.2018.00442
10.1109/ACCESS.2019.2903422
10.1016/j.sysarc.2018.11.005
10.1109/TGRS.2018.2790926
10.1109/CVPR.2018.00716
10.1016/j.sysarc.2021.102041
10.1109/SCM.2016.7519666
10.1109/TGRS.2018.2848243
10.1109/TPAMI.2004.60
10.1109/ACCESS.2019.2923407
10.1109/ACCESS.2017.2782260
10.1109/TGRS.2019.2895362
10.1007/s00521-018-3761-1
10.1016/j.sysarc.2021.102031
10.3390/electronics10070820
10.1126/science.1127647
10.1109/ICCV.2017.446
10.1109/TPAMI.2016.2644615
10.1109/34.400568
10.1145/3243394.3243692
10.3390/electronics7060078
10.1109/TGRS.2018.2841808
10.1145/3411170.3411275
10.3390/rs12111760
10.1109/JSTARS.2017.2694890
10.1109/ICCV.2015.169
10.3390/s17020336
10.3390/rs10010124
10.1109/WACV.2018.00075
10.1177/0361198120954187
10.3390/s17122720
10.1109/CVPRW.2019.00080
10.1145/3394171.3413816
10.1109/TITS.2005.858621
10.3390/rs9040368
10.1109/CVPR.2014.81
10.1016/j.sysarc.2019.01.011
10.1109/TPAMI.2012.120
10.1109/ICCV.2017.89
10.1007/978-3-030-58309-5_5
10.1109/LGRS.2019.2909541
10.1109/CVPR.2016.91
10.1109/34.1000236
10.1109/TIP.2010.2101613
10.1609/aaai.v31i1.11231
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sysarc.2021.102152
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6165
ExternalDocumentID 10_1016_j_sysarc_2021_102152
S1383762121001107
GrantInformation_xml – fundername: Semiconductor Research Corporation (SRC), USA
  grantid: 2020-IR-2972
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
U5U
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-2626752ccbeb563bf60504cc083732a9d79337b0f324f158c1dc12a86fe8d3e73
IEDL.DBID .~1
ISSN 1383-7621
IngestDate Tue Jul 01 00:29:17 EDT 2025
Thu Apr 24 23:02:12 EDT 2025
Fri Feb 23 02:43:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
“Unmanned aerial vehicle” (UAV)
Review
Drone
Vehicle detection
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-2626752ccbeb563bf60504cc083732a9d79337b0f324f158c1dc12a86fe8d3e73
ORCID 0000-0003-3634-7279
0000-0002-2908-993X
ParticipantIDs crossref_citationtrail_10_1016_j_sysarc_2021_102152
crossref_primary_10_1016_j_sysarc_2021_102152
elsevier_sciencedirect_doi_10_1016_j_sysarc_2021_102152
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Journal of systems architecture
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mittal (b82) 2019; 97
Tobias Ringwald, Lars Sommer, Arne Schumann, Jurgen Beyerer, Rainer Stiefelhagen, UAV-Net: A fast aerial vehicle detector for mobile platforms, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019.
Jha, Mittal (b50) 2020
Gschwend (b86) 2020
Nandan Kumar Jha, et al. E2GC: Energy-efficient group convolution in deep neural networks, in: IEEE International Conference on VLSI Design, 2020, pp. 155–160.
Tang, Zhou, Deng, Lei, Zou (b19) 2017; 9
Pattanayak (b53) 2021
Ham, Park, Kim, Kho, Kim (b31) 2020; 2674
Yang, Xie, Yang (b21) 2019; 7
Abhinav Shrivastava, Abhinav Gupta, Ross Girshick, Training region-based object detectors with online hard example mining, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769.
Sommer, Nie, Schumann, Schuchert, Beyerer (b9) 2017
Mittal, Vaishay (b81) 2019; 99
Mittal (b3) 2020; 104
Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, Yichen Wei, Deformable convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 764–773.
Cheng (b71) 1995; 17
Ammar, Koubaa, Ahmed, Saad, Benjdira (b22) 2021; 10
Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848–6856.
Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (b63) 2012; 34
Qingtian Wu, Yimin Zhou, Real-time object detection based on unmanned aerial vehicle, in: IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), 2019, pp. 574–579.
Mittal, Vibhu (b91) 2021; 115
Koga, Miyazaki, Shibasaki (b41) 2018; 10
Audebert, Le Saux, Lefèvre (b74) 2016
Ren, He, Girshick, Sun (b7) 2015
Barnich, Van Droogenbroeck (b55) 2010; 20
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alexander Alemi, Inception-v4, Inception-ResNet and the impact of residual connections on learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, 2017.
Bazi, Melgani (b38) 2018; 56
Audebert, Le Saux, Lefèvre (b16) 2017; 9
Zeiler, Fergus (b78) 2014
Ji, Gao, Mei, Li (b1) 2019; 16
Jian Ding, Nan Xue, Yang Long, Gui-Song Xia, Qikai Lu, Learning RoI transformer for oriented object detection in aerial images, in: IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 2849–2858.
Tang, Zhou, Deng, Zou, Lei (b29) 2017; 17
Xu, Yu, Wang, Wu, Ma (b10) 2017; 2017
.
Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587.
Gandhi (b4) 2018
Nandan Kumar Jha, et al. The ramifications of making deep neural networks compact, in: IEEE International Conference on VLSI Design, 2019, pp. 215–220.
Deng, Sun, Zhou, Zhao, Zou (b27) 2017; 10
Yang, Liao, Li, Rosenhahn (b2) 2018
Poonam Rajput, Sparsh Mittal, Sarthak Narayan, Improving accuracy and efficiency of object detection algorithms using multiscale feature aggregation plugins, in: IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), 2020, pp. 65–76.
Zhong, Lei, Yao (b11) 2017; 17
Hinton (b69) 2002; 14
Rajat Kumar Saini, et al. ULSAM: Ultra-lightweight subspace attention module for compact convolutional neural networks, in: IEEE Winter Conference on Applications of Computer Vision (WACV), 2020, pp. 1616–1625.
Zhang, Liu, Chang, Song (b23) 2020; 12
Liu, Yang, Li (b37) 2018; 7
Mou, Zhu (b40) 2018; 56
Bengio (b64) 2009
Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, Stan Z. Li, Single-shot refinement neural network for object detection, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4203–4212.
Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 609–616.
Tayara, Soo, Chong (b14) 2017; 6
Norouzi, Ranjbar, Mori (b66) 2009
Sergey Ioffe, Christian Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning, 2015, pp. 448–456.
Li, Mou, Xu, Zhang, Zhu (b18) 2019; 57
Zhou, Wei, Lim, Nahavandi (b45) 2018; 56
Georgy V. Konoplich, Evgeniy O. Putin, Andrey A. Filchenkov, Application of deep learning to the problem of vehicle detection in UAV images, in: IEEE International Conference on Soft Computing and Measurements (SCM), 2016, pp. 4–6.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (b83) 2017
Ammour, Alhichri, Bazi, Benjdira, Alajlan, Zuair (b12) 2017; 9
X. Xie, W. Yang, G. Cao, J. Yang, Z. Zhao, S. Chen, Q. Liao, G. Shi, Real-time vehicle detection from UAV imagery, in: 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM), 2018, pp. 1–5.
Meng-Ru Hsieh, Yen-Liang Lin, Winston H. Hsu, Drone-based object counting by spatially regularized regional proposal network, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4145–4153.
Mittal (b92) 2016; 48
Long, Chung, Liu, Bu (b39) 2019; 7
Shamos (b77) 1978
Srivastava, Mittal (b47) 2021
Henriques, Caseiro, Martins, Batista (b79) 2012
George Plastiras, Christos Kyrkou, Theocharis Theocharides, Efficient convnet-based object detection for unmanned aerial vehicles by selective tile processing, in: Proceedings of the 12th International Conference on Distributed Smart Cameras, 2018, pp. 1–6.
Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick, Mask R-CNN, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2961–2969.
Boykov, Kolmogorov (b68) 2004; 26
Mittal (b93) 2020; 32
Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (b85) 2016
Sommer, Schuchert, Beyerer (b28) 2017
Seyed Majid Azimi, ShuffleDet: real-time vehicle detection network in on-board embedded UAV imagery, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018.
Poonam Rajput, Subhrajit Nag, Sparsh Mittal, Detecting usage of mobile phones using deep learning technique, in: 6th EAI International Conference on Smart Objects and Technologies for Social Good (GOODTECHS), 2020.
Ross Girshick, Fast r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1440–1448.
Comaniciu, Meer (b72) 2002; 24
Lars Sommer, Arne Schumann, Tobias Schuchert, Jurgen Beyerer, Multi feature deconvolutional faster r-cnn for precise vehicle detection in aerial imagery, in: IEEE Winter Conference on Applications of Computer Vision (WACV), 2018, pp. 635–642.
Cai YuanQiang, Dawei Du, Libo Zhang, Longyin Wen, Weiqiang Wang, Yanjun Wu, Siwei Lyu, Guided attention network for object detection and counting on drones, in: Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 709–717.
Zhenyu Wu, Karthik Suresh, Priya Narayanan, Hongyu Xu, Heesung Kwon, Zhangyang Wang, Delving into robust object detection from unmanned aerial vehicles: A deep nuisance disentanglement approach, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 1201–1210.
Boykov, Veksler, Zabih (b67) 2001; 23
Hinton, Salakhutdinov (b65) 2006; 313
Sommer, Schmidt, Schumann, Beyerer (b17) 2018
Chen, Xiang, Liu, Pan (b44) 2014; 11
Tang, Deng, Zhou, Lei, Zou (b33) 2017
Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788.
Dalal, Triggs (b54) 2005; 1
Shastry, Schowengerdt (b56) 2005; 6
Mittal, Umesh (b49) 2020
Paul Viola, Michael Jones, Rapid object detection using a boosted cascade of simple features, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2001.
Kyrkou, Plastiras, Theocharides, Venieris, Bouganis (b35) 2018
Umesh, Mittal (b94) 2019; 97
Carlet, Abayowa (b32) 2017
Badrinarayanan, Kendall, Cipolla (b73) 2017; 39
Hinton (10.1016/j.sysarc.2021.102152_b65) 2006; 313
Yang (10.1016/j.sysarc.2021.102152_b2) 2018
Mittal (10.1016/j.sysarc.2021.102152_b49) 2020
Srivastava (10.1016/j.sysarc.2021.102152_b47) 2021
10.1016/j.sysarc.2021.102152_b90
Ji (10.1016/j.sysarc.2021.102152_b1) 2019; 16
Tang (10.1016/j.sysarc.2021.102152_b19) 2017; 9
Audebert (10.1016/j.sysarc.2021.102152_b74) 2016
Jha (10.1016/j.sysarc.2021.102152_b50) 2020
Li (10.1016/j.sysarc.2021.102152_b18) 2019; 57
10.1016/j.sysarc.2021.102152_b48
10.1016/j.sysarc.2021.102152_b46
Carlet (10.1016/j.sysarc.2021.102152_b32) 2017
Umesh (10.1016/j.sysarc.2021.102152_b94) 2019; 97
10.1016/j.sysarc.2021.102152_b84
Zhou (10.1016/j.sysarc.2021.102152_b45) 2018; 56
Ren (10.1016/j.sysarc.2021.102152_b7) 2015
Long (10.1016/j.sysarc.2021.102152_b39) 2019; 7
Koga (10.1016/j.sysarc.2021.102152_b41) 2018; 10
10.1016/j.sysarc.2021.102152_b88
10.1016/j.sysarc.2021.102152_b89
10.1016/j.sysarc.2021.102152_b42
10.1016/j.sysarc.2021.102152_b43
Howard (10.1016/j.sysarc.2021.102152_b83) 2017
10.1016/j.sysarc.2021.102152_b87
Achanta (10.1016/j.sysarc.2021.102152_b63) 2012; 34
Kyrkou (10.1016/j.sysarc.2021.102152_b35) 2018
Mittal (10.1016/j.sysarc.2021.102152_b3) 2020; 104
Shastry (10.1016/j.sysarc.2021.102152_b56) 2005; 6
Mittal (10.1016/j.sysarc.2021.102152_b92) 2016; 48
Hinton (10.1016/j.sysarc.2021.102152_b69) 2002; 14
10.1016/j.sysarc.2021.102152_b15
10.1016/j.sysarc.2021.102152_b59
10.1016/j.sysarc.2021.102152_b13
10.1016/j.sysarc.2021.102152_b57
10.1016/j.sysarc.2021.102152_b58
Audebert (10.1016/j.sysarc.2021.102152_b16) 2017; 9
Yang (10.1016/j.sysarc.2021.102152_b21) 2019; 7
Mittal (10.1016/j.sysarc.2021.102152_b91) 2021; 115
Zeiler (10.1016/j.sysarc.2021.102152_b78) 2014
Deng (10.1016/j.sysarc.2021.102152_b27) 2017; 10
10.1016/j.sysarc.2021.102152_b51
Boykov (10.1016/j.sysarc.2021.102152_b68) 2004; 26
Mou (10.1016/j.sysarc.2021.102152_b40) 2018; 56
10.1016/j.sysarc.2021.102152_b52
Zhang (10.1016/j.sysarc.2021.102152_b23) 2020; 12
Zhong (10.1016/j.sysarc.2021.102152_b11) 2017; 17
Bengio (10.1016/j.sysarc.2021.102152_b64) 2009
Boykov (10.1016/j.sysarc.2021.102152_b67) 2001; 23
Mittal (10.1016/j.sysarc.2021.102152_b93) 2020; 32
Chen (10.1016/j.sysarc.2021.102152_b44) 2014; 11
Mittal (10.1016/j.sysarc.2021.102152_b81) 2019; 99
Tang (10.1016/j.sysarc.2021.102152_b29) 2017; 17
10.1016/j.sysarc.2021.102152_b70
Gandhi (10.1016/j.sysarc.2021.102152_b4) 2018
Barnich (10.1016/j.sysarc.2021.102152_b55) 2010; 20
Pattanayak (10.1016/j.sysarc.2021.102152_b53) 2021
Ammour (10.1016/j.sysarc.2021.102152_b12) 2017; 9
Norouzi (10.1016/j.sysarc.2021.102152_b66) 2009
10.1016/j.sysarc.2021.102152_b26
10.1016/j.sysarc.2021.102152_b24
10.1016/j.sysarc.2021.102152_b25
Iandola (10.1016/j.sysarc.2021.102152_b85) 2016
Tang (10.1016/j.sysarc.2021.102152_b33) 2017
10.1016/j.sysarc.2021.102152_b62
10.1016/j.sysarc.2021.102152_b60
10.1016/j.sysarc.2021.102152_b61
10.1016/j.sysarc.2021.102152_b20
Sommer (10.1016/j.sysarc.2021.102152_b28) 2017
Bazi (10.1016/j.sysarc.2021.102152_b38) 2018; 56
Dalal (10.1016/j.sysarc.2021.102152_b54) 2005; 1
Badrinarayanan (10.1016/j.sysarc.2021.102152_b73) 2017; 39
10.1016/j.sysarc.2021.102152_b80
Henriques (10.1016/j.sysarc.2021.102152_b79) 2012
10.1016/j.sysarc.2021.102152_b6
10.1016/j.sysarc.2021.102152_b8
Comaniciu (10.1016/j.sysarc.2021.102152_b72) 2002; 24
Gschwend (10.1016/j.sysarc.2021.102152_b86) 2020
Shamos (10.1016/j.sysarc.2021.102152_b77) 1978
10.1016/j.sysarc.2021.102152_b36
Tayara (10.1016/j.sysarc.2021.102152_b14) 2017; 6
Ham (10.1016/j.sysarc.2021.102152_b31) 2020; 2674
10.1016/j.sysarc.2021.102152_b5
Ammar (10.1016/j.sysarc.2021.102152_b22) 2021; 10
Sommer (10.1016/j.sysarc.2021.102152_b9) 2017
Mittal (10.1016/j.sysarc.2021.102152_b82) 2019; 97
Xu (10.1016/j.sysarc.2021.102152_b10) 2017; 2017
Liu (10.1016/j.sysarc.2021.102152_b37) 2018; 7
Sommer (10.1016/j.sysarc.2021.102152_b17) 2018
10.1016/j.sysarc.2021.102152_b30
10.1016/j.sysarc.2021.102152_b34
Cheng (10.1016/j.sysarc.2021.102152_b71) 1995; 17
10.1016/j.sysarc.2021.102152_b75
10.1016/j.sysarc.2021.102152_b76
References_xml – reference: Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788.
– volume: 11
  start-page: 1797
  year: 2014
  end-page: 1801
  ident: b44
  article-title: Vehicle detection in satellite images by hybrid deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 10
  start-page: 3652
  year: 2017
  end-page: 3664
  ident: b27
  article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 56
  start-page: 3107
  year: 2018
  end-page: 3118
  ident: b38
  article-title: Convolutional SVM networks for object detection in UAV imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Nandan Kumar Jha, et al. The ramifications of making deep neural networks compact, in: IEEE International Conference on VLSI Design, 2019, pp. 215–220.
– volume: 57
  start-page: 5028
  year: 2019
  end-page: 5042
  ident: b18
  article-title: R 3-net: A deep network for multioriented vehicle detection in aerial images and videos
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: X. Xie, W. Yang, G. Cao, J. Yang, Z. Zhao, S. Chen, Q. Liao, G. Shi, Real-time vehicle detection from UAV imagery, in: 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM), 2018, pp. 1–5.
– start-page: 702
  year: 2012
  end-page: 715
  ident: b79
  article-title: Exploiting the circulant structure of tracking-by-detection with kernels
  publication-title: European Conference on Computer Vision
– volume: 17
  start-page: 336
  year: 2017
  ident: b29
  article-title: Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining
  publication-title: Sensors
– volume: 7
  start-page: 30980
  year: 2019
  end-page: 30990
  ident: b39
  article-title: Object detection in aerial images using feature fusion deep networks
  publication-title: IEEE Access
– year: 2020
  ident: b49
  article-title: A survey on hardware accelerators and optimization techniques for RNNs
  publication-title: J. Syst. Archit.
– reference: Ross Girshick, Fast r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1440–1448.
– reference: Paul Viola, Michael Jones, Rapid object detection using a boosted cascade of simple features, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2001.
– reference: Meng-Ru Hsieh, Yen-Liang Lin, Winston H. Hsu, Drone-based object counting by spatially regularized regional proposal network, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4145–4153.
– volume: 2017
  year: 2017
  ident: b10
  article-title: Car detection from low-altitude UAV imagery with the faster R-CNN
  publication-title: J. Adv. Transp.
– volume: 17
  start-page: 2720
  year: 2017
  ident: b11
  article-title: Robust vehicle detection in aerial images based on cascaded convolutional neural networks
  publication-title: Sensors
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b65
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 10
  start-page: 124
  year: 2018
  ident: b41
  article-title: A CNN-based method of vehicle detection from aerial images using hard example mining
  publication-title: Remote Sens.
– volume: 56
  start-page: 6699
  year: 2018
  end-page: 6711
  ident: b40
  article-title: Vehicle instance segmentation from aerial image and video using a multitask learning residual fully convolutional network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 3079
  year: 2018
  end-page: 3083
  ident: b2
  article-title: Deep learning for vehicle detection in aerial images
  publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP)
– year: 2020
  ident: b86
  article-title: Zynqnet: An FPGA-accelerated embedded convolutional neural network
– reference: Cai YuanQiang, Dawei Du, Libo Zhang, Longyin Wen, Weiqiang Wang, Yanjun Wu, Siwei Lyu, Guided attention network for object detection and counting on drones, in: Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 709–717.
– year: 2016
  ident: b85
  article-title: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and
– volume: 115
  year: 2021
  ident: b91
  article-title: A survey of accelerator architectures for 3D convolution neural networks
  publication-title: J. Syst. Archit.
– volume: 48
  start-page: 62:1
  year: 2016
  end-page: 62:33
  ident: b92
  article-title: A survey of techniques for approximate computing
  publication-title: ACM Comput. Surv.
– volume: 9
  start-page: 368
  year: 2017
  ident: b16
  article-title: Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images
  publication-title: Remote Sens.
– reference: Poonam Rajput, Subhrajit Nag, Sparsh Mittal, Detecting usage of mobile phones using deep learning technique, in: 6th EAI International Conference on Smart Objects and Technologies for Social Good (GOODTECHS), 2020.
– volume: 9
  start-page: 1170
  year: 2017
  ident: b19
  article-title: Arbitrary-oriented vehicle detection in aerial imagery with single convolutional neural networks
  publication-title: Remote Sens.
– reference: Seyed Majid Azimi, ShuffleDet: real-time vehicle detection network in on-board embedded UAV imagery, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018.
– volume: 1
  start-page: 886
  year: 2005
  end-page: 893
  ident: b54
  article-title: Histograms of oriented gradients for human detection
  publication-title: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
– year: 1978
  ident: b77
  article-title: Computational Geometry
– reference: Sergey Ioffe, Christian Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning, 2015, pp. 448–456.
– reference: Georgy V. Konoplich, Evgeniy O. Putin, Andrey A. Filchenkov, Application of deep learning to the problem of vehicle detection in UAV images, in: IEEE International Conference on Soft Computing and Measurements (SCM), 2016, pp. 4–6.
– volume: 26
  start-page: 1124
  year: 2004
  end-page: 1137
  ident: b68
  article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Lars Sommer, Arne Schumann, Tobias Schuchert, Jurgen Beyerer, Multi feature deconvolutional faster r-cnn for precise vehicle detection in aerial imagery, in: IEEE Winter Conference on Applications of Computer Vision (WACV), 2018, pp. 635–642.
– start-page: 311
  year: 2017
  end-page: 319
  ident: b28
  article-title: Fast deep vehicle detection in aerial images
  publication-title: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV)
– reference: Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alexander Alemi, Inception-v4, Inception-ResNet and the impact of residual connections on learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, 2017.
– volume: 6
  start-page: 2220
  year: 2017
  end-page: 2230
  ident: b14
  article-title: Vehicle detection and counting in high-resolution aerial images using convolutional regression neural network
  publication-title: IEEE Access
– year: 2021
  ident: b53
  article-title: CURATING: A multi-objective based pruning technique for CNNs
  publication-title: J. Syst. Archit.
– reference: Qingtian Wu, Yimin Zhou, Real-time object detection based on unmanned aerial vehicle, in: IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), 2019, pp. 574–579.
– volume: 99
  year: 2019
  ident: b81
  article-title: A survey of techniques for optimizing deep learning on GPUs
  publication-title: J. Syst. Archit.
– year: 2020
  ident: b50
  article-title: Modeling data reuse in deep neural networks by taking data-types into cognizance
  publication-title: IEEE Trans. Comput.
– volume: 32
  start-page: 1109
  year: 2020
  end-page: 1139
  ident: b93
  article-title: A survey of FPGA-based accelerators for convolutional neural networks
  publication-title: Neural Comput. Appl.
– volume: 7
  start-page: 78
  year: 2018
  ident: b37
  article-title: Real-time ground vehicle detection in aerial infrared imagery based on convolutional neural network
  publication-title: Electronics
– volume: 20
  start-page: 1709
  year: 2010
  end-page: 1724
  ident: b55
  article-title: ViBe: A universal background subtraction algorithm for video sequences
  publication-title: IEEE Trans. Image Process.
– volume: 17
  start-page: 790
  year: 1995
  end-page: 799
  ident: b71
  article-title: Mean shift, mode seeking, and clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 23
  start-page: 1222
  year: 2001
  end-page: 1239
  ident: b67
  article-title: Fast approximate energy minimization via graph cuts
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b73
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick, Mask R-CNN, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2961–2969.
– volume: 97
  start-page: 349
  year: 2019
  end-page: 372
  ident: b94
  article-title: A survey of spintronic architectures for processing-in-memory and neural networks
  publication-title: J. Syst. Archit.
– start-page: 1
  year: 2017
  end-page: 5
  ident: b33
  article-title: Fast vehicle detection in UAV images
  publication-title: 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)
– reference: Rajat Kumar Saini, et al. ULSAM: Ultra-lightweight subspace attention module for compact convolutional neural networks, in: IEEE Winter Conference on Applications of Computer Vision (WACV), 2020, pp. 1616–1625.
– volume: 34
  start-page: 2274
  year: 2012
  end-page: 2282
  ident: b63
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Nandan Kumar Jha, et al. E2GC: Energy-efficient group convolution in deep neural networks, in: IEEE International Conference on VLSI Design, 2020, pp. 155–160.
– start-page: 818
  year: 2014
  end-page: 833
  ident: b78
  article-title: Visualizing and understanding convolutional networks
  publication-title: European Conference on Computer Vision
– reference: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– year: 2017
  ident: b32
  article-title: Fast vehicle detection in aerial imagery
– reference: Zhenyu Wu, Karthik Suresh, Priya Narayanan, Hongyu Xu, Heesung Kwon, Zhangyang Wang, Delving into robust object detection from unmanned aerial vehicles: A deep nuisance disentanglement approach, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 1201–1210.
– start-page: 3054
  year: 2018
  end-page: 3058
  ident: b17
  article-title: Search area reduction fast-RCNN for fast vehicle detection in large aerial imagery
  publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP)
– year: 2018
  ident: b4
  article-title: R-CNN, fast R-CNN, faster R-CNN, YOLO — Object detection algorithms
– volume: 24
  start-page: 603
  year: 2002
  end-page: 619
  ident: b72
  article-title: Mean shift: A robust approach toward feature space analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 97
  start-page: 428
  year: 2019
  end-page: 442
  ident: b82
  article-title: A survey on optimized implementation of deep learning models on the NVIDIA jetson platform
  publication-title: J. Syst. Archit.
– volume: 6
  start-page: 391
  year: 2005
  end-page: 405
  ident: b56
  article-title: Airborne video registration and traffic-flow parameter estimation
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 91
  year: 2015
  end-page: 99
  ident: b7
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 967
  year: 2018
  end-page: 972
  ident: b35
  article-title: Dronet: Efficient convolutional neural network detector for real-time UAV applications
  publication-title: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018
– reference: Poonam Rajput, Sparsh Mittal, Sarthak Narayan, Improving accuracy and efficiency of object detection algorithms using multiscale feature aggregation plugins, in: IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), 2020, pp. 65–76.
– start-page: 1
  year: 2017
  end-page: 6
  ident: b9
  article-title: Semantic labeling for improved vehicle detection in aerial imagery
  publication-title: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)
– volume: 16
  start-page: 1761
  year: 2019
  end-page: 1765
  ident: b1
  article-title: Improved faster R-CNN with multiscale feature fusion and homography augmentation for vehicle detection in remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 10
  year: 2021
  ident: b22
  article-title: Vehicle detection from aerial images using deep learning: A comparative study
  publication-title: Electronics
– reference: Tobias Ringwald, Lars Sommer, Arne Schumann, Jurgen Beyerer, Rainer Stiefelhagen, UAV-Net: A fast aerial vehicle detector for mobile platforms, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019.
– reference: Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587.
– year: 2017
  ident: b83
  article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
– volume: 104
  year: 2020
  ident: b3
  article-title: A survey on modeling and improving reliability of DNN algorithms and accelerators
  publication-title: J. Syst. Archit.
– volume: 9
  start-page: 312
  year: 2017
  ident: b12
  article-title: Deep learning approach for car detection in UAV imagery
  publication-title: Remote Sens.
– reference: Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, Yichen Wei, Deformable convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 764–773.
– reference: Jian Ding, Nan Xue, Yang Long, Gui-Song Xia, Qikai Lu, Learning RoI transformer for oriented object detection in aerial images, in: IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 2849–2858.
– start-page: 2735
  year: 2009
  end-page: 2742
  ident: b66
  article-title: Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– reference: .
– start-page: 180
  year: 2016
  end-page: 196
  ident: b74
  article-title: Semantic segmentation of earth observation data using multimodal and multi-scale deep networks
  publication-title: Asian Conference on Computer Vision
– reference: George Plastiras, Christos Kyrkou, Theocharis Theocharides, Efficient convnet-based object detection for unmanned aerial vehicles by selective tile processing, in: Proceedings of the 12th International Conference on Distributed Smart Cameras, 2018, pp. 1–6.
– year: 2009
  ident: b64
  article-title: Learning Deep Architectures for AI
– volume: 12
  start-page: 1760
  year: 2020
  ident: b23
  article-title: Multi-scale and occlusion aware network for vehicle detection and segmentation on UAV aerial images
  publication-title: Remote Sens.
– volume: 2674
  start-page: 553
  year: 2020
  end-page: 567
  ident: b31
  article-title: Investigating the influential factors for practical application of multi-class vehicle detection for images from unmanned aerial vehicle using deep learning models
  publication-title: Transp. Res. Rec.
– reference: Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848–6856.
– volume: 56
  start-page: 7074
  year: 2018
  end-page: 7085
  ident: b45
  article-title: Robust vehicle detection in aerial images using bag-of-words and orientation aware scanning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 1771
  year: 2002
  end-page: 1800
  ident: b69
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
– reference: Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, Stan Z. Li, Single-shot refinement neural network for object detection, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4203–4212.
– reference: Abhinav Shrivastava, Abhinav Gupta, Ross Girshick, Training region-based object detectors with online hard example mining, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769.
– reference: Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 609–616.
– volume: 7
  start-page: 85042
  year: 2019
  end-page: 85054
  ident: b21
  article-title: Effective contexts for UAV vehicle detection
  publication-title: IEEE Access
– year: 2021
  ident: b47
  article-title: A Survey of Deep Learning Techniques for Underwater Image Classification
– ident: 10.1016/j.sysarc.2021.102152_b20
  doi: 10.1109/BigMM.2018.8499466
– ident: 10.1016/j.sysarc.2021.102152_b70
– start-page: 91
  year: 2015
  ident: 10.1016/j.sysarc.2021.102152_b7
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
– ident: 10.1016/j.sysarc.2021.102152_b24
  doi: 10.1109/CVPR.2019.00296
– volume: 9
  start-page: 1170
  issue: 11
  year: 2017
  ident: 10.1016/j.sysarc.2021.102152_b19
  article-title: Arbitrary-oriented vehicle detection in aerial imagery with single convolutional neural networks
  publication-title: Remote Sens.
  doi: 10.3390/rs9111170
– volume: 14
  start-page: 1771
  issue: 8
  year: 2002
  ident: 10.1016/j.sysarc.2021.102152_b69
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
  doi: 10.1162/089976602760128018
– volume: 2017
  year: 2017
  ident: 10.1016/j.sysarc.2021.102152_b10
  article-title: Car detection from low-altitude UAV imagery with the faster R-CNN
  publication-title: J. Adv. Transp.
  doi: 10.1155/2017/2823617
– ident: 10.1016/j.sysarc.2021.102152_b59
  doi: 10.1109/CVPR.2016.89
– volume: 99
  year: 2019
  ident: 10.1016/j.sysarc.2021.102152_b81
  article-title: A survey of techniques for optimizing deep learning on GPUs
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2019.101635
– year: 2020
  ident: 10.1016/j.sysarc.2021.102152_b86
– volume: 48
  start-page: 62:1
  issue: 4
  year: 2016
  ident: 10.1016/j.sysarc.2021.102152_b92
  article-title: A survey of techniques for approximate computing
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2893356
– start-page: 3054
  year: 2018
  ident: 10.1016/j.sysarc.2021.102152_b17
  article-title: Search area reduction fast-RCNN for fast vehicle detection in large aerial imagery
– volume: 11
  start-page: 1797
  issue: 10
  year: 2014
  ident: 10.1016/j.sysarc.2021.102152_b44
  article-title: Vehicle detection in satellite images by hybrid deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2309695
– year: 2009
  ident: 10.1016/j.sysarc.2021.102152_b64
– volume: 23
  start-page: 1222
  issue: 11
  year: 2001
  ident: 10.1016/j.sysarc.2021.102152_b67
  article-title: Fast approximate energy minimization via graph cuts
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.969114
– volume: 9
  start-page: 312
  issue: 4
  year: 2017
  ident: 10.1016/j.sysarc.2021.102152_b12
  article-title: Deep learning approach for car detection in UAV imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs9040312
– ident: 10.1016/j.sysarc.2021.102152_b80
– volume: 104
  year: 2020
  ident: 10.1016/j.sysarc.2021.102152_b3
  article-title: A survey on modeling and improving reliability of DNN algorithms and accelerators
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2019.101689
– year: 2020
  ident: 10.1016/j.sysarc.2021.102152_b50
  article-title: Modeling data reuse in deep neural networks by taking data-types into cognizance
  publication-title: IEEE Trans. Comput.
– start-page: 702
  year: 2012
  ident: 10.1016/j.sysarc.2021.102152_b79
  article-title: Exploiting the circulant structure of tracking-by-detection with kernels
– year: 2018
  ident: 10.1016/j.sysarc.2021.102152_b4
– ident: 10.1016/j.sysarc.2021.102152_b51
– ident: 10.1016/j.sysarc.2021.102152_b60
  doi: 10.1109/CVPR.2018.00442
– volume: 7
  start-page: 30980
  year: 2019
  ident: 10.1016/j.sysarc.2021.102152_b39
  article-title: Object detection in aerial images using feature fusion deep networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903422
– volume: 97
  start-page: 349
  year: 2019
  ident: 10.1016/j.sysarc.2021.102152_b94
  article-title: A survey of spintronic architectures for processing-in-memory and neural networks
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2018.11.005
– volume: 56
  start-page: 3107
  issue: 6
  year: 2018
  ident: 10.1016/j.sysarc.2021.102152_b38
  article-title: Convolutional SVM networks for object detection in UAV imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2790926
– ident: 10.1016/j.sysarc.2021.102152_b36
– ident: 10.1016/j.sysarc.2021.102152_b84
  doi: 10.1109/CVPR.2018.00716
– volume: 115
  year: 2021
  ident: 10.1016/j.sysarc.2021.102152_b91
  article-title: A survey of accelerator architectures for 3D convolution neural networks
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2021.102041
– ident: 10.1016/j.sysarc.2021.102152_b42
  doi: 10.1109/SCM.2016.7519666
– volume: 56
  start-page: 7074
  issue: 12
  year: 2018
  ident: 10.1016/j.sysarc.2021.102152_b45
  article-title: Robust vehicle detection in aerial images using bag-of-words and orientation aware scanning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2848243
– start-page: 818
  year: 2014
  ident: 10.1016/j.sysarc.2021.102152_b78
  article-title: Visualizing and understanding convolutional networks
– start-page: 2735
  year: 2009
  ident: 10.1016/j.sysarc.2021.102152_b66
  article-title: Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning
– volume: 26
  start-page: 1124
  issue: 9
  year: 2004
  ident: 10.1016/j.sysarc.2021.102152_b68
  article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.60
– year: 2016
  ident: 10.1016/j.sysarc.2021.102152_b85
– volume: 7
  start-page: 85042
  year: 2019
  ident: 10.1016/j.sysarc.2021.102152_b21
  article-title: Effective contexts for UAV vehicle detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923407
– volume: 6
  start-page: 2220
  year: 2017
  ident: 10.1016/j.sysarc.2021.102152_b14
  article-title: Vehicle detection and counting in high-resolution aerial images using convolutional regression neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2782260
– volume: 57
  start-page: 5028
  issue: 7
  year: 2019
  ident: 10.1016/j.sysarc.2021.102152_b18
  article-title: R 3-net: A deep network for multioriented vehicle detection in aerial images and videos
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2895362
– year: 2020
  ident: 10.1016/j.sysarc.2021.102152_b49
  article-title: A survey on hardware accelerators and optimization techniques for RNNs
  publication-title: J. Syst. Archit.
– ident: 10.1016/j.sysarc.2021.102152_b61
– year: 2021
  ident: 10.1016/j.sysarc.2021.102152_b47
– volume: 32
  start-page: 1109
  issue: 4
  year: 2020
  ident: 10.1016/j.sysarc.2021.102152_b93
  article-title: A survey of FPGA-based accelerators for convolutional neural networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3761-1
– year: 2021
  ident: 10.1016/j.sysarc.2021.102152_b53
  article-title: CURATING: A multi-objective based pruning technique for CNNs
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2021.102031
– ident: 10.1016/j.sysarc.2021.102152_b58
– start-page: 311
  year: 2017
  ident: 10.1016/j.sysarc.2021.102152_b28
  article-title: Fast deep vehicle detection in aerial images
– start-page: 967
  year: 2018
  ident: 10.1016/j.sysarc.2021.102152_b35
  article-title: Dronet: Efficient convolutional neural network detector for real-time UAV applications
– volume: 1
  start-page: 886
  year: 2005
  ident: 10.1016/j.sysarc.2021.102152_b54
  article-title: Histograms of oriented gradients for human detection
– volume: 10
  year: 2021
  ident: 10.1016/j.sysarc.2021.102152_b22
  article-title: Vehicle detection from aerial images using deep learning: A comparative study
  publication-title: Electronics
  doi: 10.3390/electronics10070820
– year: 2017
  ident: 10.1016/j.sysarc.2021.102152_b32
– ident: 10.1016/j.sysarc.2021.102152_b75
– start-page: 3079
  year: 2018
  ident: 10.1016/j.sysarc.2021.102152_b2
  article-title: Deep learning for vehicle detection in aerial images
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.sysarc.2021.102152_b65
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 10.1016/j.sysarc.2021.102152_b8
  doi: 10.1109/ICCV.2017.446
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.sysarc.2021.102152_b73
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 17
  start-page: 790
  issue: 8
  year: 1995
  ident: 10.1016/j.sysarc.2021.102152_b71
  article-title: Mean shift, mode seeking, and clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.400568
– start-page: 180
  year: 2016
  ident: 10.1016/j.sysarc.2021.102152_b74
  article-title: Semantic segmentation of earth observation data using multimodal and multi-scale deep networks
– ident: 10.1016/j.sysarc.2021.102152_b34
  doi: 10.1145/3243394.3243692
– year: 1978
  ident: 10.1016/j.sysarc.2021.102152_b77
– volume: 7
  start-page: 78
  issue: 6
  year: 2018
  ident: 10.1016/j.sysarc.2021.102152_b37
  article-title: Real-time ground vehicle detection in aerial infrared imagery based on convolutional neural network
  publication-title: Electronics
  doi: 10.3390/electronics7060078
– ident: 10.1016/j.sysarc.2021.102152_b89
– volume: 56
  start-page: 6699
  issue: 11
  year: 2018
  ident: 10.1016/j.sysarc.2021.102152_b40
  article-title: Vehicle instance segmentation from aerial image and video using a multitask learning residual fully convolutional network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2841808
– ident: 10.1016/j.sysarc.2021.102152_b48
  doi: 10.1145/3411170.3411275
– ident: 10.1016/j.sysarc.2021.102152_b62
– volume: 12
  start-page: 1760
  issue: 11
  year: 2020
  ident: 10.1016/j.sysarc.2021.102152_b23
  article-title: Multi-scale and occlusion aware network for vehicle detection and segmentation on UAV aerial images
  publication-title: Remote Sens.
  doi: 10.3390/rs12111760
– volume: 10
  start-page: 3652
  issue: 8
  year: 2017
  ident: 10.1016/j.sysarc.2021.102152_b27
  article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2694890
– ident: 10.1016/j.sysarc.2021.102152_b57
– ident: 10.1016/j.sysarc.2021.102152_b6
  doi: 10.1109/ICCV.2015.169
– volume: 17
  start-page: 336
  issue: 2
  year: 2017
  ident: 10.1016/j.sysarc.2021.102152_b29
  article-title: Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining
  publication-title: Sensors
  doi: 10.3390/s17020336
– ident: 10.1016/j.sysarc.2021.102152_b76
– volume: 10
  start-page: 124
  issue: 1
  year: 2018
  ident: 10.1016/j.sysarc.2021.102152_b41
  article-title: A CNN-based method of vehicle detection from aerial images using hard example mining
  publication-title: Remote Sens.
  doi: 10.3390/rs10010124
– ident: 10.1016/j.sysarc.2021.102152_b13
  doi: 10.1109/WACV.2018.00075
– ident: 10.1016/j.sysarc.2021.102152_b30
– year: 2017
  ident: 10.1016/j.sysarc.2021.102152_b83
– volume: 2674
  start-page: 553
  issue: 12
  year: 2020
  ident: 10.1016/j.sysarc.2021.102152_b31
  article-title: Investigating the influential factors for practical application of multi-class vehicle detection for images from unmanned aerial vehicle using deep learning models
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198120954187
– volume: 17
  start-page: 2720
  issue: 12
  year: 2017
  ident: 10.1016/j.sysarc.2021.102152_b11
  article-title: Robust vehicle detection in aerial images based on cascaded convolutional neural networks
  publication-title: Sensors
  doi: 10.3390/s17122720
– ident: 10.1016/j.sysarc.2021.102152_b26
  doi: 10.1109/CVPRW.2019.00080
– start-page: 1
  year: 2017
  ident: 10.1016/j.sysarc.2021.102152_b9
  article-title: Semantic labeling for improved vehicle detection in aerial imagery
– ident: 10.1016/j.sysarc.2021.102152_b15
  doi: 10.1145/3394171.3413816
– volume: 6
  start-page: 391
  issue: 4
  year: 2005
  ident: 10.1016/j.sysarc.2021.102152_b56
  article-title: Airborne video registration and traffic-flow parameter estimation
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2005.858621
– volume: 9
  start-page: 368
  issue: 4
  year: 2017
  ident: 10.1016/j.sysarc.2021.102152_b16
  article-title: Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images
  publication-title: Remote Sens.
  doi: 10.3390/rs9040368
– ident: 10.1016/j.sysarc.2021.102152_b5
  doi: 10.1109/CVPR.2014.81
– volume: 97
  start-page: 428
  year: 2019
  ident: 10.1016/j.sysarc.2021.102152_b82
  article-title: A survey on optimized implementation of deep learning models on the NVIDIA jetson platform
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2019.01.011
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  ident: 10.1016/j.sysarc.2021.102152_b63
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– ident: 10.1016/j.sysarc.2021.102152_b88
  doi: 10.1109/ICCV.2017.89
– ident: 10.1016/j.sysarc.2021.102152_b25
– ident: 10.1016/j.sysarc.2021.102152_b46
  doi: 10.1007/978-3-030-58309-5_5
– volume: 16
  start-page: 1761
  issue: 11
  year: 2019
  ident: 10.1016/j.sysarc.2021.102152_b1
  article-title: Improved faster R-CNN with multiscale feature fusion and homography augmentation for vehicle detection in remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2909541
– ident: 10.1016/j.sysarc.2021.102152_b43
  doi: 10.1109/CVPR.2016.91
– ident: 10.1016/j.sysarc.2021.102152_b52
– volume: 24
  start-page: 603
  issue: 5
  year: 2002
  ident: 10.1016/j.sysarc.2021.102152_b72
  article-title: Mean shift: A robust approach toward feature space analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.1000236
– ident: 10.1016/j.sysarc.2021.102152_b90
– volume: 20
  start-page: 1709
  issue: 6
  year: 2010
  ident: 10.1016/j.sysarc.2021.102152_b55
  article-title: ViBe: A universal background subtraction algorithm for video sequences
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2101613
– start-page: 1
  year: 2017
  ident: 10.1016/j.sysarc.2021.102152_b33
  article-title: Fast vehicle detection in UAV images
– ident: 10.1016/j.sysarc.2021.102152_b87
  doi: 10.1609/aaai.v31i1.11231
SSID ssj0005512
Score 2.559627
SecondaryResourceType review_article
Snippet “Unmanned aerial vehicles” (UAVs) are now being used for a wide range of surveillance applications. Specifically, the detection of on-ground vehicles from UAV...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102152
SubjectTerms Deep learning
Drone
Object detection
Review
Vehicle detection
“Unmanned aerial vehicle” (UAV)
Title A survey of deep learning techniques for vehicle detection from UAV images
URI https://dx.doi.org/10.1016/j.sysarc.2021.102152
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYPXuDVtkvZYhmNO2EUnu5UmTXSi3Vi3wS7-7b60qUwQBY8t74Xy-OV90N97D6FrP9SUpQbAC-glgTaSRFpykqoQgpWiipuS5Tvig3EwnLBJA_XqXhhLq3S-v_Lppbd2bzrOmp35dNp58GxxxamdgGWDmO0oDwJhUX7zsUXzYNUfTxAmVrpunys5XsWmADhBlUg9O8PAY_Tn8LQVcvoHaM_lijiuPucQNXR-hPbrPQzYXctjNIxxsVqs9QbPDM60nmO3C-IZf41oLTBkp3itX-xRILQsKVg5tu0leBw_4ek7eJbiBI37t4-9AXE7EoiCZH9JKBQkglGlpJaM-9JAedINlILMSvg0jTK4f76QXQOJk_FYqLxMeTQNudFh5mvhn6JmPsv1GcKZzFKtuJdBSRYoKiJhaDdlNOCS8kjoFvJr0yTKDRC3eyzekpop9ppUBk2sQZPKoC1EvrTm1QCNP-RFbfXkGxAS8PG_ap7_W_MC7dqnitd3iZrLxUpfQa6xlO0STG20E9_dD0af2YnS6g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHODCGzGeOXCttqZN0h2nialssAsMcauaNIEh2Ka1IO3f46zpAAmBxLW1o8py7M_qZxvgIog0ZalB50Xv9UJtpNfSknupijBZKaq4WbB8Bzwehr0H9rACnaoXxtIqXewvY_oiWrsnDWfNxnQ0atz6trji1E7AsklMrMKanU7FarDWvurHg0-mByt_eqK8ZxWqDroFzSuf5-hRWChS344x8Bn9OUN9yTrdbdh0cJG0yy_agRU93oWtahUDcTdzD3ptkr_N3vWcTAzJtJ4Stw7ikSyntOYEASp510_2KBQqFiysMbEdJmTYviejVwwu-T4Mu5d3ndhzaxI8hXi_8CjWJIJRpaSWjAfSYIXSDJVCcCUCmrYyvIKBkE2D2Mn4LFJ-pnyaRtzoKAu0CA6gNp6M9SGQTGapVtzPsCoLFRUtYWgzZTTkkvKW0HUIKtMkys0Qt6ssXpKKLPaclAZNrEGT0qB18JZa03KGxh_yorJ68s0XEgzzv2oe_VvzHNbju5vr5Ppq0D-GDfumpPmdQK2YvelThB6FPHOu9QElbdWb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+deep+learning+techniques+for+vehicle+detection+from+UAV+images&rft.jtitle=Journal+of+systems+architecture&rft.au=Srivastava%2C+Srishti&rft.au=Narayan%2C+Sarthak&rft.au=Mittal%2C+Sparsh&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=1383-7621&rft.eissn=1873-6165&rft.volume=117&rft_id=info:doi/10.1016%2Fj.sysarc.2021.102152&rft.externalDocID=S1383762121001107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-7621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-7621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-7621&client=summon