RGB-T object tracking: Benchmark and baseline

•A large-scale RGB-T dataset is contributed to online RGB-T object tracking. The benchmark with a dozen of baseline trackers and 5 evaluation metrics will be open to public.•A novel graph-based learning approach is proposed to learn robust RGB-T object feature representations.•A L1-optimization base...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 96; p. 106977
Main Authors Li, Chenglong, Liang, Xinyan, Lu, Yijuan, Zhao, Nan, Tang, Jin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A large-scale RGB-T dataset is contributed to online RGB-T object tracking. The benchmark with a dozen of baseline trackers and 5 evaluation metrics will be open to public.•A novel graph-based learning approach is proposed to learn robust RGB-T object feature representations.•A L1-optimization based sparse learning algorithm is proposed to mitigate the noises of initial weights.•Extensive experiments are conducted on the large-scale benchmark dataset, and we provide new insights and potential future research directions for RGB-T object tracking. RGB-Thermal (RGB-T) object tracking receives more and more attention due to the strongly complementary benefits of thermal information to visible data. However, RGB-T research is limited by lacking a comprehensive evaluation platform. In this paper, we propose a large-scale video benchmark dataset for RGB-T tracking. It has three major advantages over existing ones: 1) Its size is sufficiently large for large-scale performance evaluation (total number of frames: 234K, maximum number of frames per sequence: 8K). 2) The alignment between RGB-T sequence pairs is highly accurate, which does not need pre- or post-processing. 3) The occlusion levels are annotated for occlusion-sensitive performance analysis of different tracking algorithms. Moreover, we propose a novel graph-based approach to learn a robust object representation for RGB-T tracking. In particular, the tracked object is represented with a graph with image patches as nodes. Given initial weights of nodes, this graph including graph structure, node weights and edge weights is dynamically learned in a unified optimization framework. Extensive experiments on the large-scale dataset are executed to demonstrate the effectiveness of the proposed tracker against other state-of-the-art tracking methods. We also provide new insights and potential research directions to the field of RGB-T object tracking.
AbstractList •A large-scale RGB-T dataset is contributed to online RGB-T object tracking. The benchmark with a dozen of baseline trackers and 5 evaluation metrics will be open to public.•A novel graph-based learning approach is proposed to learn robust RGB-T object feature representations.•A L1-optimization based sparse learning algorithm is proposed to mitigate the noises of initial weights.•Extensive experiments are conducted on the large-scale benchmark dataset, and we provide new insights and potential future research directions for RGB-T object tracking. RGB-Thermal (RGB-T) object tracking receives more and more attention due to the strongly complementary benefits of thermal information to visible data. However, RGB-T research is limited by lacking a comprehensive evaluation platform. In this paper, we propose a large-scale video benchmark dataset for RGB-T tracking. It has three major advantages over existing ones: 1) Its size is sufficiently large for large-scale performance evaluation (total number of frames: 234K, maximum number of frames per sequence: 8K). 2) The alignment between RGB-T sequence pairs is highly accurate, which does not need pre- or post-processing. 3) The occlusion levels are annotated for occlusion-sensitive performance analysis of different tracking algorithms. Moreover, we propose a novel graph-based approach to learn a robust object representation for RGB-T tracking. In particular, the tracked object is represented with a graph with image patches as nodes. Given initial weights of nodes, this graph including graph structure, node weights and edge weights is dynamically learned in a unified optimization framework. Extensive experiments on the large-scale dataset are executed to demonstrate the effectiveness of the proposed tracker against other state-of-the-art tracking methods. We also provide new insights and potential research directions to the field of RGB-T object tracking.
ArticleNumber 106977
Author Zhao, Nan
Liang, Xinyan
Lu, Yijuan
Tang, Jin
Li, Chenglong
Author_xml – sequence: 1
  givenname: Chenglong
  surname: Li
  fullname: Li, Chenglong
  organization: School of Computer Science and Technology, Anhui University, Hefei 230601, China
– sequence: 2
  givenname: Xinyan
  surname: Liang
  fullname: Liang, Xinyan
  organization: School of Computer Science and Technology, Anhui University, Hefei 230601, China
– sequence: 3
  givenname: Yijuan
  surname: Lu
  fullname: Lu, Yijuan
  email: lu@txstate.edu
  organization: Texas State University, San Marcos, USA
– sequence: 4
  givenname: Nan
  surname: Zhao
  fullname: Zhao, Nan
  organization: School of Computer Science and Technology, Anhui University, Hefei 230601, China
– sequence: 5
  givenname: Jin
  surname: Tang
  fullname: Tang, Jin
  email: tangjin@ahu.edu.cn
  organization: School of Computer Science and Technology, Anhui University, Hefei 230601, China
BookMark eNqFkM1KAzEURoNUsK2-gYt5gdT8NEmnC8EWrUJBkO5DJrmpmdZMSQbBtzdlXLnQ1YV7OR_3fBM0il0EhG4pmVFC5V07O5nedvsZI7QuK1krdYHGdKE4FnTORmhMCKeYM8Kv0CTnlhCqymGM8NtmhXdV17Rg-6pPxh5C3C-rFUT7_mHSoTLRVY3JcAwRrtGlN8cMNz9zinZPj7v1M96-bl7WD1tsOZE9ZgKgBmmVZ8YLxcmcCykZh7oRUjTCGOe4EgvnrfXUmwJ5V0uvlKRAGJ-i5RBrU5dzAq9t6E0fulgeDEdNiT5761YP3vrsrQfvAs9_wacUisnXf9j9gEHx-gyQdLahlAAupFKNdl34O-AbWaR1DA
CitedBy_id crossref_primary_10_1016_j_inffus_2021_02_023
crossref_primary_10_1016_j_infrared_2023_105077
crossref_primary_10_1007_s11432_021_3518_y
crossref_primary_10_1109_TCSVT_2019_2951621
crossref_primary_10_1109_TIM_2024_3436098
crossref_primary_10_3390_app131910891
crossref_primary_10_1109_TGRS_2025_3540945
crossref_primary_10_3390_s21175800
crossref_primary_10_1109_TCSVT_2020_2980853
crossref_primary_10_1109_TIP_2021_3130533
crossref_primary_10_1109_TIP_2021_3125504
crossref_primary_10_1049_ipr2_12861
crossref_primary_10_1016_j_inffus_2024_102246
crossref_primary_10_1109_TITS_2024_3512551
crossref_primary_10_1109_TGRS_2024_3376819
crossref_primary_10_1007_s11760_023_02953_w
crossref_primary_10_1007_s11276_024_03716_2
crossref_primary_10_1109_TIM_2023_3338701
crossref_primary_10_3788_IRLA20240260
crossref_primary_10_3788_LOP220929
crossref_primary_10_1016_j_neucom_2024_128274
crossref_primary_10_1109_JSEN_2024_3370144
crossref_primary_10_1007_s44196_023_00360_0
crossref_primary_10_3390_s23073410
crossref_primary_10_1109_JSEN_2024_3506929
crossref_primary_10_1117_1_JEI_31_3_033043
crossref_primary_10_23919_JSEE_2023_000168
crossref_primary_10_1016_j_patcog_2024_110996
crossref_primary_10_1142_S0218126622500414
crossref_primary_10_3390_electronics13091697
crossref_primary_10_1109_TGRS_2023_3349282
crossref_primary_10_1109_TPAMI_2023_3268209
crossref_primary_10_1016_j_inffus_2023_101881
crossref_primary_10_1016_j_image_2023_117027
crossref_primary_10_1016_j_patrec_2022_05_015
crossref_primary_10_1007_s10489_023_04755_6
crossref_primary_10_1007_s11227_023_05329_6
crossref_primary_10_1109_TMM_2023_3310295
crossref_primary_10_1007_s00521_023_09024_8
crossref_primary_10_1007_s11760_024_03658_4
crossref_primary_10_1109_TICPS_2023_3307340
crossref_primary_10_1007_s00138_022_01354_2
crossref_primary_10_1016_j_eswa_2020_113711
crossref_primary_10_1016_j_jvcir_2019_102602
crossref_primary_10_1007_s11063_023_11365_3
crossref_primary_10_1109_TIP_2021_3087341
crossref_primary_10_1016_j_patcog_2024_110648
crossref_primary_10_3390_rs15133252
crossref_primary_10_1109_TMM_2024_3401548
crossref_primary_10_1109_TMM_2020_3008028
crossref_primary_10_1016_j_patcog_2024_110972
crossref_primary_10_1109_TMM_2022_3140929
crossref_primary_10_1109_JSEN_2023_3305501
crossref_primary_10_1007_s11042_023_16418_2
crossref_primary_10_1016_j_neucom_2021_01_057
crossref_primary_10_1049_ipr2_13063
crossref_primary_10_1016_j_infrared_2024_105310
crossref_primary_10_1109_TPAMI_2022_3147974
crossref_primary_10_1007_s12559_023_10158_z
crossref_primary_10_1016_j_jvcir_2020_102881
crossref_primary_10_1016_j_engappai_2023_105919
crossref_primary_10_1109_TGRS_2024_3500036
crossref_primary_10_1155_2021_6711561
crossref_primary_10_1016_j_imavis_2024_105071
crossref_primary_10_1016_j_neucom_2022_02_025
crossref_primary_10_1016_j_patcog_2024_110984
crossref_primary_10_1016_j_inffus_2024_102842
crossref_primary_10_1109_TIP_2024_3393298
crossref_primary_10_1016_j_patcog_2024_110626
crossref_primary_10_1109_TITS_2021_3073046
crossref_primary_10_1007_s11633_020_1262_z
crossref_primary_10_3390_s24154911
crossref_primary_10_1109_TIM_2020_3005230
crossref_primary_10_1155_2021_9127092
crossref_primary_10_1109_TIM_2024_3365162
crossref_primary_10_1007_s11042_023_15237_9
crossref_primary_10_3390_app8112233
crossref_primary_10_1007_s40747_022_00722_9
crossref_primary_10_3390_s20154081
crossref_primary_10_1007_s11263_022_01732_3
crossref_primary_10_1007_s11042_020_10302_z
crossref_primary_10_1016_j_jvcir_2024_104179
crossref_primary_10_1109_TCSVT_2024_3435722
crossref_primary_10_1108_IR_02_2021_0043
crossref_primary_10_1016_j_inffus_2024_102492
crossref_primary_10_1109_TCSVT_2024_3377471
crossref_primary_10_1109_TMM_2022_3171688
crossref_primary_10_1049_ipr2_12427
crossref_primary_10_1109_JSEN_2022_3154657
crossref_primary_10_1016_j_knosys_2024_112860
crossref_primary_10_1007_s00138_022_01312_y
crossref_primary_10_1109_TCSVT_2022_3184840
crossref_primary_10_1364_JOSAA_473908
crossref_primary_10_3390_electronics13132517
crossref_primary_10_1038_s41598_023_39978_7
crossref_primary_10_1109_ACCESS_2024_3442810
crossref_primary_10_1016_j_neucom_2018_06_072
crossref_primary_10_3390_s22197408
crossref_primary_10_1109_TCSVT_2021_3102886
crossref_primary_10_1016_j_infrared_2022_104509
crossref_primary_10_1109_TIP_2023_3256762
crossref_primary_10_1007_s11227_024_06443_9
crossref_primary_10_3390_data6020012
crossref_primary_10_1109_TIM_2024_3351246
crossref_primary_10_1109_TIP_2021_3087412
crossref_primary_10_1109_TITS_2022_3229830
crossref_primary_10_1109_TIP_2024_3371355
crossref_primary_10_1109_TMM_2022_3174341
crossref_primary_10_1109_TCSVT_2024_3391802
crossref_primary_10_1016_j_infrared_2023_104819
crossref_primary_10_3390_electronics11121820
crossref_primary_10_3390_s20144021
crossref_primary_10_1007_s12559_021_09864_3
crossref_primary_10_1109_TCSVT_2021_3072207
crossref_primary_10_1016_j_knosys_2021_107913
crossref_primary_10_1109_TMM_2021_3055362
crossref_primary_10_1007_s00371_021_02131_4
crossref_primary_10_1016_j_inffus_2023_101816
crossref_primary_10_1007_s11263_021_01495_3
crossref_primary_10_1016_j_neucom_2021_08_012
crossref_primary_10_1109_TNNLS_2020_3009373
crossref_primary_10_1007_s11633_021_1292_1
crossref_primary_10_1109_MMUL_2023_3239136
crossref_primary_10_1109_TCSVT_2024_3425455
crossref_primary_10_1109_TIM_2022_3193971
crossref_primary_10_1109_TIP_2019_2959912
crossref_primary_10_1109_TIP_2021_3060862
crossref_primary_10_1007_s11042_023_17721_8
crossref_primary_10_1016_j_cviu_2023_103683
crossref_primary_10_1016_j_engappai_2022_105707
crossref_primary_10_1016_j_patcog_2024_110707
crossref_primary_10_1142_S2301385024500043
crossref_primary_10_1007_s00521_020_05067_3
crossref_primary_10_1117_1_JEI_31_6_063041
crossref_primary_10_1016_j_imavis_2024_105302
crossref_primary_10_1109_TIM_2024_3421435
crossref_primary_10_3390_rs15184467
crossref_primary_10_1016_j_patcog_2022_108745
crossref_primary_10_1007_s10489_023_04741_y
crossref_primary_10_1109_TNNLS_2021_3067107
crossref_primary_10_1109_TCSVT_2023_3345852
crossref_primary_10_1109_JSEN_2023_3234091
crossref_primary_10_1109_TCSVT_2023_3288853
crossref_primary_10_3390_s20020566
crossref_primary_10_3390_math11071646
crossref_primary_10_1109_TNNLS_2023_3236895
crossref_primary_10_1007_s11432_020_3160_5
crossref_primary_10_1007_s41095_023_0345_5
crossref_primary_10_1145_3630100
crossref_primary_10_1109_TIP_2024_3428316
crossref_primary_10_1016_j_knosys_2025_112983
crossref_primary_10_1142_S0218126621503072
crossref_primary_10_1007_s13042_022_01771_9
crossref_primary_10_1109_TMM_2021_3128047
crossref_primary_10_1007_s11263_024_02311_4
crossref_primary_10_1109_TIM_2023_3244817
crossref_primary_10_1016_j_imavis_2024_105330
crossref_primary_10_3390_app13095793
crossref_primary_10_1109_LRA_2023_3303070
crossref_primary_10_1109_JSEN_2020_2968477
crossref_primary_10_1016_j_imavis_2022_104547
crossref_primary_10_1016_j_knosys_2022_108945
crossref_primary_10_1016_j_patcog_2024_111330
crossref_primary_10_1007_s00521_022_07559_w
crossref_primary_10_1007_s11042_024_18141_y
crossref_primary_10_1109_TCSVT_2024_3396289
crossref_primary_10_1145_3678176
crossref_primary_10_3390_s23146609
crossref_primary_10_1109_JSEN_2024_3386772
crossref_primary_10_1117_1_JEI_31_6_063062
crossref_primary_10_1016_j_patcog_2024_110917
crossref_primary_10_1109_TAI_2022_3151307
crossref_primary_10_1007_s13042_024_02420_z
crossref_primary_10_1007_s13042_023_01833_6
crossref_primary_10_1109_TPAMI_2024_3475472
crossref_primary_10_1109_TITS_2023_3268063
crossref_primary_10_1016_j_neucom_2021_08_044
crossref_primary_10_1142_S0218001422510089
crossref_primary_10_3788_AOS231907
crossref_primary_10_3390_rs16101795
crossref_primary_10_3390_drones7090585
crossref_primary_10_1007_s11760_022_02187_2
crossref_primary_10_1109_TCSVT_2024_3494725
crossref_primary_10_1109_ACCESS_2024_3365501
crossref_primary_10_1016_j_neucom_2022_04_032
crossref_primary_10_1109_JSEN_2021_3078455
crossref_primary_10_1109_JSEN_2024_3372991
crossref_primary_10_1109_ACCESS_2022_3226564
crossref_primary_10_1109_TNNLS_2022_3157594
crossref_primary_10_1109_TNNLS_2022_3161969
crossref_primary_10_1016_j_inffus_2025_102941
crossref_primary_10_3390_electronics13234721
crossref_primary_10_1016_j_inffus_2025_102940
crossref_primary_10_1109_TIM_2023_3325520
crossref_primary_10_1109_LSP_2023_3295758
crossref_primary_10_1016_j_neucom_2024_128908
crossref_primary_10_1109_TIP_2020_2975984
crossref_primary_10_1109_TIV_2020_2980735
crossref_primary_10_1016_j_engappai_2023_107273
crossref_primary_10_1145_3698399
crossref_primary_10_1155_2022_9669142
crossref_primary_10_1016_j_inffus_2025_103109
crossref_primary_10_1109_TPAMI_2023_3261282
crossref_primary_10_1109_JSEN_2023_3295473
crossref_primary_10_1177_1088467X241308764
crossref_primary_10_1016_j_inffus_2024_102531
crossref_primary_10_1016_j_inffus_2021_02_005
crossref_primary_10_1016_j_jvcir_2023_103882
crossref_primary_10_1109_TCSVT_2024_3352573
crossref_primary_10_3390_info13020084
crossref_primary_10_1109_JSEN_2023_3244834
crossref_primary_10_1109_LGRS_2023_3259583
crossref_primary_10_1109_TCSVT_2021_3067997
crossref_primary_10_1016_j_knosys_2023_110683
crossref_primary_10_1109_TITS_2021_3103961
crossref_primary_10_1109_TCSVT_2021_3076466
crossref_primary_10_1016_j_neucom_2022_04_017
crossref_primary_10_1109_LSP_2023_3316021
crossref_primary_10_1016_j_patcog_2023_109951
crossref_primary_10_3390_s20020393
crossref_primary_10_1016_j_neucom_2023_126329
crossref_primary_10_1007_s12559_020_09727_3
crossref_primary_10_1016_j_patcog_2024_110689
crossref_primary_10_3390_s20071922
crossref_primary_10_1016_j_neucom_2024_127959
crossref_primary_10_1109_TIM_2023_3282668
crossref_primary_10_1109_TIV_2020_2991955
Cites_doi 10.1016/j.patcog.2018.10.005
10.1137/120887795
10.1016/j.infrared.2014.02.005
10.1016/j.cviu.2006.06.010
10.1109/TPAMI.2012.88
10.1016/j.patcog.2016.01.033
10.1109/TIE.2019.2898618
10.1109/TIP.2015.2482905
10.1016/j.patcog.2017.06.015
10.1109/TSMC.2016.2627052
10.1109/TIP.2016.2614135
10.1007/s11432-011-4536-9
10.1016/j.cviu.2011.10.006
10.1109/TPAMI.2015.2417577
10.1109/TIP.2019.2893066
10.1016/j.patcog.2017.11.007
10.1109/TPAMI.2013.230
10.1109/TPAMI.2014.2345390
10.1109/TPAMI.2014.2388226
10.1016/j.patcog.2018.05.017
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2019.106977
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2019_106977
S0031320319302808
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-25ee9e6c7f2af57304356623e9b565b5aadd3758dfccf1fa306fd96f7761e023
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Apr 24 23:07:49 EDT 2025
Tue Jul 01 02:36:29 EDT 2025
Fri Feb 23 02:25:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Benchmark dataset
Visual tracking
Sparse learning
Graph representation
Information fusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-25ee9e6c7f2af57304356623e9b565b5aadd3758dfccf1fa306fd96f7761e023
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2019_106977
crossref_primary_10_1016_j_patcog_2019_106977
elsevier_sciencedirect_doi_10_1016_j_patcog_2019_106977
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Valmadre, Bertinetto, Henriques, Vedaldi, Torr (bib0040) 2017
Danelljan, Robinson, Khan, Felsberg (bib0039) 2016
Portmann, Lynen, Chli, Siegwart (bib0023) 2014
Danelljan, Hager, Khan, Felsberg (bib0041) 2014
Smeulders, Chu, Cucchiara, Calderara, Dehghan, Shah (bib0016) 2014; 36
Li, Cheng, Hu, Liu, Tang, Lin (bib0001) 2016; 25
Nam, Han (bib0050) 2016
Lan, Ye, Shao, Zhong (bib0032) 2019
Li, Lin, Zuo, Tang, Yang (bib0037) 2019
Zhang, Ma, Sclaroff (bib0045) 2014
et al. (bib0019) 2016
Torabi, Masse, Bilodeau (bib0003) 2012; 116
Henriques, Caseiro, Martins, Batista (bib0046) 2015; 37
Lu, Chen, Li (bib0034) 2019; 87
Li, Wang, Wang, Lu (bib0035) 2018; 76
Zhang, Gonzalez-Garcia, van de Weijer, Danelljan, Khan (bib0028) 2019
Liang, Blasch, Ling (bib0020) 2015; 24
Lukezic, Vojir, Cehovin, Matas, Kristan (bib0042) 2017
Felsberg, Kristan, Matas (bib0025) 2016
Yin, Zhu, Yuan, Xue (bib0004) 2017; 71
Wu, Blasch, Chen, Bai, Ling (bib0030) 2011
Tang, Feng (bib0049) 2015
Li, Sun, Wang, Zhang, Tang (bib0029) 2017; 47
Xu, Yin (bib0048) 2013; 6
Li, Lin, Wu, Yang, Yan (bib0021) 2016; 38
Guo (bib0012) 2015
Danelljan, Hager, Shahbaz Khan, Felsberg (bib0043) 2015
Zhang, Zhang, Jiao, Li, Hou (bib0013) 2016; 59
Li, Zhu, Huang, Tang, Wang (bib0008) 2018
Bilodeau, Torabi, et al. (bib0027) 2014; 64
Wu, Fuller, Theriault, Betke (bib0024) 2014
Wu, Lim, Yang (bib0017) 2013
Wu, Lim, Yang (bib0018) 2015; 37
Davis, Sharma (bib0002) 2007; 106
Ye, Ma (bib0009) 2019
Liu, Sun (bib0031) 2012; 55
Zhang, Li, Song, Liu, Lian (bib0033) 2018; 83
Tsochantaridis, Joachims, Hofmann, Altun (bib0006) 2005; 6
Li, Zhao, Lu, Zhu, Tang (bib0026) 2017
Davis, Keck (bib0022) 2005
Danelljan, Bhat, Khan, Felsberg (bib0038) 2017
Hwang, Park, Kim, et al. (bib0005) 2015
Liu, Lin, Yan, Sun, Yu, Ma (bib0047) 2013; 35
Li, Zhu (bib0044) 2014
Lin, Liu, Su (bib0015) 2011
Yan, Wang (bib0014) 2009
Kim, Lee, Sim, Kim (bib0007) 2015
Ye, Li, Ma, Zheng, Yuen (bib0010) 2019; 28
Li, Lin, Zuo, Tang (bib0011) 2017
Hare, Saffari, Torr (bib0036) 2011
Tang (10.1016/j.patcog.2019.106977_bib0049) 2015
Wu (10.1016/j.patcog.2019.106977_bib0030) 2011
Xu (10.1016/j.patcog.2019.106977_bib0048) 2013; 6
Wu (10.1016/j.patcog.2019.106977_bib0017) 2013
Zhang (10.1016/j.patcog.2019.106977_sbref0027) 2019
Hwang (10.1016/j.patcog.2019.106977_bib0005) 2015
Smeulders (10.1016/j.patcog.2019.106977_bib0016) 2014; 36
Lin (10.1016/j.patcog.2019.106977_bib0015) 2011
Ye (10.1016/j.patcog.2019.106977_bib0009) 2019
Valmadre (10.1016/j.patcog.2019.106977_bib0040) 2017
Li (10.1016/j.patcog.2019.106977_bib0029) 2017; 47
Lu (10.1016/j.patcog.2019.106977_bib0034) 2019; 87
Zhang (10.1016/j.patcog.2019.106977_bib0033) 2018; 83
Danelljan (10.1016/j.patcog.2019.106977_bib0038) 2017
Liu (10.1016/j.patcog.2019.106977_bib0031) 2012; 55
Danelljan (10.1016/j.patcog.2019.106977_bib0041) 2014
Zhang (10.1016/j.patcog.2019.106977_bib0045) 2014
Ye (10.1016/j.patcog.2019.106977_bib0010) 2019; 28
Wu (10.1016/j.patcog.2019.106977_bib0018) 2015; 37
Li (10.1016/j.patcog.2019.106977_bib0021) 2016; 38
Li (10.1016/j.patcog.2019.106977_bib0026) 2017
Zhang (10.1016/j.patcog.2019.106977_bib0013) 2016; 59
Davis (10.1016/j.patcog.2019.106977_bib0002) 2007; 106
Li (10.1016/j.patcog.2019.106977_bib0011) 2017
Davis (10.1016/j.patcog.2019.106977_bib0022) 2005
Lukezic (10.1016/j.patcog.2019.106977_bib0042) 2017
Torabi (10.1016/j.patcog.2019.106977_bib0003) 2012; 116
Kim (10.1016/j.patcog.2019.106977_bib0007) 2015
Danelljan (10.1016/j.patcog.2019.106977_bib0039) 2016
Liang (10.1016/j.patcog.2019.106977_bib0020) 2015; 24
Guo (10.1016/j.patcog.2019.106977_bib0012) 2015
Portmann (10.1016/j.patcog.2019.106977_bib0023) 2014
Bilodeau (10.1016/j.patcog.2019.106977_bib0027) 2014; 64
Danelljan (10.1016/j.patcog.2019.106977_bib0043) 2015
Li (10.1016/j.patcog.2019.106977_bib0044) 2014
Hare (10.1016/j.patcog.2019.106977_bib0036) 2011
et al. (10.1016/j.patcog.2019.106977_bib0019) 2016
Yan (10.1016/j.patcog.2019.106977_bib0014) 2009
Li (10.1016/j.patcog.2019.106977_bib0035) 2018; 76
Yin (10.1016/j.patcog.2019.106977_bib0004) 2017; 71
Li (10.1016/j.patcog.2019.106977_bib0001) 2016; 25
Li (10.1016/j.patcog.2019.106977_sbref0036) 2019
Nam (10.1016/j.patcog.2019.106977_bib0050) 2016
Felsberg (10.1016/j.patcog.2019.106977_bib0025) 2016
Lan (10.1016/j.patcog.2019.106977_bib0032) 2019
Henriques (10.1016/j.patcog.2019.106977_bib0046) 2015; 37
Tsochantaridis (10.1016/j.patcog.2019.106977_bib0006) 2005; 6
Wu (10.1016/j.patcog.2019.106977_bib0024) 2014
Liu (10.1016/j.patcog.2019.106977_bib0047) 2013; 35
Li (10.1016/j.patcog.2019.106977_bib0008) 2018
References_xml – year: 2017
  ident: bib0026
  article-title: Weighted sparse representation regularized graph learning for RGB-T object tracking
  publication-title: Proceedings of ACM International Conference on Multimedia
– volume: 71
  start-page: 278
  year: 2017
  end-page: 289
  ident: bib0004
  article-title: Sparse representation over discriminative dictionary for stereo matching
  publication-title: Pattern Recognit
– year: 2016
  ident: bib0050
  article-title: Learning multi-domain convolutional neural networks for visual tracking
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– year: 2014
  ident: bib0024
  article-title: A thermal infrared video benchmark for visual analysis
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops
– volume: 76
  start-page: 323
  year: 2018
  end-page: 338
  ident: bib0035
  article-title: Deep visual tracking: review and experimental comparison
  publication-title: Pattern Recognit.
– year: 2017
  ident: bib0011
  article-title: Learning patch-based dynamic graph for visual tracking
  publication-title: Proceedings of AAAI Conference on Artificial Intelligence
– year: 2005
  ident: bib0022
  article-title: A two-stage template approach to person detection in thermal imagery
  publication-title: IEEE Workshops on Application of Computer Vision
– year: 2014
  ident: bib0023
  article-title: People detection and tracking from aerial thermal views
  publication-title: Proceedings of IEEE International Conference on Robotics and Automation
– year: 2015
  ident: bib0005
  article-title: Multispectral pedestrian detection: benchmark dataset and baseline
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– volume: 37
  start-page: 1834
  year: 2015
  end-page: 1848
  ident: bib0018
  article-title: Object tracking benchmark
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– year: 2016
  ident: bib0019
  article-title: The visual object tracking VOT2016 challenge results
  publication-title: Proceedings of European Conference on Computer Vision Workshops
– year: 2015
  ident: bib0049
  article-title: Multi-kernel correlation filter for visual tracking
  publication-title: Proceedings of IEEE International Conference on Computer Vision
– volume: 47
  start-page: 673
  year: 2017
  end-page: 681
  ident: bib0029
  article-title: Grayscale-thermal object tracking via multi-task Laplacian sparse representation
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 37
  start-page: 583
  year: 2015
  end-page: 596
  ident: bib0046
  article-title: High-speed tracking with kernelized correlation filters
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– year: 2011
  ident: bib0030
  article-title: Multiple source data fusion via sparse representation for robust visual tracking
  publication-title: Proceeding of Conference on Information Fusion
– year: 2017
  ident: bib0040
  article-title: End-to-end representation learning for correlation filter based tracking
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– volume: 55
  start-page: 590
  year: 2012
  end-page: 599
  ident: bib0031
  article-title: Fusion tracking in color and infrared images using joint sparse representation
  publication-title: Sci. China Inf. Sci.
– volume: 83
  start-page: 185
  year: 2018
  end-page: 195
  ident: bib0033
  article-title: Visual tracking using spatio-temporally nonlocally regularized correlation filter
  publication-title: Pattern Recognit.
– volume: 87
  start-page: 80
  year: 2019
  end-page: 93
  ident: bib0034
  article-title: Multi attention module for visual tracking
  publication-title: Pattern Recognit.
– volume: 24
  start-page: 5630
  year: 2015
  end-page: 5644
  ident: bib0020
  article-title: Encoding color information for visual tracking: algorithms and benchmark
  publication-title: IEEE Trans. Image Process.
– volume: 59
  start-page: 42
  year: 2016
  end-page: 54
  ident: bib0013
  article-title: Spectral–spatial hyperspectral image ensemble classification via joint sparse representation
  publication-title: Pattern Recognit.
– volume: 106
  start-page: 162
  year: 2007
  end-page: 182
  ident: bib0002
  article-title: Background-subtraction using contour-based fusion of thermal and visible imagery
  publication-title: Comput. Vis. Image Underst.
– year: 2018
  ident: bib0008
  article-title: Cross-modal ranking with soft-consistency and noisy labels for robust RGB-T tracking
  publication-title: Proceedings of European Conference on Computer Vision
– year: 2014
  ident: bib0041
  article-title: Accurate scale estimation for robust visual tracking
  publication-title: Proceeding of British Machine Vision Conference
– year: 2017
  ident: bib0038
  article-title: Eco: efficient convolution operators for tracking
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– year: 2009
  ident: bib0014
  article-title: Semi-supervised learning by sparse representation
  publication-title: Proceedings of the 2009 SIAM International Conference on Data Mining
– volume: 28
  start-page: 2976
  year: 2019
  end-page: 2990
  ident: bib0010
  article-title: Dynamic graph co-matching for unsupervised video-based person re-identification
  publication-title: IEEE Trans. Image Process.
– volume: 6
  start-page: 1758
  year: 2013
  end-page: 1789
  ident: bib0048
  article-title: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion
  publication-title: SIAM J. Imaging Sci.
– year: 2014
  ident: bib0045
  article-title: MEEM: robust tracking via multiple experts using entropy minimization
  publication-title: Proceedings of European Conference on Computer Vision
– year: 2011
  ident: bib0015
  article-title: Linearized alternating direction method with adaptive penalty for low-rank representation
  publication-title: Advances in Neural Information Processing Systems
– volume: 36
  start-page: 1442
  year: 2014
  end-page: 1468
  ident: bib0016
  article-title: Visual tracking: an experimental survey
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– volume: 116
  start-page: 210
  year: 2012
  end-page: 221
  ident: bib0003
  article-title: An iterative integrated framework for thermal-visible image registration, sensor fusion, and people tracking for video surveillance applications
  publication-title: Comput. Vis. Image Underst.
– year: 2015
  ident: bib0007
  article-title: Sowp: Spatially ordered and weighted patch descriptor for visual tracking
  publication-title: Proceedings of IEEE International Conference on Computer Vision
– year: 2019
  ident: bib0009
  article-title: Dynamic label graph matching for unsupervised video re-identification
  publication-title: Proceedings of IEEE International Conference on Computer Vision
– volume: 35
  start-page: 171
  year: 2013
  end-page: 184
  ident: bib0047
  article-title: Robust recovery of subspace structures by low-rank representation
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– year: 2019
  ident: bib0032
  article-title: Learning modality-consistency feature templates: a robust RGB-infrared tracking system
  publication-title: IEEE Trans. Ind. Electron.
– year: 2016
  ident: bib0039
  article-title: Beyond correlation filters: learning continuous convolution operators for visual tracking
  publication-title: Proceedings of European Conference on Computer Vision
– year: 2019
  ident: bib0037
  article-title: Visual tracking via dynamic graph learning
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– year: 2013
  ident: bib0017
  article-title: Online object tracking: a benchmark
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– volume: 25
  start-page: 5743
  year: 2016
  end-page: 5756
  ident: bib0001
  article-title: Learning collaborative sparse representation for grayscale-thermal tracking
  publication-title: IEEE Trans. Image Process.
– year: 2019
  ident: bib0028
  article-title: Synthetic data generation for end-to-end thermal infrared tracking
  publication-title: IEEE Trans. Image Process.
– year: 2014
  ident: bib0044
  article-title: A scale adaptive kernel correlation filter tracker with feature integration
  publication-title: Proceedings of European Conference on Computer Vision
– year: 2016
  ident: bib0025
  article-title: The thermal infrared visual object tracking VOT-TIR2016 challenge results
  publication-title: ECCV
– year: 2015
  ident: bib0043
  article-title: Learning spatially regularized correlation filters for visual tracking
  publication-title: Proceedings of IEEE International Conference on Computer Vision
– volume: 38
  start-page: 335
  year: 2016
  end-page: 349
  ident: bib0021
  article-title: NUS-PRO: a new visual tracking challenge
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– year: 2015
  ident: bib0012
  article-title: Robust subspace segmentation by simultaneously learning data representations and their affinity matrix
  publication-title: Proceedings of International Joint Conferences on Artificial Intelligence
– volume: 6
  start-page: 1453
  year: 2005
  end-page: 1484
  ident: bib0006
  article-title: Large margin methods for structured and interdependent output variables
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: bib0042
  article-title: Discriminative correlation filter with channel and spatial reliability
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– year: 2011
  ident: bib0036
  article-title: Struck: structured output tracking with kernels
  publication-title: Proceedings of IEEE International Conference on Computer Vision
– volume: 64
  start-page: 79
  year: 2014
  end-page: 86
  ident: bib0027
  article-title: Thermal-visible registration of human silhouettes: a similarity measure performance evaluation
  publication-title: Infrared Phys. Technol.
– year: 2014
  ident: 10.1016/j.patcog.2019.106977_bib0041
  article-title: Accurate scale estimation for robust visual tracking
– year: 2016
  ident: 10.1016/j.patcog.2019.106977_bib0019
  article-title: The visual object tracking VOT2016 challenge results
– year: 2011
  ident: 10.1016/j.patcog.2019.106977_bib0030
  article-title: Multiple source data fusion via sparse representation for robust visual tracking
– volume: 87
  start-page: 80
  year: 2019
  ident: 10.1016/j.patcog.2019.106977_bib0034
  article-title: Multi attention module for visual tracking
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.10.005
– year: 2019
  ident: 10.1016/j.patcog.2019.106977_sbref0036
  article-title: Visual tracking via dynamic graph learning
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– year: 2017
  ident: 10.1016/j.patcog.2019.106977_bib0038
  article-title: Eco: efficient convolution operators for tracking
– volume: 6
  start-page: 1758
  issue: 3
  year: 2013
  ident: 10.1016/j.patcog.2019.106977_bib0048
  article-title: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120887795
– year: 2018
  ident: 10.1016/j.patcog.2019.106977_bib0008
  article-title: Cross-modal ranking with soft-consistency and noisy labels for robust RGB-T tracking
– year: 2011
  ident: 10.1016/j.patcog.2019.106977_bib0015
  article-title: Linearized alternating direction method with adaptive penalty for low-rank representation
– volume: 64
  start-page: 79
  year: 2014
  ident: 10.1016/j.patcog.2019.106977_bib0027
  article-title: Thermal-visible registration of human silhouettes: a similarity measure performance evaluation
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2014.02.005
– year: 2014
  ident: 10.1016/j.patcog.2019.106977_bib0044
  article-title: A scale adaptive kernel correlation filter tracker with feature integration
– year: 2017
  ident: 10.1016/j.patcog.2019.106977_bib0026
  article-title: Weighted sparse representation regularized graph learning for RGB-T object tracking
– volume: 106
  start-page: 162
  issue: 2
  year: 2007
  ident: 10.1016/j.patcog.2019.106977_bib0002
  article-title: Background-subtraction using contour-based fusion of thermal and visible imagery
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2006.06.010
– volume: 35
  start-page: 171
  issue: 1
  year: 2013
  ident: 10.1016/j.patcog.2019.106977_bib0047
  article-title: Robust recovery of subspace structures by low-rank representation
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2012.88
– year: 2009
  ident: 10.1016/j.patcog.2019.106977_bib0014
  article-title: Semi-supervised learning by sparse representation
– volume: 59
  start-page: 42
  year: 2016
  ident: 10.1016/j.patcog.2019.106977_bib0013
  article-title: Spectral–spatial hyperspectral image ensemble classification via joint sparse representation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.01.033
– year: 2014
  ident: 10.1016/j.patcog.2019.106977_bib0023
  article-title: People detection and tracking from aerial thermal views
– year: 2019
  ident: 10.1016/j.patcog.2019.106977_bib0032
  article-title: Learning modality-consistency feature templates: a robust RGB-infrared tracking system
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2898618
– year: 2015
  ident: 10.1016/j.patcog.2019.106977_bib0005
  article-title: Multispectral pedestrian detection: benchmark dataset and baseline
– volume: 24
  start-page: 5630
  issue: 12
  year: 2015
  ident: 10.1016/j.patcog.2019.106977_bib0020
  article-title: Encoding color information for visual tracking: algorithms and benchmark
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2482905
– year: 2014
  ident: 10.1016/j.patcog.2019.106977_bib0045
  article-title: MEEM: robust tracking via multiple experts using entropy minimization
– year: 2015
  ident: 10.1016/j.patcog.2019.106977_bib0012
  article-title: Robust subspace segmentation by simultaneously learning data representations and their affinity matrix
– year: 2016
  ident: 10.1016/j.patcog.2019.106977_bib0050
  article-title: Learning multi-domain convolutional neural networks for visual tracking
– volume: 71
  start-page: 278
  year: 2017
  ident: 10.1016/j.patcog.2019.106977_bib0004
  article-title: Sparse representation over discriminative dictionary for stereo matching
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.06.015
– year: 2011
  ident: 10.1016/j.patcog.2019.106977_bib0036
  article-title: Struck: structured output tracking with kernels
– volume: 47
  start-page: 673
  issue: 4
  year: 2017
  ident: 10.1016/j.patcog.2019.106977_bib0029
  article-title: Grayscale-thermal object tracking via multi-task Laplacian sparse representation
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.2016.2627052
– year: 2015
  ident: 10.1016/j.patcog.2019.106977_bib0049
  article-title: Multi-kernel correlation filter for visual tracking
– volume: 25
  start-page: 5743
  issue: 12
  year: 2016
  ident: 10.1016/j.patcog.2019.106977_bib0001
  article-title: Learning collaborative sparse representation for grayscale-thermal tracking
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2614135
– year: 2015
  ident: 10.1016/j.patcog.2019.106977_bib0007
  article-title: Sowp: Spatially ordered and weighted patch descriptor for visual tracking
– volume: 55
  start-page: 590
  issue: 3
  year: 2012
  ident: 10.1016/j.patcog.2019.106977_bib0031
  article-title: Fusion tracking in color and infrared images using joint sparse representation
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-011-4536-9
– volume: 116
  start-page: 210
  issue: 2
  year: 2012
  ident: 10.1016/j.patcog.2019.106977_bib0003
  article-title: An iterative integrated framework for thermal-visible image registration, sensor fusion, and people tracking for video surveillance applications
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2011.10.006
– year: 2005
  ident: 10.1016/j.patcog.2019.106977_bib0022
  article-title: A two-stage template approach to person detection in thermal imagery
– volume: 38
  start-page: 335
  issue: 2
  year: 2016
  ident: 10.1016/j.patcog.2019.106977_bib0021
  article-title: NUS-PRO: a new visual tracking challenge
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2015.2417577
– year: 2014
  ident: 10.1016/j.patcog.2019.106977_bib0024
  article-title: A thermal infrared video benchmark for visual analysis
– year: 2019
  ident: 10.1016/j.patcog.2019.106977_bib0009
  article-title: Dynamic label graph matching for unsupervised video re-identification
– year: 2017
  ident: 10.1016/j.patcog.2019.106977_bib0040
  article-title: End-to-end representation learning for correlation filter based tracking
– volume: 6
  start-page: 1453
  year: 2005
  ident: 10.1016/j.patcog.2019.106977_bib0006
  article-title: Large margin methods for structured and interdependent output variables
  publication-title: J. Mach. Learn. Res.
– year: 2013
  ident: 10.1016/j.patcog.2019.106977_bib0017
  article-title: Online object tracking: a benchmark
– volume: 28
  start-page: 2976
  issue: 6
  year: 2019
  ident: 10.1016/j.patcog.2019.106977_bib0010
  article-title: Dynamic graph co-matching for unsupervised video-based person re-identification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2893066
– year: 2016
  ident: 10.1016/j.patcog.2019.106977_bib0025
  article-title: The thermal infrared visual object tracking VOT-TIR2016 challenge results
– year: 2015
  ident: 10.1016/j.patcog.2019.106977_bib0043
  article-title: Learning spatially regularized correlation filters for visual tracking
– volume: 76
  start-page: 323
  year: 2018
  ident: 10.1016/j.patcog.2019.106977_bib0035
  article-title: Deep visual tracking: review and experimental comparison
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.11.007
– year: 2017
  ident: 10.1016/j.patcog.2019.106977_bib0042
  article-title: Discriminative correlation filter with channel and spatial reliability
– year: 2017
  ident: 10.1016/j.patcog.2019.106977_bib0011
  article-title: Learning patch-based dynamic graph for visual tracking
– volume: 36
  start-page: 1442
  issue: 7
  year: 2014
  ident: 10.1016/j.patcog.2019.106977_bib0016
  article-title: Visual tracking: an experimental survey
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2013.230
– year: 2016
  ident: 10.1016/j.patcog.2019.106977_bib0039
  article-title: Beyond correlation filters: learning continuous convolution operators for visual tracking
– volume: 37
  start-page: 583
  issue: 3
  year: 2015
  ident: 10.1016/j.patcog.2019.106977_bib0046
  article-title: High-speed tracking with kernelized correlation filters
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2014.2345390
– volume: 37
  start-page: 1834
  issue: 9
  year: 2015
  ident: 10.1016/j.patcog.2019.106977_bib0018
  article-title: Object tracking benchmark
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2014.2388226
– year: 2019
  ident: 10.1016/j.patcog.2019.106977_sbref0027
  article-title: Synthetic data generation for end-to-end thermal infrared tracking
  publication-title: IEEE Trans. Image Process.
– volume: 83
  start-page: 185
  year: 2018
  ident: 10.1016/j.patcog.2019.106977_bib0033
  article-title: Visual tracking using spatio-temporally nonlocally regularized correlation filter
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.05.017
SSID ssj0017142
Score 2.6954522
Snippet •A large-scale RGB-T dataset is contributed to online RGB-T object tracking. The benchmark with a dozen of baseline trackers and 5 evaluation metrics will be...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106977
SubjectTerms Benchmark dataset
Graph representation
Information fusion
Sparse learning
Visual tracking
Title RGB-T object tracking: Benchmark and baseline
URI https://dx.doi.org/10.1016/j.patcog.2019.106977
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YPXteS1m_XWFmtV7EEq9Bb2qdWalhKv_nZnmqQoiILHbHYgmex-85Gdb4aQc2HDNFVGMGsjz2KjEyx5yxmXwD7w4CZNUO98P-LDx_h2kkwapF9rYTCtssL-EtNXaF2NdCpvdhbTKWp8sewgqnAiPB9EwW8cC1zlFx_rNA_s711WDI8ChrNr-dwqx2sBcDd_wgQvCUMcuNDP4elLyBnskK2KK9Ju-Ti7pOHyPbJd92Gg1bbcJ-zhusfGdK7xnwotlsrg_-9L2oPbz29q-UpVbinGK-SUB2Q8uBr3h6xqg8AM8PmChYlz0nEjfKh8AjsSGA4H1uKkBjamEwUQFQHtt94YH3gFRt5K7oXggYOQfEia-Tx3R4R6IZ3WIpAu0HEaOsVTqSOLSiwrI5u2SFS_fGaqEuHYqWKW1blgL1npsgxdlpUuaxG2tlqUJTL-mC9qv2bfPnUGKP6r5fG_LU_IJl6VeSinpFks390ZsIlCt1fLpU02ujd3w9EnsxPHtQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDI6mcYALb8R45gDHMLVdH0HiwICxsccBFWm3qGkSGI9uGkWICz-KX4i9thNICCSkXZNaalzX_pJ8tgk58JUdBFHsM6Ucw2qxdLHkrcc8DugDL24CF_Oduz2veVO76rv9EvkocmGQVpn7_synT7x1PlLNtVkdDQaY44tlBzELx8H7wSBnVrb12yvs255PWufwkQ9tu3ERnjVZ3lqAxYCRU2a7WnPtxb6xI-OClQNq8AAJaC4B4Ug3gt_eASitTBwby0QgZBT3jA-7fj0pdgBuf64G3gK7Jhy9T2kl2E88q1DuWAzfrkjXm3DKRuBeh7dIKOMw5AH2-jkcfglxjWWymGNTepotf4WUdLJKloq-DzR3A2uEXV_WWUiHEs9waDqOYjxvP6Z1mL57isYPNEoUxfiIGHadhLPQzQYpJ8NEbxJqfK6l9C2uLVkLbB15AZeOwswvxR0VVIhTLF7EeUly7IzxKAru2b3IVCZQZSJTWYWwqdQoK8nxx_N-oVfxzbQERI1fJbf-LblP5pthtyM6rV57myzgTMaB2SHldPyidwHJpHJvYjqUiBmb6ieYxwNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RGB-T+object+tracking%3A+Benchmark+and+baseline&rft.jtitle=Pattern+recognition&rft.au=Li%2C+Chenglong&rft.au=Liang%2C+Xinyan&rft.au=Lu%2C+Yijuan&rft.au=Zhao%2C+Nan&rft.date=2019-12-01&rft.issn=0031-3203&rft.volume=96&rft.spage=106977&rft_id=info:doi/10.1016%2Fj.patcog.2019.106977&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2019_106977
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon