RGB-T object tracking: Benchmark and baseline
•A large-scale RGB-T dataset is contributed to online RGB-T object tracking. The benchmark with a dozen of baseline trackers and 5 evaluation metrics will be open to public.•A novel graph-based learning approach is proposed to learn robust RGB-T object feature representations.•A L1-optimization base...
Saved in:
Published in | Pattern recognition Vol. 96; p. 106977 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A large-scale RGB-T dataset is contributed to online RGB-T object tracking. The benchmark with a dozen of baseline trackers and 5 evaluation metrics will be open to public.•A novel graph-based learning approach is proposed to learn robust RGB-T object feature representations.•A L1-optimization based sparse learning algorithm is proposed to mitigate the noises of initial weights.•Extensive experiments are conducted on the large-scale benchmark dataset, and we provide new insights and potential future research directions for RGB-T object tracking.
RGB-Thermal (RGB-T) object tracking receives more and more attention due to the strongly complementary benefits of thermal information to visible data. However, RGB-T research is limited by lacking a comprehensive evaluation platform. In this paper, we propose a large-scale video benchmark dataset for RGB-T tracking. It has three major advantages over existing ones: 1) Its size is sufficiently large for large-scale performance evaluation (total number of frames: 234K, maximum number of frames per sequence: 8K). 2) The alignment between RGB-T sequence pairs is highly accurate, which does not need pre- or post-processing. 3) The occlusion levels are annotated for occlusion-sensitive performance analysis of different tracking algorithms. Moreover, we propose a novel graph-based approach to learn a robust object representation for RGB-T tracking. In particular, the tracked object is represented with a graph with image patches as nodes. Given initial weights of nodes, this graph including graph structure, node weights and edge weights is dynamically learned in a unified optimization framework. Extensive experiments on the large-scale dataset are executed to demonstrate the effectiveness of the proposed tracker against other state-of-the-art tracking methods. We also provide new insights and potential research directions to the field of RGB-T object tracking. |
---|---|
AbstractList | •A large-scale RGB-T dataset is contributed to online RGB-T object tracking. The benchmark with a dozen of baseline trackers and 5 evaluation metrics will be open to public.•A novel graph-based learning approach is proposed to learn robust RGB-T object feature representations.•A L1-optimization based sparse learning algorithm is proposed to mitigate the noises of initial weights.•Extensive experiments are conducted on the large-scale benchmark dataset, and we provide new insights and potential future research directions for RGB-T object tracking.
RGB-Thermal (RGB-T) object tracking receives more and more attention due to the strongly complementary benefits of thermal information to visible data. However, RGB-T research is limited by lacking a comprehensive evaluation platform. In this paper, we propose a large-scale video benchmark dataset for RGB-T tracking. It has three major advantages over existing ones: 1) Its size is sufficiently large for large-scale performance evaluation (total number of frames: 234K, maximum number of frames per sequence: 8K). 2) The alignment between RGB-T sequence pairs is highly accurate, which does not need pre- or post-processing. 3) The occlusion levels are annotated for occlusion-sensitive performance analysis of different tracking algorithms. Moreover, we propose a novel graph-based approach to learn a robust object representation for RGB-T tracking. In particular, the tracked object is represented with a graph with image patches as nodes. Given initial weights of nodes, this graph including graph structure, node weights and edge weights is dynamically learned in a unified optimization framework. Extensive experiments on the large-scale dataset are executed to demonstrate the effectiveness of the proposed tracker against other state-of-the-art tracking methods. We also provide new insights and potential research directions to the field of RGB-T object tracking. |
ArticleNumber | 106977 |
Author | Zhao, Nan Liang, Xinyan Lu, Yijuan Tang, Jin Li, Chenglong |
Author_xml | – sequence: 1 givenname: Chenglong surname: Li fullname: Li, Chenglong organization: School of Computer Science and Technology, Anhui University, Hefei 230601, China – sequence: 2 givenname: Xinyan surname: Liang fullname: Liang, Xinyan organization: School of Computer Science and Technology, Anhui University, Hefei 230601, China – sequence: 3 givenname: Yijuan surname: Lu fullname: Lu, Yijuan email: lu@txstate.edu organization: Texas State University, San Marcos, USA – sequence: 4 givenname: Nan surname: Zhao fullname: Zhao, Nan organization: School of Computer Science and Technology, Anhui University, Hefei 230601, China – sequence: 5 givenname: Jin surname: Tang fullname: Tang, Jin email: tangjin@ahu.edu.cn organization: School of Computer Science and Technology, Anhui University, Hefei 230601, China |
BookMark | eNqFkM1KAzEURoNUsK2-gYt5gdT8NEmnC8EWrUJBkO5DJrmpmdZMSQbBtzdlXLnQ1YV7OR_3fBM0il0EhG4pmVFC5V07O5nedvsZI7QuK1krdYHGdKE4FnTORmhMCKeYM8Kv0CTnlhCqymGM8NtmhXdV17Rg-6pPxh5C3C-rFUT7_mHSoTLRVY3JcAwRrtGlN8cMNz9zinZPj7v1M96-bl7WD1tsOZE9ZgKgBmmVZ8YLxcmcCykZh7oRUjTCGOe4EgvnrfXUmwJ5V0uvlKRAGJ-i5RBrU5dzAq9t6E0fulgeDEdNiT5761YP3vrsrQfvAs9_wacUisnXf9j9gEHx-gyQdLahlAAupFKNdl34O-AbWaR1DA |
CitedBy_id | crossref_primary_10_1016_j_inffus_2021_02_023 crossref_primary_10_1016_j_infrared_2023_105077 crossref_primary_10_1007_s11432_021_3518_y crossref_primary_10_1109_TCSVT_2019_2951621 crossref_primary_10_1109_TIM_2024_3436098 crossref_primary_10_3390_app131910891 crossref_primary_10_1109_TGRS_2025_3540945 crossref_primary_10_3390_s21175800 crossref_primary_10_1109_TCSVT_2020_2980853 crossref_primary_10_1109_TIP_2021_3130533 crossref_primary_10_1109_TIP_2021_3125504 crossref_primary_10_1049_ipr2_12861 crossref_primary_10_1016_j_inffus_2024_102246 crossref_primary_10_1109_TITS_2024_3512551 crossref_primary_10_1109_TGRS_2024_3376819 crossref_primary_10_1007_s11760_023_02953_w crossref_primary_10_1007_s11276_024_03716_2 crossref_primary_10_1109_TIM_2023_3338701 crossref_primary_10_3788_IRLA20240260 crossref_primary_10_3788_LOP220929 crossref_primary_10_1016_j_neucom_2024_128274 crossref_primary_10_1109_JSEN_2024_3370144 crossref_primary_10_1007_s44196_023_00360_0 crossref_primary_10_3390_s23073410 crossref_primary_10_1109_JSEN_2024_3506929 crossref_primary_10_1117_1_JEI_31_3_033043 crossref_primary_10_23919_JSEE_2023_000168 crossref_primary_10_1016_j_patcog_2024_110996 crossref_primary_10_1142_S0218126622500414 crossref_primary_10_3390_electronics13091697 crossref_primary_10_1109_TGRS_2023_3349282 crossref_primary_10_1109_TPAMI_2023_3268209 crossref_primary_10_1016_j_inffus_2023_101881 crossref_primary_10_1016_j_image_2023_117027 crossref_primary_10_1016_j_patrec_2022_05_015 crossref_primary_10_1007_s10489_023_04755_6 crossref_primary_10_1007_s11227_023_05329_6 crossref_primary_10_1109_TMM_2023_3310295 crossref_primary_10_1007_s00521_023_09024_8 crossref_primary_10_1007_s11760_024_03658_4 crossref_primary_10_1109_TICPS_2023_3307340 crossref_primary_10_1007_s00138_022_01354_2 crossref_primary_10_1016_j_eswa_2020_113711 crossref_primary_10_1016_j_jvcir_2019_102602 crossref_primary_10_1007_s11063_023_11365_3 crossref_primary_10_1109_TIP_2021_3087341 crossref_primary_10_1016_j_patcog_2024_110648 crossref_primary_10_3390_rs15133252 crossref_primary_10_1109_TMM_2024_3401548 crossref_primary_10_1109_TMM_2020_3008028 crossref_primary_10_1016_j_patcog_2024_110972 crossref_primary_10_1109_TMM_2022_3140929 crossref_primary_10_1109_JSEN_2023_3305501 crossref_primary_10_1007_s11042_023_16418_2 crossref_primary_10_1016_j_neucom_2021_01_057 crossref_primary_10_1049_ipr2_13063 crossref_primary_10_1016_j_infrared_2024_105310 crossref_primary_10_1109_TPAMI_2022_3147974 crossref_primary_10_1007_s12559_023_10158_z crossref_primary_10_1016_j_jvcir_2020_102881 crossref_primary_10_1016_j_engappai_2023_105919 crossref_primary_10_1109_TGRS_2024_3500036 crossref_primary_10_1155_2021_6711561 crossref_primary_10_1016_j_imavis_2024_105071 crossref_primary_10_1016_j_neucom_2022_02_025 crossref_primary_10_1016_j_patcog_2024_110984 crossref_primary_10_1016_j_inffus_2024_102842 crossref_primary_10_1109_TIP_2024_3393298 crossref_primary_10_1016_j_patcog_2024_110626 crossref_primary_10_1109_TITS_2021_3073046 crossref_primary_10_1007_s11633_020_1262_z crossref_primary_10_3390_s24154911 crossref_primary_10_1109_TIM_2020_3005230 crossref_primary_10_1155_2021_9127092 crossref_primary_10_1109_TIM_2024_3365162 crossref_primary_10_1007_s11042_023_15237_9 crossref_primary_10_3390_app8112233 crossref_primary_10_1007_s40747_022_00722_9 crossref_primary_10_3390_s20154081 crossref_primary_10_1007_s11263_022_01732_3 crossref_primary_10_1007_s11042_020_10302_z crossref_primary_10_1016_j_jvcir_2024_104179 crossref_primary_10_1109_TCSVT_2024_3435722 crossref_primary_10_1108_IR_02_2021_0043 crossref_primary_10_1016_j_inffus_2024_102492 crossref_primary_10_1109_TCSVT_2024_3377471 crossref_primary_10_1109_TMM_2022_3171688 crossref_primary_10_1049_ipr2_12427 crossref_primary_10_1109_JSEN_2022_3154657 crossref_primary_10_1016_j_knosys_2024_112860 crossref_primary_10_1007_s00138_022_01312_y crossref_primary_10_1109_TCSVT_2022_3184840 crossref_primary_10_1364_JOSAA_473908 crossref_primary_10_3390_electronics13132517 crossref_primary_10_1038_s41598_023_39978_7 crossref_primary_10_1109_ACCESS_2024_3442810 crossref_primary_10_1016_j_neucom_2018_06_072 crossref_primary_10_3390_s22197408 crossref_primary_10_1109_TCSVT_2021_3102886 crossref_primary_10_1016_j_infrared_2022_104509 crossref_primary_10_1109_TIP_2023_3256762 crossref_primary_10_1007_s11227_024_06443_9 crossref_primary_10_3390_data6020012 crossref_primary_10_1109_TIM_2024_3351246 crossref_primary_10_1109_TIP_2021_3087412 crossref_primary_10_1109_TITS_2022_3229830 crossref_primary_10_1109_TIP_2024_3371355 crossref_primary_10_1109_TMM_2022_3174341 crossref_primary_10_1109_TCSVT_2024_3391802 crossref_primary_10_1016_j_infrared_2023_104819 crossref_primary_10_3390_electronics11121820 crossref_primary_10_3390_s20144021 crossref_primary_10_1007_s12559_021_09864_3 crossref_primary_10_1109_TCSVT_2021_3072207 crossref_primary_10_1016_j_knosys_2021_107913 crossref_primary_10_1109_TMM_2021_3055362 crossref_primary_10_1007_s00371_021_02131_4 crossref_primary_10_1016_j_inffus_2023_101816 crossref_primary_10_1007_s11263_021_01495_3 crossref_primary_10_1016_j_neucom_2021_08_012 crossref_primary_10_1109_TNNLS_2020_3009373 crossref_primary_10_1007_s11633_021_1292_1 crossref_primary_10_1109_MMUL_2023_3239136 crossref_primary_10_1109_TCSVT_2024_3425455 crossref_primary_10_1109_TIM_2022_3193971 crossref_primary_10_1109_TIP_2019_2959912 crossref_primary_10_1109_TIP_2021_3060862 crossref_primary_10_1007_s11042_023_17721_8 crossref_primary_10_1016_j_cviu_2023_103683 crossref_primary_10_1016_j_engappai_2022_105707 crossref_primary_10_1016_j_patcog_2024_110707 crossref_primary_10_1142_S2301385024500043 crossref_primary_10_1007_s00521_020_05067_3 crossref_primary_10_1117_1_JEI_31_6_063041 crossref_primary_10_1016_j_imavis_2024_105302 crossref_primary_10_1109_TIM_2024_3421435 crossref_primary_10_3390_rs15184467 crossref_primary_10_1016_j_patcog_2022_108745 crossref_primary_10_1007_s10489_023_04741_y crossref_primary_10_1109_TNNLS_2021_3067107 crossref_primary_10_1109_TCSVT_2023_3345852 crossref_primary_10_1109_JSEN_2023_3234091 crossref_primary_10_1109_TCSVT_2023_3288853 crossref_primary_10_3390_s20020566 crossref_primary_10_3390_math11071646 crossref_primary_10_1109_TNNLS_2023_3236895 crossref_primary_10_1007_s11432_020_3160_5 crossref_primary_10_1007_s41095_023_0345_5 crossref_primary_10_1145_3630100 crossref_primary_10_1109_TIP_2024_3428316 crossref_primary_10_1016_j_knosys_2025_112983 crossref_primary_10_1142_S0218126621503072 crossref_primary_10_1007_s13042_022_01771_9 crossref_primary_10_1109_TMM_2021_3128047 crossref_primary_10_1007_s11263_024_02311_4 crossref_primary_10_1109_TIM_2023_3244817 crossref_primary_10_1016_j_imavis_2024_105330 crossref_primary_10_3390_app13095793 crossref_primary_10_1109_LRA_2023_3303070 crossref_primary_10_1109_JSEN_2020_2968477 crossref_primary_10_1016_j_imavis_2022_104547 crossref_primary_10_1016_j_knosys_2022_108945 crossref_primary_10_1016_j_patcog_2024_111330 crossref_primary_10_1007_s00521_022_07559_w crossref_primary_10_1007_s11042_024_18141_y crossref_primary_10_1109_TCSVT_2024_3396289 crossref_primary_10_1145_3678176 crossref_primary_10_3390_s23146609 crossref_primary_10_1109_JSEN_2024_3386772 crossref_primary_10_1117_1_JEI_31_6_063062 crossref_primary_10_1016_j_patcog_2024_110917 crossref_primary_10_1109_TAI_2022_3151307 crossref_primary_10_1007_s13042_024_02420_z crossref_primary_10_1007_s13042_023_01833_6 crossref_primary_10_1109_TPAMI_2024_3475472 crossref_primary_10_1109_TITS_2023_3268063 crossref_primary_10_1016_j_neucom_2021_08_044 crossref_primary_10_1142_S0218001422510089 crossref_primary_10_3788_AOS231907 crossref_primary_10_3390_rs16101795 crossref_primary_10_3390_drones7090585 crossref_primary_10_1007_s11760_022_02187_2 crossref_primary_10_1109_TCSVT_2024_3494725 crossref_primary_10_1109_ACCESS_2024_3365501 crossref_primary_10_1016_j_neucom_2022_04_032 crossref_primary_10_1109_JSEN_2021_3078455 crossref_primary_10_1109_JSEN_2024_3372991 crossref_primary_10_1109_ACCESS_2022_3226564 crossref_primary_10_1109_TNNLS_2022_3157594 crossref_primary_10_1109_TNNLS_2022_3161969 crossref_primary_10_1016_j_inffus_2025_102941 crossref_primary_10_3390_electronics13234721 crossref_primary_10_1016_j_inffus_2025_102940 crossref_primary_10_1109_TIM_2023_3325520 crossref_primary_10_1109_LSP_2023_3295758 crossref_primary_10_1016_j_neucom_2024_128908 crossref_primary_10_1109_TIP_2020_2975984 crossref_primary_10_1109_TIV_2020_2980735 crossref_primary_10_1016_j_engappai_2023_107273 crossref_primary_10_1145_3698399 crossref_primary_10_1155_2022_9669142 crossref_primary_10_1016_j_inffus_2025_103109 crossref_primary_10_1109_TPAMI_2023_3261282 crossref_primary_10_1109_JSEN_2023_3295473 crossref_primary_10_1177_1088467X241308764 crossref_primary_10_1016_j_inffus_2024_102531 crossref_primary_10_1016_j_inffus_2021_02_005 crossref_primary_10_1016_j_jvcir_2023_103882 crossref_primary_10_1109_TCSVT_2024_3352573 crossref_primary_10_3390_info13020084 crossref_primary_10_1109_JSEN_2023_3244834 crossref_primary_10_1109_LGRS_2023_3259583 crossref_primary_10_1109_TCSVT_2021_3067997 crossref_primary_10_1016_j_knosys_2023_110683 crossref_primary_10_1109_TITS_2021_3103961 crossref_primary_10_1109_TCSVT_2021_3076466 crossref_primary_10_1016_j_neucom_2022_04_017 crossref_primary_10_1109_LSP_2023_3316021 crossref_primary_10_1016_j_patcog_2023_109951 crossref_primary_10_3390_s20020393 crossref_primary_10_1016_j_neucom_2023_126329 crossref_primary_10_1007_s12559_020_09727_3 crossref_primary_10_1016_j_patcog_2024_110689 crossref_primary_10_3390_s20071922 crossref_primary_10_1016_j_neucom_2024_127959 crossref_primary_10_1109_TIM_2023_3282668 crossref_primary_10_1109_TIV_2020_2991955 |
Cites_doi | 10.1016/j.patcog.2018.10.005 10.1137/120887795 10.1016/j.infrared.2014.02.005 10.1016/j.cviu.2006.06.010 10.1109/TPAMI.2012.88 10.1016/j.patcog.2016.01.033 10.1109/TIE.2019.2898618 10.1109/TIP.2015.2482905 10.1016/j.patcog.2017.06.015 10.1109/TSMC.2016.2627052 10.1109/TIP.2016.2614135 10.1007/s11432-011-4536-9 10.1016/j.cviu.2011.10.006 10.1109/TPAMI.2015.2417577 10.1109/TIP.2019.2893066 10.1016/j.patcog.2017.11.007 10.1109/TPAMI.2013.230 10.1109/TPAMI.2014.2345390 10.1109/TPAMI.2014.2388226 10.1016/j.patcog.2018.05.017 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2019.106977 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2019_106977 S0031320319302808 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-25ee9e6c7f2af57304356623e9b565b5aadd3758dfccf1fa306fd96f7761e023 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Thu Apr 24 23:07:49 EDT 2025 Tue Jul 01 02:36:29 EDT 2025 Fri Feb 23 02:25:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Benchmark dataset Visual tracking Sparse learning Graph representation Information fusion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-25ee9e6c7f2af57304356623e9b565b5aadd3758dfccf1fa306fd96f7761e023 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2019_106977 crossref_primary_10_1016_j_patcog_2019_106977 elsevier_sciencedirect_doi_10_1016_j_patcog_2019_106977 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationTitle | Pattern recognition |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Valmadre, Bertinetto, Henriques, Vedaldi, Torr (bib0040) 2017 Danelljan, Robinson, Khan, Felsberg (bib0039) 2016 Portmann, Lynen, Chli, Siegwart (bib0023) 2014 Danelljan, Hager, Khan, Felsberg (bib0041) 2014 Smeulders, Chu, Cucchiara, Calderara, Dehghan, Shah (bib0016) 2014; 36 Li, Cheng, Hu, Liu, Tang, Lin (bib0001) 2016; 25 Nam, Han (bib0050) 2016 Lan, Ye, Shao, Zhong (bib0032) 2019 Li, Lin, Zuo, Tang, Yang (bib0037) 2019 Zhang, Ma, Sclaroff (bib0045) 2014 et al. (bib0019) 2016 Torabi, Masse, Bilodeau (bib0003) 2012; 116 Henriques, Caseiro, Martins, Batista (bib0046) 2015; 37 Lu, Chen, Li (bib0034) 2019; 87 Li, Wang, Wang, Lu (bib0035) 2018; 76 Zhang, Gonzalez-Garcia, van de Weijer, Danelljan, Khan (bib0028) 2019 Liang, Blasch, Ling (bib0020) 2015; 24 Lukezic, Vojir, Cehovin, Matas, Kristan (bib0042) 2017 Felsberg, Kristan, Matas (bib0025) 2016 Yin, Zhu, Yuan, Xue (bib0004) 2017; 71 Wu, Blasch, Chen, Bai, Ling (bib0030) 2011 Tang, Feng (bib0049) 2015 Li, Sun, Wang, Zhang, Tang (bib0029) 2017; 47 Xu, Yin (bib0048) 2013; 6 Li, Lin, Wu, Yang, Yan (bib0021) 2016; 38 Guo (bib0012) 2015 Danelljan, Hager, Shahbaz Khan, Felsberg (bib0043) 2015 Zhang, Zhang, Jiao, Li, Hou (bib0013) 2016; 59 Li, Zhu, Huang, Tang, Wang (bib0008) 2018 Bilodeau, Torabi, et al. (bib0027) 2014; 64 Wu, Fuller, Theriault, Betke (bib0024) 2014 Wu, Lim, Yang (bib0017) 2013 Wu, Lim, Yang (bib0018) 2015; 37 Davis, Sharma (bib0002) 2007; 106 Ye, Ma (bib0009) 2019 Liu, Sun (bib0031) 2012; 55 Zhang, Li, Song, Liu, Lian (bib0033) 2018; 83 Tsochantaridis, Joachims, Hofmann, Altun (bib0006) 2005; 6 Li, Zhao, Lu, Zhu, Tang (bib0026) 2017 Davis, Keck (bib0022) 2005 Danelljan, Bhat, Khan, Felsberg (bib0038) 2017 Hwang, Park, Kim, et al. (bib0005) 2015 Liu, Lin, Yan, Sun, Yu, Ma (bib0047) 2013; 35 Li, Zhu (bib0044) 2014 Lin, Liu, Su (bib0015) 2011 Yan, Wang (bib0014) 2009 Kim, Lee, Sim, Kim (bib0007) 2015 Ye, Li, Ma, Zheng, Yuen (bib0010) 2019; 28 Li, Lin, Zuo, Tang (bib0011) 2017 Hare, Saffari, Torr (bib0036) 2011 Tang (10.1016/j.patcog.2019.106977_bib0049) 2015 Wu (10.1016/j.patcog.2019.106977_bib0030) 2011 Xu (10.1016/j.patcog.2019.106977_bib0048) 2013; 6 Wu (10.1016/j.patcog.2019.106977_bib0017) 2013 Zhang (10.1016/j.patcog.2019.106977_sbref0027) 2019 Hwang (10.1016/j.patcog.2019.106977_bib0005) 2015 Smeulders (10.1016/j.patcog.2019.106977_bib0016) 2014; 36 Lin (10.1016/j.patcog.2019.106977_bib0015) 2011 Ye (10.1016/j.patcog.2019.106977_bib0009) 2019 Valmadre (10.1016/j.patcog.2019.106977_bib0040) 2017 Li (10.1016/j.patcog.2019.106977_bib0029) 2017; 47 Lu (10.1016/j.patcog.2019.106977_bib0034) 2019; 87 Zhang (10.1016/j.patcog.2019.106977_bib0033) 2018; 83 Danelljan (10.1016/j.patcog.2019.106977_bib0038) 2017 Liu (10.1016/j.patcog.2019.106977_bib0031) 2012; 55 Danelljan (10.1016/j.patcog.2019.106977_bib0041) 2014 Zhang (10.1016/j.patcog.2019.106977_bib0045) 2014 Ye (10.1016/j.patcog.2019.106977_bib0010) 2019; 28 Wu (10.1016/j.patcog.2019.106977_bib0018) 2015; 37 Li (10.1016/j.patcog.2019.106977_bib0021) 2016; 38 Li (10.1016/j.patcog.2019.106977_bib0026) 2017 Zhang (10.1016/j.patcog.2019.106977_bib0013) 2016; 59 Davis (10.1016/j.patcog.2019.106977_bib0002) 2007; 106 Li (10.1016/j.patcog.2019.106977_bib0011) 2017 Davis (10.1016/j.patcog.2019.106977_bib0022) 2005 Lukezic (10.1016/j.patcog.2019.106977_bib0042) 2017 Torabi (10.1016/j.patcog.2019.106977_bib0003) 2012; 116 Kim (10.1016/j.patcog.2019.106977_bib0007) 2015 Danelljan (10.1016/j.patcog.2019.106977_bib0039) 2016 Liang (10.1016/j.patcog.2019.106977_bib0020) 2015; 24 Guo (10.1016/j.patcog.2019.106977_bib0012) 2015 Portmann (10.1016/j.patcog.2019.106977_bib0023) 2014 Bilodeau (10.1016/j.patcog.2019.106977_bib0027) 2014; 64 Danelljan (10.1016/j.patcog.2019.106977_bib0043) 2015 Li (10.1016/j.patcog.2019.106977_bib0044) 2014 Hare (10.1016/j.patcog.2019.106977_bib0036) 2011 et al. (10.1016/j.patcog.2019.106977_bib0019) 2016 Yan (10.1016/j.patcog.2019.106977_bib0014) 2009 Li (10.1016/j.patcog.2019.106977_bib0035) 2018; 76 Yin (10.1016/j.patcog.2019.106977_bib0004) 2017; 71 Li (10.1016/j.patcog.2019.106977_bib0001) 2016; 25 Li (10.1016/j.patcog.2019.106977_sbref0036) 2019 Nam (10.1016/j.patcog.2019.106977_bib0050) 2016 Felsberg (10.1016/j.patcog.2019.106977_bib0025) 2016 Lan (10.1016/j.patcog.2019.106977_bib0032) 2019 Henriques (10.1016/j.patcog.2019.106977_bib0046) 2015; 37 Tsochantaridis (10.1016/j.patcog.2019.106977_bib0006) 2005; 6 Wu (10.1016/j.patcog.2019.106977_bib0024) 2014 Liu (10.1016/j.patcog.2019.106977_bib0047) 2013; 35 Li (10.1016/j.patcog.2019.106977_bib0008) 2018 |
References_xml | – year: 2017 ident: bib0026 article-title: Weighted sparse representation regularized graph learning for RGB-T object tracking publication-title: Proceedings of ACM International Conference on Multimedia – volume: 71 start-page: 278 year: 2017 end-page: 289 ident: bib0004 article-title: Sparse representation over discriminative dictionary for stereo matching publication-title: Pattern Recognit – year: 2016 ident: bib0050 article-title: Learning multi-domain convolutional neural networks for visual tracking publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition – year: 2014 ident: bib0024 article-title: A thermal infrared video benchmark for visual analysis publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops – volume: 76 start-page: 323 year: 2018 end-page: 338 ident: bib0035 article-title: Deep visual tracking: review and experimental comparison publication-title: Pattern Recognit. – year: 2017 ident: bib0011 article-title: Learning patch-based dynamic graph for visual tracking publication-title: Proceedings of AAAI Conference on Artificial Intelligence – year: 2005 ident: bib0022 article-title: A two-stage template approach to person detection in thermal imagery publication-title: IEEE Workshops on Application of Computer Vision – year: 2014 ident: bib0023 article-title: People detection and tracking from aerial thermal views publication-title: Proceedings of IEEE International Conference on Robotics and Automation – year: 2015 ident: bib0005 article-title: Multispectral pedestrian detection: benchmark dataset and baseline publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition – volume: 37 start-page: 1834 year: 2015 end-page: 1848 ident: bib0018 article-title: Object tracking benchmark publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – year: 2016 ident: bib0019 article-title: The visual object tracking VOT2016 challenge results publication-title: Proceedings of European Conference on Computer Vision Workshops – year: 2015 ident: bib0049 article-title: Multi-kernel correlation filter for visual tracking publication-title: Proceedings of IEEE International Conference on Computer Vision – volume: 47 start-page: 673 year: 2017 end-page: 681 ident: bib0029 article-title: Grayscale-thermal object tracking via multi-task Laplacian sparse representation publication-title: IEEE Trans. Syst. Man Cybern. – volume: 37 start-page: 583 year: 2015 end-page: 596 ident: bib0046 article-title: High-speed tracking with kernelized correlation filters publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – year: 2011 ident: bib0030 article-title: Multiple source data fusion via sparse representation for robust visual tracking publication-title: Proceeding of Conference on Information Fusion – year: 2017 ident: bib0040 article-title: End-to-end representation learning for correlation filter based tracking publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition – volume: 55 start-page: 590 year: 2012 end-page: 599 ident: bib0031 article-title: Fusion tracking in color and infrared images using joint sparse representation publication-title: Sci. China Inf. Sci. – volume: 83 start-page: 185 year: 2018 end-page: 195 ident: bib0033 article-title: Visual tracking using spatio-temporally nonlocally regularized correlation filter publication-title: Pattern Recognit. – volume: 87 start-page: 80 year: 2019 end-page: 93 ident: bib0034 article-title: Multi attention module for visual tracking publication-title: Pattern Recognit. – volume: 24 start-page: 5630 year: 2015 end-page: 5644 ident: bib0020 article-title: Encoding color information for visual tracking: algorithms and benchmark publication-title: IEEE Trans. Image Process. – volume: 59 start-page: 42 year: 2016 end-page: 54 ident: bib0013 article-title: Spectral–spatial hyperspectral image ensemble classification via joint sparse representation publication-title: Pattern Recognit. – volume: 106 start-page: 162 year: 2007 end-page: 182 ident: bib0002 article-title: Background-subtraction using contour-based fusion of thermal and visible imagery publication-title: Comput. Vis. Image Underst. – year: 2018 ident: bib0008 article-title: Cross-modal ranking with soft-consistency and noisy labels for robust RGB-T tracking publication-title: Proceedings of European Conference on Computer Vision – year: 2014 ident: bib0041 article-title: Accurate scale estimation for robust visual tracking publication-title: Proceeding of British Machine Vision Conference – year: 2017 ident: bib0038 article-title: Eco: efficient convolution operators for tracking publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition – year: 2009 ident: bib0014 article-title: Semi-supervised learning by sparse representation publication-title: Proceedings of the 2009 SIAM International Conference on Data Mining – volume: 28 start-page: 2976 year: 2019 end-page: 2990 ident: bib0010 article-title: Dynamic graph co-matching for unsupervised video-based person re-identification publication-title: IEEE Trans. Image Process. – volume: 6 start-page: 1758 year: 2013 end-page: 1789 ident: bib0048 article-title: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion publication-title: SIAM J. Imaging Sci. – year: 2014 ident: bib0045 article-title: MEEM: robust tracking via multiple experts using entropy minimization publication-title: Proceedings of European Conference on Computer Vision – year: 2011 ident: bib0015 article-title: Linearized alternating direction method with adaptive penalty for low-rank representation publication-title: Advances in Neural Information Processing Systems – volume: 36 start-page: 1442 year: 2014 end-page: 1468 ident: bib0016 article-title: Visual tracking: an experimental survey publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – volume: 116 start-page: 210 year: 2012 end-page: 221 ident: bib0003 article-title: An iterative integrated framework for thermal-visible image registration, sensor fusion, and people tracking for video surveillance applications publication-title: Comput. Vis. Image Underst. – year: 2015 ident: bib0007 article-title: Sowp: Spatially ordered and weighted patch descriptor for visual tracking publication-title: Proceedings of IEEE International Conference on Computer Vision – year: 2019 ident: bib0009 article-title: Dynamic label graph matching for unsupervised video re-identification publication-title: Proceedings of IEEE International Conference on Computer Vision – volume: 35 start-page: 171 year: 2013 end-page: 184 ident: bib0047 article-title: Robust recovery of subspace structures by low-rank representation publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – year: 2019 ident: bib0032 article-title: Learning modality-consistency feature templates: a robust RGB-infrared tracking system publication-title: IEEE Trans. Ind. Electron. – year: 2016 ident: bib0039 article-title: Beyond correlation filters: learning continuous convolution operators for visual tracking publication-title: Proceedings of European Conference on Computer Vision – year: 2019 ident: bib0037 article-title: Visual tracking via dynamic graph learning publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – year: 2013 ident: bib0017 article-title: Online object tracking: a benchmark publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition – volume: 25 start-page: 5743 year: 2016 end-page: 5756 ident: bib0001 article-title: Learning collaborative sparse representation for grayscale-thermal tracking publication-title: IEEE Trans. Image Process. – year: 2019 ident: bib0028 article-title: Synthetic data generation for end-to-end thermal infrared tracking publication-title: IEEE Trans. Image Process. – year: 2014 ident: bib0044 article-title: A scale adaptive kernel correlation filter tracker with feature integration publication-title: Proceedings of European Conference on Computer Vision – year: 2016 ident: bib0025 article-title: The thermal infrared visual object tracking VOT-TIR2016 challenge results publication-title: ECCV – year: 2015 ident: bib0043 article-title: Learning spatially regularized correlation filters for visual tracking publication-title: Proceedings of IEEE International Conference on Computer Vision – volume: 38 start-page: 335 year: 2016 end-page: 349 ident: bib0021 article-title: NUS-PRO: a new visual tracking challenge publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – year: 2015 ident: bib0012 article-title: Robust subspace segmentation by simultaneously learning data representations and their affinity matrix publication-title: Proceedings of International Joint Conferences on Artificial Intelligence – volume: 6 start-page: 1453 year: 2005 end-page: 1484 ident: bib0006 article-title: Large margin methods for structured and interdependent output variables publication-title: J. Mach. Learn. Res. – year: 2017 ident: bib0042 article-title: Discriminative correlation filter with channel and spatial reliability publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition – year: 2011 ident: bib0036 article-title: Struck: structured output tracking with kernels publication-title: Proceedings of IEEE International Conference on Computer Vision – volume: 64 start-page: 79 year: 2014 end-page: 86 ident: bib0027 article-title: Thermal-visible registration of human silhouettes: a similarity measure performance evaluation publication-title: Infrared Phys. Technol. – year: 2014 ident: 10.1016/j.patcog.2019.106977_bib0041 article-title: Accurate scale estimation for robust visual tracking – year: 2016 ident: 10.1016/j.patcog.2019.106977_bib0019 article-title: The visual object tracking VOT2016 challenge results – year: 2011 ident: 10.1016/j.patcog.2019.106977_bib0030 article-title: Multiple source data fusion via sparse representation for robust visual tracking – volume: 87 start-page: 80 year: 2019 ident: 10.1016/j.patcog.2019.106977_bib0034 article-title: Multi attention module for visual tracking publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.10.005 – year: 2019 ident: 10.1016/j.patcog.2019.106977_sbref0036 article-title: Visual tracking via dynamic graph learning publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – year: 2017 ident: 10.1016/j.patcog.2019.106977_bib0038 article-title: Eco: efficient convolution operators for tracking – volume: 6 start-page: 1758 issue: 3 year: 2013 ident: 10.1016/j.patcog.2019.106977_bib0048 article-title: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion publication-title: SIAM J. Imaging Sci. doi: 10.1137/120887795 – year: 2018 ident: 10.1016/j.patcog.2019.106977_bib0008 article-title: Cross-modal ranking with soft-consistency and noisy labels for robust RGB-T tracking – year: 2011 ident: 10.1016/j.patcog.2019.106977_bib0015 article-title: Linearized alternating direction method with adaptive penalty for low-rank representation – volume: 64 start-page: 79 year: 2014 ident: 10.1016/j.patcog.2019.106977_bib0027 article-title: Thermal-visible registration of human silhouettes: a similarity measure performance evaluation publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2014.02.005 – year: 2014 ident: 10.1016/j.patcog.2019.106977_bib0044 article-title: A scale adaptive kernel correlation filter tracker with feature integration – year: 2017 ident: 10.1016/j.patcog.2019.106977_bib0026 article-title: Weighted sparse representation regularized graph learning for RGB-T object tracking – volume: 106 start-page: 162 issue: 2 year: 2007 ident: 10.1016/j.patcog.2019.106977_bib0002 article-title: Background-subtraction using contour-based fusion of thermal and visible imagery publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2006.06.010 – volume: 35 start-page: 171 issue: 1 year: 2013 ident: 10.1016/j.patcog.2019.106977_bib0047 article-title: Robust recovery of subspace structures by low-rank representation publication-title: IEEE Trans. Pattern Anal. Mach.Intell. doi: 10.1109/TPAMI.2012.88 – year: 2009 ident: 10.1016/j.patcog.2019.106977_bib0014 article-title: Semi-supervised learning by sparse representation – volume: 59 start-page: 42 year: 2016 ident: 10.1016/j.patcog.2019.106977_bib0013 article-title: Spectral–spatial hyperspectral image ensemble classification via joint sparse representation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.01.033 – year: 2014 ident: 10.1016/j.patcog.2019.106977_bib0023 article-title: People detection and tracking from aerial thermal views – year: 2019 ident: 10.1016/j.patcog.2019.106977_bib0032 article-title: Learning modality-consistency feature templates: a robust RGB-infrared tracking system publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2898618 – year: 2015 ident: 10.1016/j.patcog.2019.106977_bib0005 article-title: Multispectral pedestrian detection: benchmark dataset and baseline – volume: 24 start-page: 5630 issue: 12 year: 2015 ident: 10.1016/j.patcog.2019.106977_bib0020 article-title: Encoding color information for visual tracking: algorithms and benchmark publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2482905 – year: 2014 ident: 10.1016/j.patcog.2019.106977_bib0045 article-title: MEEM: robust tracking via multiple experts using entropy minimization – year: 2015 ident: 10.1016/j.patcog.2019.106977_bib0012 article-title: Robust subspace segmentation by simultaneously learning data representations and their affinity matrix – year: 2016 ident: 10.1016/j.patcog.2019.106977_bib0050 article-title: Learning multi-domain convolutional neural networks for visual tracking – volume: 71 start-page: 278 year: 2017 ident: 10.1016/j.patcog.2019.106977_bib0004 article-title: Sparse representation over discriminative dictionary for stereo matching publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.06.015 – year: 2011 ident: 10.1016/j.patcog.2019.106977_bib0036 article-title: Struck: structured output tracking with kernels – volume: 47 start-page: 673 issue: 4 year: 2017 ident: 10.1016/j.patcog.2019.106977_bib0029 article-title: Grayscale-thermal object tracking via multi-task Laplacian sparse representation publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.2016.2627052 – year: 2015 ident: 10.1016/j.patcog.2019.106977_bib0049 article-title: Multi-kernel correlation filter for visual tracking – volume: 25 start-page: 5743 issue: 12 year: 2016 ident: 10.1016/j.patcog.2019.106977_bib0001 article-title: Learning collaborative sparse representation for grayscale-thermal tracking publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2614135 – year: 2015 ident: 10.1016/j.patcog.2019.106977_bib0007 article-title: Sowp: Spatially ordered and weighted patch descriptor for visual tracking – volume: 55 start-page: 590 issue: 3 year: 2012 ident: 10.1016/j.patcog.2019.106977_bib0031 article-title: Fusion tracking in color and infrared images using joint sparse representation publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-011-4536-9 – volume: 116 start-page: 210 issue: 2 year: 2012 ident: 10.1016/j.patcog.2019.106977_bib0003 article-title: An iterative integrated framework for thermal-visible image registration, sensor fusion, and people tracking for video surveillance applications publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2011.10.006 – year: 2005 ident: 10.1016/j.patcog.2019.106977_bib0022 article-title: A two-stage template approach to person detection in thermal imagery – volume: 38 start-page: 335 issue: 2 year: 2016 ident: 10.1016/j.patcog.2019.106977_bib0021 article-title: NUS-PRO: a new visual tracking challenge publication-title: IEEE Trans. Pattern Anal. Mach.Intell. doi: 10.1109/TPAMI.2015.2417577 – year: 2014 ident: 10.1016/j.patcog.2019.106977_bib0024 article-title: A thermal infrared video benchmark for visual analysis – year: 2019 ident: 10.1016/j.patcog.2019.106977_bib0009 article-title: Dynamic label graph matching for unsupervised video re-identification – year: 2017 ident: 10.1016/j.patcog.2019.106977_bib0040 article-title: End-to-end representation learning for correlation filter based tracking – volume: 6 start-page: 1453 year: 2005 ident: 10.1016/j.patcog.2019.106977_bib0006 article-title: Large margin methods for structured and interdependent output variables publication-title: J. Mach. Learn. Res. – year: 2013 ident: 10.1016/j.patcog.2019.106977_bib0017 article-title: Online object tracking: a benchmark – volume: 28 start-page: 2976 issue: 6 year: 2019 ident: 10.1016/j.patcog.2019.106977_bib0010 article-title: Dynamic graph co-matching for unsupervised video-based person re-identification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2893066 – year: 2016 ident: 10.1016/j.patcog.2019.106977_bib0025 article-title: The thermal infrared visual object tracking VOT-TIR2016 challenge results – year: 2015 ident: 10.1016/j.patcog.2019.106977_bib0043 article-title: Learning spatially regularized correlation filters for visual tracking – volume: 76 start-page: 323 year: 2018 ident: 10.1016/j.patcog.2019.106977_bib0035 article-title: Deep visual tracking: review and experimental comparison publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.11.007 – year: 2017 ident: 10.1016/j.patcog.2019.106977_bib0042 article-title: Discriminative correlation filter with channel and spatial reliability – year: 2017 ident: 10.1016/j.patcog.2019.106977_bib0011 article-title: Learning patch-based dynamic graph for visual tracking – volume: 36 start-page: 1442 issue: 7 year: 2014 ident: 10.1016/j.patcog.2019.106977_bib0016 article-title: Visual tracking: an experimental survey publication-title: IEEE Trans. Pattern Anal. Mach.Intell. doi: 10.1109/TPAMI.2013.230 – year: 2016 ident: 10.1016/j.patcog.2019.106977_bib0039 article-title: Beyond correlation filters: learning continuous convolution operators for visual tracking – volume: 37 start-page: 583 issue: 3 year: 2015 ident: 10.1016/j.patcog.2019.106977_bib0046 article-title: High-speed tracking with kernelized correlation filters publication-title: IEEE Trans. Pattern Anal. Mach.Intell. doi: 10.1109/TPAMI.2014.2345390 – volume: 37 start-page: 1834 issue: 9 year: 2015 ident: 10.1016/j.patcog.2019.106977_bib0018 article-title: Object tracking benchmark publication-title: IEEE Trans. Pattern Anal. Mach.Intell. doi: 10.1109/TPAMI.2014.2388226 – year: 2019 ident: 10.1016/j.patcog.2019.106977_sbref0027 article-title: Synthetic data generation for end-to-end thermal infrared tracking publication-title: IEEE Trans. Image Process. – volume: 83 start-page: 185 year: 2018 ident: 10.1016/j.patcog.2019.106977_bib0033 article-title: Visual tracking using spatio-temporally nonlocally regularized correlation filter publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.05.017 |
SSID | ssj0017142 |
Score | 2.6954522 |
Snippet | •A large-scale RGB-T dataset is contributed to online RGB-T object tracking. The benchmark with a dozen of baseline trackers and 5 evaluation metrics will be... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106977 |
SubjectTerms | Benchmark dataset Graph representation Information fusion Sparse learning Visual tracking |
Title | RGB-T object tracking: Benchmark and baseline |
URI | https://dx.doi.org/10.1016/j.patcog.2019.106977 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YPXteS1m_XWFmtV7EEq9Bb2qdWalhKv_nZnmqQoiILHbHYgmex-85Gdb4aQc2HDNFVGMGsjz2KjEyx5yxmXwD7w4CZNUO98P-LDx_h2kkwapF9rYTCtssL-EtNXaF2NdCpvdhbTKWp8sewgqnAiPB9EwW8cC1zlFx_rNA_s711WDI8ChrNr-dwqx2sBcDd_wgQvCUMcuNDP4elLyBnskK2KK9Ju-Ti7pOHyPbJd92Gg1bbcJ-zhusfGdK7xnwotlsrg_-9L2oPbz29q-UpVbinGK-SUB2Q8uBr3h6xqg8AM8PmChYlz0nEjfKh8AjsSGA4H1uKkBjamEwUQFQHtt94YH3gFRt5K7oXggYOQfEia-Tx3R4R6IZ3WIpAu0HEaOsVTqSOLSiwrI5u2SFS_fGaqEuHYqWKW1blgL1npsgxdlpUuaxG2tlqUJTL-mC9qv2bfPnUGKP6r5fG_LU_IJl6VeSinpFks390ZsIlCt1fLpU02ujd3w9EnsxPHtQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDI6mcYALb8R45gDHMLVdH0HiwICxsccBFWm3qGkSGI9uGkWICz-KX4i9thNICCSkXZNaalzX_pJ8tgk58JUdBFHsM6Ucw2qxdLHkrcc8DugDL24CF_Oduz2veVO76rv9EvkocmGQVpn7_synT7x1PlLNtVkdDQaY44tlBzELx8H7wSBnVrb12yvs255PWufwkQ9tu3ERnjVZ3lqAxYCRU2a7WnPtxb6xI-OClQNq8AAJaC4B4Ug3gt_eASitTBwby0QgZBT3jA-7fj0pdgBuf64G3gK7Jhy9T2kl2E88q1DuWAzfrkjXm3DKRuBeh7dIKOMw5AH2-jkcfglxjWWymGNTepotf4WUdLJKloq-DzR3A2uEXV_WWUiHEs9waDqOYjxvP6Z1mL57isYPNEoUxfiIGHadhLPQzQYpJ8NEbxJqfK6l9C2uLVkLbB15AZeOwswvxR0VVIhTLF7EeUly7IzxKAru2b3IVCZQZSJTWYWwqdQoK8nxx_N-oVfxzbQERI1fJbf-LblP5pthtyM6rV57myzgTMaB2SHldPyidwHJpHJvYjqUiBmb6ieYxwNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RGB-T+object+tracking%3A+Benchmark+and+baseline&rft.jtitle=Pattern+recognition&rft.au=Li%2C+Chenglong&rft.au=Liang%2C+Xinyan&rft.au=Lu%2C+Yijuan&rft.au=Zhao%2C+Nan&rft.date=2019-12-01&rft.issn=0031-3203&rft.volume=96&rft.spage=106977&rft_id=info:doi/10.1016%2Fj.patcog.2019.106977&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2019_106977 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |