Robust Bayesian cluster enumeration based on the t distribution

•Novel robust cluster enumeration criterion derived using Bayes theorem.•Maximizes posterior probability among t-distributed candidate models.•Penalty term without asymptotic approximations derived for finite sample sizes.•Two-step robust clustering and enumeration algorithm proposed.•Successful rea...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 182; p. 107870
Main Authors Teklehaymanot, Freweyni K., Muma, Michael, Zoubir, Abdelhak M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Novel robust cluster enumeration criterion derived using Bayes theorem.•Maximizes posterior probability among t-distributed candidate models.•Penalty term without asymptotic approximations derived for finite sample sizes.•Two-step robust clustering and enumeration algorithm proposed.•Successful real-data application and benchmarking against existing methods. A major challenge in cluster analysis is that the number of data clusters is mostly unknown and it must be estimated prior to clustering the observed data. In real-world applications, the observed data is often subject to heavy tailed noise and outliers which obscure the true underlying structure of the data. Consequently, estimating the number of clusters becomes challenging. To this end, we derive a robust cluster enumeration criterion by formulating the problem of estimating the number of clusters as maximization of the posterior probability of multivariate tν distributed candidate models. We utilize Bayes’ theorem and asymptotic approximations to come up with a robust criterion that possesses a closed-form expression. Further, we refine the derivation and provide a robust cluster enumeration criterion for data sets with finite sample size. The robust criteria require an estimate of cluster parameters for each candidate model as an input. Hence, we propose a two-step cluster enumeration algorithm that uses the expectation maximization algorithm to partition the data and estimate cluster parameters prior to the calculation of one of the robust criteria. The performance of the proposed algorithm is tested and compared to existing cluster enumeration methods using numerical and real data experiments.
AbstractList •Novel robust cluster enumeration criterion derived using Bayes theorem.•Maximizes posterior probability among t-distributed candidate models.•Penalty term without asymptotic approximations derived for finite sample sizes.•Two-step robust clustering and enumeration algorithm proposed.•Successful real-data application and benchmarking against existing methods. A major challenge in cluster analysis is that the number of data clusters is mostly unknown and it must be estimated prior to clustering the observed data. In real-world applications, the observed data is often subject to heavy tailed noise and outliers which obscure the true underlying structure of the data. Consequently, estimating the number of clusters becomes challenging. To this end, we derive a robust cluster enumeration criterion by formulating the problem of estimating the number of clusters as maximization of the posterior probability of multivariate tν distributed candidate models. We utilize Bayes’ theorem and asymptotic approximations to come up with a robust criterion that possesses a closed-form expression. Further, we refine the derivation and provide a robust cluster enumeration criterion for data sets with finite sample size. The robust criteria require an estimate of cluster parameters for each candidate model as an input. Hence, we propose a two-step cluster enumeration algorithm that uses the expectation maximization algorithm to partition the data and estimate cluster parameters prior to the calculation of one of the robust criteria. The performance of the proposed algorithm is tested and compared to existing cluster enumeration methods using numerical and real data experiments.
ArticleNumber 107870
Author Zoubir, Abdelhak M.
Teklehaymanot, Freweyni K.
Muma, Michael
Author_xml – sequence: 1
  givenname: Freweyni K.
  surname: Teklehaymanot
  fullname: Teklehaymanot, Freweyni K.
  email: ftekle@spg.tu-darmstadt.de
  organization: Signal Processing Group, Technische Universität Darmstadt, Darmstadt, Germany
– sequence: 2
  givenname: Michael
  surname: Muma
  fullname: Muma, Michael
  email: muma@spg.tu-darmstadt.de
  organization: Signal Processing Group, Technische Universität Darmstadt, Darmstadt, Germany
– sequence: 3
  givenname: Abdelhak M.
  surname: Zoubir
  fullname: Zoubir, Abdelhak M.
  email: zoubir@spg.tu-darmstadt.de
  organization: Signal Processing Group, Technische Universität Darmstadt, Darmstadt, Germany
BookMark eNqFUMtOwzAQtFCRaAt_wME_kLJO4oc4gKDiJVVCQnC2bGcLrtqksh2k_j0O4cQBTvuamd2dGZm0XYuEnDNYMGDiYrOI_n0fukUJ5dCSSsIRmTIly0JyLidkmmG8YELVJ2QW4wYAWCVgSq5fOtvHRG_NAaM3LXXbXGKg2PY7DCb5rqXWRGxoTtIH0kQbH1Pwth9mp-R4bbYRz37inLzd370uH4vV88PT8mZVuApEKkpQlhsnTV5aIzfcqbWtG86gQWERQFhTsbJGZqXDSrgM4SojSwXOClnNyeWo60IXY8C1dj59X5eC8VvNQA9W6I0erdCDFXq0IpPrX-R98DsTDv_RrkYa5sc-PQYdncfWYeMDuqSbzv8t8AWGYX1d
CitedBy_id crossref_primary_10_1109_TSP_2024_3426965
crossref_primary_10_3390_a14110322
Cites_doi 10.1109/TSP.2019.2939079
10.1016/j.datak.2014.07.008
10.1007/s11634-010-0064-5
10.1093/biomet/76.2.369
10.1109/MSP.2012.2183773
10.1016/j.sigpro.2018.02.034
10.1109/TPAMI.1979.4766909
10.1111/1467-9868.00293
10.2307/2347385
10.1080/03610919408813180
10.1016/j.jspi.2011.11.026
10.1016/j.patcog.2009.02.010
10.1080/03610929908832282
10.1016/j.patrec.2015.10.004
10.1016/j.csda.2006.12.024
10.1109/TPAMI.2002.1114856
10.1007/s11634-014-0165-7
10.2307/2531893
10.1093/comjnl/41.8.578
10.1016/S0047-259X(02)00020-9
10.1109/TSP.2019.2916755
10.1080/01621459.1998.10474110
10.1016/j.neucom.2009.04.003
10.1007/BF02294245
10.1007/s11222-010-9194-z
10.1109/TSP.2018.2866385
10.1109/TPAMI.2006.111
10.1007/s11222-011-9272-x
10.1109/91.580801
10.1016/0167-8655(96)00080-3
10.1007/s10440-008-9212-8
10.1214/009053604000000940
10.1016/0377-0427(87)90125-7
10.1214/aos/1176344136
10.1016/j.csda.2009.08.023
10.1080/01969727308546046
10.1023/A:1012801612483
10.1109/TNN.2005.845141
10.1007/s11634-009-0044-9
10.1016/j.patcog.2012.07.021
10.1080/01431161.2011.629637
10.1023/A:1008981510081
10.1109/78.720374
10.1109/MSP.2004.1311138
10.1016/j.jmva.2010.05.005
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2020.107870
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
ExternalDocumentID 10_1016_j_sigpro_2020_107870
S016516842030414X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-208b5ac7a3604e5a5c8fb4d510de6be006ba3124e1b7ce36c5a5584e5280cb673
IEDL.DBID .~1
ISSN 0165-1684
IngestDate Tue Jul 01 02:07:30 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Fri Feb 23 02:46:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Outlier
Cluster analysis
Bayesian Information Criterion
Cluster Enumeration
Multivariate tν distribution
Robust
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-208b5ac7a3604e5a5c8fb4d510de6be006ba3124e1b7ce36c5a5584e5280cb673
ParticipantIDs crossref_citationtrail_10_1016_j_sigpro_2020_107870
crossref_primary_10_1016_j_sigpro_2020_107870
elsevier_sciencedirect_doi_10_1016_j_sigpro_2020_107870
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Teklehaymanot, Muma, Liu, Zoubir (bib0019) 2016
Constantinopoulos, Titsias, Likas (bib0014) 2006; 28
Zoubir, Koivunen, Ollila, Muma (bib0029) 2018
Peel, McLachlan (bib0051) 2000; 10
Cavanaugh, Neath (bib0061) 1999; 28
Kotz, Nadarajah (bib0052) 2004
Rao, Wu (bib0065) 1989; 76
Fraley, Raftery (bib0036) 1998; 41
Wang, Abrams, Kornblau, Coombes (bib0032) 2018; 19
Milligan, Cooper (bib0023) 1985; 50
Ankerst, Breunig, Kriegel, Sander (bib0048) 1999
Gallegos, Ritter (bib0035) 2010; 54
Izenman (bib0066) 2008
Pelleg, Moore (bib0010) 2000
Schwarz (bib0049) 1978; 6
Wu, Yang, Hsieh (bib0043) 2009; 42
Zhao, Fränti (bib0018) 2014; 92
Garcá-Escudero, Gordaliza, Martrán, Mayo-Iscar (bib0027) 2011; 21
Binder, Muma, Zoubir (bib0030) 2016; 2016
McLachlan, Peel (bib0050) 1998
Magnus, Neudecker (bib0072) 2007
Zoubir, Koivunen, Chakhchoukh, Muma (bib0028) 2012; 29
Kent, Tyler, Vard (bib0056) 1994; 23
Azzalini, Bowman (bib0067) 1990; 39
T. Takekawa, Clustering of non-gaussian data by variational Bayes for normal inverse gaussian mixture models, arXiv
Dasgupta, Raftery (bib0037) 1998; 93
Caliński, Harabasz (bib0007) 1974; 3
Zemene, Tesfaye, Prati, Pelillo (bib0044) 2016
Nadarajah, Kotz (bib0064) 2008; 102
.
Feng, Hamerly (bib0013) 2007; 19
Hennig (bib0069) 2003; 86
Tibshirani, Walther, Hastie (bib0009) 2001; 63
Johnson, Tateishi, Xie (bib0031) 2012; 3
King (bib0002) 2015
Binder, Muma, Zoubir (bib0042) 2018; 149
Rousseeuw (bib0008) 1987; 20
Dunn (bib0005) 1973; 3
Teklehaymanot, Muma, Zoubir (bib0020) 2018; 66
Gallegos, Ritter (bib0026) 2005; 33
Liu, Rubin (bib0054) 1995; 5
Krzanowski, Lai (bib0017) 1988; 44
McNicholas (bib0060) 2017
Subedi, McNicholas (bib0058) 2014; 8
García-Escudero, Gordaliza, Matrán, Mayo-Iscar (bib0046) 2010; 4
Bishop (bib0068) 2006
Halkidi, Batistakis, Vazirgiannis (bib0025) 2001; 17
Lange, Little, Taylor (bib0053) 1989; 84
Andrews, McNicholas (bib0038) 2012; 22
Takekawa, Fukai (bib0057) 2009; 72
Davies, Bouldin (bib0006) 1979; PAMI-1
Xu, Wunsch (bib0004) 2005; 16
Ott, Pang, Ramos, Chawla (bib0045) 2014; 27
Djurić (bib0062) 1998; 46
Kalogeratos, Likas (bib0011) 2012; 25
Maulik, Bandyopadhyay (bib0024) 2002; 24
Teklehaymanot, Muma, Zoubir (bib0021) 2018
Mehrjou, Hosseini, Araabi (bib0016) 2016; 69
Ester, Kriegel, Sander, Xu (bib0047) 1996
Huang, Peng, Zhang (bib0015) 2017; 27
Frigui, Krishnapuram (bib0040) 1996; 17
McNicholas, Subedi (bib0039) 2012; 142
Hamerly, Charles (bib0012) 2003
Kaufman, Rousseeuw (bib0001) 1990
Neykov, Filzmoser, Dimova, Neytchev (bib0033) 2007; 52
Gallegos, Ritter (bib0034) 2009; 3
Davé, Krishnapuram (bib0003) 1997; 5
Arbelaitz, Gurrutxaga, Muguerza, Pérez, Perona (bib0022) 2013; 46
Huang, Zhang, Zhao, Chambers (bib0071) 2019; 67
Magnus (bib0073) 2010; 101
Kibria, Joarder (bib0055) 2006; 40
Stoica, Selen (bib0063) 2004; 21
Hu, Zou, Yang, Qu (bib0041) 2011
Huang, Zhang, Chambers (bib0070) 2019; 67
Wu (10.1016/j.sigpro.2020.107870_bib0043) 2009; 42
Lange (10.1016/j.sigpro.2020.107870_bib0053) 1989; 84
Kaufman (10.1016/j.sigpro.2020.107870_bib0001) 1990
Peel (10.1016/j.sigpro.2020.107870_bib0051) 2000; 10
Zhao (10.1016/j.sigpro.2020.107870_bib0018) 2014; 92
Ankerst (10.1016/j.sigpro.2020.107870_bib0048) 1999
Xu (10.1016/j.sigpro.2020.107870_bib0004) 2005; 16
Tibshirani (10.1016/j.sigpro.2020.107870_bib0009) 2001; 63
10.1016/j.sigpro.2020.107870_bib0059
Teklehaymanot (10.1016/j.sigpro.2020.107870_bib0021) 2018
Hamerly (10.1016/j.sigpro.2020.107870_bib0012) 2003
Frigui (10.1016/j.sigpro.2020.107870_bib0040) 1996; 17
Huang (10.1016/j.sigpro.2020.107870_bib0015) 2017; 27
Binder (10.1016/j.sigpro.2020.107870_bib0030) 2016; 2016
Magnus (10.1016/j.sigpro.2020.107870_bib0073) 2010; 101
Garcá-Escudero (10.1016/j.sigpro.2020.107870_bib0027) 2011; 21
Huang (10.1016/j.sigpro.2020.107870_bib0071) 2019; 67
Krzanowski (10.1016/j.sigpro.2020.107870_bib0017) 1988; 44
Mehrjou (10.1016/j.sigpro.2020.107870_bib0016) 2016; 69
Andrews (10.1016/j.sigpro.2020.107870_bib0038) 2012; 22
Milligan (10.1016/j.sigpro.2020.107870_bib0023) 1985; 50
García-Escudero (10.1016/j.sigpro.2020.107870_bib0046) 2010; 4
Liu (10.1016/j.sigpro.2020.107870_bib0054) 1995; 5
Ester (10.1016/j.sigpro.2020.107870_bib0047) 1996
Stoica (10.1016/j.sigpro.2020.107870_bib0063) 2004; 21
McLachlan (10.1016/j.sigpro.2020.107870_bib0050) 1998
Schwarz (10.1016/j.sigpro.2020.107870_bib0049) 1978; 6
Rao (10.1016/j.sigpro.2020.107870_bib0065) 1989; 76
Feng (10.1016/j.sigpro.2020.107870_bib0013) 2007; 19
Gallegos (10.1016/j.sigpro.2020.107870_bib0034) 2009; 3
Azzalini (10.1016/j.sigpro.2020.107870_bib0067) 1990; 39
Huang (10.1016/j.sigpro.2020.107870_bib0070) 2019; 67
Kibria (10.1016/j.sigpro.2020.107870_bib0055) 2006; 40
Hu (10.1016/j.sigpro.2020.107870_bib0041) 2011
Teklehaymanot (10.1016/j.sigpro.2020.107870_bib0019) 2016
King (10.1016/j.sigpro.2020.107870_bib0002) 2015
Djurić (10.1016/j.sigpro.2020.107870_bib0062) 1998; 46
Gallegos (10.1016/j.sigpro.2020.107870_bib0026) 2005; 33
McNicholas (10.1016/j.sigpro.2020.107870_bib0039) 2012; 142
Takekawa (10.1016/j.sigpro.2020.107870_bib0057) 2009; 72
Wang (10.1016/j.sigpro.2020.107870_bib0032) 2018; 19
Kotz (10.1016/j.sigpro.2020.107870_bib0052) 2004
Halkidi (10.1016/j.sigpro.2020.107870_bib0025) 2001; 17
Ott (10.1016/j.sigpro.2020.107870_bib0045) 2014; 27
Magnus (10.1016/j.sigpro.2020.107870_bib0072) 2007
Davé (10.1016/j.sigpro.2020.107870_bib0003) 1997; 5
Davies (10.1016/j.sigpro.2020.107870_bib0006) 1979; PAMI-1
Teklehaymanot (10.1016/j.sigpro.2020.107870_bib0020) 2018; 66
Arbelaitz (10.1016/j.sigpro.2020.107870_bib0022) 2013; 46
Neykov (10.1016/j.sigpro.2020.107870_bib0033) 2007; 52
Constantinopoulos (10.1016/j.sigpro.2020.107870_bib0014) 2006; 28
Kent (10.1016/j.sigpro.2020.107870_bib0056) 1994; 23
Nadarajah (10.1016/j.sigpro.2020.107870_bib0064) 2008; 102
Dunn (10.1016/j.sigpro.2020.107870_bib0005) 1973; 3
Subedi (10.1016/j.sigpro.2020.107870_bib0058) 2014; 8
Kalogeratos (10.1016/j.sigpro.2020.107870_bib0011) 2012; 25
Johnson (10.1016/j.sigpro.2020.107870_bib0031) 2012; 3
Binder (10.1016/j.sigpro.2020.107870_bib0042) 2018; 149
Zemene (10.1016/j.sigpro.2020.107870_bib0044) 2016
Zoubir (10.1016/j.sigpro.2020.107870_bib0029) 2018
Rousseeuw (10.1016/j.sigpro.2020.107870_bib0008) 1987; 20
Pelleg (10.1016/j.sigpro.2020.107870_bib0010) 2000
Caliński (10.1016/j.sigpro.2020.107870_bib0007) 1974; 3
Fraley (10.1016/j.sigpro.2020.107870_bib0036) 1998; 41
Izenman (10.1016/j.sigpro.2020.107870_bib0066) 2008
Dasgupta (10.1016/j.sigpro.2020.107870_bib0037) 1998; 93
Gallegos (10.1016/j.sigpro.2020.107870_bib0035) 2010; 54
Maulik (10.1016/j.sigpro.2020.107870_bib0024) 2002; 24
Cavanaugh (10.1016/j.sigpro.2020.107870_bib0061) 1999; 28
Zoubir (10.1016/j.sigpro.2020.107870_bib0028) 2012; 29
Bishop (10.1016/j.sigpro.2020.107870_bib0068) 2006
McNicholas (10.1016/j.sigpro.2020.107870_bib0060) 2017
Hennig (10.1016/j.sigpro.2020.107870_bib0069) 2003; 86
References_xml – volume: 2016
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib0030
  article-title: Robust and adaptive diffusion-based classification in distributed networks
  publication-title: EURASIP J. Adv. Signal Process.
– year: 2008
  ident: bib0066
  article-title: Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning
– volume: 50
  start-page: 159
  year: 1985
  end-page: 179
  ident: bib0023
  article-title: An examination of procedures for determining the number of clusters in a data set
  publication-title: Psychometrika
– volume: 21
  start-page: 585
  year: 2011
  end-page: 599
  ident: bib0027
  article-title: Exploring the number of groups in robust model-based clustering
  publication-title: Stat. Comput.
– volume: 3
  start-page: 1
  year: 1974
  end-page: 27
  ident: bib0007
  article-title: A dendrite method for cluster analysis
  publication-title: Commun. Stat.
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: bib0004
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
– year: 2004
  ident: bib0052
  article-title: Multivariate T Distributions and Their Applications
– volume: 19
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib0032
  article-title: Thresher: determining the number of clusters while removing outliers
  publication-title: BMC Bioinf.
– volume: 46
  start-page: 2726
  year: 1998
  end-page: 2735
  ident: bib0062
  article-title: Asymptotic MAP criteria for model selection
  publication-title: IEEE Trans. Signal Process.
– start-page: 49
  year: 1999
  end-page: 60
  ident: bib0048
  article-title: Optics: ordering points to identify the clustering structure
  publication-title: ACM SIGMOD International Conference on Management of Data
– volume: 28
  start-page: 1013
  year: 2006
  end-page: 1018
  ident: bib0014
  article-title: Bayesian feature and model selection for Gaussian mixture models
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– volume: 24
  start-page: 1650
  year: 2002
  end-page: 1654
  ident: bib0024
  article-title: Performance evaluation of some clustering algorithms and validity indices
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– volume: 66
  start-page: 5392
  year: 2018
  end-page: 5406
  ident: bib0020
  article-title: Bayesian cluster enumeration criterion for unsupervised learning
  publication-title: IEEE Trans. Signal Process.
– volume: 8
  start-page: 167
  year: 2014
  end-page: 193
  ident: bib0058
  article-title: Variational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributions
  publication-title: Adv. Data Anal. Classif.
– volume: 69
  start-page: 22
  year: 2016
  end-page: 27
  ident: bib0016
  article-title: Improved Bayesian information criterion for mixture model selection
  publication-title: Pattern Recognit. Lett.
– volume: 3
  start-page: 491
  year: 2012
  end-page: 499
  ident: bib0031
  article-title: Using geographically weighted variables for image classification
  publication-title: Remote Sens. Lett.
– volume: 67
  start-page: 5417
  year: 2019
  end-page: 5432
  ident: bib0070
  article-title: A novel Kullback–Leibler divergence minimization-based adaptive Student’s t-filter
  publication-title: IEEE Trans. Signal Process.
– volume: 67
  start-page: 3606
  year: 2019
  end-page: 3620
  ident: bib0071
  article-title: A novel robust Gaussian–Student’s t mixture distribution based Kalman filter
  publication-title: IEEE Trans. Signal Process.
– volume: 142
  start-page: 1114
  year: 2012
  end-page: 1127
  ident: bib0039
  article-title: Clustering gene expression time course data using mixtures of multivariate t-distributions
  publication-title: J. Stat. Plann. Inference
– volume: 46
  start-page: 243
  year: 2013
  end-page: 256
  ident: bib0022
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recognit.
– volume: 93
  start-page: 294
  year: 1998
  end-page: 302
  ident: bib0037
  article-title: Detecting features in spatial point processes with clutter via model-based clustering
  publication-title: J. Am. Stat. Assoc.
– start-page: 281
  year: 2003
  end-page: 288
  ident: bib0012
  article-title: Learning the K in K-means
  publication-title: Proceedings of the 16th International Conference on Neural Information Processing Systems (NIPS),Whistler, Canada
– volume: 92
  start-page: 77
  year: 2014
  end-page: 89
  ident: bib0018
  article-title: WB-index: a sum-of-squares based index for cluster validity
  publication-title: Data Knowl. Eng.
– volume: 41
  start-page: 578
  year: 1998
  end-page: 588
  ident: bib0036
  article-title: How many clusters? Which clustering method? Answers via model-based cluster analysis
  publication-title: Comput. J.
– volume: 76
  start-page: 369
  year: 1989
  end-page: 374
  ident: bib0065
  article-title: A strongly consistent procedure for model selection in a regression problem
  publication-title: Biometrika
– volume: 149
  start-page: 36
  year: 2018
  end-page: 48
  ident: bib0042
  article-title: Gravitational clustering: a simple, robust and adaptive approach for distributed networks
  publication-title: Signal Process.
– start-page: 727
  year: 2000
  end-page: 734
  ident: bib0010
  article-title: X-means: extending K-means with efficient estimation of the number of clusters
  publication-title: Proceedings of the 17th International Conference on Machine Learning (ICML), Stanford, USA
– volume: 102
  start-page: 99
  year: 2008
  end-page: 118
  ident: bib0064
  article-title: Estimation methods for the multivariate
  publication-title: Acta Appl. Math.
– start-page: 2325
  year: 2016
  end-page: 2330
  ident: bib0044
  article-title: Simultaneous clustering and outlier detection using dominant sets
  publication-title: Proceedings of the 23rd International Conference on Pattern Recognition (ICPR), Cancún, Mexico
– year: 2007
  ident: bib0072
  article-title: Matrix Differential Calculus with Applications in Statistics and Econometrics
– volume: 84
  start-page: 881
  year: 1989
  end-page: 896
  ident: bib0053
  article-title: Robust statistical modeling using the t distribution
  publication-title: J. Am. Stat. Assoc.
– volume: 4
  start-page: 89
  year: 2010
  end-page: 109
  ident: bib0046
  article-title: A review of robust clustering methods
  publication-title: Adv. Data Anal. Classif.
– volume: 17
  start-page: 107
  year: 2001
  end-page: 145
  ident: bib0025
  article-title: On clustering validation techniques
  publication-title: J. Intell. Inf. Syst.
– volume: 40
  start-page: 59
  year: 2006
  end-page: 72
  ident: bib0055
  article-title: A short review of multivariate t-distribution
  publication-title: J. Stat. Res.
– start-page: 4274
  year: 2018
  end-page: 4278
  ident: bib0021
  article-title: Novel Bayesian cluster enumeration criterion for cluster analysis with finite sample penalty term
  publication-title: Proceedings of the 43rd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada
– volume: 19
  start-page: 393
  year: 2007
  end-page: 400
  ident: bib0013
  article-title: PG-means: learning the number of clusters in data
  publication-title: Adv. Neural Inf. Process.Syst.
– year: 1990
  ident: bib0001
  article-title: Finding Groups in Data: An Introduction to Cluster Analysis
– volume: 63
  start-page: 411
  year: 2001
  end-page: 423
  ident: bib0009
  article-title: Estimating the number of clusters in a dataset via the gap statistic
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 25
  start-page: 2402
  year: 2012
  end-page: 2410
  ident: bib0011
  article-title: Dip-means: an incremental clustering method for estimating the number of clusters
  publication-title: Adv. Neural Inf. Process.Syst.
– volume: 42
  start-page: 2541
  year: 2009
  end-page: 2550
  ident: bib0043
  article-title: Robust cluster validity indexes
  publication-title: Pattern Recognit.
– volume: 5
  start-page: 19
  year: 1995
  end-page: 39
  ident: bib0054
  article-title: ML estimation of the t distribution using EM and its extensions, ECM and ECME
  publication-title: Stat. Sin.
– volume: 28
  start-page: 49
  year: 1999
  end-page: 66
  ident: bib0061
  article-title: Generalizing the derivation of the schwarz information criterion
  publication-title: Commun. Stat. - Theory Methods
– volume: 3
  start-page: 32
  year: 1973
  end-page: 57
  ident: bib0005
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybern.
– year: 2018
  ident: bib0029
  article-title: Robust Statistics for Signal Processing
– volume: 54
  start-page: 637
  year: 2010
  end-page: 654
  ident: bib0035
  article-title: Using combinatorial optimization in model-based trimmed clustering with cardinality constraints
  publication-title: Comput. Stat. Data Anal.
– volume: 21
  start-page: 36
  year: 2004
  end-page: 47
  ident: bib0063
  article-title: Model-order selection: a review of information criterion rules
  publication-title: IEEE Signal Process. Mag.
– start-page: 448
  year: 2011
  end-page: 451
  ident: bib0041
  article-title: A robust cluster validity index for fuzzy c-means clustering
  publication-title: Proceedings of the International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), Changchun, China
– reference: T. Takekawa, Clustering of non-gaussian data by variational Bayes for normal inverse gaussian mixture models, arXiv:
– volume: 27
  start-page: 1359
  year: 2014
  end-page: 1367
  ident: bib0045
  article-title: On integrated clustering and outlier detection
  publication-title: Adv. Neural Inf. Process.Syst.
– volume: 5
  start-page: 270
  year: 1997
  end-page: 293
  ident: bib0003
  article-title: Robust clustering methods: a unified view
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: PAMI-1
  start-page: 224
  year: 1979
  end-page: 227
  ident: bib0006
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– start-page: 658
  year: 1998
  end-page: 666
  ident: bib0050
  article-title: Robust cluster analysis via mixtures of multivariate t-distributions
  publication-title: Proceedings of the Joint IAPR International Workshops on Advances in Pattern Recognition
– volume: 10
  start-page: 339
  year: 2000
  end-page: 348
  ident: bib0051
  article-title: Robust mixture modelling using the t distribution
  publication-title: Stat. Comput.
– year: 2017
  ident: bib0060
  article-title: Mixture Model-Based Classification
– volume: 3
  start-page: 135
  year: 2009
  end-page: 167
  ident: bib0034
  article-title: Trimming algorithms for clustering contaminated grouped data and their robustness
  publication-title: Adv. Data Anal. Classif.
– volume: 17
  start-page: 1223
  year: 1996
  end-page: 1232
  ident: bib0040
  article-title: A robust algorithm for automatic extraction of an unknown number of clusters from noisy data
  publication-title: Pattern Recognit. Lett.
– start-page: 226
  year: 1996
  end-page: 231
  ident: bib0047
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96)
– volume: 44
  start-page: 23
  year: 1988
  end-page: 34
  ident: bib0017
  article-title: A criterion for determining the number of groups in a data set using sum-of-squares clustering
  publication-title: Biometrics
– volume: 72
  start-page: 3366
  year: 2009
  end-page: 3369
  ident: bib0057
  article-title: A novel view of the variational Bayesian clustering
  publication-title: Neurocomputing
– volume: 52
  start-page: 299
  year: 2007
  end-page: 308
  ident: bib0033
  article-title: Robust fitting of mixtures using the trimmed likelihood estimator
  publication-title: Comput. Stat. Data Anal.
– volume: 22
  start-page: 1021
  year: 2012
  end-page: 1029
  ident: bib0038
  article-title: Model-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributions
  publication-title: Stat. Comput.
– volume: 23
  start-page: 441
  year: 1994
  end-page: 453
  ident: bib0056
  article-title: A curious likelihood identity for the multivariate t-distribution
  publication-title: Commun. Stat. - Simul.Comput.
– volume: 86
  start-page: 183
  year: 2003
  end-page: 212
  ident: bib0069
  article-title: Clusters, outliers, and regression: fixed point clusters
  publication-title: J. Multivariate Anal.
– volume: 33
  start-page: 347
  year: 2005
  end-page: 380
  ident: bib0026
  article-title: A robust method for cluster analysis
  publication-title: Ann. Stat.
– volume: 27
  start-page: 147
  year: 2017
  end-page: 169
  ident: bib0015
  article-title: Model selection for Gaussian mixture models
  publication-title: Stat. Sin.
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: bib0049
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
– volume: 39
  start-page: 357
  year: 1990
  end-page: 365
  ident: bib0067
  article-title: A look at some data on the Old Faithful geyser
  publication-title: Appl. Stat.
– reference: .
– volume: 29
  start-page: 61
  year: 2012
  end-page: 80
  ident: bib0028
  article-title: Robust estimation in signal processing
  publication-title: IEEE Signal Process. Mag.
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: bib0008
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
– start-page: 448
  year: 2016
  end-page: 452
  ident: bib0019
  article-title: In-network adaptive cluster enumeration for distributed classification/labeling
  publication-title: Proceedings of the 24th European Signal Processing Conference (EUSIPCO),Budapest, Hungary
– year: 2006
  ident: bib0068
  article-title: Pattern Recognition and Machine Learning
– year: 2015
  ident: bib0002
  article-title: Cluster Analysis and Data Mining: An Introduction
– volume: 101
  start-page: 2200
  year: 2010
  end-page: 2206
  ident: bib0073
  article-title: On the concept of matrix derivative
  publication-title: J. Multivariate Anal.
– volume: 67
  start-page: 5417
  issue: 20
  year: 2019
  ident: 10.1016/j.sigpro.2020.107870_bib0070
  article-title: A novel Kullback–Leibler divergence minimization-based adaptive Student’s t-filter
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2939079
– volume: 92
  start-page: 77
  year: 2014
  ident: 10.1016/j.sigpro.2020.107870_bib0018
  article-title: WB-index: a sum-of-squares based index for cluster validity
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2014.07.008
– volume: 4
  start-page: 89
  issue: 2–3
  year: 2010
  ident: 10.1016/j.sigpro.2020.107870_bib0046
  article-title: A review of robust clustering methods
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-010-0064-5
– volume: 76
  start-page: 369
  issue: 2
  year: 1989
  ident: 10.1016/j.sigpro.2020.107870_bib0065
  article-title: A strongly consistent procedure for model selection in a regression problem
  publication-title: Biometrika
  doi: 10.1093/biomet/76.2.369
– year: 1990
  ident: 10.1016/j.sigpro.2020.107870_bib0001
– volume: 29
  start-page: 61
  issue: 4
  year: 2012
  ident: 10.1016/j.sigpro.2020.107870_bib0028
  article-title: Robust estimation in signal processing
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2183773
– volume: 19
  start-page: 393
  year: 2007
  ident: 10.1016/j.sigpro.2020.107870_bib0013
  article-title: PG-means: learning the number of clusters in data
  publication-title: Adv. Neural Inf. Process.Syst.
– volume: 149
  start-page: 36
  year: 2018
  ident: 10.1016/j.sigpro.2020.107870_bib0042
  article-title: Gravitational clustering: a simple, robust and adaptive approach for distributed networks
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.02.034
– volume: PAMI-1
  start-page: 224
  issue: 2
  year: 1979
  ident: 10.1016/j.sigpro.2020.107870_bib0006
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.1979.4766909
– start-page: 2325
  year: 2016
  ident: 10.1016/j.sigpro.2020.107870_bib0044
  article-title: Simultaneous clustering and outlier detection using dominant sets
– volume: 63
  start-page: 411
  issue: 2
  year: 2001
  ident: 10.1016/j.sigpro.2020.107870_bib0009
  article-title: Estimating the number of clusters in a dataset via the gap statistic
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/1467-9868.00293
– volume: 39
  start-page: 357
  issue: 3
  year: 1990
  ident: 10.1016/j.sigpro.2020.107870_bib0067
  article-title: A look at some data on the Old Faithful geyser
  publication-title: Appl. Stat.
  doi: 10.2307/2347385
– ident: 10.1016/j.sigpro.2020.107870_bib0059
– start-page: 448
  year: 2011
  ident: 10.1016/j.sigpro.2020.107870_bib0041
  article-title: A robust cluster validity index for fuzzy c-means clustering
– volume: 23
  start-page: 441
  issue: 2
  year: 1994
  ident: 10.1016/j.sigpro.2020.107870_bib0056
  article-title: A curious likelihood identity for the multivariate t-distribution
  publication-title: Commun. Stat. - Simul.Comput.
  doi: 10.1080/03610919408813180
– start-page: 226
  year: 1996
  ident: 10.1016/j.sigpro.2020.107870_bib0047
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– year: 2006
  ident: 10.1016/j.sigpro.2020.107870_bib0068
– volume: 142
  start-page: 1114
  issue: 5
  year: 2012
  ident: 10.1016/j.sigpro.2020.107870_bib0039
  article-title: Clustering gene expression time course data using mixtures of multivariate t-distributions
  publication-title: J. Stat. Plann. Inference
  doi: 10.1016/j.jspi.2011.11.026
– year: 2018
  ident: 10.1016/j.sigpro.2020.107870_bib0029
– volume: 42
  start-page: 2541
  issue: 11
  year: 2009
  ident: 10.1016/j.sigpro.2020.107870_bib0043
  article-title: Robust cluster validity indexes
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.02.010
– volume: 28
  start-page: 49
  issue: 1
  year: 1999
  ident: 10.1016/j.sigpro.2020.107870_bib0061
  article-title: Generalizing the derivation of the schwarz information criterion
  publication-title: Commun. Stat. - Theory Methods
  doi: 10.1080/03610929908832282
– year: 2017
  ident: 10.1016/j.sigpro.2020.107870_bib0060
– volume: 69
  start-page: 22
  year: 2016
  ident: 10.1016/j.sigpro.2020.107870_bib0016
  article-title: Improved Bayesian information criterion for mixture model selection
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2015.10.004
– volume: 3
  start-page: 1
  issue: 1
  year: 1974
  ident: 10.1016/j.sigpro.2020.107870_bib0007
  article-title: A dendrite method for cluster analysis
  publication-title: Commun. Stat.
– volume: 52
  start-page: 299
  issue: 1
  year: 2007
  ident: 10.1016/j.sigpro.2020.107870_bib0033
  article-title: Robust fitting of mixtures using the trimmed likelihood estimator
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2006.12.024
– volume: 24
  start-page: 1650
  issue: 12
  year: 2002
  ident: 10.1016/j.sigpro.2020.107870_bib0024
  article-title: Performance evaluation of some clustering algorithms and validity indices
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2002.1114856
– volume: 8
  start-page: 167
  issue: 2
  year: 2014
  ident: 10.1016/j.sigpro.2020.107870_bib0058
  article-title: Variational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributions
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-014-0165-7
– volume: 44
  start-page: 23
  issue: 1
  year: 1988
  ident: 10.1016/j.sigpro.2020.107870_bib0017
  article-title: A criterion for determining the number of groups in a data set using sum-of-squares clustering
  publication-title: Biometrics
  doi: 10.2307/2531893
– volume: 2016
  start-page: 1
  issue: 34
  year: 2016
  ident: 10.1016/j.sigpro.2020.107870_bib0030
  article-title: Robust and adaptive diffusion-based classification in distributed networks
  publication-title: EURASIP J. Adv. Signal Process.
– start-page: 49
  year: 1999
  ident: 10.1016/j.sigpro.2020.107870_bib0048
  article-title: Optics: ordering points to identify the clustering structure
– volume: 40
  start-page: 59
  issue: 1
  year: 2006
  ident: 10.1016/j.sigpro.2020.107870_bib0055
  article-title: A short review of multivariate t-distribution
  publication-title: J. Stat. Res.
– volume: 27
  start-page: 147
  issue: 1
  year: 2017
  ident: 10.1016/j.sigpro.2020.107870_bib0015
  article-title: Model selection for Gaussian mixture models
  publication-title: Stat. Sin.
– volume: 41
  start-page: 578
  issue: 8
  year: 1998
  ident: 10.1016/j.sigpro.2020.107870_bib0036
  article-title: How many clusters? Which clustering method? Answers via model-based cluster analysis
  publication-title: Comput. J.
  doi: 10.1093/comjnl/41.8.578
– volume: 86
  start-page: 183
  issue: 1
  year: 2003
  ident: 10.1016/j.sigpro.2020.107870_bib0069
  article-title: Clusters, outliers, and regression: fixed point clusters
  publication-title: J. Multivariate Anal.
  doi: 10.1016/S0047-259X(02)00020-9
– year: 2015
  ident: 10.1016/j.sigpro.2020.107870_bib0002
– volume: 67
  start-page: 3606
  issue: 13
  year: 2019
  ident: 10.1016/j.sigpro.2020.107870_bib0071
  article-title: A novel robust Gaussian–Student’s t mixture distribution based Kalman filter
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2916755
– volume: 93
  start-page: 294
  issue: 441
  year: 1998
  ident: 10.1016/j.sigpro.2020.107870_bib0037
  article-title: Detecting features in spatial point processes with clutter via model-based clustering
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1998.10474110
– volume: 72
  start-page: 3366
  issue: 13-15
  year: 2009
  ident: 10.1016/j.sigpro.2020.107870_bib0057
  article-title: A novel view of the variational Bayesian clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.04.003
– start-page: 448
  year: 2016
  ident: 10.1016/j.sigpro.2020.107870_bib0019
  article-title: In-network adaptive cluster enumeration for distributed classification/labeling
– volume: 50
  start-page: 159
  issue: 2
  year: 1985
  ident: 10.1016/j.sigpro.2020.107870_bib0023
  article-title: An examination of procedures for determining the number of clusters in a data set
  publication-title: Psychometrika
  doi: 10.1007/BF02294245
– start-page: 727
  year: 2000
  ident: 10.1016/j.sigpro.2020.107870_bib0010
  article-title: X-means: extending K-means with efficient estimation of the number of clusters
– volume: 21
  start-page: 585
  issue: 4
  year: 2011
  ident: 10.1016/j.sigpro.2020.107870_bib0027
  article-title: Exploring the number of groups in robust model-based clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-010-9194-z
– volume: 5
  start-page: 19
  year: 1995
  ident: 10.1016/j.sigpro.2020.107870_bib0054
  article-title: ML estimation of the t distribution using EM and its extensions, ECM and ECME
  publication-title: Stat. Sin.
– volume: 66
  start-page: 5392
  issue: 20
  year: 2018
  ident: 10.1016/j.sigpro.2020.107870_bib0020
  article-title: Bayesian cluster enumeration criterion for unsupervised learning
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2866385
– start-page: 658
  year: 1998
  ident: 10.1016/j.sigpro.2020.107870_bib0050
  article-title: Robust cluster analysis via mixtures of multivariate t-distributions
– volume: 19
  start-page: 1
  issue: 9
  year: 2018
  ident: 10.1016/j.sigpro.2020.107870_bib0032
  article-title: Thresher: determining the number of clusters while removing outliers
  publication-title: BMC Bioinf.
– start-page: 281
  year: 2003
  ident: 10.1016/j.sigpro.2020.107870_bib0012
  article-title: Learning the K in K-means
– volume: 28
  start-page: 1013
  issue: 6
  year: 2006
  ident: 10.1016/j.sigpro.2020.107870_bib0014
  article-title: Bayesian feature and model selection for Gaussian mixture models
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2006.111
– start-page: 4274
  year: 2018
  ident: 10.1016/j.sigpro.2020.107870_bib0021
  article-title: Novel Bayesian cluster enumeration criterion for cluster analysis with finite sample penalty term
– volume: 22
  start-page: 1021
  issue: 5
  year: 2012
  ident: 10.1016/j.sigpro.2020.107870_bib0038
  article-title: Model-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributions
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-011-9272-x
– volume: 5
  start-page: 270
  issue: 2
  year: 1997
  ident: 10.1016/j.sigpro.2020.107870_bib0003
  article-title: Robust clustering methods: a unified view
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.580801
– volume: 17
  start-page: 1223
  issue: 12
  year: 1996
  ident: 10.1016/j.sigpro.2020.107870_bib0040
  article-title: A robust algorithm for automatic extraction of an unknown number of clusters from noisy data
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(96)00080-3
– volume: 84
  start-page: 881
  issue: 408
  year: 1989
  ident: 10.1016/j.sigpro.2020.107870_bib0053
  article-title: Robust statistical modeling using the t distribution
  publication-title: J. Am. Stat. Assoc.
– volume: 102
  start-page: 99
  issue: 1
  year: 2008
  ident: 10.1016/j.sigpro.2020.107870_bib0064
  article-title: Estimation methods for the multivariate t distribution
  publication-title: Acta Appl. Math.
  doi: 10.1007/s10440-008-9212-8
– volume: 33
  start-page: 347
  issue: 1
  year: 2005
  ident: 10.1016/j.sigpro.2020.107870_bib0026
  article-title: A robust method for cluster analysis
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000940
– volume: 20
  start-page: 53
  issue: 1
  year: 1987
  ident: 10.1016/j.sigpro.2020.107870_bib0008
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 10.1016/j.sigpro.2020.107870_bib0049
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– volume: 27
  start-page: 1359
  year: 2014
  ident: 10.1016/j.sigpro.2020.107870_bib0045
  article-title: On integrated clustering and outlier detection
  publication-title: Adv. Neural Inf. Process.Syst.
– year: 2004
  ident: 10.1016/j.sigpro.2020.107870_bib0052
– year: 2008
  ident: 10.1016/j.sigpro.2020.107870_bib0066
– volume: 54
  start-page: 637
  issue: 3
  year: 2010
  ident: 10.1016/j.sigpro.2020.107870_bib0035
  article-title: Using combinatorial optimization in model-based trimmed clustering with cardinality constraints
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2009.08.023
– volume: 3
  start-page: 32
  issue: 3
  year: 1973
  ident: 10.1016/j.sigpro.2020.107870_bib0005
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybern.
  doi: 10.1080/01969727308546046
– volume: 17
  start-page: 107
  issue: 2/3
  year: 2001
  ident: 10.1016/j.sigpro.2020.107870_bib0025
  article-title: On clustering validation techniques
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1023/A:1012801612483
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 10.1016/j.sigpro.2020.107870_bib0004
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 3
  start-page: 135
  issue: 2
  year: 2009
  ident: 10.1016/j.sigpro.2020.107870_bib0034
  article-title: Trimming algorithms for clustering contaminated grouped data and their robustness
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-009-0044-9
– volume: 46
  start-page: 243
  issue: 1
  year: 2013
  ident: 10.1016/j.sigpro.2020.107870_bib0022
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.07.021
– volume: 3
  start-page: 491
  issue: 6
  year: 2012
  ident: 10.1016/j.sigpro.2020.107870_bib0031
  article-title: Using geographically weighted variables for image classification
  publication-title: Remote Sens. Lett.
  doi: 10.1080/01431161.2011.629637
– volume: 25
  start-page: 2402
  year: 2012
  ident: 10.1016/j.sigpro.2020.107870_bib0011
  article-title: Dip-means: an incremental clustering method for estimating the number of clusters
  publication-title: Adv. Neural Inf. Process.Syst.
– volume: 10
  start-page: 339
  year: 2000
  ident: 10.1016/j.sigpro.2020.107870_bib0051
  article-title: Robust mixture modelling using the t distribution
  publication-title: Stat. Comput.
  doi: 10.1023/A:1008981510081
– volume: 46
  start-page: 2726
  issue: 10
  year: 1998
  ident: 10.1016/j.sigpro.2020.107870_bib0062
  article-title: Asymptotic MAP criteria for model selection
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.720374
– volume: 21
  start-page: 36
  issue: 4
  year: 2004
  ident: 10.1016/j.sigpro.2020.107870_bib0063
  article-title: Model-order selection: a review of information criterion rules
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2004.1311138
– year: 2007
  ident: 10.1016/j.sigpro.2020.107870_bib0072
– volume: 101
  start-page: 2200
  year: 2010
  ident: 10.1016/j.sigpro.2020.107870_bib0073
  article-title: On the concept of matrix derivative
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2010.05.005
SSID ssj0001360
Score 2.361959
Snippet •Novel robust cluster enumeration criterion derived using Bayes theorem.•Maximizes posterior probability among t-distributed candidate models.•Penalty term...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107870
SubjectTerms Bayesian Information Criterion
Cluster analysis
Cluster Enumeration
Multivariate [formula omitted] distribution
Outlier
Robust
Title Robust Bayesian cluster enumeration based on the t distribution
URI https://dx.doi.org/10.1016/j.sigpro.2020.107870
Volume 182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-MedGD-ImfIwevdaZJ2-0kczim4g7qYLeSpKlMxjZcd_Di3-57aaoTRMFbCS_Q_t5nyXu_AJxhDguVMCLQbZMHdBAXqBD9MQ-50EQmIt1Q2P0g7g_l7Sga1aBbzcJQW6WP_WVMd9HarzQ9ms35eNx8pEEcTsdIdLrH5Ygm2GVCVn7-_tXmwYWbFCbhgKSr8TnX47UYP2Ocwr_EkJbIdn9OTyspp7cFm75WZJ3ydbahZqc7sLHCILgLlw8zvVwU7Eq9WRqHZGayJOoDRh3uttQuo0yVMXzAYo8VLCOuXH_N1R4Me9dP3X7g70QIDBb3BRp1S0fKJAo_S9pIRaaVa5mhZ2U21hZ9SCuBOdtynRgrYoMiqACLsF8YHSdiH-rT2dQeACPSRqynbJIrLnXClW3HyhF-ZejIyhyCqKBIjScMp3srJmnVGfaSlgCmBGBaAngIweeueUmY8Yd8UqGcflN8ijH9151H_955DOshtaa4vsUTqBevS3uKtUWhG854GrDWubnrDz4AQgDNKQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQevDbbbB5wMEgnI46CQcNvsbrcGQ4BIOfjvnWm3BBOjibdms5O0386rmZlvAe4whnmSa-6ohk4cKsQ50kN7TDyXKyIT8bOhsMEw7Iz950kwKUGrmIWhtkrr-3Ofnnlru1KzaNaW02ntlQZxXCojUXXP9Sc7UCF2qqAMlWa31xluHLLLs2Fh2u-QQDFBl7V5raZv6KrwR9GjJVLfnyPUVtRpH8KBTRdZM3-jIyiZ-THsb5EInsDDy0KtVyl7lJ-GJiKZnq2J_YBRk7vJD5hRsIoZPmC-x1IWE12uvenqFMbtp1Gr49hrERyN-X2Kel1XgdSRxM_yTSADXU-UH6NxxSZUBs1ISY5h27gq0oaHGrfgGRhE_l6rMOJnUJ4v5uYcGPE2YkplokS6vopcaRqhzDi_YrRlqavACyiEtpzhdHXFTBTNYe8iB1AQgCIHsArORmqZc2b8sT8qUBbfzl6gW_9V8uLfkrew2xkN-qLfHfYuYc-jTpWsjfEKyunH2lxjqpGqG6tKX1yhz9o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Bayesian+cluster+enumeration+based+on+the+t+distribution&rft.jtitle=Signal+processing&rft.au=Teklehaymanot%2C+Freweyni+K.&rft.au=Muma%2C+Michael&rft.au=Zoubir%2C+Abdelhak+M.&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=182&rft_id=info:doi/10.1016%2Fj.sigpro.2020.107870&rft.externalDocID=S016516842030414X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon