Robust Bayesian cluster enumeration based on the t distribution
•Novel robust cluster enumeration criterion derived using Bayes theorem.•Maximizes posterior probability among t-distributed candidate models.•Penalty term without asymptotic approximations derived for finite sample sizes.•Two-step robust clustering and enumeration algorithm proposed.•Successful rea...
Saved in:
Published in | Signal processing Vol. 182; p. 107870 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Novel robust cluster enumeration criterion derived using Bayes theorem.•Maximizes posterior probability among t-distributed candidate models.•Penalty term without asymptotic approximations derived for finite sample sizes.•Two-step robust clustering and enumeration algorithm proposed.•Successful real-data application and benchmarking against existing methods.
A major challenge in cluster analysis is that the number of data clusters is mostly unknown and it must be estimated prior to clustering the observed data. In real-world applications, the observed data is often subject to heavy tailed noise and outliers which obscure the true underlying structure of the data. Consequently, estimating the number of clusters becomes challenging. To this end, we derive a robust cluster enumeration criterion by formulating the problem of estimating the number of clusters as maximization of the posterior probability of multivariate tν distributed candidate models. We utilize Bayes’ theorem and asymptotic approximations to come up with a robust criterion that possesses a closed-form expression. Further, we refine the derivation and provide a robust cluster enumeration criterion for data sets with finite sample size. The robust criteria require an estimate of cluster parameters for each candidate model as an input. Hence, we propose a two-step cluster enumeration algorithm that uses the expectation maximization algorithm to partition the data and estimate cluster parameters prior to the calculation of one of the robust criteria. The performance of the proposed algorithm is tested and compared to existing cluster enumeration methods using numerical and real data experiments. |
---|---|
AbstractList | •Novel robust cluster enumeration criterion derived using Bayes theorem.•Maximizes posterior probability among t-distributed candidate models.•Penalty term without asymptotic approximations derived for finite sample sizes.•Two-step robust clustering and enumeration algorithm proposed.•Successful real-data application and benchmarking against existing methods.
A major challenge in cluster analysis is that the number of data clusters is mostly unknown and it must be estimated prior to clustering the observed data. In real-world applications, the observed data is often subject to heavy tailed noise and outliers which obscure the true underlying structure of the data. Consequently, estimating the number of clusters becomes challenging. To this end, we derive a robust cluster enumeration criterion by formulating the problem of estimating the number of clusters as maximization of the posterior probability of multivariate tν distributed candidate models. We utilize Bayes’ theorem and asymptotic approximations to come up with a robust criterion that possesses a closed-form expression. Further, we refine the derivation and provide a robust cluster enumeration criterion for data sets with finite sample size. The robust criteria require an estimate of cluster parameters for each candidate model as an input. Hence, we propose a two-step cluster enumeration algorithm that uses the expectation maximization algorithm to partition the data and estimate cluster parameters prior to the calculation of one of the robust criteria. The performance of the proposed algorithm is tested and compared to existing cluster enumeration methods using numerical and real data experiments. |
ArticleNumber | 107870 |
Author | Zoubir, Abdelhak M. Teklehaymanot, Freweyni K. Muma, Michael |
Author_xml | – sequence: 1 givenname: Freweyni K. surname: Teklehaymanot fullname: Teklehaymanot, Freweyni K. email: ftekle@spg.tu-darmstadt.de organization: Signal Processing Group, Technische Universität Darmstadt, Darmstadt, Germany – sequence: 2 givenname: Michael surname: Muma fullname: Muma, Michael email: muma@spg.tu-darmstadt.de organization: Signal Processing Group, Technische Universität Darmstadt, Darmstadt, Germany – sequence: 3 givenname: Abdelhak M. surname: Zoubir fullname: Zoubir, Abdelhak M. email: zoubir@spg.tu-darmstadt.de organization: Signal Processing Group, Technische Universität Darmstadt, Darmstadt, Germany |
BookMark | eNqFUMtOwzAQtFCRaAt_wME_kLJO4oc4gKDiJVVCQnC2bGcLrtqksh2k_j0O4cQBTvuamd2dGZm0XYuEnDNYMGDiYrOI_n0fukUJ5dCSSsIRmTIly0JyLidkmmG8YELVJ2QW4wYAWCVgSq5fOtvHRG_NAaM3LXXbXGKg2PY7DCb5rqXWRGxoTtIH0kQbH1Pwth9mp-R4bbYRz37inLzd370uH4vV88PT8mZVuApEKkpQlhsnTV5aIzfcqbWtG86gQWERQFhTsbJGZqXDSrgM4SojSwXOClnNyeWo60IXY8C1dj59X5eC8VvNQA9W6I0erdCDFXq0IpPrX-R98DsTDv_RrkYa5sc-PQYdncfWYeMDuqSbzv8t8AWGYX1d |
CitedBy_id | crossref_primary_10_1109_TSP_2024_3426965 crossref_primary_10_3390_a14110322 |
Cites_doi | 10.1109/TSP.2019.2939079 10.1016/j.datak.2014.07.008 10.1007/s11634-010-0064-5 10.1093/biomet/76.2.369 10.1109/MSP.2012.2183773 10.1016/j.sigpro.2018.02.034 10.1109/TPAMI.1979.4766909 10.1111/1467-9868.00293 10.2307/2347385 10.1080/03610919408813180 10.1016/j.jspi.2011.11.026 10.1016/j.patcog.2009.02.010 10.1080/03610929908832282 10.1016/j.patrec.2015.10.004 10.1016/j.csda.2006.12.024 10.1109/TPAMI.2002.1114856 10.1007/s11634-014-0165-7 10.2307/2531893 10.1093/comjnl/41.8.578 10.1016/S0047-259X(02)00020-9 10.1109/TSP.2019.2916755 10.1080/01621459.1998.10474110 10.1016/j.neucom.2009.04.003 10.1007/BF02294245 10.1007/s11222-010-9194-z 10.1109/TSP.2018.2866385 10.1109/TPAMI.2006.111 10.1007/s11222-011-9272-x 10.1109/91.580801 10.1016/0167-8655(96)00080-3 10.1007/s10440-008-9212-8 10.1214/009053604000000940 10.1016/0377-0427(87)90125-7 10.1214/aos/1176344136 10.1016/j.csda.2009.08.023 10.1080/01969727308546046 10.1023/A:1012801612483 10.1109/TNN.2005.845141 10.1007/s11634-009-0044-9 10.1016/j.patcog.2012.07.021 10.1080/01431161.2011.629637 10.1023/A:1008981510081 10.1109/78.720374 10.1109/MSP.2004.1311138 10.1016/j.jmva.2010.05.005 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sigpro.2020.107870 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7557 |
ExternalDocumentID | 10_1016_j_sigpro_2020_107870 S016516842030414X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-208b5ac7a3604e5a5c8fb4d510de6be006ba3124e1b7ce36c5a5584e5280cb673 |
IEDL.DBID | .~1 |
ISSN | 0165-1684 |
IngestDate | Tue Jul 01 02:07:30 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Fri Feb 23 02:46:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Outlier Cluster analysis Bayesian Information Criterion Cluster Enumeration Multivariate tν distribution Robust |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-208b5ac7a3604e5a5c8fb4d510de6be006ba3124e1b7ce36c5a5584e5280cb673 |
ParticipantIDs | crossref_citationtrail_10_1016_j_sigpro_2020_107870 crossref_primary_10_1016_j_sigpro_2020_107870 elsevier_sciencedirect_doi_10_1016_j_sigpro_2020_107870 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 2021-05-00 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationTitle | Signal processing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Teklehaymanot, Muma, Liu, Zoubir (bib0019) 2016 Constantinopoulos, Titsias, Likas (bib0014) 2006; 28 Zoubir, Koivunen, Ollila, Muma (bib0029) 2018 Peel, McLachlan (bib0051) 2000; 10 Cavanaugh, Neath (bib0061) 1999; 28 Kotz, Nadarajah (bib0052) 2004 Rao, Wu (bib0065) 1989; 76 Fraley, Raftery (bib0036) 1998; 41 Wang, Abrams, Kornblau, Coombes (bib0032) 2018; 19 Milligan, Cooper (bib0023) 1985; 50 Ankerst, Breunig, Kriegel, Sander (bib0048) 1999 Gallegos, Ritter (bib0035) 2010; 54 Izenman (bib0066) 2008 Pelleg, Moore (bib0010) 2000 Schwarz (bib0049) 1978; 6 Wu, Yang, Hsieh (bib0043) 2009; 42 Zhao, Fränti (bib0018) 2014; 92 Garcá-Escudero, Gordaliza, Martrán, Mayo-Iscar (bib0027) 2011; 21 Binder, Muma, Zoubir (bib0030) 2016; 2016 McLachlan, Peel (bib0050) 1998 Magnus, Neudecker (bib0072) 2007 Zoubir, Koivunen, Chakhchoukh, Muma (bib0028) 2012; 29 Kent, Tyler, Vard (bib0056) 1994; 23 Azzalini, Bowman (bib0067) 1990; 39 T. Takekawa, Clustering of non-gaussian data by variational Bayes for normal inverse gaussian mixture models, arXiv Dasgupta, Raftery (bib0037) 1998; 93 Caliński, Harabasz (bib0007) 1974; 3 Zemene, Tesfaye, Prati, Pelillo (bib0044) 2016 Nadarajah, Kotz (bib0064) 2008; 102 . Feng, Hamerly (bib0013) 2007; 19 Hennig (bib0069) 2003; 86 Tibshirani, Walther, Hastie (bib0009) 2001; 63 Johnson, Tateishi, Xie (bib0031) 2012; 3 King (bib0002) 2015 Binder, Muma, Zoubir (bib0042) 2018; 149 Rousseeuw (bib0008) 1987; 20 Dunn (bib0005) 1973; 3 Teklehaymanot, Muma, Zoubir (bib0020) 2018; 66 Gallegos, Ritter (bib0026) 2005; 33 Liu, Rubin (bib0054) 1995; 5 Krzanowski, Lai (bib0017) 1988; 44 McNicholas (bib0060) 2017 Subedi, McNicholas (bib0058) 2014; 8 García-Escudero, Gordaliza, Matrán, Mayo-Iscar (bib0046) 2010; 4 Bishop (bib0068) 2006 Halkidi, Batistakis, Vazirgiannis (bib0025) 2001; 17 Lange, Little, Taylor (bib0053) 1989; 84 Andrews, McNicholas (bib0038) 2012; 22 Takekawa, Fukai (bib0057) 2009; 72 Davies, Bouldin (bib0006) 1979; PAMI-1 Xu, Wunsch (bib0004) 2005; 16 Ott, Pang, Ramos, Chawla (bib0045) 2014; 27 Djurić (bib0062) 1998; 46 Kalogeratos, Likas (bib0011) 2012; 25 Maulik, Bandyopadhyay (bib0024) 2002; 24 Teklehaymanot, Muma, Zoubir (bib0021) 2018 Mehrjou, Hosseini, Araabi (bib0016) 2016; 69 Ester, Kriegel, Sander, Xu (bib0047) 1996 Huang, Peng, Zhang (bib0015) 2017; 27 Frigui, Krishnapuram (bib0040) 1996; 17 McNicholas, Subedi (bib0039) 2012; 142 Hamerly, Charles (bib0012) 2003 Kaufman, Rousseeuw (bib0001) 1990 Neykov, Filzmoser, Dimova, Neytchev (bib0033) 2007; 52 Gallegos, Ritter (bib0034) 2009; 3 Davé, Krishnapuram (bib0003) 1997; 5 Arbelaitz, Gurrutxaga, Muguerza, Pérez, Perona (bib0022) 2013; 46 Huang, Zhang, Zhao, Chambers (bib0071) 2019; 67 Magnus (bib0073) 2010; 101 Kibria, Joarder (bib0055) 2006; 40 Stoica, Selen (bib0063) 2004; 21 Hu, Zou, Yang, Qu (bib0041) 2011 Huang, Zhang, Chambers (bib0070) 2019; 67 Wu (10.1016/j.sigpro.2020.107870_bib0043) 2009; 42 Lange (10.1016/j.sigpro.2020.107870_bib0053) 1989; 84 Kaufman (10.1016/j.sigpro.2020.107870_bib0001) 1990 Peel (10.1016/j.sigpro.2020.107870_bib0051) 2000; 10 Zhao (10.1016/j.sigpro.2020.107870_bib0018) 2014; 92 Ankerst (10.1016/j.sigpro.2020.107870_bib0048) 1999 Xu (10.1016/j.sigpro.2020.107870_bib0004) 2005; 16 Tibshirani (10.1016/j.sigpro.2020.107870_bib0009) 2001; 63 10.1016/j.sigpro.2020.107870_bib0059 Teklehaymanot (10.1016/j.sigpro.2020.107870_bib0021) 2018 Hamerly (10.1016/j.sigpro.2020.107870_bib0012) 2003 Frigui (10.1016/j.sigpro.2020.107870_bib0040) 1996; 17 Huang (10.1016/j.sigpro.2020.107870_bib0015) 2017; 27 Binder (10.1016/j.sigpro.2020.107870_bib0030) 2016; 2016 Magnus (10.1016/j.sigpro.2020.107870_bib0073) 2010; 101 Garcá-Escudero (10.1016/j.sigpro.2020.107870_bib0027) 2011; 21 Huang (10.1016/j.sigpro.2020.107870_bib0071) 2019; 67 Krzanowski (10.1016/j.sigpro.2020.107870_bib0017) 1988; 44 Mehrjou (10.1016/j.sigpro.2020.107870_bib0016) 2016; 69 Andrews (10.1016/j.sigpro.2020.107870_bib0038) 2012; 22 Milligan (10.1016/j.sigpro.2020.107870_bib0023) 1985; 50 García-Escudero (10.1016/j.sigpro.2020.107870_bib0046) 2010; 4 Liu (10.1016/j.sigpro.2020.107870_bib0054) 1995; 5 Ester (10.1016/j.sigpro.2020.107870_bib0047) 1996 Stoica (10.1016/j.sigpro.2020.107870_bib0063) 2004; 21 McLachlan (10.1016/j.sigpro.2020.107870_bib0050) 1998 Schwarz (10.1016/j.sigpro.2020.107870_bib0049) 1978; 6 Rao (10.1016/j.sigpro.2020.107870_bib0065) 1989; 76 Feng (10.1016/j.sigpro.2020.107870_bib0013) 2007; 19 Gallegos (10.1016/j.sigpro.2020.107870_bib0034) 2009; 3 Azzalini (10.1016/j.sigpro.2020.107870_bib0067) 1990; 39 Huang (10.1016/j.sigpro.2020.107870_bib0070) 2019; 67 Kibria (10.1016/j.sigpro.2020.107870_bib0055) 2006; 40 Hu (10.1016/j.sigpro.2020.107870_bib0041) 2011 Teklehaymanot (10.1016/j.sigpro.2020.107870_bib0019) 2016 King (10.1016/j.sigpro.2020.107870_bib0002) 2015 Djurić (10.1016/j.sigpro.2020.107870_bib0062) 1998; 46 Gallegos (10.1016/j.sigpro.2020.107870_bib0026) 2005; 33 McNicholas (10.1016/j.sigpro.2020.107870_bib0039) 2012; 142 Takekawa (10.1016/j.sigpro.2020.107870_bib0057) 2009; 72 Wang (10.1016/j.sigpro.2020.107870_bib0032) 2018; 19 Kotz (10.1016/j.sigpro.2020.107870_bib0052) 2004 Halkidi (10.1016/j.sigpro.2020.107870_bib0025) 2001; 17 Ott (10.1016/j.sigpro.2020.107870_bib0045) 2014; 27 Magnus (10.1016/j.sigpro.2020.107870_bib0072) 2007 Davé (10.1016/j.sigpro.2020.107870_bib0003) 1997; 5 Davies (10.1016/j.sigpro.2020.107870_bib0006) 1979; PAMI-1 Teklehaymanot (10.1016/j.sigpro.2020.107870_bib0020) 2018; 66 Arbelaitz (10.1016/j.sigpro.2020.107870_bib0022) 2013; 46 Neykov (10.1016/j.sigpro.2020.107870_bib0033) 2007; 52 Constantinopoulos (10.1016/j.sigpro.2020.107870_bib0014) 2006; 28 Kent (10.1016/j.sigpro.2020.107870_bib0056) 1994; 23 Nadarajah (10.1016/j.sigpro.2020.107870_bib0064) 2008; 102 Dunn (10.1016/j.sigpro.2020.107870_bib0005) 1973; 3 Subedi (10.1016/j.sigpro.2020.107870_bib0058) 2014; 8 Kalogeratos (10.1016/j.sigpro.2020.107870_bib0011) 2012; 25 Johnson (10.1016/j.sigpro.2020.107870_bib0031) 2012; 3 Binder (10.1016/j.sigpro.2020.107870_bib0042) 2018; 149 Zemene (10.1016/j.sigpro.2020.107870_bib0044) 2016 Zoubir (10.1016/j.sigpro.2020.107870_bib0029) 2018 Rousseeuw (10.1016/j.sigpro.2020.107870_bib0008) 1987; 20 Pelleg (10.1016/j.sigpro.2020.107870_bib0010) 2000 Caliński (10.1016/j.sigpro.2020.107870_bib0007) 1974; 3 Fraley (10.1016/j.sigpro.2020.107870_bib0036) 1998; 41 Izenman (10.1016/j.sigpro.2020.107870_bib0066) 2008 Dasgupta (10.1016/j.sigpro.2020.107870_bib0037) 1998; 93 Gallegos (10.1016/j.sigpro.2020.107870_bib0035) 2010; 54 Maulik (10.1016/j.sigpro.2020.107870_bib0024) 2002; 24 Cavanaugh (10.1016/j.sigpro.2020.107870_bib0061) 1999; 28 Zoubir (10.1016/j.sigpro.2020.107870_bib0028) 2012; 29 Bishop (10.1016/j.sigpro.2020.107870_bib0068) 2006 McNicholas (10.1016/j.sigpro.2020.107870_bib0060) 2017 Hennig (10.1016/j.sigpro.2020.107870_bib0069) 2003; 86 |
References_xml | – volume: 2016 start-page: 1 year: 2016 end-page: 13 ident: bib0030 article-title: Robust and adaptive diffusion-based classification in distributed networks publication-title: EURASIP J. Adv. Signal Process. – year: 2008 ident: bib0066 article-title: Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning – volume: 50 start-page: 159 year: 1985 end-page: 179 ident: bib0023 article-title: An examination of procedures for determining the number of clusters in a data set publication-title: Psychometrika – volume: 21 start-page: 585 year: 2011 end-page: 599 ident: bib0027 article-title: Exploring the number of groups in robust model-based clustering publication-title: Stat. Comput. – volume: 3 start-page: 1 year: 1974 end-page: 27 ident: bib0007 article-title: A dendrite method for cluster analysis publication-title: Commun. Stat. – volume: 16 start-page: 645 year: 2005 end-page: 678 ident: bib0004 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. – year: 2004 ident: bib0052 article-title: Multivariate T Distributions and Their Applications – volume: 19 start-page: 1 year: 2018 end-page: 15 ident: bib0032 article-title: Thresher: determining the number of clusters while removing outliers publication-title: BMC Bioinf. – volume: 46 start-page: 2726 year: 1998 end-page: 2735 ident: bib0062 article-title: Asymptotic MAP criteria for model selection publication-title: IEEE Trans. Signal Process. – start-page: 49 year: 1999 end-page: 60 ident: bib0048 article-title: Optics: ordering points to identify the clustering structure publication-title: ACM SIGMOD International Conference on Management of Data – volume: 28 start-page: 1013 year: 2006 end-page: 1018 ident: bib0014 article-title: Bayesian feature and model selection for Gaussian mixture models publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – volume: 24 start-page: 1650 year: 2002 end-page: 1654 ident: bib0024 article-title: Performance evaluation of some clustering algorithms and validity indices publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – volume: 66 start-page: 5392 year: 2018 end-page: 5406 ident: bib0020 article-title: Bayesian cluster enumeration criterion for unsupervised learning publication-title: IEEE Trans. Signal Process. – volume: 8 start-page: 167 year: 2014 end-page: 193 ident: bib0058 article-title: Variational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributions publication-title: Adv. Data Anal. Classif. – volume: 69 start-page: 22 year: 2016 end-page: 27 ident: bib0016 article-title: Improved Bayesian information criterion for mixture model selection publication-title: Pattern Recognit. Lett. – volume: 3 start-page: 491 year: 2012 end-page: 499 ident: bib0031 article-title: Using geographically weighted variables for image classification publication-title: Remote Sens. Lett. – volume: 67 start-page: 5417 year: 2019 end-page: 5432 ident: bib0070 article-title: A novel Kullback–Leibler divergence minimization-based adaptive Student’s t-filter publication-title: IEEE Trans. Signal Process. – volume: 67 start-page: 3606 year: 2019 end-page: 3620 ident: bib0071 article-title: A novel robust Gaussian–Student’s t mixture distribution based Kalman filter publication-title: IEEE Trans. Signal Process. – volume: 142 start-page: 1114 year: 2012 end-page: 1127 ident: bib0039 article-title: Clustering gene expression time course data using mixtures of multivariate t-distributions publication-title: J. Stat. Plann. Inference – volume: 46 start-page: 243 year: 2013 end-page: 256 ident: bib0022 article-title: An extensive comparative study of cluster validity indices publication-title: Pattern Recognit. – volume: 93 start-page: 294 year: 1998 end-page: 302 ident: bib0037 article-title: Detecting features in spatial point processes with clutter via model-based clustering publication-title: J. Am. Stat. Assoc. – start-page: 281 year: 2003 end-page: 288 ident: bib0012 article-title: Learning the K in K-means publication-title: Proceedings of the 16th International Conference on Neural Information Processing Systems (NIPS),Whistler, Canada – volume: 92 start-page: 77 year: 2014 end-page: 89 ident: bib0018 article-title: WB-index: a sum-of-squares based index for cluster validity publication-title: Data Knowl. Eng. – volume: 41 start-page: 578 year: 1998 end-page: 588 ident: bib0036 article-title: How many clusters? Which clustering method? Answers via model-based cluster analysis publication-title: Comput. J. – volume: 76 start-page: 369 year: 1989 end-page: 374 ident: bib0065 article-title: A strongly consistent procedure for model selection in a regression problem publication-title: Biometrika – volume: 149 start-page: 36 year: 2018 end-page: 48 ident: bib0042 article-title: Gravitational clustering: a simple, robust and adaptive approach for distributed networks publication-title: Signal Process. – start-page: 727 year: 2000 end-page: 734 ident: bib0010 article-title: X-means: extending K-means with efficient estimation of the number of clusters publication-title: Proceedings of the 17th International Conference on Machine Learning (ICML), Stanford, USA – volume: 102 start-page: 99 year: 2008 end-page: 118 ident: bib0064 article-title: Estimation methods for the multivariate publication-title: Acta Appl. Math. – start-page: 2325 year: 2016 end-page: 2330 ident: bib0044 article-title: Simultaneous clustering and outlier detection using dominant sets publication-title: Proceedings of the 23rd International Conference on Pattern Recognition (ICPR), Cancún, Mexico – year: 2007 ident: bib0072 article-title: Matrix Differential Calculus with Applications in Statistics and Econometrics – volume: 84 start-page: 881 year: 1989 end-page: 896 ident: bib0053 article-title: Robust statistical modeling using the t distribution publication-title: J. Am. Stat. Assoc. – volume: 4 start-page: 89 year: 2010 end-page: 109 ident: bib0046 article-title: A review of robust clustering methods publication-title: Adv. Data Anal. Classif. – volume: 17 start-page: 107 year: 2001 end-page: 145 ident: bib0025 article-title: On clustering validation techniques publication-title: J. Intell. Inf. Syst. – volume: 40 start-page: 59 year: 2006 end-page: 72 ident: bib0055 article-title: A short review of multivariate t-distribution publication-title: J. Stat. Res. – start-page: 4274 year: 2018 end-page: 4278 ident: bib0021 article-title: Novel Bayesian cluster enumeration criterion for cluster analysis with finite sample penalty term publication-title: Proceedings of the 43rd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada – volume: 19 start-page: 393 year: 2007 end-page: 400 ident: bib0013 article-title: PG-means: learning the number of clusters in data publication-title: Adv. Neural Inf. Process.Syst. – year: 1990 ident: bib0001 article-title: Finding Groups in Data: An Introduction to Cluster Analysis – volume: 63 start-page: 411 year: 2001 end-page: 423 ident: bib0009 article-title: Estimating the number of clusters in a dataset via the gap statistic publication-title: J. R. Stat. Soc. Ser. B – volume: 25 start-page: 2402 year: 2012 end-page: 2410 ident: bib0011 article-title: Dip-means: an incremental clustering method for estimating the number of clusters publication-title: Adv. Neural Inf. Process.Syst. – volume: 42 start-page: 2541 year: 2009 end-page: 2550 ident: bib0043 article-title: Robust cluster validity indexes publication-title: Pattern Recognit. – volume: 5 start-page: 19 year: 1995 end-page: 39 ident: bib0054 article-title: ML estimation of the t distribution using EM and its extensions, ECM and ECME publication-title: Stat. Sin. – volume: 28 start-page: 49 year: 1999 end-page: 66 ident: bib0061 article-title: Generalizing the derivation of the schwarz information criterion publication-title: Commun. Stat. - Theory Methods – volume: 3 start-page: 32 year: 1973 end-page: 57 ident: bib0005 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J. Cybern. – year: 2018 ident: bib0029 article-title: Robust Statistics for Signal Processing – volume: 54 start-page: 637 year: 2010 end-page: 654 ident: bib0035 article-title: Using combinatorial optimization in model-based trimmed clustering with cardinality constraints publication-title: Comput. Stat. Data Anal. – volume: 21 start-page: 36 year: 2004 end-page: 47 ident: bib0063 article-title: Model-order selection: a review of information criterion rules publication-title: IEEE Signal Process. Mag. – start-page: 448 year: 2011 end-page: 451 ident: bib0041 article-title: A robust cluster validity index for fuzzy c-means clustering publication-title: Proceedings of the International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), Changchun, China – reference: T. Takekawa, Clustering of non-gaussian data by variational Bayes for normal inverse gaussian mixture models, arXiv: – volume: 27 start-page: 1359 year: 2014 end-page: 1367 ident: bib0045 article-title: On integrated clustering and outlier detection publication-title: Adv. Neural Inf. Process.Syst. – volume: 5 start-page: 270 year: 1997 end-page: 293 ident: bib0003 article-title: Robust clustering methods: a unified view publication-title: IEEE Trans. Fuzzy Syst. – volume: PAMI-1 start-page: 224 year: 1979 end-page: 227 ident: bib0006 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – start-page: 658 year: 1998 end-page: 666 ident: bib0050 article-title: Robust cluster analysis via mixtures of multivariate t-distributions publication-title: Proceedings of the Joint IAPR International Workshops on Advances in Pattern Recognition – volume: 10 start-page: 339 year: 2000 end-page: 348 ident: bib0051 article-title: Robust mixture modelling using the t distribution publication-title: Stat. Comput. – year: 2017 ident: bib0060 article-title: Mixture Model-Based Classification – volume: 3 start-page: 135 year: 2009 end-page: 167 ident: bib0034 article-title: Trimming algorithms for clustering contaminated grouped data and their robustness publication-title: Adv. Data Anal. Classif. – volume: 17 start-page: 1223 year: 1996 end-page: 1232 ident: bib0040 article-title: A robust algorithm for automatic extraction of an unknown number of clusters from noisy data publication-title: Pattern Recognit. Lett. – start-page: 226 year: 1996 end-page: 231 ident: bib0047 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96) – volume: 44 start-page: 23 year: 1988 end-page: 34 ident: bib0017 article-title: A criterion for determining the number of groups in a data set using sum-of-squares clustering publication-title: Biometrics – volume: 72 start-page: 3366 year: 2009 end-page: 3369 ident: bib0057 article-title: A novel view of the variational Bayesian clustering publication-title: Neurocomputing – volume: 52 start-page: 299 year: 2007 end-page: 308 ident: bib0033 article-title: Robust fitting of mixtures using the trimmed likelihood estimator publication-title: Comput. Stat. Data Anal. – volume: 22 start-page: 1021 year: 2012 end-page: 1029 ident: bib0038 article-title: Model-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributions publication-title: Stat. Comput. – volume: 23 start-page: 441 year: 1994 end-page: 453 ident: bib0056 article-title: A curious likelihood identity for the multivariate t-distribution publication-title: Commun. Stat. - Simul.Comput. – volume: 86 start-page: 183 year: 2003 end-page: 212 ident: bib0069 article-title: Clusters, outliers, and regression: fixed point clusters publication-title: J. Multivariate Anal. – volume: 33 start-page: 347 year: 2005 end-page: 380 ident: bib0026 article-title: A robust method for cluster analysis publication-title: Ann. Stat. – volume: 27 start-page: 147 year: 2017 end-page: 169 ident: bib0015 article-title: Model selection for Gaussian mixture models publication-title: Stat. Sin. – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: bib0049 article-title: Estimating the dimension of a model publication-title: Ann. Stat. – volume: 39 start-page: 357 year: 1990 end-page: 365 ident: bib0067 article-title: A look at some data on the Old Faithful geyser publication-title: Appl. Stat. – reference: . – volume: 29 start-page: 61 year: 2012 end-page: 80 ident: bib0028 article-title: Robust estimation in signal processing publication-title: IEEE Signal Process. Mag. – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: bib0008 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. – start-page: 448 year: 2016 end-page: 452 ident: bib0019 article-title: In-network adaptive cluster enumeration for distributed classification/labeling publication-title: Proceedings of the 24th European Signal Processing Conference (EUSIPCO),Budapest, Hungary – year: 2006 ident: bib0068 article-title: Pattern Recognition and Machine Learning – year: 2015 ident: bib0002 article-title: Cluster Analysis and Data Mining: An Introduction – volume: 101 start-page: 2200 year: 2010 end-page: 2206 ident: bib0073 article-title: On the concept of matrix derivative publication-title: J. Multivariate Anal. – volume: 67 start-page: 5417 issue: 20 year: 2019 ident: 10.1016/j.sigpro.2020.107870_bib0070 article-title: A novel Kullback–Leibler divergence minimization-based adaptive Student’s t-filter publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2939079 – volume: 92 start-page: 77 year: 2014 ident: 10.1016/j.sigpro.2020.107870_bib0018 article-title: WB-index: a sum-of-squares based index for cluster validity publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2014.07.008 – volume: 4 start-page: 89 issue: 2–3 year: 2010 ident: 10.1016/j.sigpro.2020.107870_bib0046 article-title: A review of robust clustering methods publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-010-0064-5 – volume: 76 start-page: 369 issue: 2 year: 1989 ident: 10.1016/j.sigpro.2020.107870_bib0065 article-title: A strongly consistent procedure for model selection in a regression problem publication-title: Biometrika doi: 10.1093/biomet/76.2.369 – year: 1990 ident: 10.1016/j.sigpro.2020.107870_bib0001 – volume: 29 start-page: 61 issue: 4 year: 2012 ident: 10.1016/j.sigpro.2020.107870_bib0028 article-title: Robust estimation in signal processing publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2183773 – volume: 19 start-page: 393 year: 2007 ident: 10.1016/j.sigpro.2020.107870_bib0013 article-title: PG-means: learning the number of clusters in data publication-title: Adv. Neural Inf. Process.Syst. – volume: 149 start-page: 36 year: 2018 ident: 10.1016/j.sigpro.2020.107870_bib0042 article-title: Gravitational clustering: a simple, robust and adaptive approach for distributed networks publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.02.034 – volume: PAMI-1 start-page: 224 issue: 2 year: 1979 ident: 10.1016/j.sigpro.2020.107870_bib0006 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach.Intell. doi: 10.1109/TPAMI.1979.4766909 – start-page: 2325 year: 2016 ident: 10.1016/j.sigpro.2020.107870_bib0044 article-title: Simultaneous clustering and outlier detection using dominant sets – volume: 63 start-page: 411 issue: 2 year: 2001 ident: 10.1016/j.sigpro.2020.107870_bib0009 article-title: Estimating the number of clusters in a dataset via the gap statistic publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/1467-9868.00293 – volume: 39 start-page: 357 issue: 3 year: 1990 ident: 10.1016/j.sigpro.2020.107870_bib0067 article-title: A look at some data on the Old Faithful geyser publication-title: Appl. Stat. doi: 10.2307/2347385 – ident: 10.1016/j.sigpro.2020.107870_bib0059 – start-page: 448 year: 2011 ident: 10.1016/j.sigpro.2020.107870_bib0041 article-title: A robust cluster validity index for fuzzy c-means clustering – volume: 23 start-page: 441 issue: 2 year: 1994 ident: 10.1016/j.sigpro.2020.107870_bib0056 article-title: A curious likelihood identity for the multivariate t-distribution publication-title: Commun. Stat. - Simul.Comput. doi: 10.1080/03610919408813180 – start-page: 226 year: 1996 ident: 10.1016/j.sigpro.2020.107870_bib0047 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – year: 2006 ident: 10.1016/j.sigpro.2020.107870_bib0068 – volume: 142 start-page: 1114 issue: 5 year: 2012 ident: 10.1016/j.sigpro.2020.107870_bib0039 article-title: Clustering gene expression time course data using mixtures of multivariate t-distributions publication-title: J. Stat. Plann. Inference doi: 10.1016/j.jspi.2011.11.026 – year: 2018 ident: 10.1016/j.sigpro.2020.107870_bib0029 – volume: 42 start-page: 2541 issue: 11 year: 2009 ident: 10.1016/j.sigpro.2020.107870_bib0043 article-title: Robust cluster validity indexes publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.02.010 – volume: 28 start-page: 49 issue: 1 year: 1999 ident: 10.1016/j.sigpro.2020.107870_bib0061 article-title: Generalizing the derivation of the schwarz information criterion publication-title: Commun. Stat. - Theory Methods doi: 10.1080/03610929908832282 – year: 2017 ident: 10.1016/j.sigpro.2020.107870_bib0060 – volume: 69 start-page: 22 year: 2016 ident: 10.1016/j.sigpro.2020.107870_bib0016 article-title: Improved Bayesian information criterion for mixture model selection publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2015.10.004 – volume: 3 start-page: 1 issue: 1 year: 1974 ident: 10.1016/j.sigpro.2020.107870_bib0007 article-title: A dendrite method for cluster analysis publication-title: Commun. Stat. – volume: 52 start-page: 299 issue: 1 year: 2007 ident: 10.1016/j.sigpro.2020.107870_bib0033 article-title: Robust fitting of mixtures using the trimmed likelihood estimator publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2006.12.024 – volume: 24 start-page: 1650 issue: 12 year: 2002 ident: 10.1016/j.sigpro.2020.107870_bib0024 article-title: Performance evaluation of some clustering algorithms and validity indices publication-title: IEEE Trans. Pattern Anal. Mach.Intell. doi: 10.1109/TPAMI.2002.1114856 – volume: 8 start-page: 167 issue: 2 year: 2014 ident: 10.1016/j.sigpro.2020.107870_bib0058 article-title: Variational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributions publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-014-0165-7 – volume: 44 start-page: 23 issue: 1 year: 1988 ident: 10.1016/j.sigpro.2020.107870_bib0017 article-title: A criterion for determining the number of groups in a data set using sum-of-squares clustering publication-title: Biometrics doi: 10.2307/2531893 – volume: 2016 start-page: 1 issue: 34 year: 2016 ident: 10.1016/j.sigpro.2020.107870_bib0030 article-title: Robust and adaptive diffusion-based classification in distributed networks publication-title: EURASIP J. Adv. Signal Process. – start-page: 49 year: 1999 ident: 10.1016/j.sigpro.2020.107870_bib0048 article-title: Optics: ordering points to identify the clustering structure – volume: 40 start-page: 59 issue: 1 year: 2006 ident: 10.1016/j.sigpro.2020.107870_bib0055 article-title: A short review of multivariate t-distribution publication-title: J. Stat. Res. – volume: 27 start-page: 147 issue: 1 year: 2017 ident: 10.1016/j.sigpro.2020.107870_bib0015 article-title: Model selection for Gaussian mixture models publication-title: Stat. Sin. – volume: 41 start-page: 578 issue: 8 year: 1998 ident: 10.1016/j.sigpro.2020.107870_bib0036 article-title: How many clusters? Which clustering method? Answers via model-based cluster analysis publication-title: Comput. J. doi: 10.1093/comjnl/41.8.578 – volume: 86 start-page: 183 issue: 1 year: 2003 ident: 10.1016/j.sigpro.2020.107870_bib0069 article-title: Clusters, outliers, and regression: fixed point clusters publication-title: J. Multivariate Anal. doi: 10.1016/S0047-259X(02)00020-9 – year: 2015 ident: 10.1016/j.sigpro.2020.107870_bib0002 – volume: 67 start-page: 3606 issue: 13 year: 2019 ident: 10.1016/j.sigpro.2020.107870_bib0071 article-title: A novel robust Gaussian–Student’s t mixture distribution based Kalman filter publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2916755 – volume: 93 start-page: 294 issue: 441 year: 1998 ident: 10.1016/j.sigpro.2020.107870_bib0037 article-title: Detecting features in spatial point processes with clutter via model-based clustering publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1998.10474110 – volume: 72 start-page: 3366 issue: 13-15 year: 2009 ident: 10.1016/j.sigpro.2020.107870_bib0057 article-title: A novel view of the variational Bayesian clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.04.003 – start-page: 448 year: 2016 ident: 10.1016/j.sigpro.2020.107870_bib0019 article-title: In-network adaptive cluster enumeration for distributed classification/labeling – volume: 50 start-page: 159 issue: 2 year: 1985 ident: 10.1016/j.sigpro.2020.107870_bib0023 article-title: An examination of procedures for determining the number of clusters in a data set publication-title: Psychometrika doi: 10.1007/BF02294245 – start-page: 727 year: 2000 ident: 10.1016/j.sigpro.2020.107870_bib0010 article-title: X-means: extending K-means with efficient estimation of the number of clusters – volume: 21 start-page: 585 issue: 4 year: 2011 ident: 10.1016/j.sigpro.2020.107870_bib0027 article-title: Exploring the number of groups in robust model-based clustering publication-title: Stat. Comput. doi: 10.1007/s11222-010-9194-z – volume: 5 start-page: 19 year: 1995 ident: 10.1016/j.sigpro.2020.107870_bib0054 article-title: ML estimation of the t distribution using EM and its extensions, ECM and ECME publication-title: Stat. Sin. – volume: 66 start-page: 5392 issue: 20 year: 2018 ident: 10.1016/j.sigpro.2020.107870_bib0020 article-title: Bayesian cluster enumeration criterion for unsupervised learning publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2866385 – start-page: 658 year: 1998 ident: 10.1016/j.sigpro.2020.107870_bib0050 article-title: Robust cluster analysis via mixtures of multivariate t-distributions – volume: 19 start-page: 1 issue: 9 year: 2018 ident: 10.1016/j.sigpro.2020.107870_bib0032 article-title: Thresher: determining the number of clusters while removing outliers publication-title: BMC Bioinf. – start-page: 281 year: 2003 ident: 10.1016/j.sigpro.2020.107870_bib0012 article-title: Learning the K in K-means – volume: 28 start-page: 1013 issue: 6 year: 2006 ident: 10.1016/j.sigpro.2020.107870_bib0014 article-title: Bayesian feature and model selection for Gaussian mixture models publication-title: IEEE Trans. Pattern Anal. Mach.Intell. doi: 10.1109/TPAMI.2006.111 – start-page: 4274 year: 2018 ident: 10.1016/j.sigpro.2020.107870_bib0021 article-title: Novel Bayesian cluster enumeration criterion for cluster analysis with finite sample penalty term – volume: 22 start-page: 1021 issue: 5 year: 2012 ident: 10.1016/j.sigpro.2020.107870_bib0038 article-title: Model-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributions publication-title: Stat. Comput. doi: 10.1007/s11222-011-9272-x – volume: 5 start-page: 270 issue: 2 year: 1997 ident: 10.1016/j.sigpro.2020.107870_bib0003 article-title: Robust clustering methods: a unified view publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.580801 – volume: 17 start-page: 1223 issue: 12 year: 1996 ident: 10.1016/j.sigpro.2020.107870_bib0040 article-title: A robust algorithm for automatic extraction of an unknown number of clusters from noisy data publication-title: Pattern Recognit. Lett. doi: 10.1016/0167-8655(96)00080-3 – volume: 84 start-page: 881 issue: 408 year: 1989 ident: 10.1016/j.sigpro.2020.107870_bib0053 article-title: Robust statistical modeling using the t distribution publication-title: J. Am. Stat. Assoc. – volume: 102 start-page: 99 issue: 1 year: 2008 ident: 10.1016/j.sigpro.2020.107870_bib0064 article-title: Estimation methods for the multivariate t distribution publication-title: Acta Appl. Math. doi: 10.1007/s10440-008-9212-8 – volume: 33 start-page: 347 issue: 1 year: 2005 ident: 10.1016/j.sigpro.2020.107870_bib0026 article-title: A robust method for cluster analysis publication-title: Ann. Stat. doi: 10.1214/009053604000000940 – volume: 20 start-page: 53 issue: 1 year: 1987 ident: 10.1016/j.sigpro.2020.107870_bib0008 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – volume: 6 start-page: 461 issue: 2 year: 1978 ident: 10.1016/j.sigpro.2020.107870_bib0049 article-title: Estimating the dimension of a model publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 – volume: 27 start-page: 1359 year: 2014 ident: 10.1016/j.sigpro.2020.107870_bib0045 article-title: On integrated clustering and outlier detection publication-title: Adv. Neural Inf. Process.Syst. – year: 2004 ident: 10.1016/j.sigpro.2020.107870_bib0052 – year: 2008 ident: 10.1016/j.sigpro.2020.107870_bib0066 – volume: 54 start-page: 637 issue: 3 year: 2010 ident: 10.1016/j.sigpro.2020.107870_bib0035 article-title: Using combinatorial optimization in model-based trimmed clustering with cardinality constraints publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2009.08.023 – volume: 3 start-page: 32 issue: 3 year: 1973 ident: 10.1016/j.sigpro.2020.107870_bib0005 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J. Cybern. doi: 10.1080/01969727308546046 – volume: 17 start-page: 107 issue: 2/3 year: 2001 ident: 10.1016/j.sigpro.2020.107870_bib0025 article-title: On clustering validation techniques publication-title: J. Intell. Inf. Syst. doi: 10.1023/A:1012801612483 – volume: 16 start-page: 645 issue: 3 year: 2005 ident: 10.1016/j.sigpro.2020.107870_bib0004 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.845141 – volume: 3 start-page: 135 issue: 2 year: 2009 ident: 10.1016/j.sigpro.2020.107870_bib0034 article-title: Trimming algorithms for clustering contaminated grouped data and their robustness publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-009-0044-9 – volume: 46 start-page: 243 issue: 1 year: 2013 ident: 10.1016/j.sigpro.2020.107870_bib0022 article-title: An extensive comparative study of cluster validity indices publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.07.021 – volume: 3 start-page: 491 issue: 6 year: 2012 ident: 10.1016/j.sigpro.2020.107870_bib0031 article-title: Using geographically weighted variables for image classification publication-title: Remote Sens. Lett. doi: 10.1080/01431161.2011.629637 – volume: 25 start-page: 2402 year: 2012 ident: 10.1016/j.sigpro.2020.107870_bib0011 article-title: Dip-means: an incremental clustering method for estimating the number of clusters publication-title: Adv. Neural Inf. Process.Syst. – volume: 10 start-page: 339 year: 2000 ident: 10.1016/j.sigpro.2020.107870_bib0051 article-title: Robust mixture modelling using the t distribution publication-title: Stat. Comput. doi: 10.1023/A:1008981510081 – volume: 46 start-page: 2726 issue: 10 year: 1998 ident: 10.1016/j.sigpro.2020.107870_bib0062 article-title: Asymptotic MAP criteria for model selection publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.720374 – volume: 21 start-page: 36 issue: 4 year: 2004 ident: 10.1016/j.sigpro.2020.107870_bib0063 article-title: Model-order selection: a review of information criterion rules publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2004.1311138 – year: 2007 ident: 10.1016/j.sigpro.2020.107870_bib0072 – volume: 101 start-page: 2200 year: 2010 ident: 10.1016/j.sigpro.2020.107870_bib0073 article-title: On the concept of matrix derivative publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2010.05.005 |
SSID | ssj0001360 |
Score | 2.361959 |
Snippet | •Novel robust cluster enumeration criterion derived using Bayes theorem.•Maximizes posterior probability among t-distributed candidate models.•Penalty term... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107870 |
SubjectTerms | Bayesian Information Criterion Cluster analysis Cluster Enumeration Multivariate [formula omitted] distribution Outlier Robust |
Title | Robust Bayesian cluster enumeration based on the t distribution |
URI | https://dx.doi.org/10.1016/j.sigpro.2020.107870 |
Volume | 182 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-MedGD-ImfIwevdaZJ2-0kczim4g7qYLeSpKlMxjZcd_Di3-57aaoTRMFbCS_Q_t5nyXu_AJxhDguVMCLQbZMHdBAXqBD9MQ-50EQmIt1Q2P0g7g_l7Sga1aBbzcJQW6WP_WVMd9HarzQ9ms35eNx8pEEcTsdIdLrH5Ygm2GVCVn7-_tXmwYWbFCbhgKSr8TnX47UYP2Ocwr_EkJbIdn9OTyspp7cFm75WZJ3ydbahZqc7sLHCILgLlw8zvVwU7Eq9WRqHZGayJOoDRh3uttQuo0yVMXzAYo8VLCOuXH_N1R4Me9dP3X7g70QIDBb3BRp1S0fKJAo_S9pIRaaVa5mhZ2U21hZ9SCuBOdtynRgrYoMiqACLsF8YHSdiH-rT2dQeACPSRqynbJIrLnXClW3HyhF-ZejIyhyCqKBIjScMp3srJmnVGfaSlgCmBGBaAngIweeueUmY8Yd8UqGcflN8ijH9151H_955DOshtaa4vsUTqBevS3uKtUWhG854GrDWubnrDz4AQgDNKQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQevDbbbB5wMEgnI46CQcNvsbrcGQ4BIOfjvnWm3BBOjibdms5O0386rmZlvAe4whnmSa-6ohk4cKsQ50kN7TDyXKyIT8bOhsMEw7Iz950kwKUGrmIWhtkrr-3Ofnnlru1KzaNaW02ntlQZxXCojUXXP9Sc7UCF2qqAMlWa31xluHLLLs2Fh2u-QQDFBl7V5raZv6KrwR9GjJVLfnyPUVtRpH8KBTRdZM3-jIyiZ-THsb5EInsDDy0KtVyl7lJ-GJiKZnq2J_YBRk7vJD5hRsIoZPmC-x1IWE12uvenqFMbtp1Gr49hrERyN-X2Kel1XgdSRxM_yTSADXU-UH6NxxSZUBs1ISY5h27gq0oaHGrfgGRhE_l6rMOJnUJ4v5uYcGPE2YkplokS6vopcaRqhzDi_YrRlqavACyiEtpzhdHXFTBTNYe8iB1AQgCIHsArORmqZc2b8sT8qUBbfzl6gW_9V8uLfkrew2xkN-qLfHfYuYc-jTpWsjfEKyunH2lxjqpGqG6tKX1yhz9o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Bayesian+cluster+enumeration+based+on+the+t+distribution&rft.jtitle=Signal+processing&rft.au=Teklehaymanot%2C+Freweyni+K.&rft.au=Muma%2C+Michael&rft.au=Zoubir%2C+Abdelhak+M.&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=182&rft_id=info:doi/10.1016%2Fj.sigpro.2020.107870&rft.externalDocID=S016516842030414X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |