A learning-based approach for video streaming over fluctuating networks with limited playback buffers
In recent times, the surge in applications like social networking and online learning platforms has led to a substantial rise in on-demand video streaming, thus ensuring a seamless user experience holds paramount importance, particularly given the dynamic nature of network conditions. Moreover, nume...
Saved in:
Published in | Computer communications Vol. 214; pp. 113 - 122 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent times, the surge in applications like social networking and online learning platforms has led to a substantial rise in on-demand video streaming, thus ensuring a seamless user experience holds paramount importance, particularly given the dynamic nature of network conditions. Moreover, numerous service providers are embracing smaller buffer sizes, aiming to reduce bandwidth inefficiencies due to the possibility of users ending video sessions prematurely. However, this transition presents a significant challenge for conventional adaptive bitrate (ABR) algorithms, as they grapple with the task of harmonizing low stalling time, high playback bitrate, and the constraint of a minimized buffer size. In this study, we introduce a novel ABR approach, L2-ABR, which leverages self-play reinforcement learning to address these complexities. Unlike conventional reward-engineering learning-based ABR strategies that update gradients to maximize linear reward functions, L2-ABR treats video streaming as a fundamental objective and trains neural networks (NNs) with explicit requirements tailored to video streaming with small playback buffers. Through an extensive series of trace-driven experiments, we showcase that L2-ABR outperforms existing methods, effectively striking a balance between buffer management and network scenarios without inducing excessive buffer under-runs or overflows. Compared to existing ABR schemes, our method reduces undesirable buffer events, including rebuffering events and buffer full events, while improving the average QoE by up to 71.88% and 75.25% over the HSDPA and FCC datasets, respectively. |
---|---|
AbstractList | In recent times, the surge in applications like social networking and online learning platforms has led to a substantial rise in on-demand video streaming, thus ensuring a seamless user experience holds paramount importance, particularly given the dynamic nature of network conditions. Moreover, numerous service providers are embracing smaller buffer sizes, aiming to reduce bandwidth inefficiencies due to the possibility of users ending video sessions prematurely. However, this transition presents a significant challenge for conventional adaptive bitrate (ABR) algorithms, as they grapple with the task of harmonizing low stalling time, high playback bitrate, and the constraint of a minimized buffer size. In this study, we introduce a novel ABR approach, L2-ABR, which leverages self-play reinforcement learning to address these complexities. Unlike conventional reward-engineering learning-based ABR strategies that update gradients to maximize linear reward functions, L2-ABR treats video streaming as a fundamental objective and trains neural networks (NNs) with explicit requirements tailored to video streaming with small playback buffers. Through an extensive series of trace-driven experiments, we showcase that L2-ABR outperforms existing methods, effectively striking a balance between buffer management and network scenarios without inducing excessive buffer under-runs or overflows. Compared to existing ABR schemes, our method reduces undesirable buffer events, including rebuffering events and buffer full events, while improving the average QoE by up to 71.88% and 75.25% over the HSDPA and FCC datasets, respectively. |
Author | Huang, Jiawei Li, Weihe Su, Qichen Jiang, Wanchun Wang, Jianxin |
Author_xml | – sequence: 1 givenname: Weihe surname: Li fullname: Li, Weihe email: weiheleecsu@gmail.com organization: University of Edinburgh, Edinburgh, United Kingdom – sequence: 2 givenname: Jiawei orcidid: 0000-0002-7578-4490 surname: Huang fullname: Huang, Jiawei email: jiaweihuang@csu.edu.cn organization: Central South University, Changsha, China – sequence: 3 givenname: Qichen surname: Su fullname: Su, Qichen email: qichensu.csu@gmail.com organization: Central South University, Changsha, China – sequence: 4 givenname: Wanchun surname: Jiang fullname: Jiang, Wanchun email: jiangwc@csu.edu.cn organization: Central South University, Changsha, China – sequence: 5 givenname: Jianxin surname: Wang fullname: Wang, Jianxin email: wangjx@csu.edu.cn organization: Central South University, Changsha, China |
BookMark | eNqFkMtqwzAQRbVIoUnaP-hCP2BXD7_SRSGEviDQTbsWY3nUKLEtIykJ-fs6pKsuWmZgQOhcZs6MTHrXIyF3nKWc8eJ-m2rXjZ0KJmTKecpEOSFTxjOWyKLIrskshC1jLCtLOSW4pC2C723_ldQQsKEwDN6B3lDjPD3YBh0N0SN04xfqDuipafc67iGeH3qMR-d3gR5t3NDWdjaOGUMLpxr0jtZ7Y9CHG3JloA14-zPn5PP56WP1mqzfX95Wy3WiJStiInhViLF0bkqRgeGImlewkPUCQDbcCF1pyPOmlryUGdQZQ8RFJU0pBeQg5-Thkqu9C8GjUdrGcVHXRw-2VZypsyS1VRdJ6ixJca5GSSOc_YIHbzvwp_-wxwuG42EHi14FbbHX2FiPOqrG2b8DvgEkRYpY |
CitedBy_id | crossref_primary_10_1007_s10586_024_04315_8 |
Cites_doi | 10.1016/j.jnca.2017.07.009 10.1016/j.comcom.2016.08.005 10.1145/3230543.3230558 10.1109/INFOCOM.2016.7524428 10.1016/j.comnet.2016.06.006 10.1109/TMM.2022.3147667 10.1016/j.jnca.2022.103581 10.1016/j.comnet.2022.109064 10.1109/GLOBECOM42002.2020.9322459 10.1126/science.aar6404 10.1145/3339825.3394936 10.1145/3281411.3281439 10.1016/j.comcom.2022.03.003 10.1109/ICNP.2018.00026 10.1109/TMM.2019.2962313 10.1145/2619239.2626296 10.1109/MMUL.2011.71 10.1145/3343031.3350866 10.1016/j.comnet.2022.109470 10.1145/3386290.3396930 10.1145/3534088.3534348 10.1109/INFOCOM53939.2023.10229002 10.1016/j.comnet.2014.08.019 10.1109/JSAC.2022.3180804 10.1145/2987443.2987472 10.1145/3488722 10.1109/TMM.2019.2945167 10.1145/3419394.3423629 10.1145/3123266.3123390 10.1145/3304109.3306219 10.1109/TBC.2022.3171131 10.1109/INFOCOM41043.2020.9155411 10.1145/3098822.3098843 10.1016/j.comcom.2017.12.010 10.1109/ICME.2019.00289 10.1016/j.jnca.2022.103451 10.1109/TMC.2020.3048826 10.1109/ICME52920.2022.9859610 10.1109/TMM.2021.3063620 10.1145/3452296.3472923 10.1016/j.comcom.2014.11.005 10.1145/2785956.2787486 10.1145/3343031.3351014 10.1109/JSAC.2014.140405 10.1109/ICPR.2010.579 10.1145/2413176.2413189 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.comcom.2023.11.027 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 122 |
ExternalDocumentID | 10_1016_j_comcom_2023_11_027 S0140366423004243 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SSH SST SSV SSZ T5K WH7 ZMT ~G- 07C 29F AAQXK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD F0J FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW TAE UHS VH1 VOH WUQ XPP ZY4 |
ID | FETCH-LOGICAL-c306t-21862626c5f724af1eec18a93b9aa3d1f2c8ca55db31734ab40eee983f732a5a3 |
IEDL.DBID | .~1 |
ISSN | 0140-3664 |
IngestDate | Thu Apr 24 22:52:33 EDT 2025 Tue Jul 01 02:43:09 EDT 2025 Sun Apr 06 06:53:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Video streaming Reinforcement learning Small playback buffer Variable networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-21862626c5f724af1eec18a93b9aa3d1f2c8ca55db31734ab40eee983f732a5a3 |
ORCID | 0000-0002-7578-4490 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_comcom_2023_11_027 crossref_primary_10_1016_j_comcom_2023_11_027 elsevier_sciencedirect_doi_10_1016_j_comcom_2023_11_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-15 |
PublicationDateYYYYMMDD | 2024-01-15 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Computer communications |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Huang, Zhou, Zhang, Wu, Sun (b42) 2022; 40 M. Abadi, P. Barham, J. Chen, et al., TensorFlow: A system for large-scale machine learning, in: Proceedings of USENIX OSDI, 2016. (b32) 2019 F.Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis, K. Winstein, Learning in situ: A Randomized Experiment in Video Streaming, in: Proceedings of USENIX NSDI, 2020. Huang, Zhang, Sun (b19) 2022; 24 Live streaming market size, share, analysis and forecast 2030 Hwang, Gopalakrishnan, Jana, Lee, Misra, Ramakrishnan, Rubenstein (b5) 2016; 106 Petrangeli, Wu, Wauters, Huysegems, Bostoen, Turck (b7) 2017; 94 Li, Huang, Liu, Jiang, Wang (b21) 2023 Sodagar (b2) 2011; 18 K. Spiteri, R. Urgaonkar, R.K. Sitaraman, BOLA:Near-Optimal Bitrate Adaptation for Online Videos, in: Proceedings of IEEE INFOCOM, 2016. Li, Huang, Wang, Wu, Liu, Wang (b17) 2023; 25 Ren, Wong, Chan (b28) 2014; 74 T. Huang, C. Zhou, R. Zhang, C. Wu, X. Yao, L. Sun, Stick: A Harmonious Fusion of Buffer-based and Learning-based Approach for Adaptive Streaming, in: Proceedings of IEEE INFOCOM, 2020. Yuan (b55) 2017 (b33) 2022 P.K. Yadav, A. Shafiei, W.T. Ooi, QUETRA: A Queuing Theory Approach to DASH Rate Adaptation, in: Proceedings of ACM MM, 2017. Wang, Xu, Ren, Zhou, Wu (b26) 2022; 21 Li, Huang, Lyu, Guo, Jiang, Wang (b27) 2022 X. Yin, A. Jindal, V. Sekar, B. Sinopoli, A Control-Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP, in: Proceedings of ACM SIGCOMM, 2015. . H. Mao, R. Netravail, M. Alizadeh, Neural Adaptive Video Streaming with Pensieve, in: Proceedings of ACM SIGCOMM, 2017. A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang, D. Rybkin, Z. Yang, Z. Mao, F. Qian, Z. Zhang, A Variegated Look at 5G in the Wild: Performance, Power, and QoE Implications, in: Proceedings of ACM SIGCOMM, 2021. T. Huang, X. Yao, C. Wu, R.X. Zhang, Z. Pang, L. Sun, Tiyuntsong: A Self-Play Reinforcement Learning Approach for ABR Video Streaming, in: Proceedings of IEEE ICME, 2019. Feng, Sun, Qi, Wang, Liao (b46) 2020; 22 T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous Control with Deep Reinforcement Learning, in: Proceedings of ICLR, 2016. Li, Zhu, Gahm, Pan, Hu, Begen, Oran (b35) 2014; 32 T. Huang, R. Zhang, L. Sun, Self-play Reinforcement Learning for Video Transmission, in: Proceedings of ACM NOSSDAV, 2020. D. Yuan, Y. Zhang, W. Zhang, X. Liu, H. Du, Q. Zheng, PRIOR: Deep Reinforced Adaptive Video Streaming with Attention-Based Throughput Prediction, in: Proceedings of ACM NOSSDAV, 2022. Ye (b52) 2019 Huang, Su, Li, Liu, Zhang, Liu, Zhong, Jiang, Wang (b15) 2023; 18 Ozcelik, Ersoy (b48) 2022; 205 W. Li, J. Huang, S. Wang, S. Liu, J. Wang, DAVS: Dynamic-Chunk Quality Aware Adaptive Video Streaming using Apprenticeship Learning, in: Proceedings of IEEE GLOBECOM, 2020, pp. 1–6. (b58) 2022 M. Siekkinen, E. Masala, T. Kamarainen, A First Look at Quality of Mobile Live Streaming Experience: The Case of Periscope, in: Proceedings of ACM IMC, 2016. Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, M. Manohara, Toward a practical perceptual video quality metric Dao, Vu, Na, Hoang, Do, Cho (b4) 2022; 212 E. Jang, S. Gu, B. Poole, Categorical Reparameterization with Gumbel-Softmax Silver, Hubert, Schrittwieser (b31) 2018; 362 Xiao, Wang, Chen, Cao, Jiang, Zhang (b61) 2020; 22 T. Huang, C. Zhou, R. Zhang, C. Wu, L. Sun, Buffer Awareness Neural Adaptive Video Streaming for Avoiding Extra Buffer Consumption, in: Proceedings of IEEE INFOCOM, 2023. A. Hore, D. Ziou, Image Quality Metrics: PSNR vs. SSIM, in: International Conference on Pattern Recognition, 2010. Y. Qin, S. Hao, K.R. Pattipati, F. Qian, S. Sen, B. Wang, C. Yue, ABR Streaming of VBR-encoded Videos: Characterization, Challenges, and Solutions, in: Proceedings of ACM CoNEXT, 2018. Afzal, Testoni, Rothenberg, Kolan, Bouazizi (b6) 2023; 212 Ma, Li, Zou, Peng, Zhou, Chai, Jiang, Muntean (b47) 2022; 68 Maia, Yehia, Errico (b9) 2015; 57 Wu, Petrangeli, Huysegems, Bostoen, Turck (b10) 2017; 99 García-Pineda, Segura-García, Felici-Castell (b44) 2018; 117 T.Y. Huang, R. Johari, N. McKeown, M. Trunnell, M. Watson, A Buffer-based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service, in: Proceedings of ACM SIGCOMM, 2014. A. Narayanan, E. Ramadan, R. Mehta, et al., Lumos5G: Mapping and Predicting Commercial mmWave 5G Throughput, in: Proceedings of ACM IMC, 2020. (b57) 2022 J. Jiang, V. Sekar, H. Zhang, Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE, in: Proceedings of ACM CoNEXT, 2012. Ji, Han, Xu, Song, Su (b43) 2023; 220 Agarap (b53) 2018 D. Silhavy, S. Pham, M. Lasak, A. Chen, S. Arbanowski, Low Latency Streaming and Multi DRM with Dash.Js, in: Proceedings of ACM MMSys, 2020. T. Huang, C. Zhou, R. Zhang, C. Wu, X. Yao, L. Sun, Comyco: Quality-Aware Adaptive Video Streaming via Imitation Learning, in: Proceedings of ACM MM, 2019. Kingma, Ba (b56) 2014 S. Sengupta, N. Ganguly, S. Chakraborty, P. De, HotDASH: Hotspot Aware Adaptive Video Streaming Using Deep Reinforcement Learning, in: Proceedings of IEEE ICNP, 2018. W. Li, J. Huang, Y. Liang, J. Liu, F. Gao, Synthesizing Audio and Video Bitrate Selections via Learning from Actual Requirements, in: Proceedings of IEEE ICME, 2022. Z. Meng, J. Chen, Y. Guo, C. Sun, H. Hu, M. Xu, PiTree: Practical Implementation of ABR Algorithms Using Decision Trees, in: Proceedings of ACM MM, 2019. T. Huang, C. Ekanadham, A.J. Berglund, Z. Li, Hindsight: Evaluate Video Bitrate Adaptation at Scale, in: Proceedings of ACM MMSys, 2019. Ruiperez-Valient, Kim, Baker, Martínez, Lin (b59) 2022 Erfanian, Tashtarian, Timmerer, Hellwagner (b8) 2022; 190 Z. Akhtar, Y.S. Nam, R. Govindan, S. Rao, J. Chen, E.K. Bassett, J. Zhan, H. Zhang, Oboe: Auto-tuning Video ABR Algorithms to Network Conditions, in: Proceedings of ACM SIGCOMM, 2018, pp. 44–58. Ji (10.1016/j.comcom.2023.11.027_b43) 2023; 220 Erfanian (10.1016/j.comcom.2023.11.027_b8) 2022; 190 (10.1016/j.comcom.2023.11.027_b33) 2022 Ren (10.1016/j.comcom.2023.11.027_b28) 2014; 74 (10.1016/j.comcom.2023.11.027_b32) 2019 10.1016/j.comcom.2023.11.027_b40 10.1016/j.comcom.2023.11.027_b41 10.1016/j.comcom.2023.11.027_b45 Hwang (10.1016/j.comcom.2023.11.027_b5) 2016; 106 10.1016/j.comcom.2023.11.027_b49 Petrangeli (10.1016/j.comcom.2023.11.027_b7) 2017; 94 Huang (10.1016/j.comcom.2023.11.027_b19) 2022; 24 Wang (10.1016/j.comcom.2023.11.027_b26) 2022; 21 (10.1016/j.comcom.2023.11.027_b57) 2022 Maia (10.1016/j.comcom.2023.11.027_b9) 2015; 57 10.1016/j.comcom.2023.11.027_b30 Xiao (10.1016/j.comcom.2023.11.027_b61) 2020; 22 Silver (10.1016/j.comcom.2023.11.027_b31) 2018; 362 10.1016/j.comcom.2023.11.027_b34 10.1016/j.comcom.2023.11.027_b36 10.1016/j.comcom.2023.11.027_b37 10.1016/j.comcom.2023.11.027_b38 10.1016/j.comcom.2023.11.027_b39 García-Pineda (10.1016/j.comcom.2023.11.027_b44) 2018; 117 Li (10.1016/j.comcom.2023.11.027_b17) 2023; 25 Kingma (10.1016/j.comcom.2023.11.027_b56) 2014 Dao (10.1016/j.comcom.2023.11.027_b4) 2022; 212 Feng (10.1016/j.comcom.2023.11.027_b46) 2020; 22 Afzal (10.1016/j.comcom.2023.11.027_b6) 2023; 212 10.1016/j.comcom.2023.11.027_b60 10.1016/j.comcom.2023.11.027_b62 Agarap (10.1016/j.comcom.2023.11.027_b53) 2018 10.1016/j.comcom.2023.11.027_b63 10.1016/j.comcom.2023.11.027_b20 10.1016/j.comcom.2023.11.027_b22 10.1016/j.comcom.2023.11.027_b23 Ruiperez-Valient (10.1016/j.comcom.2023.11.027_b59) 2022 10.1016/j.comcom.2023.11.027_b24 10.1016/j.comcom.2023.11.027_b25 10.1016/j.comcom.2023.11.027_b29 Li (10.1016/j.comcom.2023.11.027_b35) 2014; 32 Sodagar (10.1016/j.comcom.2023.11.027_b2) 2011; 18 (10.1016/j.comcom.2023.11.027_b58) 2022 10.1016/j.comcom.2023.11.027_b1 10.1016/j.comcom.2023.11.027_b50 Wu (10.1016/j.comcom.2023.11.027_b10) 2017; 99 Ma (10.1016/j.comcom.2023.11.027_b47) 2022; 68 10.1016/j.comcom.2023.11.027_b51 Yuan (10.1016/j.comcom.2023.11.027_b55) 2017 10.1016/j.comcom.2023.11.027_b54 10.1016/j.comcom.2023.11.027_b11 Li (10.1016/j.comcom.2023.11.027_b27) 2022 10.1016/j.comcom.2023.11.027_b12 Ozcelik (10.1016/j.comcom.2023.11.027_b48) 2022; 205 10.1016/j.comcom.2023.11.027_b13 10.1016/j.comcom.2023.11.027_b14 10.1016/j.comcom.2023.11.027_b3 Huang (10.1016/j.comcom.2023.11.027_b15) 2023; 18 10.1016/j.comcom.2023.11.027_b16 Ye (10.1016/j.comcom.2023.11.027_b52) 2019 10.1016/j.comcom.2023.11.027_b18 Li (10.1016/j.comcom.2023.11.027_b21) 2023 Huang (10.1016/j.comcom.2023.11.027_b42) 2022; 40 |
References_xml | – reference: A. Hore, D. Ziou, Image Quality Metrics: PSNR vs. SSIM, in: International Conference on Pattern Recognition, 2010. – reference: T.Y. Huang, R. Johari, N. McKeown, M. Trunnell, M. Watson, A Buffer-based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service, in: Proceedings of ACM SIGCOMM, 2014. – volume: 205 start-page: 1 year: 2022 end-page: 9 ident: b48 article-title: ALVS: Adaptive live video streaming using deep reinforcement learning publication-title: J. Netw. Comput. Appl. – reference: E. Jang, S. Gu, B. Poole, Categorical Reparameterization with Gumbel-Softmax, – volume: 22 start-page: 2963 year: 2020 end-page: 2976 ident: b46 article-title: Vabis: Video adaptation bitrate system for time-critical live streaming publication-title: IEEE Trans. Multimed. – volume: 117 start-page: 13 year: 2018 end-page: 23 ident: b44 article-title: A holistic modeling for QoE estimation in live video streaming applications over LTE advanced technologies with full and non reference approaches publication-title: Comput. Commun. – volume: 57 start-page: 1 year: 2015 end-page: 12 ident: b9 article-title: A concise review of the quality of experience assessment for video streaming publication-title: Comput. Commun. – reference: P.K. Yadav, A. Shafiei, W.T. Ooi, QUETRA: A Queuing Theory Approach to DASH Rate Adaptation, in: Proceedings of ACM MM, 2017. – reference: S. Sengupta, N. Ganguly, S. Chakraborty, P. De, HotDASH: Hotspot Aware Adaptive Video Streaming Using Deep Reinforcement Learning, in: Proceedings of IEEE ICNP, 2018. – year: 2022 ident: b58 article-title: LTE/WiFi dataset – year: 2019 ident: b52 article-title: Mastering complex control in MOBA games with deep reinforcement learning – volume: 74 start-page: 53 year: 2014 end-page: 63 ident: b28 article-title: Overlay live video streaming with heterogeneous bitrate requirements publication-title: Comput. Netw. – reference: T. Huang, C. Zhou, R. Zhang, C. Wu, L. Sun, Buffer Awareness Neural Adaptive Video Streaming for Avoiding Extra Buffer Consumption, in: Proceedings of IEEE INFOCOM, 2023. – reference: T. Huang, X. Yao, C. Wu, R.X. Zhang, Z. Pang, L. Sun, Tiyuntsong: A Self-Play Reinforcement Learning Approach for ABR Video Streaming, in: Proceedings of IEEE ICME, 2019. – year: 2022 ident: b57 article-title: Pensieve ppo for 5G traces – reference: T. Huang, R. Zhang, L. Sun, Self-play Reinforcement Learning for Video Transmission, in: Proceedings of ACM NOSSDAV, 2020. – year: 2022 ident: b27 article-title: RAV: Learning-based adaptive streaming to coordinate the audio and video bitrate selections publication-title: IEEE Trans. Multimed. – reference: Live streaming market size, share, analysis and forecast 2030, – year: 2018 ident: b53 article-title: Deep learning using rectified linear units (RELU) – reference: H. Mao, R. Netravail, M. Alizadeh, Neural Adaptive Video Streaming with Pensieve, in: Proceedings of ACM SIGCOMM, 2017. – year: 2022 ident: b59 article-title: The affordances of multivariate Elo-based learner modeling in game-based assessment publication-title: IEEE Trans. Learn. Technol. – reference: Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, M. Manohara, Toward a practical perceptual video quality metric, – volume: 18 start-page: 62 year: 2011 end-page: 67 ident: b2 article-title: The MPEG-DASH standard for multimedia streaming over the internet publication-title: IEEE Multimed. – volume: 212 start-page: 1 year: 2023 end-page: 41 ident: b6 article-title: A holistic survey of multipath wireless video streaming publication-title: J. Netw. Comput. Appl. – reference: W. Li, J. Huang, Y. Liang, J. Liu, F. Gao, Synthesizing Audio and Video Bitrate Selections via Learning from Actual Requirements, in: Proceedings of IEEE ICME, 2022. – year: 2023 ident: b21 article-title: Learning audio and video bitrate selection strategies via explicit requirements publication-title: IEEE Trans. Mob. Comput. – volume: 106 start-page: 226 year: 2016 end-page: 244 ident: b5 article-title: Joint-family: Adaptive bitrate video-on-demand streaming over peer-to-peer networks with realistic abandonment patterns publication-title: Comput. Netw. – volume: 190 start-page: 1 year: 2022 end-page: 9 ident: b8 article-title: QoCoVi: QoE- and cost-aware adaptive video streaming for the Internet of Vehicles publication-title: Comput. Commun. – reference: M. Abadi, P. Barham, J. Chen, et al., TensorFlow: A system for large-scale machine learning, in: Proceedings of USENIX OSDI, 2016. – volume: 25 start-page: 2488 year: 2023 end-page: 2502 ident: b17 article-title: An apprenticeship learning approach for adaptive video streaming based on chunk quality and user preference publication-title: IEEE Trans. Multimed. – reference: K. Spiteri, R. Urgaonkar, R.K. Sitaraman, BOLA:Near-Optimal Bitrate Adaptation for Online Videos, in: Proceedings of IEEE INFOCOM, 2016. – reference: T. Huang, C. Zhou, R. Zhang, C. Wu, X. Yao, L. Sun, Stick: A Harmonious Fusion of Buffer-based and Learning-based Approach for Adaptive Streaming, in: Proceedings of IEEE INFOCOM, 2020. – reference: D. Yuan, Y. Zhang, W. Zhang, X. Liu, H. Du, Q. Zheng, PRIOR: Deep Reinforced Adaptive Video Streaming with Attention-Based Throughput Prediction, in: Proceedings of ACM NOSSDAV, 2022. – volume: 18 start-page: 1 year: 2023 end-page: 22 ident: b15 article-title: Opportunistic transmission for video streaming over wild internet publication-title: ACM Trans. Multimed. Comput. Commun. Appl. – volume: 40 start-page: 2485 year: 2022 end-page: 2503 ident: b42 article-title: Learning tailored adaptive bitrate algorithms to heterogeneous network conditions: A domain-specific priors and meta-reinforcement learning approach publication-title: IEEE J. Sel. Areas Commun. – reference: W. Li, J. Huang, S. Wang, S. Liu, J. Wang, DAVS: Dynamic-Chunk Quality Aware Adaptive Video Streaming using Apprenticeship Learning, in: Proceedings of IEEE GLOBECOM, 2020, pp. 1–6. – volume: 68 start-page: 661 year: 2022 end-page: 676 ident: b47 article-title: QAVA: QoE-aware adaptive video bitrate aggregation for HTTP live streaming based on smart edge computing publication-title: IEEE Trans. Broadcast. – reference: Y. Qin, S. Hao, K.R. Pattipati, F. Qian, S. Sen, B. Wang, C. Yue, ABR Streaming of VBR-encoded Videos: Characterization, Challenges, and Solutions, in: Proceedings of ACM CoNEXT, 2018. – reference: D. Silhavy, S. Pham, M. Lasak, A. Chen, S. Arbanowski, Low Latency Streaming and Multi DRM with Dash.Js, in: Proceedings of ACM MMSys, 2020. – year: 2014 ident: b56 article-title: Adam: A method for stochastic optimization – volume: 212 start-page: 1 year: 2022 end-page: 9 ident: b4 article-title: Adaptive bitrate streaming in multi-user downlink NOMA edge caching systems with imperfect SIC publication-title: Comput. Netw. – volume: 220 start-page: 1 year: 2023 end-page: 15 ident: b43 article-title: Adaptive qos-aware multipath congestion control for live streaming publication-title: Comput. Netw. – reference: T. Huang, C. Zhou, R. Zhang, C. Wu, X. Yao, L. Sun, Comyco: Quality-Aware Adaptive Video Streaming via Imitation Learning, in: Proceedings of ACM MM, 2019. – volume: 22 start-page: 1567 year: 2020 end-page: 1576 ident: b61 article-title: Sensor-augmented neural adaptive bitrate video streaming on UAVs publication-title: IEEE Trans. Multimed. – reference: X. Yin, A. Jindal, V. Sekar, B. Sinopoli, A Control-Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP, in: Proceedings of ACM SIGCOMM, 2015. – volume: 32 start-page: 719 year: 2014 end-page: 733 ident: b35 article-title: Probe and adapt: Rate adaptation for HTTP video streaming at scale publication-title: IEEE J. Sel. Areas Commun. – year: 2019 ident: b32 article-title: Hsdpa dataset – reference: M. Siekkinen, E. Masala, T. Kamarainen, A First Look at Quality of Mobile Live Streaming Experience: The Case of Periscope, in: Proceedings of ACM IMC, 2016. – reference: F.Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis, K. Winstein, Learning in situ: A Randomized Experiment in Video Streaming, in: Proceedings of USENIX NSDI, 2020. – reference: A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang, D. Rybkin, Z. Yang, Z. Mao, F. Qian, Z. Zhang, A Variegated Look at 5G in the Wild: Performance, Power, and QoE Implications, in: Proceedings of ACM SIGCOMM, 2021. – volume: 99 start-page: 37 year: 2017 end-page: 47 ident: b10 article-title: Network-based video freeze detection and prediction in HTTP adaptive streaming publication-title: Comput. Commun. – reference: T. Huang, C. Ekanadham, A.J. Berglund, Z. Li, Hindsight: Evaluate Video Bitrate Adaptation at Scale, in: Proceedings of ACM MMSys, 2019. – reference: A. Narayanan, E. Ramadan, R. Mehta, et al., Lumos5G: Mapping and Predicting Commercial mmWave 5G Throughput, in: Proceedings of ACM IMC, 2020. – reference: . – reference: Z. Akhtar, Y.S. Nam, R. Govindan, S. Rao, J. Chen, E.K. Bassett, J. Zhan, H. Zhang, Oboe: Auto-tuning Video ABR Algorithms to Network Conditions, in: Proceedings of ACM SIGCOMM, 2018, pp. 44–58. – reference: Z. Meng, J. Chen, Y. Guo, C. Sun, H. Hu, M. Xu, PiTree: Practical Implementation of ABR Algorithms Using Decision Trees, in: Proceedings of ACM MM, 2019. – reference: T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous Control with Deep Reinforcement Learning, in: Proceedings of ICLR, 2016. – year: 2017 ident: b55 article-title: TF.Learn: TensorFlow’s high-level module for distributed machine learning – volume: 362 start-page: 1140 year: 2018 end-page: 1144 ident: b31 article-title: A general reinforcement learning algorithm that masters chess, Shogi, and Go through self-play publication-title: Science – volume: 24 start-page: 1350 year: 2022 end-page: 1365 ident: b19 article-title: Zwei: A self-play reinforcement learning framework for video transmission services publication-title: IEEE Trans. Multimed. – volume: 21 start-page: 2761 year: 2022 end-page: 2775 ident: b26 article-title: Cratus: A lightweight and robust approach for mobile live streaming publication-title: IEEE Trans. Mob. Comput. – year: 2022 ident: b33 article-title: FCC Dataset – reference: J. Jiang, V. Sekar, H. Zhang, Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE, in: Proceedings of ACM CoNEXT, 2012. – volume: 94 start-page: 78 year: 2017 end-page: 92 ident: b7 article-title: A machine learning-based framework for preventing video freezes in HTTP adaptive streaming publication-title: J. Netw. Comput. Appl. – year: 2022 ident: 10.1016/j.comcom.2023.11.027_b58 – volume: 94 start-page: 78 year: 2017 ident: 10.1016/j.comcom.2023.11.027_b7 article-title: A machine learning-based framework for preventing video freezes in HTTP adaptive streaming publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2017.07.009 – volume: 99 start-page: 37 year: 2017 ident: 10.1016/j.comcom.2023.11.027_b10 article-title: Network-based video freeze detection and prediction in HTTP adaptive streaming publication-title: Comput. Commun. doi: 10.1016/j.comcom.2016.08.005 – ident: 10.1016/j.comcom.2023.11.027_b23 doi: 10.1145/3230543.3230558 – ident: 10.1016/j.comcom.2023.11.027_b12 doi: 10.1109/INFOCOM.2016.7524428 – volume: 106 start-page: 226 year: 2016 ident: 10.1016/j.comcom.2023.11.027_b5 article-title: Joint-family: Adaptive bitrate video-on-demand streaming over peer-to-peer networks with realistic abandonment patterns publication-title: Comput. Netw. doi: 10.1016/j.comnet.2016.06.006 – volume: 25 start-page: 2488 year: 2023 ident: 10.1016/j.comcom.2023.11.027_b17 article-title: An apprenticeship learning approach for adaptive video streaming based on chunk quality and user preference publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2022.3147667 – volume: 212 start-page: 1 year: 2023 ident: 10.1016/j.comcom.2023.11.027_b6 article-title: A holistic survey of multipath wireless video streaming publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2022.103581 – volume: 212 start-page: 1 year: 2022 ident: 10.1016/j.comcom.2023.11.027_b4 article-title: Adaptive bitrate streaming in multi-user downlink NOMA edge caching systems with imperfect SIC publication-title: Comput. Netw. doi: 10.1016/j.comnet.2022.109064 – year: 2019 ident: 10.1016/j.comcom.2023.11.027_b52 – ident: 10.1016/j.comcom.2023.11.027_b22 doi: 10.1109/GLOBECOM42002.2020.9322459 – volume: 362 start-page: 1140 year: 2018 ident: 10.1016/j.comcom.2023.11.027_b31 article-title: A general reinforcement learning algorithm that masters chess, Shogi, and Go through self-play publication-title: Science doi: 10.1126/science.aar6404 – year: 2014 ident: 10.1016/j.comcom.2023.11.027_b56 – ident: 10.1016/j.comcom.2023.11.027_b62 doi: 10.1145/3339825.3394936 – ident: 10.1016/j.comcom.2023.11.027_b13 doi: 10.1145/3281411.3281439 – year: 2022 ident: 10.1016/j.comcom.2023.11.027_b27 article-title: RAV: Learning-based adaptive streaming to coordinate the audio and video bitrate selections publication-title: IEEE Trans. Multimed. – year: 2019 ident: 10.1016/j.comcom.2023.11.027_b32 – volume: 190 start-page: 1 year: 2022 ident: 10.1016/j.comcom.2023.11.027_b8 article-title: QoCoVi: QoE- and cost-aware adaptive video streaming for the Internet of Vehicles publication-title: Comput. Commun. doi: 10.1016/j.comcom.2022.03.003 – ident: 10.1016/j.comcom.2023.11.027_b36 doi: 10.1109/ICNP.2018.00026 – volume: 22 start-page: 2963 issue: 11 year: 2020 ident: 10.1016/j.comcom.2023.11.027_b46 article-title: Vabis: Video adaptation bitrate system for time-critical live streaming publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2019.2962313 – ident: 10.1016/j.comcom.2023.11.027_b38 – year: 2022 ident: 10.1016/j.comcom.2023.11.027_b33 – ident: 10.1016/j.comcom.2023.11.027_b11 doi: 10.1145/2619239.2626296 – volume: 18 start-page: 62 issue: 4 year: 2011 ident: 10.1016/j.comcom.2023.11.027_b2 article-title: The MPEG-DASH standard for multimedia streaming over the internet publication-title: IEEE Multimed. doi: 10.1109/MMUL.2011.71 – ident: 10.1016/j.comcom.2023.11.027_b63 doi: 10.1145/3343031.3350866 – volume: 220 start-page: 1 year: 2023 ident: 10.1016/j.comcom.2023.11.027_b43 article-title: Adaptive qos-aware multipath congestion control for live streaming publication-title: Comput. Netw. doi: 10.1016/j.comnet.2022.109470 – ident: 10.1016/j.comcom.2023.11.027_b40 doi: 10.1145/3386290.3396930 – ident: 10.1016/j.comcom.2023.11.027_b41 doi: 10.1145/3534088.3534348 – ident: 10.1016/j.comcom.2023.11.027_b24 doi: 10.1109/INFOCOM53939.2023.10229002 – volume: 74 start-page: 53 year: 2014 ident: 10.1016/j.comcom.2023.11.027_b28 article-title: Overlay live video streaming with heterogeneous bitrate requirements publication-title: Comput. Netw. doi: 10.1016/j.comnet.2014.08.019 – volume: 40 start-page: 2485 issue: 8 year: 2022 ident: 10.1016/j.comcom.2023.11.027_b42 article-title: Learning tailored adaptive bitrate algorithms to heterogeneous network conditions: A domain-specific priors and meta-reinforcement learning approach publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2022.3180804 – ident: 10.1016/j.comcom.2023.11.027_b49 – ident: 10.1016/j.comcom.2023.11.027_b45 doi: 10.1145/2987443.2987472 – volume: 18 start-page: 1 issue: 3s year: 2023 ident: 10.1016/j.comcom.2023.11.027_b15 article-title: Opportunistic transmission for video streaming over wild internet publication-title: ACM Trans. Multimed. Comput. Commun. Appl. doi: 10.1145/3488722 – ident: 10.1016/j.comcom.2023.11.027_b39 – volume: 22 start-page: 1567 issue: 6 year: 2020 ident: 10.1016/j.comcom.2023.11.027_b61 article-title: Sensor-augmented neural adaptive bitrate video streaming on UAVs publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2019.2945167 – ident: 10.1016/j.comcom.2023.11.027_b34 doi: 10.1145/3419394.3423629 – ident: 10.1016/j.comcom.2023.11.027_b25 doi: 10.1145/3123266.3123390 – ident: 10.1016/j.comcom.2023.11.027_b30 doi: 10.1145/3304109.3306219 – volume: 68 start-page: 661 issue: 3 year: 2022 ident: 10.1016/j.comcom.2023.11.027_b47 article-title: QAVA: QoE-aware adaptive video bitrate aggregation for HTTP live streaming based on smart edge computing publication-title: IEEE Trans. Broadcast. doi: 10.1109/TBC.2022.3171131 – year: 2017 ident: 10.1016/j.comcom.2023.11.027_b55 – ident: 10.1016/j.comcom.2023.11.027_b1 – year: 2022 ident: 10.1016/j.comcom.2023.11.027_b57 – ident: 10.1016/j.comcom.2023.11.027_b37 doi: 10.1109/INFOCOM41043.2020.9155411 – ident: 10.1016/j.comcom.2023.11.027_b16 doi: 10.1145/3098822.3098843 – year: 2023 ident: 10.1016/j.comcom.2023.11.027_b21 article-title: Learning audio and video bitrate selection strategies via explicit requirements publication-title: IEEE Trans. Mob. Comput. – volume: 117 start-page: 13 year: 2018 ident: 10.1016/j.comcom.2023.11.027_b44 article-title: A holistic modeling for QoE estimation in live video streaming applications over LTE advanced technologies with full and non reference approaches publication-title: Comput. Commun. doi: 10.1016/j.comcom.2017.12.010 – ident: 10.1016/j.comcom.2023.11.027_b29 doi: 10.1109/ICME.2019.00289 – volume: 205 start-page: 1 year: 2022 ident: 10.1016/j.comcom.2023.11.027_b48 article-title: ALVS: Adaptive live video streaming using deep reinforcement learning publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2022.103451 – volume: 21 start-page: 2761 issue: 8 year: 2022 ident: 10.1016/j.comcom.2023.11.027_b26 article-title: Cratus: A lightweight and robust approach for mobile live streaming publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2020.3048826 – ident: 10.1016/j.comcom.2023.11.027_b20 doi: 10.1109/ICME52920.2022.9859610 – year: 2022 ident: 10.1016/j.comcom.2023.11.027_b59 article-title: The affordances of multivariate Elo-based learner modeling in game-based assessment publication-title: IEEE Trans. Learn. Technol. – volume: 24 start-page: 1350 issue: 1 year: 2022 ident: 10.1016/j.comcom.2023.11.027_b19 article-title: Zwei: A self-play reinforcement learning framework for video transmission services publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2021.3063620 – ident: 10.1016/j.comcom.2023.11.027_b60 doi: 10.1145/3452296.3472923 – ident: 10.1016/j.comcom.2023.11.027_b50 – year: 2018 ident: 10.1016/j.comcom.2023.11.027_b53 – ident: 10.1016/j.comcom.2023.11.027_b54 – volume: 57 start-page: 1 year: 2015 ident: 10.1016/j.comcom.2023.11.027_b9 article-title: A concise review of the quality of experience assessment for video streaming publication-title: Comput. Commun. doi: 10.1016/j.comcom.2014.11.005 – ident: 10.1016/j.comcom.2023.11.027_b14 doi: 10.1145/2785956.2787486 – ident: 10.1016/j.comcom.2023.11.027_b18 doi: 10.1145/3343031.3351014 – volume: 32 start-page: 719 issue: 4 year: 2014 ident: 10.1016/j.comcom.2023.11.027_b35 article-title: Probe and adapt: Rate adaptation for HTTP video streaming at scale publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2014.140405 – ident: 10.1016/j.comcom.2023.11.027_b51 doi: 10.1109/ICPR.2010.579 – ident: 10.1016/j.comcom.2023.11.027_b3 doi: 10.1145/2413176.2413189 |
SSID | ssj0004773 |
Score | 2.4003801 |
Snippet | In recent times, the surge in applications like social networking and online learning platforms has led to a substantial rise in on-demand video streaming,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 113 |
SubjectTerms | Reinforcement learning Small playback buffer Variable networks Video streaming |
Title | A learning-based approach for video streaming over fluctuating networks with limited playback buffers |
URI | https://dx.doi.org/10.1016/j.comcom.2023.11.027 |
Volume | 214 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywuk1iO4-xqqgKiE5U6hadHRsVQlrRdmDht-PLg4eEQEJZkugcRRfnfLa_7z5CLhHrByHPmGdDxQRkEVOxjVhoMglgjfQUEoXvJuF4Km5mctYiw4YLg7DKOvZXMb2M1vWdfu3N_nI-75ewJB66_JmX-3dY8VOICHt57-0T5iGiapcZYYxo3dDnSoyXezZiRlBCvIe1PFFb5qfh6cuQM9oju3WuSAfV6-yTlikOyM6XCoKHxAxorfvwwHBAymhTJJy6bJQiyW5BkQ8Cz86EIl6T2nyDrBHEO9OiQoGvKK7H0rxiO9FlDq8K9BNVG5RPWR2R6ejqfjhmtXIC024KsGYoNBW4Q0sbBQKsb4z2Y0i4SgB45ttAxxqkzJRLH7gAJTxjTBJzG_EAJPBj0i4WhTkhVLqAAO6vVdolAlrJWAuZSXeqQy8B6XcIbxyW6rqsOKpb5GmDH3tMKzen6GY340idmzuEfbRaVmU1_rCPmm-RfuseqYv8v7Y8_XfLM7LtrhCjw3x5Ttrrl425cBnIWnXLLtYlW4Pr2_HkHdvy3Xk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YHVbVLHeYxVRVWg7dRK3aKz4yCgtBVtBxZ-O3d5QJEQSChLlJyj6GKfz_H33cfYNWH9wJeJcFJfCw-SQOgwDYRvEwWQWuVoIgr3B3535N2N1bjC2iUXhmCVRezPY3oWrYsrjcKbjfnjYyODJUkf82eZ7d_JDbbp4fAlGYP6-xfOwwvybWbCMZJ5yZ_LQF74cAKNkIZ4nYp5krjMT_PT2pzT2WO7RbLIW_n77LOKnR6wnbUSgofMtngh_PAgaEZKeFklnGM6yollN-NECIEXNOEE2OTpZEW0EQI882kOA19w-iHLJzndic8n8KbBPHO9Iv2UxREbdW6G7a4opBOEwTXAUpDSVBMPo9Kg6UHqWmvcECKpIwCZuGnThAaUSjTmD9ID7TnW2iiUaSCboEAes-p0NrUnjCuMCIDDVhvMBIxWofFUovDU-E4Eyq0xWTosNkVdcZK3mMQlgOwpzt0ck5txyRGjm2tMfLaa53U1_rAPym8Rf-sfMYb-X1ue_rvlFdvqDvu9uHc7uD9j23iHADvCVeesunxd2QtMR5b6MutuHwc83wc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+learning-based+approach+for+video+streaming+over+fluctuating+networks+with+limited+playback+buffers&rft.jtitle=Computer+communications&rft.au=Li%2C+Weihe&rft.au=Huang%2C+Jiawei&rft.au=Su%2C+Qichen&rft.au=Jiang%2C+Wanchun&rft.date=2024-01-15&rft.pub=Elsevier+B.V&rft.issn=0140-3664&rft.volume=214&rft.spage=113&rft.epage=122&rft_id=info:doi/10.1016%2Fj.comcom.2023.11.027&rft.externalDocID=S0140366423004243 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon |