Recovery of LiCoO2 and graphite from spent lithium-ion batteries by cryogenic grinding and froth flotation
[Display omitted] •Binder wrapped on electrode particles weakens their surface properties.•Cryogenic grinding can remove the organic binder efficiently.•Removing organic binder can expose new surface of electrode particles.•Removing organic binder can eliminate agglomeration of electrode particles.•...
Saved in:
Published in | Minerals engineering Vol. 148; p. 106223 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Binder wrapped on electrode particles weakens their surface properties.•Cryogenic grinding can remove the organic binder efficiently.•Removing organic binder can expose new surface of electrode particles.•Removing organic binder can eliminate agglomeration of electrode particles.•Electrode materials before and after cryogenic grinding are fully investigated.
A novel method of cryogenic grinding and froth flotation is proposed to recover LiCoO2 and graphite from spent lithium-ion batteries. After 9 min of cryogenic grinding, the grade of LiCoO2 concentrate was up to 91.75%, with a recovery rate of 89.83% after flotation, but the materials that have not been cryogenic grinding, the grade and recovery rate of LiCoO2 after flotation only 55.36% and 72.8%, respectively. Analysis of the surface properties and morphology of electrode particles was performed using scanning electron microscopy, X-ray photoelectron spectroscopy, and field emission-electron probe micro-analysis. Results indicate that the organic binder on the surface of the raw materials resulted in a poor recovery rate and grade of the flotation concentrate. Cryogenic grinding, on the other hand, caused the organic binder on the surface of electrode materials to peel off, with spherical graphite changing into a scaly layer structure that revealed a new surface. The hydrophilicity of LiCoO2 and hydrophobicity of graphite were obviously improved by cryogenic grinding, and in turn contributed to an excellent flotation separation. This work provides an efficient and environmentally-friendly process for recovering LiCoO2 and graphite from spent lithium-ion batteries. |
---|---|
AbstractList | [Display omitted]
•Binder wrapped on electrode particles weakens their surface properties.•Cryogenic grinding can remove the organic binder efficiently.•Removing organic binder can expose new surface of electrode particles.•Removing organic binder can eliminate agglomeration of electrode particles.•Electrode materials before and after cryogenic grinding are fully investigated.
A novel method of cryogenic grinding and froth flotation is proposed to recover LiCoO2 and graphite from spent lithium-ion batteries. After 9 min of cryogenic grinding, the grade of LiCoO2 concentrate was up to 91.75%, with a recovery rate of 89.83% after flotation, but the materials that have not been cryogenic grinding, the grade and recovery rate of LiCoO2 after flotation only 55.36% and 72.8%, respectively. Analysis of the surface properties and morphology of electrode particles was performed using scanning electron microscopy, X-ray photoelectron spectroscopy, and field emission-electron probe micro-analysis. Results indicate that the organic binder on the surface of the raw materials resulted in a poor recovery rate and grade of the flotation concentrate. Cryogenic grinding, on the other hand, caused the organic binder on the surface of electrode materials to peel off, with spherical graphite changing into a scaly layer structure that revealed a new surface. The hydrophilicity of LiCoO2 and hydrophobicity of graphite were obviously improved by cryogenic grinding, and in turn contributed to an excellent flotation separation. This work provides an efficient and environmentally-friendly process for recovering LiCoO2 and graphite from spent lithium-ion batteries. |
ArticleNumber | 106223 |
Author | Hao, Juan Xie, Weining He, Yaqun Liu, Jiangshan Hu, Tingting Wang, Shuai Bai, Xuejie Wang, Haifeng |
Author_xml | – sequence: 1 givenname: Jiangshan surname: Liu fullname: Liu, Jiangshan organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China – sequence: 2 givenname: Haifeng orcidid: 0000-0002-9155-3529 surname: Wang fullname: Wang, Haifeng email: whfcumt@126.com organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China – sequence: 3 givenname: Tingting surname: Hu fullname: Hu, Tingting organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China – sequence: 4 givenname: Xuejie surname: Bai fullname: Bai, Xuejie organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China – sequence: 5 givenname: Shuai surname: Wang fullname: Wang, Shuai organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China – sequence: 6 givenname: Weining surname: Xie fullname: Xie, Weining organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China – sequence: 7 givenname: Juan surname: Hao fullname: Hao, Juan organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China – sequence: 8 givenname: Yaqun orcidid: 0000-0001-8146-5974 surname: He fullname: He, Yaqun organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China |
BookMark | eNqF0N9KwzAUBvAgCm7TN_AiL9CZpGnTeiHI8B8MBqLXoU1PtjPaZKRx0Le3s155oVcHDvw-zvnm5Nx5B4TccLbkjOe3-2WHDtx2KZg4rXIh0jMy44USSSmlPCczVpQiyQuVXZJ53-8ZY5kqyhnZv4HxRwgD9ZauceU3glauodtQHXYYgdrgO9ofwEXaYtzhZ5egd7SuYoSA0NN6oCYMfgsOzcjQNei23xkjjTtqWx-rOJorcmGrtofrn7kgH0-P76uXZL15fl09rBOTsjwmgqu6rivDs8xmnCslFVe5haxUkhe15NwWUAoAkzc1EyAzK3OlGpE2aTqqdEHuplwTfN8HsNrgdEEMFbaaM31qTe_11Jo-taan1kYsf-FDwK4Kw3_sfmIwPnZECLo3CM5AgwFM1I3HvwO-AA4gi_4 |
CitedBy_id | crossref_primary_10_1016_j_mineng_2021_106924 crossref_primary_10_1016_j_ensm_2022_10_033 crossref_primary_10_3390_min13010084 crossref_primary_10_1016_j_mineng_2021_107218 crossref_primary_10_1016_j_est_2024_113407 crossref_primary_10_1016_j_psep_2022_12_061 crossref_primary_10_1016_j_est_2024_113125 crossref_primary_10_1016_j_jpowsour_2024_234773 crossref_primary_10_1016_j_seppur_2023_123252 crossref_primary_10_1007_s11771_022_5127_1 crossref_primary_10_1007_s10163_024_01919_5 crossref_primary_10_1016_j_cej_2023_144169 crossref_primary_10_1016_j_eurpolymj_2024_112875 crossref_primary_10_3390_met12010015 crossref_primary_10_3390_recycling8040059 crossref_primary_10_1016_j_mineng_2025_109193 crossref_primary_10_1039_D3SU00086A crossref_primary_10_1016_j_est_2024_110702 crossref_primary_10_1016_j_wasman_2024_02_023 crossref_primary_10_1021_acssuschemeng_4c02444 crossref_primary_10_1007_s42461_024_01167_z crossref_primary_10_1016_j_seppur_2023_125289 crossref_primary_10_1016_j_isci_2023_108072 crossref_primary_10_1039_D4CS00362D crossref_primary_10_1021_acssuschemeng_0c07965 crossref_primary_10_1016_j_seppur_2025_132234 crossref_primary_10_1016_j_mineng_2023_108366 crossref_primary_10_1002_cey2_492 crossref_primary_10_1016_j_mineng_2024_108644 crossref_primary_10_1007_s11837_025_07199_0 crossref_primary_10_3390_batteries9020068 crossref_primary_10_1016_j_susmat_2022_e00399 crossref_primary_10_1016_j_etran_2024_100320 crossref_primary_10_1007_s40831_025_01015_4 crossref_primary_10_1016_j_est_2023_107942 crossref_primary_10_3390_su16093876 crossref_primary_10_1016_j_ccst_2022_100074 crossref_primary_10_1080_21622515_2023_2248559 crossref_primary_10_1016_j_seppur_2022_121885 crossref_primary_10_1016_j_rser_2023_113980 crossref_primary_10_3390_batteries9010015 crossref_primary_10_1016_j_scitotenv_2021_151621 crossref_primary_10_3390_molecules28104081 crossref_primary_10_1016_j_resconrec_2024_107967 crossref_primary_10_1016_j_mineng_2024_109112 crossref_primary_10_1002_adsu_202400610 crossref_primary_10_1016_j_psep_2022_03_031 crossref_primary_10_1007_s12598_023_02377_y crossref_primary_10_1080_08827508_2022_2040497 crossref_primary_10_3390_met10050680 crossref_primary_10_3390_ma14237153 crossref_primary_10_1039_D4SU00427B crossref_primary_10_1016_j_seppur_2023_123684 crossref_primary_10_1016_j_mtener_2023_101434 crossref_primary_10_1016_j_jmrt_2023_03_133 crossref_primary_10_1007_s12598_023_02437_3 crossref_primary_10_1007_s11581_021_04423_0 crossref_primary_10_1016_j_resconrec_2024_107778 crossref_primary_10_1039_D3GC03078D crossref_primary_10_1109_TII_2024_3353861 crossref_primary_10_1021_acssuschemeng_2c06311 crossref_primary_10_3390_met12040677 crossref_primary_10_1016_j_nxener_2023_100091 crossref_primary_10_1016_S1872_5805_23_60777_2 crossref_primary_10_12677_AEP_2021_115114 crossref_primary_10_1557_s43581_022_00053_9 crossref_primary_10_3390_su15010030 crossref_primary_10_1016_j_seppur_2024_126327 crossref_primary_10_1016_j_wasman_2024_05_039 crossref_primary_10_3390_met13071276 crossref_primary_10_1016_j_ces_2022_117842 crossref_primary_10_1002_admt_202200368 crossref_primary_10_1016_j_scowo_2024_100027 crossref_primary_10_1016_j_powtec_2022_117921 crossref_primary_10_1016_j_wasman_2022_11_045 crossref_primary_10_1016_j_jclepro_2021_126329 crossref_primary_10_1016_j_jhazmat_2022_129678 crossref_primary_10_1016_j_susmat_2020_e00197 crossref_primary_10_1021_acs_est_3c01369 crossref_primary_10_1016_j_mineng_2022_107670 crossref_primary_10_1016_j_cej_2025_159403 crossref_primary_10_1016_j_mineng_2024_108999 crossref_primary_10_1016_j_jece_2022_109234 crossref_primary_10_1016_j_jwpe_2024_104879 crossref_primary_10_1002_gch2_202200067 crossref_primary_10_2298_JMMB231020042K crossref_primary_10_1016_j_est_2023_107798 crossref_primary_10_1039_D1GC01639C crossref_primary_10_1016_j_jechem_2024_01_055 crossref_primary_10_1080_15567036_2024_2415500 crossref_primary_10_1016_j_colsurfa_2021_127111 crossref_primary_10_1016_j_isci_2023_107782 crossref_primary_10_1016_j_psep_2024_12_048 crossref_primary_10_1016_j_jmrt_2022_08_137 crossref_primary_10_1016_j_envres_2024_118216 crossref_primary_10_3390_met10111558 crossref_primary_10_1016_j_cec_2022_100015 crossref_primary_10_1016_j_seppur_2024_130885 crossref_primary_10_3390_batteries10010027 crossref_primary_10_1016_j_cjche_2021_09_014 crossref_primary_10_3390_met10081069 crossref_primary_10_1002_gch2_202200237 crossref_primary_10_1016_j_surfin_2024_105655 crossref_primary_10_3390_met13020374 crossref_primary_10_1016_j_colsurfa_2021_127866 crossref_primary_10_1039_D4GC05418K crossref_primary_10_1016_j_ensm_2021_05_010 crossref_primary_10_3390_batteries9120589 crossref_primary_10_1016_j_esci_2025_100394 crossref_primary_10_1016_j_est_2023_109073 crossref_primary_10_1016_j_jece_2022_107312 crossref_primary_10_3390_recycling8050079 crossref_primary_10_1080_15567036_2023_2243863 crossref_primary_10_1016_j_jece_2022_107671 crossref_primary_10_1016_j_seppur_2023_123241 crossref_primary_10_1080_15567036_2023_2218298 crossref_primary_10_1016_j_apsadv_2025_100719 |
Cites_doi | 10.1016/j.jclepro.2018.03.069 10.1016/j.jmmm.2016.10.031 10.1016/j.rser.2015.12.363 10.1016/j.wasman.2016.10.034 10.1016/j.enconman.2017.08.016 10.1016/j.jiec.2017.12.010 10.1016/j.mineng.2012.12.005 10.1016/j.jclepro.2016.12.106 10.1016/j.wasman.2014.01.002 10.1016/j.mineng.2017.04.008 10.1016/j.ceramint.2019.01.170 10.3390/met8080565 10.1016/j.jhazmat.2015.02.064 10.1016/j.seppur.2014.09.033 10.1016/j.jclepro.2018.07.143 10.1016/j.jpowsour.2016.06.072 10.1016/j.ceramint.2015.05.115 10.1016/j.seppur.2017.08.049 10.1016/j.hydromet.2016.03.007 10.1016/j.jpowsour.2014.11.036 10.1016/j.powtec.2017.03.050 10.1016/j.jhazmat.2016.03.062 10.1021/acssuschemeng.7b01594 10.1016/j.jenvman.2014.01.021 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mineng.2020.106223 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-9444 |
ExternalDocumentID | 10_1016_j_mineng_2020_106223 S0892687520300431 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSE SSG SSZ T5K ~02 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ R2- RIG SEP SET SEW SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c306t-217bbbac155f5117747176fe597418b411f8e92eec6db02e45f4677d23d33c153 |
IEDL.DBID | .~1 |
ISSN | 0892-6875 |
IngestDate | Tue Jul 01 01:13:27 EDT 2025 Thu Apr 24 23:02:16 EDT 2025 Fri Feb 23 02:47:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spent lithium-ion battery Electrode materials Recovery Cryogenic grinding Froth flotation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-217bbbac155f5117747176fe597418b411f8e92eec6db02e45f4677d23d33c153 |
ORCID | 0000-0001-8146-5974 0000-0002-9155-3529 |
ParticipantIDs | crossref_citationtrail_10_1016_j_mineng_2020_106223 crossref_primary_10_1016_j_mineng_2020_106223 elsevier_sciencedirect_doi_10_1016_j_mineng_2020_106223 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-15 |
PublicationDateYYYYMMDD | 2020-03-15 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Minerals engineering |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yang, Xi, Xi (b0100) 2015; 41 Wang, Y., 2013. The application of PVDF binder in lithium-ion battery[D]. Fudan University. 2013 (in Chinese). Choubey, Chung, Kim, Lee, Srivastava (b0020) 2017; 110 Zeng, Li, Ren (b0115) 2012 Bahaloo-Horeh, Mousavi (b0010) 2017; 60 Zhang, He, Feng, Wang, Zhang, Xie, Zhu (b0135) 2018; 199 Xi, Wang, Zhao (b0095) 2017; 424 Li, Xing, Liu, Li, Guo, Kuang (b0050) 2017; 5 Ku, Jung, Jo, Park, Kim, Yang, Rhee, An, Sohn, Kwon (b0045) 2016; 313 Meng, Zhang, Dong, Liang (b0060) 2018; 61 Yu, He, Ge, Li, Xie, Wang (b0110) 2018; 190 Wang, Zhang, He, Zhao, Wang (b0080) 2018; 185 Liu, Wei, He, Zhao (b0055) 2017; 150 Zhang, He, Wang, Li, Duan, Wu (b0130) 2014; 138 Al-Thyabat, Nakamura, Shibata, Iizuka (b0005) 2013; 45 Zeng, Li, Shen (b0120) 2015; 295 Yu, He, Li, Xie, Zhang (b0105) 2017; 315 Huang, Han, Liu, Chai, Wang, Yang, Su (b0040) 2016; 325 Ordoñez, Gago, Girard (b0065) 2016; 60 He, Zhang, Wang, Zhang, Zhang, Wang (b0035) 2017; 143 Zhang, He, Wang, Ge, Zhu, Li (b0125) 2014; 34 Takacova, Havlik, Kukurugya, Orac (b0070) 2016; 163 Bertuol, Toniasso, Jimenez, Meili, Dotto, Tanabe, Aguiar (b0015) 2015; 275 Dun, Xi, Heng, Zhang, Liu, Xing (b0030) 2019; 45 Wang, Gaustad, Babbitt, Bailey, Ganter, Landi (b0075) 2014; 135 Wang, Zhang, He, Zhao, Wang, Zhang, Zhang, Feng (b0085) 2018; 185 Diaz, Wang, Moorthy, Friedrich (b0025) 2018; 8 Diaz (10.1016/j.mineng.2020.106223_b0025) 2018; 8 Choubey (10.1016/j.mineng.2020.106223_b0020) 2017; 110 Ku (10.1016/j.mineng.2020.106223_b0045) 2016; 313 Huang (10.1016/j.mineng.2020.106223_b0040) 2016; 325 Bertuol (10.1016/j.mineng.2020.106223_b0015) 2015; 275 Zhang (10.1016/j.mineng.2020.106223_b0130) 2014; 138 Wang (10.1016/j.mineng.2020.106223_b0075) 2014; 135 He (10.1016/j.mineng.2020.106223_b0035) 2017; 143 Dun (10.1016/j.mineng.2020.106223_b0030) 2019; 45 Meng (10.1016/j.mineng.2020.106223_b0060) 2018; 61 Zhang (10.1016/j.mineng.2020.106223_b0135) 2018; 199 10.1016/j.mineng.2020.106223_b0090 Takacova (10.1016/j.mineng.2020.106223_b0070) 2016; 163 Wang (10.1016/j.mineng.2020.106223_b0085) 2018; 185 Liu (10.1016/j.mineng.2020.106223_b0055) 2017; 150 Yang (10.1016/j.mineng.2020.106223_b0100) 2015; 41 Bahaloo-Horeh (10.1016/j.mineng.2020.106223_b0010) 2017; 60 Xi (10.1016/j.mineng.2020.106223_b0095) 2017; 424 Zeng (10.1016/j.mineng.2020.106223_b0120) 2015; 295 Zeng (10.1016/j.mineng.2020.106223_b0115) 2012 Yu (10.1016/j.mineng.2020.106223_b0105) 2017; 315 Al-Thyabat (10.1016/j.mineng.2020.106223_b0005) 2013; 45 Li (10.1016/j.mineng.2020.106223_b0050) 2017; 5 Zhang (10.1016/j.mineng.2020.106223_b0125) 2014; 34 Ordoñez (10.1016/j.mineng.2020.106223_b0065) 2016; 60 Yu (10.1016/j.mineng.2020.106223_b0110) 2018; 190 Wang (10.1016/j.mineng.2020.106223_b0080) 2018; 185 |
References_xml | – reference: Wang, Y., 2013. The application of PVDF binder in lithium-ion battery[D]. Fudan University. 2013 (in Chinese). – volume: 313 start-page: 138 year: 2016 end-page: 146 ident: b0045 article-title: Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching publication-title: J. Hazard. Mater. – volume: 275 start-page: 627 year: 2015 end-page: 632 ident: b0015 article-title: Application of spouted bed elutriation in the recycling of lithium ion batteries publication-title: J. Power sources. – volume: 150 start-page: 304 year: 2017 end-page: 330 ident: b0055 article-title: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review publication-title: Energ. Convers. Manage. – volume: 8 start-page: 565 year: 2018 ident: b0025 article-title: Degradation mechanism of Nickel-Cobalt-Aluminum (NCA) cathode material from spent lithium-ion batteries in microwave-assisted pyrolysis publication-title: Metals – volume: 5 start-page: 8017 year: 2017 end-page: 8024 ident: b0050 article-title: Recovery of lithium, iron, and phosphorus from spent LiFePO publication-title: ACS Sustain. Chem. Eng. – volume: 424 start-page: 130 year: 2017 end-page: 136 ident: b0095 article-title: Magnetic and magnetostrictive properties of RE-doped Cu-Co ferrite fabricated from spent lithium-ion batteries publication-title: J. Magn. Magn. Mater. – volume: 61 start-page: 133 year: 2018 end-page: 141 ident: b0060 article-title: A novel process for leaching of metals from LiNi publication-title: J. Ind. Eng. Chem. – volume: 135 start-page: 126 year: 2014 end-page: 134 ident: b0075 article-title: Economic and environmental characterization of an evolving Li-ion battery waste steam publication-title: J. Environ. Manage. – start-page: 1 year: 2012 end-page: 4 ident: b0115 article-title: Prediction of various discarded lithium batteries in China publication-title: IEEE International Symposium on Sustainable Systems and Technology (ISSST) – volume: 143 start-page: 319 year: 2017 end-page: 325 ident: b0035 article-title: Recovery of LiCoO publication-title: J. Cleaner prod. – volume: 41 start-page: 11498 year: 2015 end-page: 11503 ident: b0100 article-title: Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials publication-title: Ceram. Int. – volume: 45 start-page: 4 year: 2013 end-page: 17 ident: b0005 article-title: Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: Critical review publication-title: Miner. Eng. – volume: 60 start-page: 666 year: 2017 end-page: 679 ident: b0010 article-title: Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus Niger publication-title: Waste Manage. – volume: 185 start-page: 646 year: 2018 end-page: 652 ident: b0085 article-title: Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment publication-title: J. Cleaner prod. – volume: 185 start-page: 646 year: 2018 end-page: 652 ident: b0080 article-title: Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment publication-title: J. Clean. Prod. – volume: 163 start-page: 9 year: 2016 end-page: 17 ident: b0070 article-title: Cobalt and lithium recovery from active mass of spent Li-ion batteries: theoretical and experimental approach publication-title: Hydrometallurgy – volume: 34 start-page: 1051 year: 2014 end-page: 1058 ident: b0125 article-title: Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques publication-title: Waste Manage. – volume: 295 start-page: 112 year: 2015 end-page: 118 ident: b0120 article-title: Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid publication-title: J. Hazard. Mater. – volume: 45 start-page: 8539 year: 2019 end-page: 8545 ident: b0030 article-title: Comparative study on the magnetostrictive property of cobalt ferrite synthesized by different methods from spent Li-ion batteries publication-title: Ceram. Int. – volume: 60 start-page: 195 year: 2016 end-page: 205 ident: b0065 article-title: Processes and technologies for the recycling and recovery of spent lithium-ion batteries publication-title: Renew. Sustain. Energy Rev. – volume: 325 start-page: 555 year: 2016 end-page: 564 ident: b0040 article-title: A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process publication-title: J. Power Sources – volume: 315 start-page: 139 year: 2017 end-page: 146 ident: b0105 article-title: Effect of the secondary product of semi-solid phase Fenton on the floatability of electrode material from spent lithium-ion battery publication-title: Powder Technol. – volume: 199 start-page: 62 year: 2018 end-page: 68 ident: b0135 article-title: Enhancement in liberation of electrode materials derived from spent lithium-ion battery by pyrolysis publication-title: J. Cleaner prod. – volume: 190 start-page: 45 year: 2018 end-page: 52 ident: b0110 article-title: A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: Grinding flotation publication-title: Sep. Purif. Technol. – volume: 138 start-page: 21 year: 2014 end-page: 27 ident: b0130 article-title: Surface analysis of cobalt-enriched crushed products of spent lithium-ion batteries by X-ray photoelectron spectroscopy publication-title: Sep. Purif. Technol. – volume: 110 start-page: 104 year: 2017 end-page: 121 ident: b0020 article-title: Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: from sea water and spent lithium ion batteries (LIBs) publication-title: Miner. Eng. – volume: 185 start-page: 646 year: 2018 ident: 10.1016/j.mineng.2020.106223_b0080 article-title: Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.03.069 – volume: 424 start-page: 130 year: 2017 ident: 10.1016/j.mineng.2020.106223_b0095 article-title: Magnetic and magnetostrictive properties of RE-doped Cu-Co ferrite fabricated from spent lithium-ion batteries publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2016.10.031 – volume: 60 start-page: 195 year: 2016 ident: 10.1016/j.mineng.2020.106223_b0065 article-title: Processes and technologies for the recycling and recovery of spent lithium-ion batteries publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.363 – volume: 60 start-page: 666 year: 2017 ident: 10.1016/j.mineng.2020.106223_b0010 article-title: Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus Niger publication-title: Waste Manage. doi: 10.1016/j.wasman.2016.10.034 – volume: 150 start-page: 304 year: 2017 ident: 10.1016/j.mineng.2020.106223_b0055 article-title: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2017.08.016 – volume: 61 start-page: 133 year: 2018 ident: 10.1016/j.mineng.2020.106223_b0060 article-title: A novel process for leaching of metals from LiNi1/3Co1/3Mn1/3O2 material of spent lithium ion batteries: Process optimization and kinetics aspects publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.12.010 – volume: 45 start-page: 4 year: 2013 ident: 10.1016/j.mineng.2020.106223_b0005 article-title: Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: Critical review publication-title: Miner. Eng. doi: 10.1016/j.mineng.2012.12.005 – volume: 143 start-page: 319 year: 2017 ident: 10.1016/j.mineng.2020.106223_b0035 article-title: Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation publication-title: J. Cleaner prod. doi: 10.1016/j.jclepro.2016.12.106 – volume: 34 start-page: 1051 year: 2014 ident: 10.1016/j.mineng.2020.106223_b0125 article-title: Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques publication-title: Waste Manage. doi: 10.1016/j.wasman.2014.01.002 – volume: 110 start-page: 104 year: 2017 ident: 10.1016/j.mineng.2020.106223_b0020 article-title: Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: from sea water and spent lithium ion batteries (LIBs) publication-title: Miner. Eng. doi: 10.1016/j.mineng.2017.04.008 – volume: 185 start-page: 646 year: 2018 ident: 10.1016/j.mineng.2020.106223_b0085 article-title: Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment publication-title: J. Cleaner prod. doi: 10.1016/j.jclepro.2018.03.069 – start-page: 1 year: 2012 ident: 10.1016/j.mineng.2020.106223_b0115 article-title: Prediction of various discarded lithium batteries in China – volume: 45 start-page: 8539 year: 2019 ident: 10.1016/j.mineng.2020.106223_b0030 article-title: Comparative study on the magnetostrictive property of cobalt ferrite synthesized by different methods from spent Li-ion batteries publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.01.170 – volume: 8 start-page: 565 year: 2018 ident: 10.1016/j.mineng.2020.106223_b0025 article-title: Degradation mechanism of Nickel-Cobalt-Aluminum (NCA) cathode material from spent lithium-ion batteries in microwave-assisted pyrolysis publication-title: Metals doi: 10.3390/met8080565 – volume: 295 start-page: 112 year: 2015 ident: 10.1016/j.mineng.2020.106223_b0120 article-title: Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.02.064 – volume: 138 start-page: 21 year: 2014 ident: 10.1016/j.mineng.2020.106223_b0130 article-title: Surface analysis of cobalt-enriched crushed products of spent lithium-ion batteries by X-ray photoelectron spectroscopy publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2014.09.033 – volume: 199 start-page: 62 year: 2018 ident: 10.1016/j.mineng.2020.106223_b0135 article-title: Enhancement in liberation of electrode materials derived from spent lithium-ion battery by pyrolysis publication-title: J. Cleaner prod. doi: 10.1016/j.jclepro.2018.07.143 – volume: 325 start-page: 555 year: 2016 ident: 10.1016/j.mineng.2020.106223_b0040 article-title: A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.072 – volume: 41 start-page: 11498 year: 2015 ident: 10.1016/j.mineng.2020.106223_b0100 article-title: Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.05.115 – ident: 10.1016/j.mineng.2020.106223_b0090 – volume: 190 start-page: 45 year: 2018 ident: 10.1016/j.mineng.2020.106223_b0110 article-title: A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: Grinding flotation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.08.049 – volume: 163 start-page: 9 year: 2016 ident: 10.1016/j.mineng.2020.106223_b0070 article-title: Cobalt and lithium recovery from active mass of spent Li-ion batteries: theoretical and experimental approach publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2016.03.007 – volume: 275 start-page: 627 year: 2015 ident: 10.1016/j.mineng.2020.106223_b0015 article-title: Application of spouted bed elutriation in the recycling of lithium ion batteries publication-title: J. Power sources. doi: 10.1016/j.jpowsour.2014.11.036 – volume: 315 start-page: 139 year: 2017 ident: 10.1016/j.mineng.2020.106223_b0105 article-title: Effect of the secondary product of semi-solid phase Fenton on the floatability of electrode material from spent lithium-ion battery publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.03.050 – volume: 313 start-page: 138 year: 2016 ident: 10.1016/j.mineng.2020.106223_b0045 article-title: Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.03.062 – volume: 5 start-page: 8017 year: 2017 ident: 10.1016/j.mineng.2020.106223_b0050 article-title: Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b01594 – volume: 135 start-page: 126 year: 2014 ident: 10.1016/j.mineng.2020.106223_b0075 article-title: Economic and environmental characterization of an evolving Li-ion battery waste steam publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2014.01.021 |
SSID | ssj0005789 |
Score | 2.587524 |
Snippet | [Display omitted]
•Binder wrapped on electrode particles weakens their surface properties.•Cryogenic grinding can remove the organic binder... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106223 |
SubjectTerms | Cryogenic grinding Electrode materials Froth flotation Recovery Spent lithium-ion battery |
Title | Recovery of LiCoO2 and graphite from spent lithium-ion batteries by cryogenic grinding and froth flotation |
URI | https://dx.doi.org/10.1016/j.mineng.2020.106223 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhXdqh9EmfQUNXNbZky_YYQkP6IB3aQDZjyVLjkNghdYYs_e09yXZJobTQzRI6YU7H3fehuxNCN1oEKonSiCSO4sRj3IUvCZxHeNIRodCutlm-Iz4cew8Tf9JC_aYWxqRV1r6_8unWW9cz3Vqb3WWWdV-cMKIc4DZ1TNcoW0vteYGx8tuPrTSPwD6DZxYTs7opn7M5XgtAcvkbsERqpjil7OfwtBVyBgdov8aKuFf9ziFqqfwI7W11EDxGM0MfwRo3uND4KesXzxQneYptH2pAk9iUj-D3JYQWDIB7mq0XBE4CC9tWE1gyFhssV5sC7CiTIJbZKhe7B4iWU6znRXVbf4LGg7vX_pDUzycQCTygJEA2hBCJBMSgfXM3C3Eo4FoZCuGGwnNdHaqIKiV5KhyqPF-D1wxSylLGQIqdonZe5OoMYdgBlMySkKvAi2ia-IlviAaFo2ZaO-eINVqLZd1b3DxxMY-bJLJZXOk6NrqOK12fI_Iltax6a_yxPmgOJP5mIzG4_18lL_4teYl2zchknbn-FWqXq7W6BhhSio61sw7a6d0_Dkef7VLc_A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdgAGxFOUpwfWqImd51hVVCktZaCVulmxY9OgNqlKOvTfc84DioRAYoscn2WdT3ffJ9-dEbpX3JNREAdGZErXsKlrwZcAzsNtYXKfK0sVWb5jN5zajzNn1kC9uhZGp1VWvr_06YW3rkY6lTY7qyTpvJh-QFyA28TUXaN0LXVLd6dymqjVHQzD8Vemh1e8hKfnG1qgrqAr0ryWAObSVyCKRA-5hNCfI9RO1OkfocMKLuJuuaNj1JDpCTrYaSJ4it40gwSD3OJM4VHSy54JjtIYF62oAVBiXUGC31cQXTBg7nmyWRpwGJgXnTWBKGO-xWK9zcCUEgFiSVHoUqwBovkcq0VWXtifoWn_YdILjeoFBUMAFcgN4Buc80gAaFCOvp6FUOS5SmoWYfnctizly4BIKdyYm0TajgLH6cWExpSCFD1HzTRL5QXCsALomUa-Kz07IHHkRI7mGgROmyplthGttcZE1V5cv3KxYHUe2Rsrdc20rlmp6zYyPqVWZXuNP-Z79YGwb2bCIAL8Knn5b8k7tBdOnkZsNBgPr9C-_qOT0CznGjXz9UbeACrJ-W1ldR-LdN-t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recovery+of+LiCoO2+and+graphite+from+spent+lithium-ion+batteries+by+cryogenic+grinding+and+froth+flotation&rft.jtitle=Minerals+engineering&rft.au=Liu%2C+Jiangshan&rft.au=Wang%2C+Haifeng&rft.au=Hu%2C+Tingting&rft.au=Bai%2C+Xuejie&rft.date=2020-03-15&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=148&rft_id=info:doi/10.1016%2Fj.mineng.2020.106223&rft.externalDocID=S0892687520300431 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |