Recovery of LiCoO2 and graphite from spent lithium-ion batteries by cryogenic grinding and froth flotation

[Display omitted] •Binder wrapped on electrode particles weakens their surface properties.•Cryogenic grinding can remove the organic binder efficiently.•Removing organic binder can expose new surface of electrode particles.•Removing organic binder can eliminate agglomeration of electrode particles.•...

Full description

Saved in:
Bibliographic Details
Published inMinerals engineering Vol. 148; p. 106223
Main Authors Liu, Jiangshan, Wang, Haifeng, Hu, Tingting, Bai, Xuejie, Wang, Shuai, Xie, Weining, Hao, Juan, He, Yaqun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Binder wrapped on electrode particles weakens their surface properties.•Cryogenic grinding can remove the organic binder efficiently.•Removing organic binder can expose new surface of electrode particles.•Removing organic binder can eliminate agglomeration of electrode particles.•Electrode materials before and after cryogenic grinding are fully investigated. A novel method of cryogenic grinding and froth flotation is proposed to recover LiCoO2 and graphite from spent lithium-ion batteries. After 9 min of cryogenic grinding, the grade of LiCoO2 concentrate was up to 91.75%, with a recovery rate of 89.83% after flotation, but the materials that have not been cryogenic grinding, the grade and recovery rate of LiCoO2 after flotation only 55.36% and 72.8%, respectively. Analysis of the surface properties and morphology of electrode particles was performed using scanning electron microscopy, X-ray photoelectron spectroscopy, and field emission-electron probe micro-analysis. Results indicate that the organic binder on the surface of the raw materials resulted in a poor recovery rate and grade of the flotation concentrate. Cryogenic grinding, on the other hand, caused the organic binder on the surface of electrode materials to peel off, with spherical graphite changing into a scaly layer structure that revealed a new surface. The hydrophilicity of LiCoO2 and hydrophobicity of graphite were obviously improved by cryogenic grinding, and in turn contributed to an excellent flotation separation. This work provides an efficient and environmentally-friendly process for recovering LiCoO2 and graphite from spent lithium-ion batteries.
AbstractList [Display omitted] •Binder wrapped on electrode particles weakens their surface properties.•Cryogenic grinding can remove the organic binder efficiently.•Removing organic binder can expose new surface of electrode particles.•Removing organic binder can eliminate agglomeration of electrode particles.•Electrode materials before and after cryogenic grinding are fully investigated. A novel method of cryogenic grinding and froth flotation is proposed to recover LiCoO2 and graphite from spent lithium-ion batteries. After 9 min of cryogenic grinding, the grade of LiCoO2 concentrate was up to 91.75%, with a recovery rate of 89.83% after flotation, but the materials that have not been cryogenic grinding, the grade and recovery rate of LiCoO2 after flotation only 55.36% and 72.8%, respectively. Analysis of the surface properties and morphology of electrode particles was performed using scanning electron microscopy, X-ray photoelectron spectroscopy, and field emission-electron probe micro-analysis. Results indicate that the organic binder on the surface of the raw materials resulted in a poor recovery rate and grade of the flotation concentrate. Cryogenic grinding, on the other hand, caused the organic binder on the surface of electrode materials to peel off, with spherical graphite changing into a scaly layer structure that revealed a new surface. The hydrophilicity of LiCoO2 and hydrophobicity of graphite were obviously improved by cryogenic grinding, and in turn contributed to an excellent flotation separation. This work provides an efficient and environmentally-friendly process for recovering LiCoO2 and graphite from spent lithium-ion batteries.
ArticleNumber 106223
Author Hao, Juan
Xie, Weining
He, Yaqun
Liu, Jiangshan
Hu, Tingting
Wang, Shuai
Bai, Xuejie
Wang, Haifeng
Author_xml – sequence: 1
  givenname: Jiangshan
  surname: Liu
  fullname: Liu, Jiangshan
  organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
– sequence: 2
  givenname: Haifeng
  orcidid: 0000-0002-9155-3529
  surname: Wang
  fullname: Wang, Haifeng
  email: whfcumt@126.com
  organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
– sequence: 3
  givenname: Tingting
  surname: Hu
  fullname: Hu, Tingting
  organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
– sequence: 4
  givenname: Xuejie
  surname: Bai
  fullname: Bai, Xuejie
  organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
– sequence: 5
  givenname: Shuai
  surname: Wang
  fullname: Wang, Shuai
  organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
– sequence: 6
  givenname: Weining
  surname: Xie
  fullname: Xie, Weining
  organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
– sequence: 7
  givenname: Juan
  surname: Hao
  fullname: Hao, Juan
  organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
– sequence: 8
  givenname: Yaqun
  orcidid: 0000-0001-8146-5974
  surname: He
  fullname: He, Yaqun
  organization: Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
BookMark eNqF0N9KwzAUBvAgCm7TN_AiL9CZpGnTeiHI8B8MBqLXoU1PtjPaZKRx0Le3s155oVcHDvw-zvnm5Nx5B4TccLbkjOe3-2WHDtx2KZg4rXIh0jMy44USSSmlPCczVpQiyQuVXZJ53-8ZY5kqyhnZv4HxRwgD9ZauceU3glauodtQHXYYgdrgO9ofwEXaYtzhZ5egd7SuYoSA0NN6oCYMfgsOzcjQNei23xkjjTtqWx-rOJorcmGrtofrn7kgH0-P76uXZL15fl09rBOTsjwmgqu6rivDs8xmnCslFVe5haxUkhe15NwWUAoAkzc1EyAzK3OlGpE2aTqqdEHuplwTfN8HsNrgdEEMFbaaM31qTe_11Jo-taan1kYsf-FDwK4Kw3_sfmIwPnZECLo3CM5AgwFM1I3HvwO-AA4gi_4
CitedBy_id crossref_primary_10_1016_j_mineng_2021_106924
crossref_primary_10_1016_j_ensm_2022_10_033
crossref_primary_10_3390_min13010084
crossref_primary_10_1016_j_mineng_2021_107218
crossref_primary_10_1016_j_est_2024_113407
crossref_primary_10_1016_j_psep_2022_12_061
crossref_primary_10_1016_j_est_2024_113125
crossref_primary_10_1016_j_jpowsour_2024_234773
crossref_primary_10_1016_j_seppur_2023_123252
crossref_primary_10_1007_s11771_022_5127_1
crossref_primary_10_1007_s10163_024_01919_5
crossref_primary_10_1016_j_cej_2023_144169
crossref_primary_10_1016_j_eurpolymj_2024_112875
crossref_primary_10_3390_met12010015
crossref_primary_10_3390_recycling8040059
crossref_primary_10_1016_j_mineng_2025_109193
crossref_primary_10_1039_D3SU00086A
crossref_primary_10_1016_j_est_2024_110702
crossref_primary_10_1016_j_wasman_2024_02_023
crossref_primary_10_1021_acssuschemeng_4c02444
crossref_primary_10_1007_s42461_024_01167_z
crossref_primary_10_1016_j_seppur_2023_125289
crossref_primary_10_1016_j_isci_2023_108072
crossref_primary_10_1039_D4CS00362D
crossref_primary_10_1021_acssuschemeng_0c07965
crossref_primary_10_1016_j_seppur_2025_132234
crossref_primary_10_1016_j_mineng_2023_108366
crossref_primary_10_1002_cey2_492
crossref_primary_10_1016_j_mineng_2024_108644
crossref_primary_10_1007_s11837_025_07199_0
crossref_primary_10_3390_batteries9020068
crossref_primary_10_1016_j_susmat_2022_e00399
crossref_primary_10_1016_j_etran_2024_100320
crossref_primary_10_1007_s40831_025_01015_4
crossref_primary_10_1016_j_est_2023_107942
crossref_primary_10_3390_su16093876
crossref_primary_10_1016_j_ccst_2022_100074
crossref_primary_10_1080_21622515_2023_2248559
crossref_primary_10_1016_j_seppur_2022_121885
crossref_primary_10_1016_j_rser_2023_113980
crossref_primary_10_3390_batteries9010015
crossref_primary_10_1016_j_scitotenv_2021_151621
crossref_primary_10_3390_molecules28104081
crossref_primary_10_1016_j_resconrec_2024_107967
crossref_primary_10_1016_j_mineng_2024_109112
crossref_primary_10_1002_adsu_202400610
crossref_primary_10_1016_j_psep_2022_03_031
crossref_primary_10_1007_s12598_023_02377_y
crossref_primary_10_1080_08827508_2022_2040497
crossref_primary_10_3390_met10050680
crossref_primary_10_3390_ma14237153
crossref_primary_10_1039_D4SU00427B
crossref_primary_10_1016_j_seppur_2023_123684
crossref_primary_10_1016_j_mtener_2023_101434
crossref_primary_10_1016_j_jmrt_2023_03_133
crossref_primary_10_1007_s12598_023_02437_3
crossref_primary_10_1007_s11581_021_04423_0
crossref_primary_10_1016_j_resconrec_2024_107778
crossref_primary_10_1039_D3GC03078D
crossref_primary_10_1109_TII_2024_3353861
crossref_primary_10_1021_acssuschemeng_2c06311
crossref_primary_10_3390_met12040677
crossref_primary_10_1016_j_nxener_2023_100091
crossref_primary_10_1016_S1872_5805_23_60777_2
crossref_primary_10_12677_AEP_2021_115114
crossref_primary_10_1557_s43581_022_00053_9
crossref_primary_10_3390_su15010030
crossref_primary_10_1016_j_seppur_2024_126327
crossref_primary_10_1016_j_wasman_2024_05_039
crossref_primary_10_3390_met13071276
crossref_primary_10_1016_j_ces_2022_117842
crossref_primary_10_1002_admt_202200368
crossref_primary_10_1016_j_scowo_2024_100027
crossref_primary_10_1016_j_powtec_2022_117921
crossref_primary_10_1016_j_wasman_2022_11_045
crossref_primary_10_1016_j_jclepro_2021_126329
crossref_primary_10_1016_j_jhazmat_2022_129678
crossref_primary_10_1016_j_susmat_2020_e00197
crossref_primary_10_1021_acs_est_3c01369
crossref_primary_10_1016_j_mineng_2022_107670
crossref_primary_10_1016_j_cej_2025_159403
crossref_primary_10_1016_j_mineng_2024_108999
crossref_primary_10_1016_j_jece_2022_109234
crossref_primary_10_1016_j_jwpe_2024_104879
crossref_primary_10_1002_gch2_202200067
crossref_primary_10_2298_JMMB231020042K
crossref_primary_10_1016_j_est_2023_107798
crossref_primary_10_1039_D1GC01639C
crossref_primary_10_1016_j_jechem_2024_01_055
crossref_primary_10_1080_15567036_2024_2415500
crossref_primary_10_1016_j_colsurfa_2021_127111
crossref_primary_10_1016_j_isci_2023_107782
crossref_primary_10_1016_j_psep_2024_12_048
crossref_primary_10_1016_j_jmrt_2022_08_137
crossref_primary_10_1016_j_envres_2024_118216
crossref_primary_10_3390_met10111558
crossref_primary_10_1016_j_cec_2022_100015
crossref_primary_10_1016_j_seppur_2024_130885
crossref_primary_10_3390_batteries10010027
crossref_primary_10_1016_j_cjche_2021_09_014
crossref_primary_10_3390_met10081069
crossref_primary_10_1002_gch2_202200237
crossref_primary_10_1016_j_surfin_2024_105655
crossref_primary_10_3390_met13020374
crossref_primary_10_1016_j_colsurfa_2021_127866
crossref_primary_10_1039_D4GC05418K
crossref_primary_10_1016_j_ensm_2021_05_010
crossref_primary_10_3390_batteries9120589
crossref_primary_10_1016_j_esci_2025_100394
crossref_primary_10_1016_j_est_2023_109073
crossref_primary_10_1016_j_jece_2022_107312
crossref_primary_10_3390_recycling8050079
crossref_primary_10_1080_15567036_2023_2243863
crossref_primary_10_1016_j_jece_2022_107671
crossref_primary_10_1016_j_seppur_2023_123241
crossref_primary_10_1080_15567036_2023_2218298
crossref_primary_10_1016_j_apsadv_2025_100719
Cites_doi 10.1016/j.jclepro.2018.03.069
10.1016/j.jmmm.2016.10.031
10.1016/j.rser.2015.12.363
10.1016/j.wasman.2016.10.034
10.1016/j.enconman.2017.08.016
10.1016/j.jiec.2017.12.010
10.1016/j.mineng.2012.12.005
10.1016/j.jclepro.2016.12.106
10.1016/j.wasman.2014.01.002
10.1016/j.mineng.2017.04.008
10.1016/j.ceramint.2019.01.170
10.3390/met8080565
10.1016/j.jhazmat.2015.02.064
10.1016/j.seppur.2014.09.033
10.1016/j.jclepro.2018.07.143
10.1016/j.jpowsour.2016.06.072
10.1016/j.ceramint.2015.05.115
10.1016/j.seppur.2017.08.049
10.1016/j.hydromet.2016.03.007
10.1016/j.jpowsour.2014.11.036
10.1016/j.powtec.2017.03.050
10.1016/j.jhazmat.2016.03.062
10.1021/acssuschemeng.7b01594
10.1016/j.jenvman.2014.01.021
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mineng.2020.106223
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
ExternalDocumentID 10_1016_j_mineng_2020_106223
S0892687520300431
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSE
SSG
SSZ
T5K
~02
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
R2-
RIG
SEP
SET
SEW
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c306t-217bbbac155f5117747176fe597418b411f8e92eec6db02e45f4677d23d33c153
IEDL.DBID .~1
ISSN 0892-6875
IngestDate Tue Jul 01 01:13:27 EDT 2025
Thu Apr 24 23:02:16 EDT 2025
Fri Feb 23 02:47:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spent lithium-ion battery
Electrode materials
Recovery
Cryogenic grinding
Froth flotation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-217bbbac155f5117747176fe597418b411f8e92eec6db02e45f4677d23d33c153
ORCID 0000-0001-8146-5974
0000-0002-9155-3529
ParticipantIDs crossref_citationtrail_10_1016_j_mineng_2020_106223
crossref_primary_10_1016_j_mineng_2020_106223
elsevier_sciencedirect_doi_10_1016_j_mineng_2020_106223
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-15
PublicationDateYYYYMMDD 2020-03-15
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Minerals engineering
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yang, Xi, Xi (b0100) 2015; 41
Wang, Y., 2013. The application of PVDF binder in lithium-ion battery[D]. Fudan University. 2013 (in Chinese).
Choubey, Chung, Kim, Lee, Srivastava (b0020) 2017; 110
Zeng, Li, Ren (b0115) 2012
Bahaloo-Horeh, Mousavi (b0010) 2017; 60
Zhang, He, Feng, Wang, Zhang, Xie, Zhu (b0135) 2018; 199
Xi, Wang, Zhao (b0095) 2017; 424
Li, Xing, Liu, Li, Guo, Kuang (b0050) 2017; 5
Ku, Jung, Jo, Park, Kim, Yang, Rhee, An, Sohn, Kwon (b0045) 2016; 313
Meng, Zhang, Dong, Liang (b0060) 2018; 61
Yu, He, Ge, Li, Xie, Wang (b0110) 2018; 190
Wang, Zhang, He, Zhao, Wang (b0080) 2018; 185
Liu, Wei, He, Zhao (b0055) 2017; 150
Zhang, He, Wang, Li, Duan, Wu (b0130) 2014; 138
Al-Thyabat, Nakamura, Shibata, Iizuka (b0005) 2013; 45
Zeng, Li, Shen (b0120) 2015; 295
Yu, He, Li, Xie, Zhang (b0105) 2017; 315
Huang, Han, Liu, Chai, Wang, Yang, Su (b0040) 2016; 325
Ordoñez, Gago, Girard (b0065) 2016; 60
He, Zhang, Wang, Zhang, Zhang, Wang (b0035) 2017; 143
Zhang, He, Wang, Ge, Zhu, Li (b0125) 2014; 34
Takacova, Havlik, Kukurugya, Orac (b0070) 2016; 163
Bertuol, Toniasso, Jimenez, Meili, Dotto, Tanabe, Aguiar (b0015) 2015; 275
Dun, Xi, Heng, Zhang, Liu, Xing (b0030) 2019; 45
Wang, Gaustad, Babbitt, Bailey, Ganter, Landi (b0075) 2014; 135
Wang, Zhang, He, Zhao, Wang, Zhang, Zhang, Feng (b0085) 2018; 185
Diaz, Wang, Moorthy, Friedrich (b0025) 2018; 8
Diaz (10.1016/j.mineng.2020.106223_b0025) 2018; 8
Choubey (10.1016/j.mineng.2020.106223_b0020) 2017; 110
Ku (10.1016/j.mineng.2020.106223_b0045) 2016; 313
Huang (10.1016/j.mineng.2020.106223_b0040) 2016; 325
Bertuol (10.1016/j.mineng.2020.106223_b0015) 2015; 275
Zhang (10.1016/j.mineng.2020.106223_b0130) 2014; 138
Wang (10.1016/j.mineng.2020.106223_b0075) 2014; 135
He (10.1016/j.mineng.2020.106223_b0035) 2017; 143
Dun (10.1016/j.mineng.2020.106223_b0030) 2019; 45
Meng (10.1016/j.mineng.2020.106223_b0060) 2018; 61
Zhang (10.1016/j.mineng.2020.106223_b0135) 2018; 199
10.1016/j.mineng.2020.106223_b0090
Takacova (10.1016/j.mineng.2020.106223_b0070) 2016; 163
Wang (10.1016/j.mineng.2020.106223_b0085) 2018; 185
Liu (10.1016/j.mineng.2020.106223_b0055) 2017; 150
Yang (10.1016/j.mineng.2020.106223_b0100) 2015; 41
Bahaloo-Horeh (10.1016/j.mineng.2020.106223_b0010) 2017; 60
Xi (10.1016/j.mineng.2020.106223_b0095) 2017; 424
Zeng (10.1016/j.mineng.2020.106223_b0120) 2015; 295
Zeng (10.1016/j.mineng.2020.106223_b0115) 2012
Yu (10.1016/j.mineng.2020.106223_b0105) 2017; 315
Al-Thyabat (10.1016/j.mineng.2020.106223_b0005) 2013; 45
Li (10.1016/j.mineng.2020.106223_b0050) 2017; 5
Zhang (10.1016/j.mineng.2020.106223_b0125) 2014; 34
Ordoñez (10.1016/j.mineng.2020.106223_b0065) 2016; 60
Yu (10.1016/j.mineng.2020.106223_b0110) 2018; 190
Wang (10.1016/j.mineng.2020.106223_b0080) 2018; 185
References_xml – reference: Wang, Y., 2013. The application of PVDF binder in lithium-ion battery[D]. Fudan University. 2013 (in Chinese).
– volume: 313
  start-page: 138
  year: 2016
  end-page: 146
  ident: b0045
  article-title: Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching
  publication-title: J. Hazard. Mater.
– volume: 275
  start-page: 627
  year: 2015
  end-page: 632
  ident: b0015
  article-title: Application of spouted bed elutriation in the recycling of lithium ion batteries
  publication-title: J. Power sources.
– volume: 150
  start-page: 304
  year: 2017
  end-page: 330
  ident: b0055
  article-title: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review
  publication-title: Energ. Convers. Manage.
– volume: 8
  start-page: 565
  year: 2018
  ident: b0025
  article-title: Degradation mechanism of Nickel-Cobalt-Aluminum (NCA) cathode material from spent lithium-ion batteries in microwave-assisted pyrolysis
  publication-title: Metals
– volume: 5
  start-page: 8017
  year: 2017
  end-page: 8024
  ident: b0050
  article-title: Recovery of lithium, iron, and phosphorus from spent LiFePO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 424
  start-page: 130
  year: 2017
  end-page: 136
  ident: b0095
  article-title: Magnetic and magnetostrictive properties of RE-doped Cu-Co ferrite fabricated from spent lithium-ion batteries
  publication-title: J. Magn. Magn. Mater.
– volume: 61
  start-page: 133
  year: 2018
  end-page: 141
  ident: b0060
  article-title: A novel process for leaching of metals from LiNi
  publication-title: J. Ind. Eng. Chem.
– volume: 135
  start-page: 126
  year: 2014
  end-page: 134
  ident: b0075
  article-title: Economic and environmental characterization of an evolving Li-ion battery waste steam
  publication-title: J. Environ. Manage.
– start-page: 1
  year: 2012
  end-page: 4
  ident: b0115
  article-title: Prediction of various discarded lithium batteries in China
  publication-title: IEEE International Symposium on Sustainable Systems and Technology (ISSST)
– volume: 143
  start-page: 319
  year: 2017
  end-page: 325
  ident: b0035
  article-title: Recovery of LiCoO
  publication-title: J. Cleaner prod.
– volume: 41
  start-page: 11498
  year: 2015
  end-page: 11503
  ident: b0100
  article-title: Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials
  publication-title: Ceram. Int.
– volume: 45
  start-page: 4
  year: 2013
  end-page: 17
  ident: b0005
  article-title: Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: Critical review
  publication-title: Miner. Eng.
– volume: 60
  start-page: 666
  year: 2017
  end-page: 679
  ident: b0010
  article-title: Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus Niger
  publication-title: Waste Manage.
– volume: 185
  start-page: 646
  year: 2018
  end-page: 652
  ident: b0085
  article-title: Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment
  publication-title: J. Cleaner prod.
– volume: 185
  start-page: 646
  year: 2018
  end-page: 652
  ident: b0080
  article-title: Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment
  publication-title: J. Clean. Prod.
– volume: 163
  start-page: 9
  year: 2016
  end-page: 17
  ident: b0070
  article-title: Cobalt and lithium recovery from active mass of spent Li-ion batteries: theoretical and experimental approach
  publication-title: Hydrometallurgy
– volume: 34
  start-page: 1051
  year: 2014
  end-page: 1058
  ident: b0125
  article-title: Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques
  publication-title: Waste Manage.
– volume: 295
  start-page: 112
  year: 2015
  end-page: 118
  ident: b0120
  article-title: Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid
  publication-title: J. Hazard. Mater.
– volume: 45
  start-page: 8539
  year: 2019
  end-page: 8545
  ident: b0030
  article-title: Comparative study on the magnetostrictive property of cobalt ferrite synthesized by different methods from spent Li-ion batteries
  publication-title: Ceram. Int.
– volume: 60
  start-page: 195
  year: 2016
  end-page: 205
  ident: b0065
  article-title: Processes and technologies for the recycling and recovery of spent lithium-ion batteries
  publication-title: Renew. Sustain. Energy Rev.
– volume: 325
  start-page: 555
  year: 2016
  end-page: 564
  ident: b0040
  article-title: A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process
  publication-title: J. Power Sources
– volume: 315
  start-page: 139
  year: 2017
  end-page: 146
  ident: b0105
  article-title: Effect of the secondary product of semi-solid phase Fenton on the floatability of electrode material from spent lithium-ion battery
  publication-title: Powder Technol.
– volume: 199
  start-page: 62
  year: 2018
  end-page: 68
  ident: b0135
  article-title: Enhancement in liberation of electrode materials derived from spent lithium-ion battery by pyrolysis
  publication-title: J. Cleaner prod.
– volume: 190
  start-page: 45
  year: 2018
  end-page: 52
  ident: b0110
  article-title: A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: Grinding flotation
  publication-title: Sep. Purif. Technol.
– volume: 138
  start-page: 21
  year: 2014
  end-page: 27
  ident: b0130
  article-title: Surface analysis of cobalt-enriched crushed products of spent lithium-ion batteries by X-ray photoelectron spectroscopy
  publication-title: Sep. Purif. Technol.
– volume: 110
  start-page: 104
  year: 2017
  end-page: 121
  ident: b0020
  article-title: Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: from sea water and spent lithium ion batteries (LIBs)
  publication-title: Miner. Eng.
– volume: 185
  start-page: 646
  year: 2018
  ident: 10.1016/j.mineng.2020.106223_b0080
  article-title: Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.03.069
– volume: 424
  start-page: 130
  year: 2017
  ident: 10.1016/j.mineng.2020.106223_b0095
  article-title: Magnetic and magnetostrictive properties of RE-doped Cu-Co ferrite fabricated from spent lithium-ion batteries
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2016.10.031
– volume: 60
  start-page: 195
  year: 2016
  ident: 10.1016/j.mineng.2020.106223_b0065
  article-title: Processes and technologies for the recycling and recovery of spent lithium-ion batteries
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.363
– volume: 60
  start-page: 666
  year: 2017
  ident: 10.1016/j.mineng.2020.106223_b0010
  article-title: Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus Niger
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2016.10.034
– volume: 150
  start-page: 304
  year: 2017
  ident: 10.1016/j.mineng.2020.106223_b0055
  article-title: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2017.08.016
– volume: 61
  start-page: 133
  year: 2018
  ident: 10.1016/j.mineng.2020.106223_b0060
  article-title: A novel process for leaching of metals from LiNi1/3Co1/3Mn1/3O2 material of spent lithium ion batteries: Process optimization and kinetics aspects
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2017.12.010
– volume: 45
  start-page: 4
  year: 2013
  ident: 10.1016/j.mineng.2020.106223_b0005
  article-title: Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: Critical review
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2012.12.005
– volume: 143
  start-page: 319
  year: 2017
  ident: 10.1016/j.mineng.2020.106223_b0035
  article-title: Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation
  publication-title: J. Cleaner prod.
  doi: 10.1016/j.jclepro.2016.12.106
– volume: 34
  start-page: 1051
  year: 2014
  ident: 10.1016/j.mineng.2020.106223_b0125
  article-title: Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2014.01.002
– volume: 110
  start-page: 104
  year: 2017
  ident: 10.1016/j.mineng.2020.106223_b0020
  article-title: Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: from sea water and spent lithium ion batteries (LIBs)
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2017.04.008
– volume: 185
  start-page: 646
  year: 2018
  ident: 10.1016/j.mineng.2020.106223_b0085
  article-title: Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment
  publication-title: J. Cleaner prod.
  doi: 10.1016/j.jclepro.2018.03.069
– start-page: 1
  year: 2012
  ident: 10.1016/j.mineng.2020.106223_b0115
  article-title: Prediction of various discarded lithium batteries in China
– volume: 45
  start-page: 8539
  year: 2019
  ident: 10.1016/j.mineng.2020.106223_b0030
  article-title: Comparative study on the magnetostrictive property of cobalt ferrite synthesized by different methods from spent Li-ion batteries
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.01.170
– volume: 8
  start-page: 565
  year: 2018
  ident: 10.1016/j.mineng.2020.106223_b0025
  article-title: Degradation mechanism of Nickel-Cobalt-Aluminum (NCA) cathode material from spent lithium-ion batteries in microwave-assisted pyrolysis
  publication-title: Metals
  doi: 10.3390/met8080565
– volume: 295
  start-page: 112
  year: 2015
  ident: 10.1016/j.mineng.2020.106223_b0120
  article-title: Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.02.064
– volume: 138
  start-page: 21
  year: 2014
  ident: 10.1016/j.mineng.2020.106223_b0130
  article-title: Surface analysis of cobalt-enriched crushed products of spent lithium-ion batteries by X-ray photoelectron spectroscopy
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2014.09.033
– volume: 199
  start-page: 62
  year: 2018
  ident: 10.1016/j.mineng.2020.106223_b0135
  article-title: Enhancement in liberation of electrode materials derived from spent lithium-ion battery by pyrolysis
  publication-title: J. Cleaner prod.
  doi: 10.1016/j.jclepro.2018.07.143
– volume: 325
  start-page: 555
  year: 2016
  ident: 10.1016/j.mineng.2020.106223_b0040
  article-title: A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.072
– volume: 41
  start-page: 11498
  year: 2015
  ident: 10.1016/j.mineng.2020.106223_b0100
  article-title: Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.05.115
– ident: 10.1016/j.mineng.2020.106223_b0090
– volume: 190
  start-page: 45
  year: 2018
  ident: 10.1016/j.mineng.2020.106223_b0110
  article-title: A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: Grinding flotation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.08.049
– volume: 163
  start-page: 9
  year: 2016
  ident: 10.1016/j.mineng.2020.106223_b0070
  article-title: Cobalt and lithium recovery from active mass of spent Li-ion batteries: theoretical and experimental approach
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2016.03.007
– volume: 275
  start-page: 627
  year: 2015
  ident: 10.1016/j.mineng.2020.106223_b0015
  article-title: Application of spouted bed elutriation in the recycling of lithium ion batteries
  publication-title: J. Power sources.
  doi: 10.1016/j.jpowsour.2014.11.036
– volume: 315
  start-page: 139
  year: 2017
  ident: 10.1016/j.mineng.2020.106223_b0105
  article-title: Effect of the secondary product of semi-solid phase Fenton on the floatability of electrode material from spent lithium-ion battery
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2017.03.050
– volume: 313
  start-page: 138
  year: 2016
  ident: 10.1016/j.mineng.2020.106223_b0045
  article-title: Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.03.062
– volume: 5
  start-page: 8017
  year: 2017
  ident: 10.1016/j.mineng.2020.106223_b0050
  article-title: Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b01594
– volume: 135
  start-page: 126
  year: 2014
  ident: 10.1016/j.mineng.2020.106223_b0075
  article-title: Economic and environmental characterization of an evolving Li-ion battery waste steam
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2014.01.021
SSID ssj0005789
Score 2.587524
Snippet [Display omitted] •Binder wrapped on electrode particles weakens their surface properties.•Cryogenic grinding can remove the organic binder...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106223
SubjectTerms Cryogenic grinding
Electrode materials
Froth flotation
Recovery
Spent lithium-ion battery
Title Recovery of LiCoO2 and graphite from spent lithium-ion batteries by cryogenic grinding and froth flotation
URI https://dx.doi.org/10.1016/j.mineng.2020.106223
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhXdqh9EmfQUNXNbZky_YYQkP6IB3aQDZjyVLjkNghdYYs_e09yXZJobTQzRI6YU7H3fehuxNCN1oEKonSiCSO4sRj3IUvCZxHeNIRodCutlm-Iz4cew8Tf9JC_aYWxqRV1r6_8unWW9cz3Vqb3WWWdV-cMKIc4DZ1TNcoW0vteYGx8tuPrTSPwD6DZxYTs7opn7M5XgtAcvkbsERqpjil7OfwtBVyBgdov8aKuFf9ziFqqfwI7W11EDxGM0MfwRo3uND4KesXzxQneYptH2pAk9iUj-D3JYQWDIB7mq0XBE4CC9tWE1gyFhssV5sC7CiTIJbZKhe7B4iWU6znRXVbf4LGg7vX_pDUzycQCTygJEA2hBCJBMSgfXM3C3Eo4FoZCuGGwnNdHaqIKiV5KhyqPF-D1wxSylLGQIqdonZe5OoMYdgBlMySkKvAi2ia-IlviAaFo2ZaO-eINVqLZd1b3DxxMY-bJLJZXOk6NrqOK12fI_Iltax6a_yxPmgOJP5mIzG4_18lL_4teYl2zchknbn-FWqXq7W6BhhSio61sw7a6d0_Dkef7VLc_A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdgAGxFOUpwfWqImd51hVVCktZaCVulmxY9OgNqlKOvTfc84DioRAYoscn2WdT3ffJ9-dEbpX3JNREAdGZErXsKlrwZcAzsNtYXKfK0sVWb5jN5zajzNn1kC9uhZGp1VWvr_06YW3rkY6lTY7qyTpvJh-QFyA28TUXaN0LXVLd6dymqjVHQzD8Vemh1e8hKfnG1qgrqAr0ryWAObSVyCKRA-5hNCfI9RO1OkfocMKLuJuuaNj1JDpCTrYaSJ4it40gwSD3OJM4VHSy54JjtIYF62oAVBiXUGC31cQXTBg7nmyWRpwGJgXnTWBKGO-xWK9zcCUEgFiSVHoUqwBovkcq0VWXtifoWn_YdILjeoFBUMAFcgN4Buc80gAaFCOvp6FUOS5SmoWYfnctizly4BIKdyYm0TajgLH6cWExpSCFD1HzTRL5QXCsALomUa-Kz07IHHkRI7mGgROmyplthGttcZE1V5cv3KxYHUe2Rsrdc20rlmp6zYyPqVWZXuNP-Z79YGwb2bCIAL8Knn5b8k7tBdOnkZsNBgPr9C-_qOT0CznGjXz9UbeACrJ-W1ldR-LdN-t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recovery+of+LiCoO2+and+graphite+from+spent+lithium-ion+batteries+by+cryogenic+grinding+and+froth+flotation&rft.jtitle=Minerals+engineering&rft.au=Liu%2C+Jiangshan&rft.au=Wang%2C+Haifeng&rft.au=Hu%2C+Tingting&rft.au=Bai%2C+Xuejie&rft.date=2020-03-15&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=148&rft_id=info:doi/10.1016%2Fj.mineng.2020.106223&rft.externalDocID=S0892687520300431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon