A learning-based approach for video streaming over fluctuating networks with limited playback buffers

In recent times, the surge in applications like social networking and online learning platforms has led to a substantial rise in on-demand video streaming, thus ensuring a seamless user experience holds paramount importance, particularly given the dynamic nature of network conditions. Moreover, nume...

Full description

Saved in:
Bibliographic Details
Published inComputer communications Vol. 214; pp. 113 - 122
Main Authors Li, Weihe, Huang, Jiawei, Su, Qichen, Jiang, Wanchun, Wang, Jianxin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent times, the surge in applications like social networking and online learning platforms has led to a substantial rise in on-demand video streaming, thus ensuring a seamless user experience holds paramount importance, particularly given the dynamic nature of network conditions. Moreover, numerous service providers are embracing smaller buffer sizes, aiming to reduce bandwidth inefficiencies due to the possibility of users ending video sessions prematurely. However, this transition presents a significant challenge for conventional adaptive bitrate (ABR) algorithms, as they grapple with the task of harmonizing low stalling time, high playback bitrate, and the constraint of a minimized buffer size. In this study, we introduce a novel ABR approach, L2-ABR, which leverages self-play reinforcement learning to address these complexities. Unlike conventional reward-engineering learning-based ABR strategies that update gradients to maximize linear reward functions, L2-ABR treats video streaming as a fundamental objective and trains neural networks (NNs) with explicit requirements tailored to video streaming with small playback buffers. Through an extensive series of trace-driven experiments, we showcase that L2-ABR outperforms existing methods, effectively striking a balance between buffer management and network scenarios without inducing excessive buffer under-runs or overflows. Compared to existing ABR schemes, our method reduces undesirable buffer events, including rebuffering events and buffer full events, while improving the average QoE by up to 71.88% and 75.25% over the HSDPA and FCC datasets, respectively.
AbstractList In recent times, the surge in applications like social networking and online learning platforms has led to a substantial rise in on-demand video streaming, thus ensuring a seamless user experience holds paramount importance, particularly given the dynamic nature of network conditions. Moreover, numerous service providers are embracing smaller buffer sizes, aiming to reduce bandwidth inefficiencies due to the possibility of users ending video sessions prematurely. However, this transition presents a significant challenge for conventional adaptive bitrate (ABR) algorithms, as they grapple with the task of harmonizing low stalling time, high playback bitrate, and the constraint of a minimized buffer size. In this study, we introduce a novel ABR approach, L2-ABR, which leverages self-play reinforcement learning to address these complexities. Unlike conventional reward-engineering learning-based ABR strategies that update gradients to maximize linear reward functions, L2-ABR treats video streaming as a fundamental objective and trains neural networks (NNs) with explicit requirements tailored to video streaming with small playback buffers. Through an extensive series of trace-driven experiments, we showcase that L2-ABR outperforms existing methods, effectively striking a balance between buffer management and network scenarios without inducing excessive buffer under-runs or overflows. Compared to existing ABR schemes, our method reduces undesirable buffer events, including rebuffering events and buffer full events, while improving the average QoE by up to 71.88% and 75.25% over the HSDPA and FCC datasets, respectively.
Author Huang, Jiawei
Li, Weihe
Su, Qichen
Jiang, Wanchun
Wang, Jianxin
Author_xml – sequence: 1
  givenname: Weihe
  surname: Li
  fullname: Li, Weihe
  email: weiheleecsu@gmail.com
  organization: University of Edinburgh, Edinburgh, United Kingdom
– sequence: 2
  givenname: Jiawei
  orcidid: 0000-0002-7578-4490
  surname: Huang
  fullname: Huang, Jiawei
  email: jiaweihuang@csu.edu.cn
  organization: Central South University, Changsha, China
– sequence: 3
  givenname: Qichen
  surname: Su
  fullname: Su, Qichen
  email: qichensu.csu@gmail.com
  organization: Central South University, Changsha, China
– sequence: 4
  givenname: Wanchun
  surname: Jiang
  fullname: Jiang, Wanchun
  email: jiangwc@csu.edu.cn
  organization: Central South University, Changsha, China
– sequence: 5
  givenname: Jianxin
  surname: Wang
  fullname: Wang, Jianxin
  email: wangjx@csu.edu.cn
  organization: Central South University, Changsha, China
BookMark eNqFkMtqwzAQRbVIoUnaP-hCP2BXD7_SRSGEviDQTbsWY3nUKLEtIykJ-fs6pKsuWmZgQOhcZs6MTHrXIyF3nKWc8eJ-m2rXjZ0KJmTKecpEOSFTxjOWyKLIrskshC1jLCtLOSW4pC2C723_ldQQsKEwDN6B3lDjPD3YBh0N0SN04xfqDuipafc67iGeH3qMR-d3gR5t3NDWdjaOGUMLpxr0jtZ7Y9CHG3JloA14-zPn5PP56WP1mqzfX95Wy3WiJStiInhViLF0bkqRgeGImlewkPUCQDbcCF1pyPOmlryUGdQZQ8RFJU0pBeQg5-Thkqu9C8GjUdrGcVHXRw-2VZypsyS1VRdJ6ixJca5GSSOc_YIHbzvwp_-wxwuG42EHi14FbbHX2FiPOqrG2b8DvgEkRYpY
CitedBy_id crossref_primary_10_1007_s10586_024_04315_8
Cites_doi 10.1016/j.jnca.2017.07.009
10.1016/j.comcom.2016.08.005
10.1145/3230543.3230558
10.1109/INFOCOM.2016.7524428
10.1016/j.comnet.2016.06.006
10.1109/TMM.2022.3147667
10.1016/j.jnca.2022.103581
10.1016/j.comnet.2022.109064
10.1109/GLOBECOM42002.2020.9322459
10.1126/science.aar6404
10.1145/3339825.3394936
10.1145/3281411.3281439
10.1016/j.comcom.2022.03.003
10.1109/ICNP.2018.00026
10.1109/TMM.2019.2962313
10.1145/2619239.2626296
10.1109/MMUL.2011.71
10.1145/3343031.3350866
10.1016/j.comnet.2022.109470
10.1145/3386290.3396930
10.1145/3534088.3534348
10.1109/INFOCOM53939.2023.10229002
10.1016/j.comnet.2014.08.019
10.1109/JSAC.2022.3180804
10.1145/2987443.2987472
10.1145/3488722
10.1109/TMM.2019.2945167
10.1145/3419394.3423629
10.1145/3123266.3123390
10.1145/3304109.3306219
10.1109/TBC.2022.3171131
10.1109/INFOCOM41043.2020.9155411
10.1145/3098822.3098843
10.1016/j.comcom.2017.12.010
10.1109/ICME.2019.00289
10.1016/j.jnca.2022.103451
10.1109/TMC.2020.3048826
10.1109/ICME52920.2022.9859610
10.1109/TMM.2021.3063620
10.1145/3452296.3472923
10.1016/j.comcom.2014.11.005
10.1145/2785956.2787486
10.1145/3343031.3351014
10.1109/JSAC.2014.140405
10.1109/ICPR.2010.579
10.1145/2413176.2413189
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.comcom.2023.11.027
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 122
ExternalDocumentID 10_1016_j_comcom_2023_11_027
S0140366423004243
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
WH7
ZMT
~G-
07C
29F
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
F0J
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
TAE
UHS
VH1
VOH
WUQ
XPP
ZY4
ID FETCH-LOGICAL-c306t-21862626c5f724af1eec18a93b9aa3d1f2c8ca55db31734ab40eee983f732a5a3
IEDL.DBID .~1
ISSN 0140-3664
IngestDate Thu Apr 24 22:52:33 EDT 2025
Tue Jul 01 02:43:09 EDT 2025
Sun Apr 06 06:53:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Video streaming
Reinforcement learning
Small playback buffer
Variable networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-21862626c5f724af1eec18a93b9aa3d1f2c8ca55db31734ab40eee983f732a5a3
ORCID 0000-0002-7578-4490
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_comcom_2023_11_027
crossref_primary_10_1016_j_comcom_2023_11_027
elsevier_sciencedirect_doi_10_1016_j_comcom_2023_11_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-15
PublicationDateYYYYMMDD 2024-01-15
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Computer communications
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Huang, Zhou, Zhang, Wu, Sun (b42) 2022; 40
M. Abadi, P. Barham, J. Chen, et al., TensorFlow: A system for large-scale machine learning, in: Proceedings of USENIX OSDI, 2016.
(b32) 2019
F.Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis, K. Winstein, Learning in situ: A Randomized Experiment in Video Streaming, in: Proceedings of USENIX NSDI, 2020.
Huang, Zhang, Sun (b19) 2022; 24
Live streaming market size, share, analysis and forecast 2030
Hwang, Gopalakrishnan, Jana, Lee, Misra, Ramakrishnan, Rubenstein (b5) 2016; 106
Petrangeli, Wu, Wauters, Huysegems, Bostoen, Turck (b7) 2017; 94
Li, Huang, Liu, Jiang, Wang (b21) 2023
Sodagar (b2) 2011; 18
K. Spiteri, R. Urgaonkar, R.K. Sitaraman, BOLA:Near-Optimal Bitrate Adaptation for Online Videos, in: Proceedings of IEEE INFOCOM, 2016.
Li, Huang, Wang, Wu, Liu, Wang (b17) 2023; 25
Ren, Wong, Chan (b28) 2014; 74
T. Huang, C. Zhou, R. Zhang, C. Wu, X. Yao, L. Sun, Stick: A Harmonious Fusion of Buffer-based and Learning-based Approach for Adaptive Streaming, in: Proceedings of IEEE INFOCOM, 2020.
Yuan (b55) 2017
(b33) 2022
P.K. Yadav, A. Shafiei, W.T. Ooi, QUETRA: A Queuing Theory Approach to DASH Rate Adaptation, in: Proceedings of ACM MM, 2017.
Wang, Xu, Ren, Zhou, Wu (b26) 2022; 21
Li, Huang, Lyu, Guo, Jiang, Wang (b27) 2022
X. Yin, A. Jindal, V. Sekar, B. Sinopoli, A Control-Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP, in: Proceedings of ACM SIGCOMM, 2015.
.
H. Mao, R. Netravail, M. Alizadeh, Neural Adaptive Video Streaming with Pensieve, in: Proceedings of ACM SIGCOMM, 2017.
A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang, D. Rybkin, Z. Yang, Z. Mao, F. Qian, Z. Zhang, A Variegated Look at 5G in the Wild: Performance, Power, and QoE Implications, in: Proceedings of ACM SIGCOMM, 2021.
T. Huang, X. Yao, C. Wu, R.X. Zhang, Z. Pang, L. Sun, Tiyuntsong: A Self-Play Reinforcement Learning Approach for ABR Video Streaming, in: Proceedings of IEEE ICME, 2019.
Feng, Sun, Qi, Wang, Liao (b46) 2020; 22
T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous Control with Deep Reinforcement Learning, in: Proceedings of ICLR, 2016.
Li, Zhu, Gahm, Pan, Hu, Begen, Oran (b35) 2014; 32
T. Huang, R. Zhang, L. Sun, Self-play Reinforcement Learning for Video Transmission, in: Proceedings of ACM NOSSDAV, 2020.
D. Yuan, Y. Zhang, W. Zhang, X. Liu, H. Du, Q. Zheng, PRIOR: Deep Reinforced Adaptive Video Streaming with Attention-Based Throughput Prediction, in: Proceedings of ACM NOSSDAV, 2022.
Ye (b52) 2019
Huang, Su, Li, Liu, Zhang, Liu, Zhong, Jiang, Wang (b15) 2023; 18
Ozcelik, Ersoy (b48) 2022; 205
W. Li, J. Huang, S. Wang, S. Liu, J. Wang, DAVS: Dynamic-Chunk Quality Aware Adaptive Video Streaming using Apprenticeship Learning, in: Proceedings of IEEE GLOBECOM, 2020, pp. 1–6.
(b58) 2022
M. Siekkinen, E. Masala, T. Kamarainen, A First Look at Quality of Mobile Live Streaming Experience: The Case of Periscope, in: Proceedings of ACM IMC, 2016.
Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, M. Manohara, Toward a practical perceptual video quality metric
Dao, Vu, Na, Hoang, Do, Cho (b4) 2022; 212
E. Jang, S. Gu, B. Poole, Categorical Reparameterization with Gumbel-Softmax
Silver, Hubert, Schrittwieser (b31) 2018; 362
Xiao, Wang, Chen, Cao, Jiang, Zhang (b61) 2020; 22
T. Huang, C. Zhou, R. Zhang, C. Wu, L. Sun, Buffer Awareness Neural Adaptive Video Streaming for Avoiding Extra Buffer Consumption, in: Proceedings of IEEE INFOCOM, 2023.
A. Hore, D. Ziou, Image Quality Metrics: PSNR vs. SSIM, in: International Conference on Pattern Recognition, 2010.
Y. Qin, S. Hao, K.R. Pattipati, F. Qian, S. Sen, B. Wang, C. Yue, ABR Streaming of VBR-encoded Videos: Characterization, Challenges, and Solutions, in: Proceedings of ACM CoNEXT, 2018.
Afzal, Testoni, Rothenberg, Kolan, Bouazizi (b6) 2023; 212
Ma, Li, Zou, Peng, Zhou, Chai, Jiang, Muntean (b47) 2022; 68
Maia, Yehia, Errico (b9) 2015; 57
Wu, Petrangeli, Huysegems, Bostoen, Turck (b10) 2017; 99
García-Pineda, Segura-García, Felici-Castell (b44) 2018; 117
T.Y. Huang, R. Johari, N. McKeown, M. Trunnell, M. Watson, A Buffer-based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service, in: Proceedings of ACM SIGCOMM, 2014.
A. Narayanan, E. Ramadan, R. Mehta, et al., Lumos5G: Mapping and Predicting Commercial mmWave 5G Throughput, in: Proceedings of ACM IMC, 2020.
(b57) 2022
J. Jiang, V. Sekar, H. Zhang, Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE, in: Proceedings of ACM CoNEXT, 2012.
Ji, Han, Xu, Song, Su (b43) 2023; 220
Agarap (b53) 2018
D. Silhavy, S. Pham, M. Lasak, A. Chen, S. Arbanowski, Low Latency Streaming and Multi DRM with Dash.Js, in: Proceedings of ACM MMSys, 2020.
T. Huang, C. Zhou, R. Zhang, C. Wu, X. Yao, L. Sun, Comyco: Quality-Aware Adaptive Video Streaming via Imitation Learning, in: Proceedings of ACM MM, 2019.
Kingma, Ba (b56) 2014
S. Sengupta, N. Ganguly, S. Chakraborty, P. De, HotDASH: Hotspot Aware Adaptive Video Streaming Using Deep Reinforcement Learning, in: Proceedings of IEEE ICNP, 2018.
W. Li, J. Huang, Y. Liang, J. Liu, F. Gao, Synthesizing Audio and Video Bitrate Selections via Learning from Actual Requirements, in: Proceedings of IEEE ICME, 2022.
Z. Meng, J. Chen, Y. Guo, C. Sun, H. Hu, M. Xu, PiTree: Practical Implementation of ABR Algorithms Using Decision Trees, in: Proceedings of ACM MM, 2019.
T. Huang, C. Ekanadham, A.J. Berglund, Z. Li, Hindsight: Evaluate Video Bitrate Adaptation at Scale, in: Proceedings of ACM MMSys, 2019.
Ruiperez-Valient, Kim, Baker, Martínez, Lin (b59) 2022
Erfanian, Tashtarian, Timmerer, Hellwagner (b8) 2022; 190
Z. Akhtar, Y.S. Nam, R. Govindan, S. Rao, J. Chen, E.K. Bassett, J. Zhan, H. Zhang, Oboe: Auto-tuning Video ABR Algorithms to Network Conditions, in: Proceedings of ACM SIGCOMM, 2018, pp. 44–58.
Ji (10.1016/j.comcom.2023.11.027_b43) 2023; 220
Erfanian (10.1016/j.comcom.2023.11.027_b8) 2022; 190
(10.1016/j.comcom.2023.11.027_b33) 2022
Ren (10.1016/j.comcom.2023.11.027_b28) 2014; 74
(10.1016/j.comcom.2023.11.027_b32) 2019
10.1016/j.comcom.2023.11.027_b40
10.1016/j.comcom.2023.11.027_b41
10.1016/j.comcom.2023.11.027_b45
Hwang (10.1016/j.comcom.2023.11.027_b5) 2016; 106
10.1016/j.comcom.2023.11.027_b49
Petrangeli (10.1016/j.comcom.2023.11.027_b7) 2017; 94
Huang (10.1016/j.comcom.2023.11.027_b19) 2022; 24
Wang (10.1016/j.comcom.2023.11.027_b26) 2022; 21
(10.1016/j.comcom.2023.11.027_b57) 2022
Maia (10.1016/j.comcom.2023.11.027_b9) 2015; 57
10.1016/j.comcom.2023.11.027_b30
Xiao (10.1016/j.comcom.2023.11.027_b61) 2020; 22
Silver (10.1016/j.comcom.2023.11.027_b31) 2018; 362
10.1016/j.comcom.2023.11.027_b34
10.1016/j.comcom.2023.11.027_b36
10.1016/j.comcom.2023.11.027_b37
10.1016/j.comcom.2023.11.027_b38
10.1016/j.comcom.2023.11.027_b39
García-Pineda (10.1016/j.comcom.2023.11.027_b44) 2018; 117
Li (10.1016/j.comcom.2023.11.027_b17) 2023; 25
Kingma (10.1016/j.comcom.2023.11.027_b56) 2014
Dao (10.1016/j.comcom.2023.11.027_b4) 2022; 212
Feng (10.1016/j.comcom.2023.11.027_b46) 2020; 22
Afzal (10.1016/j.comcom.2023.11.027_b6) 2023; 212
10.1016/j.comcom.2023.11.027_b60
10.1016/j.comcom.2023.11.027_b62
Agarap (10.1016/j.comcom.2023.11.027_b53) 2018
10.1016/j.comcom.2023.11.027_b63
10.1016/j.comcom.2023.11.027_b20
10.1016/j.comcom.2023.11.027_b22
10.1016/j.comcom.2023.11.027_b23
Ruiperez-Valient (10.1016/j.comcom.2023.11.027_b59) 2022
10.1016/j.comcom.2023.11.027_b24
10.1016/j.comcom.2023.11.027_b25
10.1016/j.comcom.2023.11.027_b29
Li (10.1016/j.comcom.2023.11.027_b35) 2014; 32
Sodagar (10.1016/j.comcom.2023.11.027_b2) 2011; 18
(10.1016/j.comcom.2023.11.027_b58) 2022
10.1016/j.comcom.2023.11.027_b1
10.1016/j.comcom.2023.11.027_b50
Wu (10.1016/j.comcom.2023.11.027_b10) 2017; 99
Ma (10.1016/j.comcom.2023.11.027_b47) 2022; 68
10.1016/j.comcom.2023.11.027_b51
Yuan (10.1016/j.comcom.2023.11.027_b55) 2017
10.1016/j.comcom.2023.11.027_b54
10.1016/j.comcom.2023.11.027_b11
Li (10.1016/j.comcom.2023.11.027_b27) 2022
10.1016/j.comcom.2023.11.027_b12
Ozcelik (10.1016/j.comcom.2023.11.027_b48) 2022; 205
10.1016/j.comcom.2023.11.027_b13
10.1016/j.comcom.2023.11.027_b14
10.1016/j.comcom.2023.11.027_b3
Huang (10.1016/j.comcom.2023.11.027_b15) 2023; 18
10.1016/j.comcom.2023.11.027_b16
Ye (10.1016/j.comcom.2023.11.027_b52) 2019
10.1016/j.comcom.2023.11.027_b18
Li (10.1016/j.comcom.2023.11.027_b21) 2023
Huang (10.1016/j.comcom.2023.11.027_b42) 2022; 40
References_xml – reference: A. Hore, D. Ziou, Image Quality Metrics: PSNR vs. SSIM, in: International Conference on Pattern Recognition, 2010.
– reference: T.Y. Huang, R. Johari, N. McKeown, M. Trunnell, M. Watson, A Buffer-based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service, in: Proceedings of ACM SIGCOMM, 2014.
– volume: 205
  start-page: 1
  year: 2022
  end-page: 9
  ident: b48
  article-title: ALVS: Adaptive live video streaming using deep reinforcement learning
  publication-title: J. Netw. Comput. Appl.
– reference: E. Jang, S. Gu, B. Poole, Categorical Reparameterization with Gumbel-Softmax,
– volume: 22
  start-page: 2963
  year: 2020
  end-page: 2976
  ident: b46
  article-title: Vabis: Video adaptation bitrate system for time-critical live streaming
  publication-title: IEEE Trans. Multimed.
– volume: 117
  start-page: 13
  year: 2018
  end-page: 23
  ident: b44
  article-title: A holistic modeling for QoE estimation in live video streaming applications over LTE advanced technologies with full and non reference approaches
  publication-title: Comput. Commun.
– volume: 57
  start-page: 1
  year: 2015
  end-page: 12
  ident: b9
  article-title: A concise review of the quality of experience assessment for video streaming
  publication-title: Comput. Commun.
– reference: P.K. Yadav, A. Shafiei, W.T. Ooi, QUETRA: A Queuing Theory Approach to DASH Rate Adaptation, in: Proceedings of ACM MM, 2017.
– reference: S. Sengupta, N. Ganguly, S. Chakraborty, P. De, HotDASH: Hotspot Aware Adaptive Video Streaming Using Deep Reinforcement Learning, in: Proceedings of IEEE ICNP, 2018.
– year: 2022
  ident: b58
  article-title: LTE/WiFi dataset
– year: 2019
  ident: b52
  article-title: Mastering complex control in MOBA games with deep reinforcement learning
– volume: 74
  start-page: 53
  year: 2014
  end-page: 63
  ident: b28
  article-title: Overlay live video streaming with heterogeneous bitrate requirements
  publication-title: Comput. Netw.
– reference: T. Huang, C. Zhou, R. Zhang, C. Wu, L. Sun, Buffer Awareness Neural Adaptive Video Streaming for Avoiding Extra Buffer Consumption, in: Proceedings of IEEE INFOCOM, 2023.
– reference: T. Huang, X. Yao, C. Wu, R.X. Zhang, Z. Pang, L. Sun, Tiyuntsong: A Self-Play Reinforcement Learning Approach for ABR Video Streaming, in: Proceedings of IEEE ICME, 2019.
– year: 2022
  ident: b57
  article-title: Pensieve ppo for 5G traces
– reference: T. Huang, R. Zhang, L. Sun, Self-play Reinforcement Learning for Video Transmission, in: Proceedings of ACM NOSSDAV, 2020.
– year: 2022
  ident: b27
  article-title: RAV: Learning-based adaptive streaming to coordinate the audio and video bitrate selections
  publication-title: IEEE Trans. Multimed.
– reference: Live streaming market size, share, analysis and forecast 2030,
– year: 2018
  ident: b53
  article-title: Deep learning using rectified linear units (RELU)
– reference: H. Mao, R. Netravail, M. Alizadeh, Neural Adaptive Video Streaming with Pensieve, in: Proceedings of ACM SIGCOMM, 2017.
– year: 2022
  ident: b59
  article-title: The affordances of multivariate Elo-based learner modeling in game-based assessment
  publication-title: IEEE Trans. Learn. Technol.
– reference: Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, M. Manohara, Toward a practical perceptual video quality metric,
– volume: 18
  start-page: 62
  year: 2011
  end-page: 67
  ident: b2
  article-title: The MPEG-DASH standard for multimedia streaming over the internet
  publication-title: IEEE Multimed.
– volume: 212
  start-page: 1
  year: 2023
  end-page: 41
  ident: b6
  article-title: A holistic survey of multipath wireless video streaming
  publication-title: J. Netw. Comput. Appl.
– reference: W. Li, J. Huang, Y. Liang, J. Liu, F. Gao, Synthesizing Audio and Video Bitrate Selections via Learning from Actual Requirements, in: Proceedings of IEEE ICME, 2022.
– year: 2023
  ident: b21
  article-title: Learning audio and video bitrate selection strategies via explicit requirements
  publication-title: IEEE Trans. Mob. Comput.
– volume: 106
  start-page: 226
  year: 2016
  end-page: 244
  ident: b5
  article-title: Joint-family: Adaptive bitrate video-on-demand streaming over peer-to-peer networks with realistic abandonment patterns
  publication-title: Comput. Netw.
– volume: 190
  start-page: 1
  year: 2022
  end-page: 9
  ident: b8
  article-title: QoCoVi: QoE- and cost-aware adaptive video streaming for the Internet of Vehicles
  publication-title: Comput. Commun.
– reference: M. Abadi, P. Barham, J. Chen, et al., TensorFlow: A system for large-scale machine learning, in: Proceedings of USENIX OSDI, 2016.
– volume: 25
  start-page: 2488
  year: 2023
  end-page: 2502
  ident: b17
  article-title: An apprenticeship learning approach for adaptive video streaming based on chunk quality and user preference
  publication-title: IEEE Trans. Multimed.
– reference: K. Spiteri, R. Urgaonkar, R.K. Sitaraman, BOLA:Near-Optimal Bitrate Adaptation for Online Videos, in: Proceedings of IEEE INFOCOM, 2016.
– reference: T. Huang, C. Zhou, R. Zhang, C. Wu, X. Yao, L. Sun, Stick: A Harmonious Fusion of Buffer-based and Learning-based Approach for Adaptive Streaming, in: Proceedings of IEEE INFOCOM, 2020.
– reference: D. Yuan, Y. Zhang, W. Zhang, X. Liu, H. Du, Q. Zheng, PRIOR: Deep Reinforced Adaptive Video Streaming with Attention-Based Throughput Prediction, in: Proceedings of ACM NOSSDAV, 2022.
– volume: 18
  start-page: 1
  year: 2023
  end-page: 22
  ident: b15
  article-title: Opportunistic transmission for video streaming over wild internet
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl.
– volume: 40
  start-page: 2485
  year: 2022
  end-page: 2503
  ident: b42
  article-title: Learning tailored adaptive bitrate algorithms to heterogeneous network conditions: A domain-specific priors and meta-reinforcement learning approach
  publication-title: IEEE J. Sel. Areas Commun.
– reference: W. Li, J. Huang, S. Wang, S. Liu, J. Wang, DAVS: Dynamic-Chunk Quality Aware Adaptive Video Streaming using Apprenticeship Learning, in: Proceedings of IEEE GLOBECOM, 2020, pp. 1–6.
– volume: 68
  start-page: 661
  year: 2022
  end-page: 676
  ident: b47
  article-title: QAVA: QoE-aware adaptive video bitrate aggregation for HTTP live streaming based on smart edge computing
  publication-title: IEEE Trans. Broadcast.
– reference: Y. Qin, S. Hao, K.R. Pattipati, F. Qian, S. Sen, B. Wang, C. Yue, ABR Streaming of VBR-encoded Videos: Characterization, Challenges, and Solutions, in: Proceedings of ACM CoNEXT, 2018.
– reference: D. Silhavy, S. Pham, M. Lasak, A. Chen, S. Arbanowski, Low Latency Streaming and Multi DRM with Dash.Js, in: Proceedings of ACM MMSys, 2020.
– year: 2014
  ident: b56
  article-title: Adam: A method for stochastic optimization
– volume: 212
  start-page: 1
  year: 2022
  end-page: 9
  ident: b4
  article-title: Adaptive bitrate streaming in multi-user downlink NOMA edge caching systems with imperfect SIC
  publication-title: Comput. Netw.
– volume: 220
  start-page: 1
  year: 2023
  end-page: 15
  ident: b43
  article-title: Adaptive qos-aware multipath congestion control for live streaming
  publication-title: Comput. Netw.
– reference: T. Huang, C. Zhou, R. Zhang, C. Wu, X. Yao, L. Sun, Comyco: Quality-Aware Adaptive Video Streaming via Imitation Learning, in: Proceedings of ACM MM, 2019.
– volume: 22
  start-page: 1567
  year: 2020
  end-page: 1576
  ident: b61
  article-title: Sensor-augmented neural adaptive bitrate video streaming on UAVs
  publication-title: IEEE Trans. Multimed.
– reference: X. Yin, A. Jindal, V. Sekar, B. Sinopoli, A Control-Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP, in: Proceedings of ACM SIGCOMM, 2015.
– volume: 32
  start-page: 719
  year: 2014
  end-page: 733
  ident: b35
  article-title: Probe and adapt: Rate adaptation for HTTP video streaming at scale
  publication-title: IEEE J. Sel. Areas Commun.
– year: 2019
  ident: b32
  article-title: Hsdpa dataset
– reference: M. Siekkinen, E. Masala, T. Kamarainen, A First Look at Quality of Mobile Live Streaming Experience: The Case of Periscope, in: Proceedings of ACM IMC, 2016.
– reference: F.Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis, K. Winstein, Learning in situ: A Randomized Experiment in Video Streaming, in: Proceedings of USENIX NSDI, 2020.
– reference: A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang, D. Rybkin, Z. Yang, Z. Mao, F. Qian, Z. Zhang, A Variegated Look at 5G in the Wild: Performance, Power, and QoE Implications, in: Proceedings of ACM SIGCOMM, 2021.
– volume: 99
  start-page: 37
  year: 2017
  end-page: 47
  ident: b10
  article-title: Network-based video freeze detection and prediction in HTTP adaptive streaming
  publication-title: Comput. Commun.
– reference: T. Huang, C. Ekanadham, A.J. Berglund, Z. Li, Hindsight: Evaluate Video Bitrate Adaptation at Scale, in: Proceedings of ACM MMSys, 2019.
– reference: A. Narayanan, E. Ramadan, R. Mehta, et al., Lumos5G: Mapping and Predicting Commercial mmWave 5G Throughput, in: Proceedings of ACM IMC, 2020.
– reference: .
– reference: Z. Akhtar, Y.S. Nam, R. Govindan, S. Rao, J. Chen, E.K. Bassett, J. Zhan, H. Zhang, Oboe: Auto-tuning Video ABR Algorithms to Network Conditions, in: Proceedings of ACM SIGCOMM, 2018, pp. 44–58.
– reference: Z. Meng, J. Chen, Y. Guo, C. Sun, H. Hu, M. Xu, PiTree: Practical Implementation of ABR Algorithms Using Decision Trees, in: Proceedings of ACM MM, 2019.
– reference: T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous Control with Deep Reinforcement Learning, in: Proceedings of ICLR, 2016.
– year: 2017
  ident: b55
  article-title: TF.Learn: TensorFlow’s high-level module for distributed machine learning
– volume: 362
  start-page: 1140
  year: 2018
  end-page: 1144
  ident: b31
  article-title: A general reinforcement learning algorithm that masters chess, Shogi, and Go through self-play
  publication-title: Science
– volume: 24
  start-page: 1350
  year: 2022
  end-page: 1365
  ident: b19
  article-title: Zwei: A self-play reinforcement learning framework for video transmission services
  publication-title: IEEE Trans. Multimed.
– volume: 21
  start-page: 2761
  year: 2022
  end-page: 2775
  ident: b26
  article-title: Cratus: A lightweight and robust approach for mobile live streaming
  publication-title: IEEE Trans. Mob. Comput.
– year: 2022
  ident: b33
  article-title: FCC Dataset
– reference: J. Jiang, V. Sekar, H. Zhang, Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE, in: Proceedings of ACM CoNEXT, 2012.
– volume: 94
  start-page: 78
  year: 2017
  end-page: 92
  ident: b7
  article-title: A machine learning-based framework for preventing video freezes in HTTP adaptive streaming
  publication-title: J. Netw. Comput. Appl.
– year: 2022
  ident: 10.1016/j.comcom.2023.11.027_b58
– volume: 94
  start-page: 78
  year: 2017
  ident: 10.1016/j.comcom.2023.11.027_b7
  article-title: A machine learning-based framework for preventing video freezes in HTTP adaptive streaming
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2017.07.009
– volume: 99
  start-page: 37
  year: 2017
  ident: 10.1016/j.comcom.2023.11.027_b10
  article-title: Network-based video freeze detection and prediction in HTTP adaptive streaming
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2016.08.005
– ident: 10.1016/j.comcom.2023.11.027_b23
  doi: 10.1145/3230543.3230558
– ident: 10.1016/j.comcom.2023.11.027_b12
  doi: 10.1109/INFOCOM.2016.7524428
– volume: 106
  start-page: 226
  year: 2016
  ident: 10.1016/j.comcom.2023.11.027_b5
  article-title: Joint-family: Adaptive bitrate video-on-demand streaming over peer-to-peer networks with realistic abandonment patterns
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2016.06.006
– volume: 25
  start-page: 2488
  year: 2023
  ident: 10.1016/j.comcom.2023.11.027_b17
  article-title: An apprenticeship learning approach for adaptive video streaming based on chunk quality and user preference
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2022.3147667
– volume: 212
  start-page: 1
  year: 2023
  ident: 10.1016/j.comcom.2023.11.027_b6
  article-title: A holistic survey of multipath wireless video streaming
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2022.103581
– volume: 212
  start-page: 1
  year: 2022
  ident: 10.1016/j.comcom.2023.11.027_b4
  article-title: Adaptive bitrate streaming in multi-user downlink NOMA edge caching systems with imperfect SIC
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2022.109064
– year: 2019
  ident: 10.1016/j.comcom.2023.11.027_b52
– ident: 10.1016/j.comcom.2023.11.027_b22
  doi: 10.1109/GLOBECOM42002.2020.9322459
– volume: 362
  start-page: 1140
  year: 2018
  ident: 10.1016/j.comcom.2023.11.027_b31
  article-title: A general reinforcement learning algorithm that masters chess, Shogi, and Go through self-play
  publication-title: Science
  doi: 10.1126/science.aar6404
– year: 2014
  ident: 10.1016/j.comcom.2023.11.027_b56
– ident: 10.1016/j.comcom.2023.11.027_b62
  doi: 10.1145/3339825.3394936
– ident: 10.1016/j.comcom.2023.11.027_b13
  doi: 10.1145/3281411.3281439
– year: 2022
  ident: 10.1016/j.comcom.2023.11.027_b27
  article-title: RAV: Learning-based adaptive streaming to coordinate the audio and video bitrate selections
  publication-title: IEEE Trans. Multimed.
– year: 2019
  ident: 10.1016/j.comcom.2023.11.027_b32
– volume: 190
  start-page: 1
  year: 2022
  ident: 10.1016/j.comcom.2023.11.027_b8
  article-title: QoCoVi: QoE- and cost-aware adaptive video streaming for the Internet of Vehicles
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2022.03.003
– ident: 10.1016/j.comcom.2023.11.027_b36
  doi: 10.1109/ICNP.2018.00026
– volume: 22
  start-page: 2963
  issue: 11
  year: 2020
  ident: 10.1016/j.comcom.2023.11.027_b46
  article-title: Vabis: Video adaptation bitrate system for time-critical live streaming
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2019.2962313
– ident: 10.1016/j.comcom.2023.11.027_b38
– year: 2022
  ident: 10.1016/j.comcom.2023.11.027_b33
– ident: 10.1016/j.comcom.2023.11.027_b11
  doi: 10.1145/2619239.2626296
– volume: 18
  start-page: 62
  issue: 4
  year: 2011
  ident: 10.1016/j.comcom.2023.11.027_b2
  article-title: The MPEG-DASH standard for multimedia streaming over the internet
  publication-title: IEEE Multimed.
  doi: 10.1109/MMUL.2011.71
– ident: 10.1016/j.comcom.2023.11.027_b63
  doi: 10.1145/3343031.3350866
– volume: 220
  start-page: 1
  year: 2023
  ident: 10.1016/j.comcom.2023.11.027_b43
  article-title: Adaptive qos-aware multipath congestion control for live streaming
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2022.109470
– ident: 10.1016/j.comcom.2023.11.027_b40
  doi: 10.1145/3386290.3396930
– ident: 10.1016/j.comcom.2023.11.027_b41
  doi: 10.1145/3534088.3534348
– ident: 10.1016/j.comcom.2023.11.027_b24
  doi: 10.1109/INFOCOM53939.2023.10229002
– volume: 74
  start-page: 53
  year: 2014
  ident: 10.1016/j.comcom.2023.11.027_b28
  article-title: Overlay live video streaming with heterogeneous bitrate requirements
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2014.08.019
– volume: 40
  start-page: 2485
  issue: 8
  year: 2022
  ident: 10.1016/j.comcom.2023.11.027_b42
  article-title: Learning tailored adaptive bitrate algorithms to heterogeneous network conditions: A domain-specific priors and meta-reinforcement learning approach
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2022.3180804
– ident: 10.1016/j.comcom.2023.11.027_b49
– ident: 10.1016/j.comcom.2023.11.027_b45
  doi: 10.1145/2987443.2987472
– volume: 18
  start-page: 1
  issue: 3s
  year: 2023
  ident: 10.1016/j.comcom.2023.11.027_b15
  article-title: Opportunistic transmission for video streaming over wild internet
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl.
  doi: 10.1145/3488722
– ident: 10.1016/j.comcom.2023.11.027_b39
– volume: 22
  start-page: 1567
  issue: 6
  year: 2020
  ident: 10.1016/j.comcom.2023.11.027_b61
  article-title: Sensor-augmented neural adaptive bitrate video streaming on UAVs
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2019.2945167
– ident: 10.1016/j.comcom.2023.11.027_b34
  doi: 10.1145/3419394.3423629
– ident: 10.1016/j.comcom.2023.11.027_b25
  doi: 10.1145/3123266.3123390
– ident: 10.1016/j.comcom.2023.11.027_b30
  doi: 10.1145/3304109.3306219
– volume: 68
  start-page: 661
  issue: 3
  year: 2022
  ident: 10.1016/j.comcom.2023.11.027_b47
  article-title: QAVA: QoE-aware adaptive video bitrate aggregation for HTTP live streaming based on smart edge computing
  publication-title: IEEE Trans. Broadcast.
  doi: 10.1109/TBC.2022.3171131
– year: 2017
  ident: 10.1016/j.comcom.2023.11.027_b55
– ident: 10.1016/j.comcom.2023.11.027_b1
– year: 2022
  ident: 10.1016/j.comcom.2023.11.027_b57
– ident: 10.1016/j.comcom.2023.11.027_b37
  doi: 10.1109/INFOCOM41043.2020.9155411
– ident: 10.1016/j.comcom.2023.11.027_b16
  doi: 10.1145/3098822.3098843
– year: 2023
  ident: 10.1016/j.comcom.2023.11.027_b21
  article-title: Learning audio and video bitrate selection strategies via explicit requirements
  publication-title: IEEE Trans. Mob. Comput.
– volume: 117
  start-page: 13
  year: 2018
  ident: 10.1016/j.comcom.2023.11.027_b44
  article-title: A holistic modeling for QoE estimation in live video streaming applications over LTE advanced technologies with full and non reference approaches
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2017.12.010
– ident: 10.1016/j.comcom.2023.11.027_b29
  doi: 10.1109/ICME.2019.00289
– volume: 205
  start-page: 1
  year: 2022
  ident: 10.1016/j.comcom.2023.11.027_b48
  article-title: ALVS: Adaptive live video streaming using deep reinforcement learning
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2022.103451
– volume: 21
  start-page: 2761
  issue: 8
  year: 2022
  ident: 10.1016/j.comcom.2023.11.027_b26
  article-title: Cratus: A lightweight and robust approach for mobile live streaming
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2020.3048826
– ident: 10.1016/j.comcom.2023.11.027_b20
  doi: 10.1109/ICME52920.2022.9859610
– year: 2022
  ident: 10.1016/j.comcom.2023.11.027_b59
  article-title: The affordances of multivariate Elo-based learner modeling in game-based assessment
  publication-title: IEEE Trans. Learn. Technol.
– volume: 24
  start-page: 1350
  issue: 1
  year: 2022
  ident: 10.1016/j.comcom.2023.11.027_b19
  article-title: Zwei: A self-play reinforcement learning framework for video transmission services
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2021.3063620
– ident: 10.1016/j.comcom.2023.11.027_b60
  doi: 10.1145/3452296.3472923
– ident: 10.1016/j.comcom.2023.11.027_b50
– year: 2018
  ident: 10.1016/j.comcom.2023.11.027_b53
– ident: 10.1016/j.comcom.2023.11.027_b54
– volume: 57
  start-page: 1
  year: 2015
  ident: 10.1016/j.comcom.2023.11.027_b9
  article-title: A concise review of the quality of experience assessment for video streaming
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2014.11.005
– ident: 10.1016/j.comcom.2023.11.027_b14
  doi: 10.1145/2785956.2787486
– ident: 10.1016/j.comcom.2023.11.027_b18
  doi: 10.1145/3343031.3351014
– volume: 32
  start-page: 719
  issue: 4
  year: 2014
  ident: 10.1016/j.comcom.2023.11.027_b35
  article-title: Probe and adapt: Rate adaptation for HTTP video streaming at scale
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2014.140405
– ident: 10.1016/j.comcom.2023.11.027_b51
  doi: 10.1109/ICPR.2010.579
– ident: 10.1016/j.comcom.2023.11.027_b3
  doi: 10.1145/2413176.2413189
SSID ssj0004773
Score 2.4003801
Snippet In recent times, the surge in applications like social networking and online learning platforms has led to a substantial rise in on-demand video streaming,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113
SubjectTerms Reinforcement learning
Small playback buffer
Variable networks
Video streaming
Title A learning-based approach for video streaming over fluctuating networks with limited playback buffers
URI https://dx.doi.org/10.1016/j.comcom.2023.11.027
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywuk1iO4-xqqgKiE5U6hadHRsVQlrRdmDht-PLg4eEQEJZkugcRRfnfLa_7z5CLhHrByHPmGdDxQRkEVOxjVhoMglgjfQUEoXvJuF4Km5mctYiw4YLg7DKOvZXMb2M1vWdfu3N_nI-75ewJB66_JmX-3dY8VOICHt57-0T5iGiapcZYYxo3dDnSoyXezZiRlBCvIe1PFFb5qfh6cuQM9oju3WuSAfV6-yTlikOyM6XCoKHxAxorfvwwHBAymhTJJy6bJQiyW5BkQ8Cz86EIl6T2nyDrBHEO9OiQoGvKK7H0rxiO9FlDq8K9BNVG5RPWR2R6ejqfjhmtXIC024KsGYoNBW4Q0sbBQKsb4z2Y0i4SgB45ttAxxqkzJRLH7gAJTxjTBJzG_EAJPBj0i4WhTkhVLqAAO6vVdolAlrJWAuZSXeqQy8B6XcIbxyW6rqsOKpb5GmDH3tMKzen6GY340idmzuEfbRaVmU1_rCPmm-RfuseqYv8v7Y8_XfLM7LtrhCjw3x5Ttrrl425cBnIWnXLLtYlW4Pr2_HkHdvy3Xk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YHVbVLHeYxVRVWg7dRK3aKz4yCgtBVtBxZ-O3d5QJEQSChLlJyj6GKfz_H33cfYNWH9wJeJcFJfCw-SQOgwDYRvEwWQWuVoIgr3B3535N2N1bjC2iUXhmCVRezPY3oWrYsrjcKbjfnjYyODJUkf82eZ7d_JDbbp4fAlGYP6-xfOwwvybWbCMZJ5yZ_LQF74cAKNkIZ4nYp5krjMT_PT2pzT2WO7RbLIW_n77LOKnR6wnbUSgofMtngh_PAgaEZKeFklnGM6yollN-NECIEXNOEE2OTpZEW0EQI882kOA19w-iHLJzndic8n8KbBPHO9Iv2UxREbdW6G7a4opBOEwTXAUpDSVBMPo9Kg6UHqWmvcECKpIwCZuGnThAaUSjTmD9ID7TnW2iiUaSCboEAes-p0NrUnjCuMCIDDVhvMBIxWofFUovDU-E4Eyq0xWTosNkVdcZK3mMQlgOwpzt0ck5txyRGjm2tMfLaa53U1_rAPym8Rf-sfMYb-X1ue_rvlFdvqDvu9uHc7uD9j23iHADvCVeesunxd2QtMR5b6MutuHwc83wc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+learning-based+approach+for+video+streaming+over+fluctuating+networks+with+limited+playback+buffers&rft.jtitle=Computer+communications&rft.au=Li%2C+Weihe&rft.au=Huang%2C+Jiawei&rft.au=Su%2C+Qichen&rft.au=Jiang%2C+Wanchun&rft.date=2024-01-15&rft.pub=Elsevier+B.V&rft.issn=0140-3664&rft.volume=214&rft.spage=113&rft.epage=122&rft_id=info:doi/10.1016%2Fj.comcom.2023.11.027&rft.externalDocID=S0140366423004243
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon