A survey of deep learning techniques for vehicle detection from UAV images
“Unmanned aerial vehicles” (UAVs) are now being used for a wide range of surveillance applications. Specifically, the detection of on-ground vehicles from UAV images has attracted significant attention due to its potential in applications such as traffic management, parking lot management, and facil...
Saved in:
Published in | Journal of systems architecture Vol. 117; p. 102152 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | “Unmanned aerial vehicles” (UAVs) are now being used for a wide range of surveillance applications. Specifically, the detection of on-ground vehicles from UAV images has attracted significant attention due to its potential in applications such as traffic management, parking lot management, and facilitating rescue operations in disaster zones and rugged terrains. This paper presents a survey of deep learning techniques for performing on-ground vehicle detection from aerial imagery captured using UAVs (also known as drones). We review the works in terms of their approach to improve accuracy and reduce computation overhead and their optimization objective. We show the similarities and differences of various techniques and also highlight the future challenges in this area. This survey will benefit researchers in the area of artificial intelligence, traffic surveillance, and applications of UAVs. |
---|---|
AbstractList | “Unmanned aerial vehicles” (UAVs) are now being used for a wide range of surveillance applications. Specifically, the detection of on-ground vehicles from UAV images has attracted significant attention due to its potential in applications such as traffic management, parking lot management, and facilitating rescue operations in disaster zones and rugged terrains. This paper presents a survey of deep learning techniques for performing on-ground vehicle detection from aerial imagery captured using UAVs (also known as drones). We review the works in terms of their approach to improve accuracy and reduce computation overhead and their optimization objective. We show the similarities and differences of various techniques and also highlight the future challenges in this area. This survey will benefit researchers in the area of artificial intelligence, traffic surveillance, and applications of UAVs. |
ArticleNumber | 102152 |
Author | Srivastava, Srishti Mittal, Sparsh Narayan, Sarthak |
Author_xml | – sequence: 1 givenname: Srishti orcidid: 0000-0003-3634-7279 surname: Srivastava fullname: Srivastava, Srishti email: srishtisrivastava.ai@gmail.com organization: CSE Department, IIT Dharwad, India – sequence: 2 givenname: Sarthak surname: Narayan fullname: Narayan, Sarthak email: sarthak.narayan.nitt@gmail.com organization: ECE Department, NIT Trichy, India – sequence: 3 givenname: Sparsh orcidid: 0000-0002-2908-993X surname: Mittal fullname: Mittal, Sparsh email: sparshfec@iitr.ac.in organization: ECE Department, IIT Roorkee, India |
BookMark | eNqFkE1PAjEQhhuDiYD-Aw_9A4v9oO3iwYQQP0PiRbw23e4USpYutgsJ_96S9eRBTzOZmffNO88IDUIbAKFbSiaUUHm3naRTMtFOGGE0jxgV7AINaal4IakUg9zzkhdKMnqFRiltCSFCUDZEb3OcDvEIJ9w6XAPscQMmBh_WuAO7Cf7rAAm7NuIjbLxtIB_lRefbgF1sd3g1_8R-Z9aQrtGlM02Cm586Rqunx4_FS7F8f35dzJeF5UR2BZNMKsGsraASkldOEkGm1pKSK87MrFYzzlVFHGdTR0VpaW0pM6V0UNYcFB-j-97XxjalCE5b35lzoi4a32hK9JmK3uqeij5T0T2VLJ7-Eu9jjh9P_8keehnkx44eok7WQ7BQ-5hp6Lr1fxt8A1b7gAk |
CitedBy_id | crossref_primary_10_1007_s11042_022_12447_5 crossref_primary_10_1016_j_jafr_2024_101350 crossref_primary_10_1109_COMST_2023_3312221 crossref_primary_10_3390_rs16050879 crossref_primary_10_3390_drones7060339 crossref_primary_10_3390_drones7020117 crossref_primary_10_3390_s23218723 crossref_primary_10_1049_tje2_70033 crossref_primary_10_12720_jait_14_6_1221_1229 crossref_primary_10_1016_j_autcon_2024_105418 crossref_primary_10_1155_2022_1828848 crossref_primary_10_1016_j_procs_2024_04_132 crossref_primary_10_1007_s13177_025_00479_8 crossref_primary_10_1038_s41598_024_55570_z crossref_primary_10_1080_03772063_2021_1962418 crossref_primary_10_1109_MGRS_2021_3115137 crossref_primary_10_3390_rs14153689 crossref_primary_10_1007_s12145_022_00871_y crossref_primary_10_1109_JIOT_2024_3435130 crossref_primary_10_11834_jig_220836 crossref_primary_10_1007_s12530_023_09533_w crossref_primary_10_1016_j_sysarc_2022_102775 crossref_primary_10_1109_ACCESS_2023_3273780 crossref_primary_10_3390_s23115086 crossref_primary_10_1016_j_engappai_2023_107667 crossref_primary_10_1016_j_sysarc_2022_102584 crossref_primary_10_1007_s40747_024_01429_9 crossref_primary_10_1016_j_sysarc_2021_102163 crossref_primary_10_1515_geo_2022_0645 crossref_primary_10_3390_s22145278 crossref_primary_10_1117_1_JEI_32_1_013014 crossref_primary_10_3390_drones8100573 crossref_primary_10_12677_SEA_2023_125068 crossref_primary_10_3390_s24113286 crossref_primary_10_1007_s42979_023_02592_5 crossref_primary_10_3390_drones7040227 crossref_primary_10_1016_j_phycom_2024_102460 crossref_primary_10_3390_s23125634 crossref_primary_10_1007_s11760_024_03332_9 crossref_primary_10_3390_app13063995 crossref_primary_10_1007_s00521_024_10440_7 crossref_primary_10_3390_su151914564 crossref_primary_10_1109_JSEN_2021_3139124 crossref_primary_10_1016_j_engappai_2023_107513 crossref_primary_10_1111_tgis_13208 crossref_primary_10_1016_j_eswa_2023_120845 crossref_primary_10_1145_3571728 crossref_primary_10_1007_s12559_024_10290_4 crossref_primary_10_1145_3697830 crossref_primary_10_1177_30504554251319452 crossref_primary_10_1145_3664598 crossref_primary_10_1109_TGRS_2025_3532612 crossref_primary_10_3390_drones6060147 crossref_primary_10_1080_08839514_2021_2018184 crossref_primary_10_1109_ACCESS_2023_3326101 crossref_primary_10_14358_PERS_22_00101R2 crossref_primary_10_3390_rs15153778 crossref_primary_10_1007_s11370_022_00452_4 crossref_primary_10_1016_j_measurement_2024_116579 crossref_primary_10_3390_e26100882 crossref_primary_10_3390_rs13214196 crossref_primary_10_1109_ACCESS_2023_3296309 crossref_primary_10_32604_cmc_2023_033422 crossref_primary_10_1016_j_eswa_2022_119243 crossref_primary_10_1016_j_sysarc_2022_102675 crossref_primary_10_2478_logi_2022_0015 crossref_primary_10_1016_j_sysarc_2023_102851 crossref_primary_10_1007_s10668_024_04790_4 crossref_primary_10_2139_ssrn_4158164 crossref_primary_10_1007_s10846_023_01889_0 crossref_primary_10_3390_drones6120406 crossref_primary_10_1016_j_eij_2024_100523 crossref_primary_10_3390_app13179881 crossref_primary_10_3390_electronics12010146 crossref_primary_10_1109_TGRS_2024_3391621 crossref_primary_10_3390_rs14030620 crossref_primary_10_1007_s44163_024_00209_1 crossref_primary_10_3233_HIS_210003 |
Cites_doi | 10.1109/BigMM.2018.8499466 10.1109/CVPR.2019.00296 10.3390/rs9111170 10.1162/089976602760128018 10.1155/2017/2823617 10.1109/CVPR.2016.89 10.1016/j.sysarc.2019.101635 10.1145/2893356 10.1109/LGRS.2014.2309695 10.1109/34.969114 10.3390/rs9040312 10.1016/j.sysarc.2019.101689 10.1109/CVPR.2018.00442 10.1109/ACCESS.2019.2903422 10.1016/j.sysarc.2018.11.005 10.1109/TGRS.2018.2790926 10.1109/CVPR.2018.00716 10.1016/j.sysarc.2021.102041 10.1109/SCM.2016.7519666 10.1109/TGRS.2018.2848243 10.1109/TPAMI.2004.60 10.1109/ACCESS.2019.2923407 10.1109/ACCESS.2017.2782260 10.1109/TGRS.2019.2895362 10.1007/s00521-018-3761-1 10.1016/j.sysarc.2021.102031 10.3390/electronics10070820 10.1126/science.1127647 10.1109/ICCV.2017.446 10.1109/TPAMI.2016.2644615 10.1109/34.400568 10.1145/3243394.3243692 10.3390/electronics7060078 10.1109/TGRS.2018.2841808 10.1145/3411170.3411275 10.3390/rs12111760 10.1109/JSTARS.2017.2694890 10.1109/ICCV.2015.169 10.3390/s17020336 10.3390/rs10010124 10.1109/WACV.2018.00075 10.1177/0361198120954187 10.3390/s17122720 10.1109/CVPRW.2019.00080 10.1145/3394171.3413816 10.1109/TITS.2005.858621 10.3390/rs9040368 10.1109/CVPR.2014.81 10.1016/j.sysarc.2019.01.011 10.1109/TPAMI.2012.120 10.1109/ICCV.2017.89 10.1007/978-3-030-58309-5_5 10.1109/LGRS.2019.2909541 10.1109/CVPR.2016.91 10.1109/34.1000236 10.1109/TIP.2010.2101613 10.1609/aaai.v31i1.11231 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sysarc.2021.102152 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6165 |
ExternalDocumentID | 10_1016_j_sysarc_2021_102152 S1383762121001107 |
GrantInformation_xml | – fundername: Semiconductor Research Corporation (SRC), USA grantid: 2020-IR-2972 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 U5U UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-2626752ccbeb563bf60504cc083732a9d79337b0f324f158c1dc12a86fe8d3e73 |
IEDL.DBID | .~1 |
ISSN | 1383-7621 |
IngestDate | Tue Jul 01 00:29:17 EDT 2025 Thu Apr 24 23:02:12 EDT 2025 Fri Feb 23 02:43:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning “Unmanned aerial vehicle” (UAV) Review Drone Vehicle detection Object detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-2626752ccbeb563bf60504cc083732a9d79337b0f324f158c1dc12a86fe8d3e73 |
ORCID | 0000-0003-3634-7279 0000-0002-2908-993X |
ParticipantIDs | crossref_citationtrail_10_1016_j_sysarc_2021_102152 crossref_primary_10_1016_j_sysarc_2021_102152 elsevier_sciencedirect_doi_10_1016_j_sysarc_2021_102152 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of systems architecture |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mittal (b82) 2019; 97 Tobias Ringwald, Lars Sommer, Arne Schumann, Jurgen Beyerer, Rainer Stiefelhagen, UAV-Net: A fast aerial vehicle detector for mobile platforms, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019. Jha, Mittal (b50) 2020 Gschwend (b86) 2020 Nandan Kumar Jha, et al. E2GC: Energy-efficient group convolution in deep neural networks, in: IEEE International Conference on VLSI Design, 2020, pp. 155–160. Tang, Zhou, Deng, Lei, Zou (b19) 2017; 9 Pattanayak (b53) 2021 Ham, Park, Kim, Kho, Kim (b31) 2020; 2674 Yang, Xie, Yang (b21) 2019; 7 Abhinav Shrivastava, Abhinav Gupta, Ross Girshick, Training region-based object detectors with online hard example mining, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769. Sommer, Nie, Schumann, Schuchert, Beyerer (b9) 2017 Mittal, Vaishay (b81) 2019; 99 Mittal (b3) 2020; 104 Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, Yichen Wei, Deformable convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 764–773. Cheng (b71) 1995; 17 Ammar, Koubaa, Ahmed, Saad, Benjdira (b22) 2021; 10 Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848–6856. Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (b63) 2012; 34 Qingtian Wu, Yimin Zhou, Real-time object detection based on unmanned aerial vehicle, in: IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), 2019, pp. 574–579. Mittal, Vibhu (b91) 2021; 115 Koga, Miyazaki, Shibasaki (b41) 2018; 10 Audebert, Le Saux, Lefèvre (b74) 2016 Ren, He, Girshick, Sun (b7) 2015 Barnich, Van Droogenbroeck (b55) 2010; 20 Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alexander Alemi, Inception-v4, Inception-ResNet and the impact of residual connections on learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, 2017. Bazi, Melgani (b38) 2018; 56 Audebert, Le Saux, Lefèvre (b16) 2017; 9 Zeiler, Fergus (b78) 2014 Ji, Gao, Mei, Li (b1) 2019; 16 Jian Ding, Nan Xue, Yang Long, Gui-Song Xia, Qikai Lu, Learning RoI transformer for oriented object detection in aerial images, in: IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 2849–2858. Tang, Zhou, Deng, Zou, Lei (b29) 2017; 17 Xu, Yu, Wang, Wu, Ma (b10) 2017; 2017 . Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587. Gandhi (b4) 2018 Nandan Kumar Jha, et al. The ramifications of making deep neural networks compact, in: IEEE International Conference on VLSI Design, 2019, pp. 215–220. Deng, Sun, Zhou, Zhao, Zou (b27) 2017; 10 Yang, Liao, Li, Rosenhahn (b2) 2018 Poonam Rajput, Sparsh Mittal, Sarthak Narayan, Improving accuracy and efficiency of object detection algorithms using multiscale feature aggregation plugins, in: IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), 2020, pp. 65–76. Zhong, Lei, Yao (b11) 2017; 17 Hinton (b69) 2002; 14 Rajat Kumar Saini, et al. ULSAM: Ultra-lightweight subspace attention module for compact convolutional neural networks, in: IEEE Winter Conference on Applications of Computer Vision (WACV), 2020, pp. 1616–1625. Zhang, Liu, Chang, Song (b23) 2020; 12 Liu, Yang, Li (b37) 2018; 7 Mou, Zhu (b40) 2018; 56 Bengio (b64) 2009 Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, Stan Z. Li, Single-shot refinement neural network for object detection, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4203–4212. Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 609–616. Tayara, Soo, Chong (b14) 2017; 6 Norouzi, Ranjbar, Mori (b66) 2009 Sergey Ioffe, Christian Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning, 2015, pp. 448–456. Li, Mou, Xu, Zhang, Zhu (b18) 2019; 57 Zhou, Wei, Lim, Nahavandi (b45) 2018; 56 Georgy V. Konoplich, Evgeniy O. Putin, Andrey A. Filchenkov, Application of deep learning to the problem of vehicle detection in UAV images, in: IEEE International Conference on Soft Computing and Measurements (SCM), 2016, pp. 4–6. Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (b83) 2017 Ammour, Alhichri, Bazi, Benjdira, Alajlan, Zuair (b12) 2017; 9 X. Xie, W. Yang, G. Cao, J. Yang, Z. Zhao, S. Chen, Q. Liao, G. Shi, Real-time vehicle detection from UAV imagery, in: 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM), 2018, pp. 1–5. Meng-Ru Hsieh, Yen-Liang Lin, Winston H. Hsu, Drone-based object counting by spatially regularized regional proposal network, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4145–4153. Mittal (b92) 2016; 48 Long, Chung, Liu, Bu (b39) 2019; 7 Shamos (b77) 1978 Srivastava, Mittal (b47) 2021 Henriques, Caseiro, Martins, Batista (b79) 2012 George Plastiras, Christos Kyrkou, Theocharis Theocharides, Efficient convnet-based object detection for unmanned aerial vehicles by selective tile processing, in: Proceedings of the 12th International Conference on Distributed Smart Cameras, 2018, pp. 1–6. Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick, Mask R-CNN, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2961–2969. Boykov, Kolmogorov (b68) 2004; 26 Mittal (b93) 2020; 32 Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (b85) 2016 Sommer, Schuchert, Beyerer (b28) 2017 Seyed Majid Azimi, ShuffleDet: real-time vehicle detection network in on-board embedded UAV imagery, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018. Poonam Rajput, Subhrajit Nag, Sparsh Mittal, Detecting usage of mobile phones using deep learning technique, in: 6th EAI International Conference on Smart Objects and Technologies for Social Good (GOODTECHS), 2020. Ross Girshick, Fast r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1440–1448. Comaniciu, Meer (b72) 2002; 24 Lars Sommer, Arne Schumann, Tobias Schuchert, Jurgen Beyerer, Multi feature deconvolutional faster r-cnn for precise vehicle detection in aerial imagery, in: IEEE Winter Conference on Applications of Computer Vision (WACV), 2018, pp. 635–642. Cai YuanQiang, Dawei Du, Libo Zhang, Longyin Wen, Weiqiang Wang, Yanjun Wu, Siwei Lyu, Guided attention network for object detection and counting on drones, in: Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 709–717. Zhenyu Wu, Karthik Suresh, Priya Narayanan, Hongyu Xu, Heesung Kwon, Zhangyang Wang, Delving into robust object detection from unmanned aerial vehicles: A deep nuisance disentanglement approach, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 1201–1210. Boykov, Veksler, Zabih (b67) 2001; 23 Hinton, Salakhutdinov (b65) 2006; 313 Sommer, Schmidt, Schumann, Beyerer (b17) 2018 Chen, Xiang, Liu, Pan (b44) 2014; 11 Tang, Deng, Zhou, Lei, Zou (b33) 2017 Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788. Dalal, Triggs (b54) 2005; 1 Shastry, Schowengerdt (b56) 2005; 6 Mittal, Umesh (b49) 2020 Paul Viola, Michael Jones, Rapid object detection using a boosted cascade of simple features, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2001. Kyrkou, Plastiras, Theocharides, Venieris, Bouganis (b35) 2018 Umesh, Mittal (b94) 2019; 97 Carlet, Abayowa (b32) 2017 Badrinarayanan, Kendall, Cipolla (b73) 2017; 39 Hinton (10.1016/j.sysarc.2021.102152_b65) 2006; 313 Yang (10.1016/j.sysarc.2021.102152_b2) 2018 Mittal (10.1016/j.sysarc.2021.102152_b49) 2020 Srivastava (10.1016/j.sysarc.2021.102152_b47) 2021 10.1016/j.sysarc.2021.102152_b90 Ji (10.1016/j.sysarc.2021.102152_b1) 2019; 16 Tang (10.1016/j.sysarc.2021.102152_b19) 2017; 9 Audebert (10.1016/j.sysarc.2021.102152_b74) 2016 Jha (10.1016/j.sysarc.2021.102152_b50) 2020 Li (10.1016/j.sysarc.2021.102152_b18) 2019; 57 10.1016/j.sysarc.2021.102152_b48 10.1016/j.sysarc.2021.102152_b46 Carlet (10.1016/j.sysarc.2021.102152_b32) 2017 Umesh (10.1016/j.sysarc.2021.102152_b94) 2019; 97 10.1016/j.sysarc.2021.102152_b84 Zhou (10.1016/j.sysarc.2021.102152_b45) 2018; 56 Ren (10.1016/j.sysarc.2021.102152_b7) 2015 Long (10.1016/j.sysarc.2021.102152_b39) 2019; 7 Koga (10.1016/j.sysarc.2021.102152_b41) 2018; 10 10.1016/j.sysarc.2021.102152_b88 10.1016/j.sysarc.2021.102152_b89 10.1016/j.sysarc.2021.102152_b42 10.1016/j.sysarc.2021.102152_b43 Howard (10.1016/j.sysarc.2021.102152_b83) 2017 10.1016/j.sysarc.2021.102152_b87 Achanta (10.1016/j.sysarc.2021.102152_b63) 2012; 34 Kyrkou (10.1016/j.sysarc.2021.102152_b35) 2018 Mittal (10.1016/j.sysarc.2021.102152_b3) 2020; 104 Shastry (10.1016/j.sysarc.2021.102152_b56) 2005; 6 Mittal (10.1016/j.sysarc.2021.102152_b92) 2016; 48 Hinton (10.1016/j.sysarc.2021.102152_b69) 2002; 14 10.1016/j.sysarc.2021.102152_b15 10.1016/j.sysarc.2021.102152_b59 10.1016/j.sysarc.2021.102152_b13 10.1016/j.sysarc.2021.102152_b57 10.1016/j.sysarc.2021.102152_b58 Audebert (10.1016/j.sysarc.2021.102152_b16) 2017; 9 Yang (10.1016/j.sysarc.2021.102152_b21) 2019; 7 Mittal (10.1016/j.sysarc.2021.102152_b91) 2021; 115 Zeiler (10.1016/j.sysarc.2021.102152_b78) 2014 Deng (10.1016/j.sysarc.2021.102152_b27) 2017; 10 10.1016/j.sysarc.2021.102152_b51 Boykov (10.1016/j.sysarc.2021.102152_b68) 2004; 26 Mou (10.1016/j.sysarc.2021.102152_b40) 2018; 56 10.1016/j.sysarc.2021.102152_b52 Zhang (10.1016/j.sysarc.2021.102152_b23) 2020; 12 Zhong (10.1016/j.sysarc.2021.102152_b11) 2017; 17 Bengio (10.1016/j.sysarc.2021.102152_b64) 2009 Boykov (10.1016/j.sysarc.2021.102152_b67) 2001; 23 Mittal (10.1016/j.sysarc.2021.102152_b93) 2020; 32 Chen (10.1016/j.sysarc.2021.102152_b44) 2014; 11 Mittal (10.1016/j.sysarc.2021.102152_b81) 2019; 99 Tang (10.1016/j.sysarc.2021.102152_b29) 2017; 17 10.1016/j.sysarc.2021.102152_b70 Gandhi (10.1016/j.sysarc.2021.102152_b4) 2018 Barnich (10.1016/j.sysarc.2021.102152_b55) 2010; 20 Pattanayak (10.1016/j.sysarc.2021.102152_b53) 2021 Ammour (10.1016/j.sysarc.2021.102152_b12) 2017; 9 Norouzi (10.1016/j.sysarc.2021.102152_b66) 2009 10.1016/j.sysarc.2021.102152_b26 10.1016/j.sysarc.2021.102152_b24 10.1016/j.sysarc.2021.102152_b25 Iandola (10.1016/j.sysarc.2021.102152_b85) 2016 Tang (10.1016/j.sysarc.2021.102152_b33) 2017 10.1016/j.sysarc.2021.102152_b62 10.1016/j.sysarc.2021.102152_b60 10.1016/j.sysarc.2021.102152_b61 10.1016/j.sysarc.2021.102152_b20 Sommer (10.1016/j.sysarc.2021.102152_b28) 2017 Bazi (10.1016/j.sysarc.2021.102152_b38) 2018; 56 Dalal (10.1016/j.sysarc.2021.102152_b54) 2005; 1 Badrinarayanan (10.1016/j.sysarc.2021.102152_b73) 2017; 39 10.1016/j.sysarc.2021.102152_b80 Henriques (10.1016/j.sysarc.2021.102152_b79) 2012 10.1016/j.sysarc.2021.102152_b6 10.1016/j.sysarc.2021.102152_b8 Comaniciu (10.1016/j.sysarc.2021.102152_b72) 2002; 24 Gschwend (10.1016/j.sysarc.2021.102152_b86) 2020 Shamos (10.1016/j.sysarc.2021.102152_b77) 1978 10.1016/j.sysarc.2021.102152_b36 Tayara (10.1016/j.sysarc.2021.102152_b14) 2017; 6 Ham (10.1016/j.sysarc.2021.102152_b31) 2020; 2674 10.1016/j.sysarc.2021.102152_b5 Ammar (10.1016/j.sysarc.2021.102152_b22) 2021; 10 Sommer (10.1016/j.sysarc.2021.102152_b9) 2017 Mittal (10.1016/j.sysarc.2021.102152_b82) 2019; 97 Xu (10.1016/j.sysarc.2021.102152_b10) 2017; 2017 Liu (10.1016/j.sysarc.2021.102152_b37) 2018; 7 Sommer (10.1016/j.sysarc.2021.102152_b17) 2018 10.1016/j.sysarc.2021.102152_b30 10.1016/j.sysarc.2021.102152_b34 Cheng (10.1016/j.sysarc.2021.102152_b71) 1995; 17 10.1016/j.sysarc.2021.102152_b75 10.1016/j.sysarc.2021.102152_b76 |
References_xml | – reference: Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788. – volume: 11 start-page: 1797 year: 2014 end-page: 1801 ident: b44 article-title: Vehicle detection in satellite images by hybrid deep convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 10 start-page: 3652 year: 2017 end-page: 3664 ident: b27 article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 56 start-page: 3107 year: 2018 end-page: 3118 ident: b38 article-title: Convolutional SVM networks for object detection in UAV imagery publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Nandan Kumar Jha, et al. The ramifications of making deep neural networks compact, in: IEEE International Conference on VLSI Design, 2019, pp. 215–220. – volume: 57 start-page: 5028 year: 2019 end-page: 5042 ident: b18 article-title: R 3-net: A deep network for multioriented vehicle detection in aerial images and videos publication-title: IEEE Trans. Geosci. Remote Sens. – reference: X. Xie, W. Yang, G. Cao, J. Yang, Z. Zhao, S. Chen, Q. Liao, G. Shi, Real-time vehicle detection from UAV imagery, in: 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM), 2018, pp. 1–5. – start-page: 702 year: 2012 end-page: 715 ident: b79 article-title: Exploiting the circulant structure of tracking-by-detection with kernels publication-title: European Conference on Computer Vision – volume: 17 start-page: 336 year: 2017 ident: b29 article-title: Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining publication-title: Sensors – volume: 7 start-page: 30980 year: 2019 end-page: 30990 ident: b39 article-title: Object detection in aerial images using feature fusion deep networks publication-title: IEEE Access – year: 2020 ident: b49 article-title: A survey on hardware accelerators and optimization techniques for RNNs publication-title: J. Syst. Archit. – reference: Ross Girshick, Fast r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1440–1448. – reference: Paul Viola, Michael Jones, Rapid object detection using a boosted cascade of simple features, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2001. – reference: Meng-Ru Hsieh, Yen-Liang Lin, Winston H. Hsu, Drone-based object counting by spatially regularized regional proposal network, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4145–4153. – volume: 2017 year: 2017 ident: b10 article-title: Car detection from low-altitude UAV imagery with the faster R-CNN publication-title: J. Adv. Transp. – volume: 17 start-page: 2720 year: 2017 ident: b11 article-title: Robust vehicle detection in aerial images based on cascaded convolutional neural networks publication-title: Sensors – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b65 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 10 start-page: 124 year: 2018 ident: b41 article-title: A CNN-based method of vehicle detection from aerial images using hard example mining publication-title: Remote Sens. – volume: 56 start-page: 6699 year: 2018 end-page: 6711 ident: b40 article-title: Vehicle instance segmentation from aerial image and video using a multitask learning residual fully convolutional network publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 3079 year: 2018 end-page: 3083 ident: b2 article-title: Deep learning for vehicle detection in aerial images publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP) – year: 2020 ident: b86 article-title: Zynqnet: An FPGA-accelerated embedded convolutional neural network – reference: Cai YuanQiang, Dawei Du, Libo Zhang, Longyin Wen, Weiqiang Wang, Yanjun Wu, Siwei Lyu, Guided attention network for object detection and counting on drones, in: Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 709–717. – year: 2016 ident: b85 article-title: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and – volume: 115 year: 2021 ident: b91 article-title: A survey of accelerator architectures for 3D convolution neural networks publication-title: J. Syst. Archit. – volume: 48 start-page: 62:1 year: 2016 end-page: 62:33 ident: b92 article-title: A survey of techniques for approximate computing publication-title: ACM Comput. Surv. – volume: 9 start-page: 368 year: 2017 ident: b16 article-title: Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images publication-title: Remote Sens. – reference: Poonam Rajput, Subhrajit Nag, Sparsh Mittal, Detecting usage of mobile phones using deep learning technique, in: 6th EAI International Conference on Smart Objects and Technologies for Social Good (GOODTECHS), 2020. – volume: 9 start-page: 1170 year: 2017 ident: b19 article-title: Arbitrary-oriented vehicle detection in aerial imagery with single convolutional neural networks publication-title: Remote Sens. – reference: Seyed Majid Azimi, ShuffleDet: real-time vehicle detection network in on-board embedded UAV imagery, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018. – volume: 1 start-page: 886 year: 2005 end-page: 893 ident: b54 article-title: Histograms of oriented gradients for human detection publication-title: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) – year: 1978 ident: b77 article-title: Computational Geometry – reference: Sergey Ioffe, Christian Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine Learning, 2015, pp. 448–456. – reference: Georgy V. Konoplich, Evgeniy O. Putin, Andrey A. Filchenkov, Application of deep learning to the problem of vehicle detection in UAV images, in: IEEE International Conference on Soft Computing and Measurements (SCM), 2016, pp. 4–6. – volume: 26 start-page: 1124 year: 2004 end-page: 1137 ident: b68 article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Lars Sommer, Arne Schumann, Tobias Schuchert, Jurgen Beyerer, Multi feature deconvolutional faster r-cnn for precise vehicle detection in aerial imagery, in: IEEE Winter Conference on Applications of Computer Vision (WACV), 2018, pp. 635–642. – start-page: 311 year: 2017 end-page: 319 ident: b28 article-title: Fast deep vehicle detection in aerial images publication-title: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) – reference: Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alexander Alemi, Inception-v4, Inception-ResNet and the impact of residual connections on learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, 2017. – volume: 6 start-page: 2220 year: 2017 end-page: 2230 ident: b14 article-title: Vehicle detection and counting in high-resolution aerial images using convolutional regression neural network publication-title: IEEE Access – year: 2021 ident: b53 article-title: CURATING: A multi-objective based pruning technique for CNNs publication-title: J. Syst. Archit. – reference: Qingtian Wu, Yimin Zhou, Real-time object detection based on unmanned aerial vehicle, in: IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), 2019, pp. 574–579. – volume: 99 year: 2019 ident: b81 article-title: A survey of techniques for optimizing deep learning on GPUs publication-title: J. Syst. Archit. – year: 2020 ident: b50 article-title: Modeling data reuse in deep neural networks by taking data-types into cognizance publication-title: IEEE Trans. Comput. – volume: 32 start-page: 1109 year: 2020 end-page: 1139 ident: b93 article-title: A survey of FPGA-based accelerators for convolutional neural networks publication-title: Neural Comput. Appl. – volume: 7 start-page: 78 year: 2018 ident: b37 article-title: Real-time ground vehicle detection in aerial infrared imagery based on convolutional neural network publication-title: Electronics – volume: 20 start-page: 1709 year: 2010 end-page: 1724 ident: b55 article-title: ViBe: A universal background subtraction algorithm for video sequences publication-title: IEEE Trans. Image Process. – volume: 17 start-page: 790 year: 1995 end-page: 799 ident: b71 article-title: Mean shift, mode seeking, and clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 23 start-page: 1222 year: 2001 end-page: 1239 ident: b67 article-title: Fast approximate energy minimization via graph cuts publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b73 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick, Mask R-CNN, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2961–2969. – volume: 97 start-page: 349 year: 2019 end-page: 372 ident: b94 article-title: A survey of spintronic architectures for processing-in-memory and neural networks publication-title: J. Syst. Archit. – start-page: 1 year: 2017 end-page: 5 ident: b33 article-title: Fast vehicle detection in UAV images publication-title: 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP) – reference: Rajat Kumar Saini, et al. ULSAM: Ultra-lightweight subspace attention module for compact convolutional neural networks, in: IEEE Winter Conference on Applications of Computer Vision (WACV), 2020, pp. 1616–1625. – volume: 34 start-page: 2274 year: 2012 end-page: 2282 ident: b63 article-title: SLIC superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Nandan Kumar Jha, et al. E2GC: Energy-efficient group convolution in deep neural networks, in: IEEE International Conference on VLSI Design, 2020, pp. 155–160. – start-page: 818 year: 2014 end-page: 833 ident: b78 article-title: Visualizing and understanding convolutional networks publication-title: European Conference on Computer Vision – reference: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. – year: 2017 ident: b32 article-title: Fast vehicle detection in aerial imagery – reference: Zhenyu Wu, Karthik Suresh, Priya Narayanan, Hongyu Xu, Heesung Kwon, Zhangyang Wang, Delving into robust object detection from unmanned aerial vehicles: A deep nuisance disentanglement approach, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 1201–1210. – start-page: 3054 year: 2018 end-page: 3058 ident: b17 article-title: Search area reduction fast-RCNN for fast vehicle detection in large aerial imagery publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP) – year: 2018 ident: b4 article-title: R-CNN, fast R-CNN, faster R-CNN, YOLO — Object detection algorithms – volume: 24 start-page: 603 year: 2002 end-page: 619 ident: b72 article-title: Mean shift: A robust approach toward feature space analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 97 start-page: 428 year: 2019 end-page: 442 ident: b82 article-title: A survey on optimized implementation of deep learning models on the NVIDIA jetson platform publication-title: J. Syst. Archit. – volume: 6 start-page: 391 year: 2005 end-page: 405 ident: b56 article-title: Airborne video registration and traffic-flow parameter estimation publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 91 year: 2015 end-page: 99 ident: b7 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Advances in Neural Information Processing Systems – start-page: 967 year: 2018 end-page: 972 ident: b35 article-title: Dronet: Efficient convolutional neural network detector for real-time UAV applications publication-title: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018 – reference: Poonam Rajput, Sparsh Mittal, Sarthak Narayan, Improving accuracy and efficiency of object detection algorithms using multiscale feature aggregation plugins, in: IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), 2020, pp. 65–76. – start-page: 1 year: 2017 end-page: 6 ident: b9 article-title: Semantic labeling for improved vehicle detection in aerial imagery publication-title: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) – volume: 16 start-page: 1761 year: 2019 end-page: 1765 ident: b1 article-title: Improved faster R-CNN with multiscale feature fusion and homography augmentation for vehicle detection in remote sensing images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 10 year: 2021 ident: b22 article-title: Vehicle detection from aerial images using deep learning: A comparative study publication-title: Electronics – reference: Tobias Ringwald, Lars Sommer, Arne Schumann, Jurgen Beyerer, Rainer Stiefelhagen, UAV-Net: A fast aerial vehicle detector for mobile platforms, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019. – reference: Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587. – year: 2017 ident: b83 article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications – volume: 104 year: 2020 ident: b3 article-title: A survey on modeling and improving reliability of DNN algorithms and accelerators publication-title: J. Syst. Archit. – volume: 9 start-page: 312 year: 2017 ident: b12 article-title: Deep learning approach for car detection in UAV imagery publication-title: Remote Sens. – reference: Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, Yichen Wei, Deformable convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 764–773. – reference: Jian Ding, Nan Xue, Yang Long, Gui-Song Xia, Qikai Lu, Learning RoI transformer for oriented object detection in aerial images, in: IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 2849–2858. – start-page: 2735 year: 2009 end-page: 2742 ident: b66 article-title: Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition – reference: . – start-page: 180 year: 2016 end-page: 196 ident: b74 article-title: Semantic segmentation of earth observation data using multimodal and multi-scale deep networks publication-title: Asian Conference on Computer Vision – reference: George Plastiras, Christos Kyrkou, Theocharis Theocharides, Efficient convnet-based object detection for unmanned aerial vehicles by selective tile processing, in: Proceedings of the 12th International Conference on Distributed Smart Cameras, 2018, pp. 1–6. – year: 2009 ident: b64 article-title: Learning Deep Architectures for AI – volume: 12 start-page: 1760 year: 2020 ident: b23 article-title: Multi-scale and occlusion aware network for vehicle detection and segmentation on UAV aerial images publication-title: Remote Sens. – volume: 2674 start-page: 553 year: 2020 end-page: 567 ident: b31 article-title: Investigating the influential factors for practical application of multi-class vehicle detection for images from unmanned aerial vehicle using deep learning models publication-title: Transp. Res. Rec. – reference: Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848–6856. – volume: 56 start-page: 7074 year: 2018 end-page: 7085 ident: b45 article-title: Robust vehicle detection in aerial images using bag-of-words and orientation aware scanning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 14 start-page: 1771 year: 2002 end-page: 1800 ident: b69 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. – reference: Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, Stan Z. Li, Single-shot refinement neural network for object detection, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4203–4212. – reference: Abhinav Shrivastava, Abhinav Gupta, Ross Girshick, Training region-based object detectors with online hard example mining, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769. – reference: Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 609–616. – volume: 7 start-page: 85042 year: 2019 end-page: 85054 ident: b21 article-title: Effective contexts for UAV vehicle detection publication-title: IEEE Access – year: 2021 ident: b47 article-title: A Survey of Deep Learning Techniques for Underwater Image Classification – ident: 10.1016/j.sysarc.2021.102152_b20 doi: 10.1109/BigMM.2018.8499466 – ident: 10.1016/j.sysarc.2021.102152_b70 – start-page: 91 year: 2015 ident: 10.1016/j.sysarc.2021.102152_b7 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks – ident: 10.1016/j.sysarc.2021.102152_b24 doi: 10.1109/CVPR.2019.00296 – volume: 9 start-page: 1170 issue: 11 year: 2017 ident: 10.1016/j.sysarc.2021.102152_b19 article-title: Arbitrary-oriented vehicle detection in aerial imagery with single convolutional neural networks publication-title: Remote Sens. doi: 10.3390/rs9111170 – volume: 14 start-page: 1771 issue: 8 year: 2002 ident: 10.1016/j.sysarc.2021.102152_b69 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. doi: 10.1162/089976602760128018 – volume: 2017 year: 2017 ident: 10.1016/j.sysarc.2021.102152_b10 article-title: Car detection from low-altitude UAV imagery with the faster R-CNN publication-title: J. Adv. Transp. doi: 10.1155/2017/2823617 – ident: 10.1016/j.sysarc.2021.102152_b59 doi: 10.1109/CVPR.2016.89 – volume: 99 year: 2019 ident: 10.1016/j.sysarc.2021.102152_b81 article-title: A survey of techniques for optimizing deep learning on GPUs publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2019.101635 – year: 2020 ident: 10.1016/j.sysarc.2021.102152_b86 – volume: 48 start-page: 62:1 issue: 4 year: 2016 ident: 10.1016/j.sysarc.2021.102152_b92 article-title: A survey of techniques for approximate computing publication-title: ACM Comput. Surv. doi: 10.1145/2893356 – start-page: 3054 year: 2018 ident: 10.1016/j.sysarc.2021.102152_b17 article-title: Search area reduction fast-RCNN for fast vehicle detection in large aerial imagery – volume: 11 start-page: 1797 issue: 10 year: 2014 ident: 10.1016/j.sysarc.2021.102152_b44 article-title: Vehicle detection in satellite images by hybrid deep convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2309695 – year: 2009 ident: 10.1016/j.sysarc.2021.102152_b64 – volume: 23 start-page: 1222 issue: 11 year: 2001 ident: 10.1016/j.sysarc.2021.102152_b67 article-title: Fast approximate energy minimization via graph cuts publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.969114 – volume: 9 start-page: 312 issue: 4 year: 2017 ident: 10.1016/j.sysarc.2021.102152_b12 article-title: Deep learning approach for car detection in UAV imagery publication-title: Remote Sens. doi: 10.3390/rs9040312 – ident: 10.1016/j.sysarc.2021.102152_b80 – volume: 104 year: 2020 ident: 10.1016/j.sysarc.2021.102152_b3 article-title: A survey on modeling and improving reliability of DNN algorithms and accelerators publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2019.101689 – year: 2020 ident: 10.1016/j.sysarc.2021.102152_b50 article-title: Modeling data reuse in deep neural networks by taking data-types into cognizance publication-title: IEEE Trans. Comput. – start-page: 702 year: 2012 ident: 10.1016/j.sysarc.2021.102152_b79 article-title: Exploiting the circulant structure of tracking-by-detection with kernels – year: 2018 ident: 10.1016/j.sysarc.2021.102152_b4 – ident: 10.1016/j.sysarc.2021.102152_b51 – ident: 10.1016/j.sysarc.2021.102152_b60 doi: 10.1109/CVPR.2018.00442 – volume: 7 start-page: 30980 year: 2019 ident: 10.1016/j.sysarc.2021.102152_b39 article-title: Object detection in aerial images using feature fusion deep networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2903422 – volume: 97 start-page: 349 year: 2019 ident: 10.1016/j.sysarc.2021.102152_b94 article-title: A survey of spintronic architectures for processing-in-memory and neural networks publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2018.11.005 – volume: 56 start-page: 3107 issue: 6 year: 2018 ident: 10.1016/j.sysarc.2021.102152_b38 article-title: Convolutional SVM networks for object detection in UAV imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2790926 – ident: 10.1016/j.sysarc.2021.102152_b36 – ident: 10.1016/j.sysarc.2021.102152_b84 doi: 10.1109/CVPR.2018.00716 – volume: 115 year: 2021 ident: 10.1016/j.sysarc.2021.102152_b91 article-title: A survey of accelerator architectures for 3D convolution neural networks publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2021.102041 – ident: 10.1016/j.sysarc.2021.102152_b42 doi: 10.1109/SCM.2016.7519666 – volume: 56 start-page: 7074 issue: 12 year: 2018 ident: 10.1016/j.sysarc.2021.102152_b45 article-title: Robust vehicle detection in aerial images using bag-of-words and orientation aware scanning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2848243 – start-page: 818 year: 2014 ident: 10.1016/j.sysarc.2021.102152_b78 article-title: Visualizing and understanding convolutional networks – start-page: 2735 year: 2009 ident: 10.1016/j.sysarc.2021.102152_b66 article-title: Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning – volume: 26 start-page: 1124 issue: 9 year: 2004 ident: 10.1016/j.sysarc.2021.102152_b68 article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.60 – year: 2016 ident: 10.1016/j.sysarc.2021.102152_b85 – volume: 7 start-page: 85042 year: 2019 ident: 10.1016/j.sysarc.2021.102152_b21 article-title: Effective contexts for UAV vehicle detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923407 – volume: 6 start-page: 2220 year: 2017 ident: 10.1016/j.sysarc.2021.102152_b14 article-title: Vehicle detection and counting in high-resolution aerial images using convolutional regression neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2782260 – volume: 57 start-page: 5028 issue: 7 year: 2019 ident: 10.1016/j.sysarc.2021.102152_b18 article-title: R 3-net: A deep network for multioriented vehicle detection in aerial images and videos publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2895362 – year: 2020 ident: 10.1016/j.sysarc.2021.102152_b49 article-title: A survey on hardware accelerators and optimization techniques for RNNs publication-title: J. Syst. Archit. – ident: 10.1016/j.sysarc.2021.102152_b61 – year: 2021 ident: 10.1016/j.sysarc.2021.102152_b47 – volume: 32 start-page: 1109 issue: 4 year: 2020 ident: 10.1016/j.sysarc.2021.102152_b93 article-title: A survey of FPGA-based accelerators for convolutional neural networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3761-1 – year: 2021 ident: 10.1016/j.sysarc.2021.102152_b53 article-title: CURATING: A multi-objective based pruning technique for CNNs publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2021.102031 – ident: 10.1016/j.sysarc.2021.102152_b58 – start-page: 311 year: 2017 ident: 10.1016/j.sysarc.2021.102152_b28 article-title: Fast deep vehicle detection in aerial images – start-page: 967 year: 2018 ident: 10.1016/j.sysarc.2021.102152_b35 article-title: Dronet: Efficient convolutional neural network detector for real-time UAV applications – volume: 1 start-page: 886 year: 2005 ident: 10.1016/j.sysarc.2021.102152_b54 article-title: Histograms of oriented gradients for human detection – volume: 10 year: 2021 ident: 10.1016/j.sysarc.2021.102152_b22 article-title: Vehicle detection from aerial images using deep learning: A comparative study publication-title: Electronics doi: 10.3390/electronics10070820 – year: 2017 ident: 10.1016/j.sysarc.2021.102152_b32 – ident: 10.1016/j.sysarc.2021.102152_b75 – start-page: 3079 year: 2018 ident: 10.1016/j.sysarc.2021.102152_b2 article-title: Deep learning for vehicle detection in aerial images – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.sysarc.2021.102152_b65 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: 10.1016/j.sysarc.2021.102152_b8 doi: 10.1109/ICCV.2017.446 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.sysarc.2021.102152_b73 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 17 start-page: 790 issue: 8 year: 1995 ident: 10.1016/j.sysarc.2021.102152_b71 article-title: Mean shift, mode seeking, and clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.400568 – start-page: 180 year: 2016 ident: 10.1016/j.sysarc.2021.102152_b74 article-title: Semantic segmentation of earth observation data using multimodal and multi-scale deep networks – ident: 10.1016/j.sysarc.2021.102152_b34 doi: 10.1145/3243394.3243692 – year: 1978 ident: 10.1016/j.sysarc.2021.102152_b77 – volume: 7 start-page: 78 issue: 6 year: 2018 ident: 10.1016/j.sysarc.2021.102152_b37 article-title: Real-time ground vehicle detection in aerial infrared imagery based on convolutional neural network publication-title: Electronics doi: 10.3390/electronics7060078 – ident: 10.1016/j.sysarc.2021.102152_b89 – volume: 56 start-page: 6699 issue: 11 year: 2018 ident: 10.1016/j.sysarc.2021.102152_b40 article-title: Vehicle instance segmentation from aerial image and video using a multitask learning residual fully convolutional network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2841808 – ident: 10.1016/j.sysarc.2021.102152_b48 doi: 10.1145/3411170.3411275 – ident: 10.1016/j.sysarc.2021.102152_b62 – volume: 12 start-page: 1760 issue: 11 year: 2020 ident: 10.1016/j.sysarc.2021.102152_b23 article-title: Multi-scale and occlusion aware network for vehicle detection and segmentation on UAV aerial images publication-title: Remote Sens. doi: 10.3390/rs12111760 – volume: 10 start-page: 3652 issue: 8 year: 2017 ident: 10.1016/j.sysarc.2021.102152_b27 article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2694890 – ident: 10.1016/j.sysarc.2021.102152_b57 – ident: 10.1016/j.sysarc.2021.102152_b6 doi: 10.1109/ICCV.2015.169 – volume: 17 start-page: 336 issue: 2 year: 2017 ident: 10.1016/j.sysarc.2021.102152_b29 article-title: Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining publication-title: Sensors doi: 10.3390/s17020336 – ident: 10.1016/j.sysarc.2021.102152_b76 – volume: 10 start-page: 124 issue: 1 year: 2018 ident: 10.1016/j.sysarc.2021.102152_b41 article-title: A CNN-based method of vehicle detection from aerial images using hard example mining publication-title: Remote Sens. doi: 10.3390/rs10010124 – ident: 10.1016/j.sysarc.2021.102152_b13 doi: 10.1109/WACV.2018.00075 – ident: 10.1016/j.sysarc.2021.102152_b30 – year: 2017 ident: 10.1016/j.sysarc.2021.102152_b83 – volume: 2674 start-page: 553 issue: 12 year: 2020 ident: 10.1016/j.sysarc.2021.102152_b31 article-title: Investigating the influential factors for practical application of multi-class vehicle detection for images from unmanned aerial vehicle using deep learning models publication-title: Transp. Res. Rec. doi: 10.1177/0361198120954187 – volume: 17 start-page: 2720 issue: 12 year: 2017 ident: 10.1016/j.sysarc.2021.102152_b11 article-title: Robust vehicle detection in aerial images based on cascaded convolutional neural networks publication-title: Sensors doi: 10.3390/s17122720 – ident: 10.1016/j.sysarc.2021.102152_b26 doi: 10.1109/CVPRW.2019.00080 – start-page: 1 year: 2017 ident: 10.1016/j.sysarc.2021.102152_b9 article-title: Semantic labeling for improved vehicle detection in aerial imagery – ident: 10.1016/j.sysarc.2021.102152_b15 doi: 10.1145/3394171.3413816 – volume: 6 start-page: 391 issue: 4 year: 2005 ident: 10.1016/j.sysarc.2021.102152_b56 article-title: Airborne video registration and traffic-flow parameter estimation publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2005.858621 – volume: 9 start-page: 368 issue: 4 year: 2017 ident: 10.1016/j.sysarc.2021.102152_b16 article-title: Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images publication-title: Remote Sens. doi: 10.3390/rs9040368 – ident: 10.1016/j.sysarc.2021.102152_b5 doi: 10.1109/CVPR.2014.81 – volume: 97 start-page: 428 year: 2019 ident: 10.1016/j.sysarc.2021.102152_b82 article-title: A survey on optimized implementation of deep learning models on the NVIDIA jetson platform publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2019.01.011 – volume: 34 start-page: 2274 issue: 11 year: 2012 ident: 10.1016/j.sysarc.2021.102152_b63 article-title: SLIC superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – ident: 10.1016/j.sysarc.2021.102152_b88 doi: 10.1109/ICCV.2017.89 – ident: 10.1016/j.sysarc.2021.102152_b25 – ident: 10.1016/j.sysarc.2021.102152_b46 doi: 10.1007/978-3-030-58309-5_5 – volume: 16 start-page: 1761 issue: 11 year: 2019 ident: 10.1016/j.sysarc.2021.102152_b1 article-title: Improved faster R-CNN with multiscale feature fusion and homography augmentation for vehicle detection in remote sensing images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2909541 – ident: 10.1016/j.sysarc.2021.102152_b43 doi: 10.1109/CVPR.2016.91 – ident: 10.1016/j.sysarc.2021.102152_b52 – volume: 24 start-page: 603 issue: 5 year: 2002 ident: 10.1016/j.sysarc.2021.102152_b72 article-title: Mean shift: A robust approach toward feature space analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.1000236 – ident: 10.1016/j.sysarc.2021.102152_b90 – volume: 20 start-page: 1709 issue: 6 year: 2010 ident: 10.1016/j.sysarc.2021.102152_b55 article-title: ViBe: A universal background subtraction algorithm for video sequences publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2101613 – start-page: 1 year: 2017 ident: 10.1016/j.sysarc.2021.102152_b33 article-title: Fast vehicle detection in UAV images – ident: 10.1016/j.sysarc.2021.102152_b87 doi: 10.1609/aaai.v31i1.11231 |
SSID | ssj0005512 |
Score | 2.559627 |
SecondaryResourceType | review_article |
Snippet | “Unmanned aerial vehicles” (UAVs) are now being used for a wide range of surveillance applications. Specifically, the detection of on-ground vehicles from UAV... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102152 |
SubjectTerms | Deep learning Drone Object detection Review Vehicle detection “Unmanned aerial vehicle” (UAV) |
Title | A survey of deep learning techniques for vehicle detection from UAV images |
URI | https://dx.doi.org/10.1016/j.sysarc.2021.102152 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYPXuDVtkvZYhmNO2EUnu5UmTXSi3Vi3wS7-7b60qUwQBY8t74Xy-OV90N97D6FrP9SUpQbAC-glgTaSRFpykqoQgpWiipuS5Tvig3EwnLBJA_XqXhhLq3S-v_Lppbd2bzrOmp35dNp58GxxxamdgGWDmO0oDwJhUX7zsUXzYNUfTxAmVrpunys5XsWmADhBlUg9O8PAY_Tn8LQVcvoHaM_lijiuPucQNXR-hPbrPQzYXctjNIxxsVqs9QbPDM60nmO3C-IZf41oLTBkp3itX-xRILQsKVg5tu0leBw_4ek7eJbiBI37t4-9AXE7EoiCZH9JKBQkglGlpJaM-9JAedINlILMSvg0jTK4f76QXQOJk_FYqLxMeTQNudFh5mvhn6JmPsv1GcKZzFKtuJdBSRYoKiJhaDdlNOCS8kjoFvJr0yTKDRC3eyzekpop9ppUBk2sQZPKoC1EvrTm1QCNP-RFbfXkGxAS8PG_ap7_W_MC7dqnitd3iZrLxUpfQa6xlO0STG20E9_dD0af2YnS6g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHODCGzGeOXCttqZN0h2nialssAsMcauaNIEh2Ka1IO3f46zpAAmBxLW1o8py7M_qZxvgIog0ZalB50Xv9UJtpNfSknupijBZKaq4WbB8Bzwehr0H9rACnaoXxtIqXewvY_oiWrsnDWfNxnQ0atz6trji1E7AsklMrMKanU7FarDWvurHg0-mByt_eqK8ZxWqDroFzSuf5-hRWChS344x8Bn9OUN9yTrdbdh0cJG0yy_agRU93oWtahUDcTdzD3ptkr_N3vWcTAzJtJ4Stw7ikSyntOYEASp510_2KBQqFiysMbEdJmTYviejVwwu-T4Mu5d3ndhzaxI8hXi_8CjWJIJRpaSWjAfSYIXSDJVCcCUCmrYyvIKBkE2D2Mn4LFJ-pnyaRtzoKAu0CA6gNp6M9SGQTGapVtzPsCoLFRUtYWgzZTTkkvKW0HUIKtMkys0Qt6ssXpKKLPaclAZNrEGT0qB18JZa03KGxh_yorJ68s0XEgzzv2oe_VvzHNbju5vr5Ppq0D-GDfumpPmdQK2YvelThB6FPHOu9QElbdWb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+deep+learning+techniques+for+vehicle+detection+from+UAV+images&rft.jtitle=Journal+of+systems+architecture&rft.au=Srivastava%2C+Srishti&rft.au=Narayan%2C+Sarthak&rft.au=Mittal%2C+Sparsh&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=1383-7621&rft.eissn=1873-6165&rft.volume=117&rft_id=info:doi/10.1016%2Fj.sysarc.2021.102152&rft.externalDocID=S1383762121001107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-7621&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-7621&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-7621&client=summon |