A survey of human-in-the-loop for machine learning
Machine learning has become the state-of-the-art technique for many tasks including computer vision, natural language processing, speech processing tasks, etc. However, the unique challenges posed by machine learning suggest that incorporating user knowledge into the system can be beneficial. The pu...
Saved in:
Published in | Future generation computer systems Vol. 135; pp. 364 - 381 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-739X 1872-7115 |
DOI | 10.1016/j.future.2022.05.014 |
Cover
Loading…
Abstract | Machine learning has become the state-of-the-art technique for many tasks including computer vision, natural language processing, speech processing tasks, etc. However, the unique challenges posed by machine learning suggest that incorporating user knowledge into the system can be beneficial. The purpose of integrating human domain knowledge is also to promote the automation of machine learning. Human-in-the-loop is an area that we see as increasingly important in future research due to the knowledge learned by machine learning cannot win human domain knowledge. Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize the major approaches in the field; along with their technical strengths/weaknesses, we have a simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and to motivate interested readers to consider approaches for designing effective human-in-the-loop solutions.
•Survey existing works on human-in-the-loop from the data perspective.•Summarize approaches in the HITL, along with their technical strengths/weaknesses.•Discussion of some open challenges and opportunities in the HITL.•Provide a high-level summarization for human-in-the-loop.•Motivates interested readers to consider approaches for designing effective HITL. |
---|---|
AbstractList | Machine learning has become the state-of-the-art technique for many tasks including computer vision, natural language processing, speech processing tasks, etc. However, the unique challenges posed by machine learning suggest that incorporating user knowledge into the system can be beneficial. The purpose of integrating human domain knowledge is also to promote the automation of machine learning. Human-in-the-loop is an area that we see as increasingly important in future research due to the knowledge learned by machine learning cannot win human domain knowledge. Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize the major approaches in the field; along with their technical strengths/weaknesses, we have a simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and to motivate interested readers to consider approaches for designing effective human-in-the-loop solutions.
•Survey existing works on human-in-the-loop from the data perspective.•Summarize approaches in the HITL, along with their technical strengths/weaknesses.•Discussion of some open challenges and opportunities in the HITL.•Provide a high-level summarization for human-in-the-loop.•Motivates interested readers to consider approaches for designing effective HITL. |
Author | Sun, Yixuan Wu, Xingjiao Zhang, Junhang Ma, Tianlong Xiao, Luwei He, Liang |
Author_xml | – sequence: 1 givenname: Xingjiao orcidid: 0000-0001-9146-051X surname: Wu fullname: Wu, Xingjiao organization: Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China – sequence: 2 givenname: Luwei surname: Xiao fullname: Xiao, Luwei organization: School of Computer Science and Technology, East China Normal University, Shanghai, China – sequence: 3 givenname: Yixuan surname: Sun fullname: Sun, Yixuan organization: Fudan University, Shanghai, China – sequence: 4 givenname: Junhang surname: Zhang fullname: Zhang, Junhang organization: School of Computer Science and Technology, East China Normal University, Shanghai, China – sequence: 5 givenname: Tianlong surname: Ma fullname: Ma, Tianlong organization: Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China – sequence: 6 givenname: Liang surname: He fullname: He, Liang email: lhe@cs.ecnu.edu.cn organization: Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China |
BookMark | eNqFj09LwzAYh4NMcJt-Aw_9AqlvkqbtPAhj-A8GXhS8hTR94zK6ZKTpYN_ejnnyoKff5fc88MzIxAePhNwyyBmw8m6b2yENEXMOnOcgc2DFBZmyuuK0YkxOyHS8VbQSi88rMuv7LQCwSrAp4cusH-IBj1mw2WbYaU-dp2mDtAthn9kQs502G-cx61BH7_zXNbm0uuvx5mfn5OPp8X31Qtdvz6-r5ZoaAWWizLa6LGXZtEIKU3CjbQtYSFkCamGwqG2layYbbBtAaLCRtrTjSS8WugYu5uT-7DUx9H1Eq4xLOrngU9SuUwzUqV5t1bleneoVSDXWj3DxC95Ht9Px-B_2cMZwDDs4jKo3Dr3B1kU0SbXB_S34BpIKeak |
CitedBy_id | crossref_primary_10_1007_s10462_024_10974_1 crossref_primary_10_1109_ACCESS_2024_3440647 crossref_primary_10_1109_THMS_2024_3467370 crossref_primary_10_1016_j_autcon_2023_105260 crossref_primary_10_1016_j_compcom_2024_102826 crossref_primary_10_1145_3657643 crossref_primary_10_1016_j_jpi_2023_100347 crossref_primary_10_1016_j_engappai_2023_106803 crossref_primary_10_1016_j_chbah_2025_100145 crossref_primary_10_1145_3649457 crossref_primary_10_1145_3676279 crossref_primary_10_1080_21681163_2022_2157747 crossref_primary_10_1007_s12369_023_01020_1 crossref_primary_10_1017_dce_2024_60 crossref_primary_10_3390_en17091992 crossref_primary_10_1109_ACCESS_2023_3267813 crossref_primary_10_3390_info16040252 crossref_primary_10_1016_j_ress_2024_110368 crossref_primary_10_18231_j_ijashnb_2024_020 crossref_primary_10_2196_40589 crossref_primary_10_1016_j_apmt_2024_102371 crossref_primary_10_1186_s12938_024_01238_8 crossref_primary_10_1007_s10489_024_05657_x crossref_primary_10_1016_j_compind_2024_104187 crossref_primary_10_1109_ACCESS_2024_3365550 crossref_primary_10_3390_app14010463 crossref_primary_10_1080_10447318_2024_2413293 crossref_primary_10_1115_1_4063238 crossref_primary_10_1016_j_aei_2024_102887 crossref_primary_10_1080_0144929X_2022_2164214 crossref_primary_10_54699_andhd_1386667 crossref_primary_10_1038_s41597_024_03766_3 crossref_primary_10_1007_s11227_022_04420_8 crossref_primary_10_4236_ijis_2024_141001 crossref_primary_10_1038_s41388_023_02826_z crossref_primary_10_1016_j_compbiomed_2023_107295 crossref_primary_10_1007_s42486_022_00115_4 crossref_primary_10_1016_j_eswa_2024_125378 crossref_primary_10_3390_math11133010 crossref_primary_10_1007_s00432_025_06134_9 crossref_primary_10_1016_j_foodcont_2024_111121 crossref_primary_10_1080_10630732_2024_2402676 crossref_primary_10_1093_llc_fqad018 crossref_primary_10_1109_ACCESS_2024_3447067 crossref_primary_10_1016_j_engappai_2024_107875 crossref_primary_10_1109_ACCESS_2024_3504735 crossref_primary_10_1109_TEVC_2023_3255246 crossref_primary_10_1007_s12599_025_00928_4 crossref_primary_10_1109_TPAMI_2024_3387317 crossref_primary_10_1007_s11257_023_09385_8 crossref_primary_10_24137_raeic_11_e_3 crossref_primary_10_1080_08839514_2024_2349410 crossref_primary_10_1016_j_jechem_2024_07_045 crossref_primary_10_1007_s10579_023_09680_1 crossref_primary_10_1109_ACCESS_2024_3361404 crossref_primary_10_1007_s11042_024_20414_5 crossref_primary_10_1007_s10559_023_00608_9 crossref_primary_10_3390_heritage7020038 crossref_primary_10_1016_j_inffus_2024_102223 crossref_primary_10_1007_s12369_025_01234_5 crossref_primary_10_1016_j_future_2023_09_029 crossref_primary_10_1016_j_isprsjprs_2024_02_020 crossref_primary_10_1016_j_eswa_2024_124839 crossref_primary_10_1016_j_csbj_2024_05_004 crossref_primary_10_1016_j_acha_2024_101719 crossref_primary_10_1016_j_scico_2025_103296 crossref_primary_10_1016_j_ipm_2023_103508 crossref_primary_10_1371_journal_pdig_0000521 crossref_primary_10_1016_j_eswa_2023_123131 crossref_primary_10_4018_IJSWIS_326120 crossref_primary_10_1088_2632_2153_ace417 crossref_primary_10_1093_scan_nsae014 crossref_primary_10_1177_02783649231207974 crossref_primary_10_1080_01691864_2024_2415093 crossref_primary_10_3390_computation12020024 crossref_primary_10_3390_e25121666 crossref_primary_10_1007_s11633_023_1456_2 crossref_primary_10_3390_math12172644 crossref_primary_10_1016_j_ccc_2023_03_004 crossref_primary_10_1016_j_procir_2023_09_088 crossref_primary_10_3389_frai_2024_1460065 crossref_primary_10_3390_info15110728 crossref_primary_10_1007_s10844_024_00885_6 crossref_primary_10_1016_j_compag_2024_109452 crossref_primary_10_1016_j_eswa_2024_124181 crossref_primary_10_1016_j_heliyon_2024_e32189 crossref_primary_10_1259_bjr_20230142 crossref_primary_10_1016_j_eswa_2023_121198 crossref_primary_10_1016_j_future_2022_12_018 crossref_primary_10_1007_s10462_025_11112_1 crossref_primary_10_1016_j_knosys_2023_110723 crossref_primary_10_1016_j_rcim_2023_102673 crossref_primary_10_1007_s10845_023_02270_6 crossref_primary_10_1016_j_commtr_2023_100095 crossref_primary_10_1016_j_joi_2024_101569 crossref_primary_10_1109_LRA_2023_3268598 crossref_primary_10_3390_e24040531 crossref_primary_10_1080_23812346_2024_2434983 crossref_primary_10_1142_S0218126625500549 crossref_primary_10_1007_s10489_024_05817_z crossref_primary_10_1109_ACCESS_2024_3383444 crossref_primary_10_1002_aisy_202400986 crossref_primary_10_1007_s11042_024_20297_6 crossref_primary_10_1145_3664522 crossref_primary_10_1108_IJPCC_07_2024_0224 crossref_primary_10_1073_pnas_2309510120 crossref_primary_10_2478_jdis_2024_0019 crossref_primary_10_3390_mti5120073 crossref_primary_10_1007_s43681_024_00489_4 crossref_primary_10_1016_j_envsoft_2025_106338 crossref_primary_10_3724_2096_7004_di_2024_0051 crossref_primary_10_1016_j_neucom_2024_127798 crossref_primary_10_1145_3696461 crossref_primary_10_1007_s42001_024_00307_1 crossref_primary_10_1007_s10270_024_01229_2 crossref_primary_10_3390_app131910667 crossref_primary_10_2196_57114 crossref_primary_10_3390_app15031555 crossref_primary_10_1016_j_earscirev_2023_104438 crossref_primary_10_1515_jpem_2023_0554 crossref_primary_10_1007_s11442_024_2202_6 crossref_primary_10_1016_j_ejrad_2023_110934 crossref_primary_10_1016_j_procs_2024_02_119 crossref_primary_10_1007_s12293_024_00415_5 crossref_primary_10_1007_s44267_024_00052_z crossref_primary_10_1162_tacl_a_00731 crossref_primary_10_3390_ai5020041 crossref_primary_10_1109_TASLP_2023_3293046 crossref_primary_10_3389_fonc_2022_1061024 crossref_primary_10_1080_2573234X_2024_2436578 crossref_primary_10_1007_s11135_025_02108_8 crossref_primary_10_1016_j_iswa_2024_200448 crossref_primary_10_1016_j_future_2025_107816 crossref_primary_10_3390_sym16121608 crossref_primary_10_1186_s13321_022_00667_8 crossref_primary_10_32628_CSEIT2390682 crossref_primary_10_1007_s43681_024_00428_3 crossref_primary_10_1177_18747655241301199 crossref_primary_10_1002_pra2_1034 crossref_primary_10_1007_s00521_024_09510_7 crossref_primary_10_1016_j_datak_2024_102304 crossref_primary_10_1145_3564276 crossref_primary_10_1186_s41239_022_00372_4 crossref_primary_10_1086_730710 crossref_primary_10_1016_j_epidem_2024_100756 crossref_primary_10_1007_s12559_024_10311_2 crossref_primary_10_1016_j_agsy_2023_103607 crossref_primary_10_1061_JCCEE5_CPENG_5939 crossref_primary_10_1039_D3SC01303K crossref_primary_10_3389_fcomp_2024_1379788 crossref_primary_10_1007_s10660_024_09876_9 crossref_primary_10_1145_3603710 crossref_primary_10_1016_j_ins_2024_121035 crossref_primary_10_1109_ACCESS_2024_3401547 crossref_primary_10_1109_ACCESS_2024_3521596 crossref_primary_10_1093_jamia_ocae101 crossref_primary_10_1021_acs_chemmater_4c02726 crossref_primary_10_3390_fi15100332 crossref_primary_10_1016_j_ins_2023_119117 crossref_primary_10_1109_TNNLS_2023_3329368 crossref_primary_10_1016_j_ijhcs_2024_103412 crossref_primary_10_3390_software3040024 crossref_primary_10_3390_en17030638 crossref_primary_10_3390_computers13100252 crossref_primary_10_1016_j_compcom_2025_102915 crossref_primary_10_1162_dint_a_00235 crossref_primary_10_3390_math10193618 crossref_primary_10_1093_jmicro_dfae028 crossref_primary_10_1016_j_cej_2023_146280 crossref_primary_10_1109_ACCESS_2024_3398192 crossref_primary_10_1088_1674_1137_ad50ab crossref_primary_10_1007_s10489_023_05223_x crossref_primary_10_3233_IA_240033 crossref_primary_10_1016_j_cose_2024_103940 crossref_primary_10_3390_technologies11040107 crossref_primary_10_1016_j_ress_2024_110682 crossref_primary_10_1016_j_cobeha_2025_101482 crossref_primary_10_3390_s24051509 crossref_primary_10_1109_ACCESS_2025_3536095 crossref_primary_10_1109_ACCESS_2025_3542417 crossref_primary_10_1016_j_nec_2024_08_008 crossref_primary_10_1002_med4_70 crossref_primary_10_1007_s12652_023_04750_2 crossref_primary_10_1140_epjds_s13688_024_00500_2 crossref_primary_10_2196_43014 crossref_primary_10_1145_3705725 crossref_primary_10_1017_mem_2024_2 crossref_primary_10_1016_j_rse_2023_113932 crossref_primary_10_3390_systems11110548 crossref_primary_10_1177_14707853241251954 crossref_primary_10_1016_j_rser_2023_113443 crossref_primary_10_3390_su14137938 crossref_primary_10_1016_j_chbah_2024_100053 crossref_primary_10_1016_j_artint_2023_104059 crossref_primary_10_1007_s43503_024_00025_7 crossref_primary_10_1088_1361_6560_ad997e crossref_primary_10_1016_j_techfore_2023_123076 crossref_primary_10_2139_ssrn_4504855 crossref_primary_10_1016_j_oceaneng_2024_119406 crossref_primary_10_1016_j_dim_2024_100078 crossref_primary_10_1016_j_engappai_2023_107152 crossref_primary_10_1016_j_eswa_2023_120030 crossref_primary_10_1016_j_ipm_2022_103106 crossref_primary_10_1016_j_procs_2024_04_043 crossref_primary_10_1177_20552076231186520 crossref_primary_10_1145_3637210 crossref_primary_10_1016_j_eswa_2025_126703 crossref_primary_10_1038_s41597_024_03218_y crossref_primary_10_1109_TVCG_2024_3456325 crossref_primary_10_3390_technologies12120259 crossref_primary_10_1007_s00170_024_13639_z crossref_primary_10_1007_s44206_024_00158_3 crossref_primary_10_1016_j_atech_2024_100634 crossref_primary_10_1007_s43621_024_00641_4 crossref_primary_10_1145_3653708 crossref_primary_10_1016_j_iot_2023_101048 crossref_primary_10_1016_j_daach_2024_e00343 crossref_primary_10_1080_21670811_2024_2396068 crossref_primary_10_3390_bioengineering11100984 crossref_primary_10_1109_TCSS_2024_3404236 crossref_primary_10_22201_cuaieed_20074751e_2025_33_90977 crossref_primary_10_1007_s11301_024_00455_8 crossref_primary_10_1021_acs_jpclett_4c01111 crossref_primary_10_1080_21642583_2025_2467083 crossref_primary_10_2196_48142 crossref_primary_10_3389_frai_2024_1455331 crossref_primary_10_1007_s11276_025_03903_9 crossref_primary_10_3390_educsci13100987 crossref_primary_10_3390_mti9030026 crossref_primary_10_3390_buildings13010163 crossref_primary_10_3390_jcm12103576 crossref_primary_10_1016_j_ipm_2024_103964 |
Cites_doi | 10.1609/hcomp.v6i1.13337 10.1016/j.knosys.2021.106916 10.1007/s10489-018-1361-5 10.1016/j.apergo.2020.103267 10.1561/1100000073 10.1016/j.media.2021.102062 10.1609/aaai.v35i7.16734 10.1145/2964284.2984059 10.18653/v1/2021.dash-1.10 10.1109/TETCI.2021.3139998 10.1016/j.ins.2021.07.020 10.1145/3009906 10.1145/2939502.2939505 10.1145/3209900.3209913 10.1109/TPAMI.2021.3059968 10.1145/2491411.2491450 10.1111/mice.12495 10.1093/bioinformatics/btz420 10.1145/3133956.3134105 10.24032/ijeacs/0207/05 10.24963/ijcai.2019/884 10.14778/3137765.3137833 10.1016/j.websem.2019.100546 10.1145/3077257.3077268 10.1609/aaai.v34i09.7104 10.1109/TMI.2018.2791721 10.1109/TASLP.2020.3042009 10.1007/978-3-030-49904-4_2 10.1007/s12650-019-00580-7 10.1631/FITEE.1601883 10.1007/978-3-030-21348-0_9 10.1126/science.aal5054 10.1016/j.neucom.2021.03.035 10.3390/app10030957 10.3233/SW-180333 10.1145/3185517 10.1145/3391743 10.1109/TPAMI.2021.3063611 10.1016/j.inffus.2020.09.007 10.1145/3209889.3209897 10.1145/508171.508178 10.1609/aaai.v33i01.33012547 10.1061/9780784482438.060 10.1016/j.neucom.2020.04.071 10.1109/79.581363 10.1016/j.ijhcs.2017.03.007 10.1016/j.inffus.2020.08.023 10.1145/3328519.3329132 10.1007/978-3-030-58542-6_20 10.1007/s13755-020-00135-3 10.1007/s00170-021-06977-9 10.1162/tacl_a_00279 10.1016/j.artint.2021.103500 10.1007/s11263-013-0675-3 10.1109/TNNLS.2020.3011559 10.1007/978-3-030-34770-3_10 10.1145/3150977 10.1145/2939672.2939778 10.1145/3214366 10.1038/nature14539 10.1109/TPAMI.2019.2963663 10.1007/s11263-015-0814-0 10.1007/s10462-020-09892-9 10.1007/s10115-012-0507-8 10.1162/tacl_a_00338 10.1016/j.autcon.2018.10.019 10.1109/TPAMI.2016.2644615 10.1145/3387939.3391592 10.1016/j.inffus.2021.01.008 10.1609/aaai.v30i1.9833 10.1016/j.apenergy.2019.01.070 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.future.2022.05.014 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7115 |
EndPage | 381 |
ExternalDocumentID | 10_1016_j_future_2022_05_014 S0167739X22001790 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-1fda6656bd353c42cafd0e45560ea3ce48f7a815bedb0e0beb5f6fafda99a8023 |
IEDL.DBID | .~1 |
ISSN | 0167-739X |
IngestDate | Thu Apr 24 23:03:43 EDT 2025 Tue Jul 01 01:42:50 EDT 2025 Fri Feb 23 02:39:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Computer vision Data processing Natural language processing Machine learning Human-in-the-loop |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-1fda6656bd353c42cafd0e45560ea3ce48f7a815bedb0e0beb5f6fafda99a8023 |
ORCID | 0000-0001-9146-051X |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_1016_j_future_2022_05_014 crossref_primary_10_1016_j_future_2022_05_014 elsevier_sciencedirect_doi_10_1016_j_future_2022_05_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Future generation computer systems |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Siméoni, Budnik, Avrithis, Gravier (b34) 2021 Wojke, Bewley, Paulus (b94) 2017 L. Rosenberg, Artificial Swarm Intelligence, a Human-in-the-loop approach to AI, in: The AAAI Conference on Artificial Intelligence, 30, (1) 2016. Y. Shoshitaishvili, M. Weissbacher, L. Dresel, C. Salls, R. Wang, C. Kruegel, G. Vigna, Rise of the hacrs: Augmenting autonomous cyber reasoning systems with human assistance, in: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017, pp. 347–362. Ma (b127) 2018 Zou, Shi, Guo, Ye (b91) 2019 Weber, Hußmann, Han, Matthes, Liu (b98) 2020 Bai, Liu, Zhang (b74) 2020; 29 Xiao, Hu, Chen, Xue, Chen, Gu, Tang (b85) 2020 Zhuang, Wu, Chen, Pan (b23) 2017; 18 Butler, Oster, Togelius (b60) 2020 Girshick (b90) 2015 Zaib, Sheng, Emma Zhang (b8) 2020 Minaee, Boykov, Porikli, Plaza, Kehtarnavaz, Terzopoulos (b101) 2021 L.F. Cranor, A framework for reasoning about the human in the loop, in: Proceedings of the 1st Conference on Usability, Psychology, and Security, 2008, pp. 1–15. Zhou, Lapedriza, Xiao, Torralba, Oliva (b3) 2014 Chopra, Auli, Rush (b82) 2016 Böhme, Geethal, Pham (b131) 2020 Wang, Li, Zuluaga, Pratt, Patel, Aertsen, Doel, David, Deprest, Ourselin (b42) 2018; 37 Wogalter (b126) 2018 Ziegler, Stiennon, Wu, Brown, Radford, Amodei, Christiano, Irving (b78) 2019 Klie, de Castilho, Gurevych (b59) 2020 Salam, Koone, Thirumuruganathan, Das, Basu Roy (b128) 2019 Oh, Lee, Xu, Kim (b109) 2019 Chen, Hou, Cui, Che, Liu, Yu (b41) 2020 Qiu, Sun, Xu, Shao, Dai, Huang (b7) 2020 Xiao, Hu, Chen, Xue, Gu, Chen, Zhang (b84) 2020; 10 Jung, Jazizadeh (b27) 2019; 239 Jwo, Lin, Lee (b153) 2021; 114 Metzner, Utsch, Walter, Hofstetter, Ramer, Blank, Franke (b135) 2020 Shi, Jain (b36) 2021 L. Berti-Equille, Reinforcement learning for data preparation with active reward learning, in: International Conference on Internet Science, 2019, pp. 121–132. Banham, Katsaggelos (b95) 1997; 14 K. Qian, P.C. Raman, Y. Li, L. Popa, Partner: Human-in-the-loop entity name understanding with deep learning, in: The AAAI Conference on Artificial Intelligence, 34, (09) 2020, pp. 13634–13635. Li (b46) 2017; 10 A.L. Gentile, D. Gruhl, P. Ristoski, S. Welch, Explore and exploit. Dictionary expansion with human-in-the-loop, in: European Semantic Web Conference, 2019, pp. 131–145. Song, Wang, Jiang, Liu, Rao (b73) 2019 Liu, Wang, Gong, Lu, Tao (b55) 2019 Murata, Dobashi (b106) 2019 Jolfaei, Usman, Roveri, Sheng, Palaniswami, Kant (b159) 2022; 6 K. Muthuraman, F. Reiss, H. Xu, B. Cutler, Z. Eichenberger, Data Cleaning Tools for Token Classification Tasks, in: Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances, 2021, pp. 59–61. He, Michael, Lewis, Zettlemoyer (b43) 2016 Kreutzer, Riezler, Lawrence (b150) 2021 Yu, Seff, Zhang, Song, Funkhouser, Xiao (b33) 2015 Ulyanov, Vedaldi, Lempitsky (b99) 2018 Hartmann, Shiller, Azaria (b19) 2019 Chen, Leng, Labi (b17) 2020; 35 Renner (b132) 2020 M.T. Ribeiro, S. Singh, C. Guestrin, ” Why should i trust you?” Explaining the predictions of any classifier, in: Annual ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2016, pp. 1135–1144. Khan, Naseer, Hayat, Zamir, Khan, Shah (b39) 2021 Arora, Doshi (b141) 2021; 297 Fu, Yan, Fan (b111) 2018 Shen, Zhu, Zhang, Wang, Chen, Xu, Shao (b6) 2021; 66 Wang, Zhang, Yao, Fu (b35) 2021 Wang, Yang, Ma, Xu, Zhong, Deng, Gao (b14) 2020 Liu, Guo, AI, Mahmud (b81) 2021 Stiennon, Ouyang, Wu, Ziegler, Lowe, Voss, Radford, Amodei, Christiano (b79) 2020; 33 Fu, Zhu, Li (b147) 2013; 35 Xu, Price, Cohen, Yang, Huang (b115) 2016 Marquand (b156) 2021 Taleb, Lippert, Klein, Nabi (b104) 2021 Odekerken, Bex (b120) 2020 Demartini, Mizzaro, Spina (b119) 2020; 43 A. Doan, A. Ardalan, J. Ballard, S. Das, Y. Govind, P. Konda, H. Li, S. Mudgal, E. Paulson, G.P. Suganthan, et al., Human-in-the-loop challenges for entity matching: A midterm report, in: Proceedings of the 2nd Workshop on Human-in-the-Loop Data Analytics, 2017, pp. 1–6. Shilton (b158) 2018; 12 Zhang, Wang, Fan, Ji, Liu (b67) 2021 Criminisi, Perez, Toyama (b96) 2003; 2 Benard, Gygli (b108) 2017 Z.J. Wang, D. Choi, S. Xu, D. Yang, Putting Humans in the Natural Language Processing Loop: A Survey, in: Proceedings of the First Workshop on Bridging Human–Computer Interaction and Natural Language Processing, 2021, pp. 47–52. Meng, Wang, Zhou, Shen, Jia, Van Gool (b66) 2021 Zhang, He, Dragut, Vucetic (b51) 2019 Karmakharm, Aletras, Bontcheva (b72) 2019 Burges, Shaked, Renshaw, Lazier, Deeds, Hamilton, Hullender (b112) 2005 Holzinger, Malle, Saranti, Pfeifer (b140) 2021; 71 Tehrani, Wang, Wang (b31) 2019 Yao, Gall, Leistner, Van Gool (b92) 2012 Singh, Mahmoud (b118) 2020 Settles (b154) 2011 Dong, Wang, Abbas (b1) 2021; 40 Davidson, Graham, Beck, Marler, Fischer (b133) 2021; 90 M. Fischer, K. Kobs, A. Hotho, NICER: Aesthetic Image Enhancement with Humans in the Loop, in: The Thirteenth International Conference on Advances in Computer-Human Interactions, 2020, pp. 357–362. Agnisarman, Lopes, Madathil, Piratla, Gramopadhye (b28) 2019; 97 J.Z. Self, R.K. Vinayagam, J. Fry, C. North, Bridging the gap between user intention and model parameters for human-in-the-loop data analytics, in: Proceedings of the Workshop on Human-in-the-Loop Data Analytics, 2016, pp. 1–6. Li, Miller, Chopra, Ranzato, Weston (b143) 2016 Holzinger, Plass, Kickmeier-Rust, Holzinger, Crişan, Pintea, Palade (b22) 2019; 49 Kumar, Smith-Renner, Findlater, Seppi, Boyd-Graber (b24) 2019 Diligenti, Roychowdhury, Gori (b16) 2017 Krokos, Cheng, Chang, Nebesh, Paul, Whitley, Varshney (b58) 2019; 9 N. Li, S. Adepu, E. Kang, D. Garlan, Explanations for human-on-the-loop: A probabilistic model checking approach, in: Proceedings of the IEEE/ACM 15th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, 2020, pp. 181–187. Wu, Zheng, Ma, Ye, He (b88) 2021; 577 Niu, Li, Wang, Lin (b38) 2020; 17 A. Doan, Human-in-the-loop data analysis: a personal perspective, in: Proceedings of the Workshop on Human-in-the-Loop Data Analytics, 2018, pp. 1–6. Adhikari, Huttunen (b68) 2021 Devlin, Chang, Lee, Toutanova (b11) 2019 Radford, Narasimhan, Salimans, Sutskever (b12) 2018 Wallace, Rodriguez, Feng, Yamada, Boyd-Graber (b56) 2019; 7 A. Machiry, R. Tahiliani, M. Naik, Dynodroid: An input generation system for android apps, in: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, 2013, pp. 224–234. Martinez-Rodriguez, Hogan, Lopez-Arevalo (b69) 2020; 11 Zhao, Liu, Lin, Zhu, Han (b5) 2020; 33 Chai, Li (b30) 2020 Madono, Nakano, Kobayashi, Ogawa (b93) 2020 Zhang, Fiers, Witte, Jackson, Poggensee, Atkeson, Collins (b148) 2017; 356 S. Brostoff, M.A. Sasse, Safe and sound: a safety-critical approach to security, in: Proceedings of the 2001 Workshop on New Security Paradigms, 2001, pp. 41–50. Zhou, Liu, Qiao, Xiang, Change Loy (b161) 2021 Ravanbakhsh, Tschernezki, Last, Klein, Batmanghelich, Tresp, Nabi (b105) 2020 Kim, Pardo (b47) 2018; 8 H. Ye, W. Shao, H. Wang, J. Ma, L. Wang, Y. Zheng, X. Xue, Face recognition via active annotation and learning, in: ACM International Conference on Multimedia, 2016, pp. 1058–1062. Yao, Lin, Xia, Zhao, Zhou (b113) 2020; 11 Khan, Niu, Sandiwarno, Prince (b32) 2021; 54 Pham (b40) 2021; 9 Ristoski, Gentile, Alba, Gruhl, Welch (b61) 2020; 60 Yao, Su, Sun, Yih (b77) 2019 Polisetty Venkata Sai (b136) 2020 Shukla, Potnis, Dwivedy (b110) 2017; 2 Wiriyathammabhum, Summers-Stay, Fermüller, Aloimonos (b139) 2016; 49 Xu, Dainoff, Ge, Gao (b160) 2022 Budd, Robinson, Kainz (b26) 2021; 71 Amirpourazarian, Pinheiro, Fonseca, Ghanbari, Pereira (b144) 2021 Smith, Kumar, Boyd-Graber, Seppi, Findlater (b151) 2018 Z. Yao, X. Li, J. Gao, B. Sadler, H. Sun, Interactive semantic parsing for if-then recipes via hierarchical reinforcement learning, in: The AAAI Conference on Artificial Intelligence, 33, (01) 2019, pp. 2547–2554. Hancock, Bordes, Mazare, Weston (b80) 2019 Wu, Xu, Zheng, Ye, Yang, He (b89) 2020; 403 Wang, Chen, Wang, Ma (b103) 2020 T.-N. Le, A. Sugimoto, S. Ono, H. Kawasaki, Toward interactive self-annotation for video object bounding box: Recurrent self-learning and hierarchical annotation based framework, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 3231–3240. Zhang, Wang, Liu, Tao (b20) 2018; 18 Y. Lin, S.L. Pintea, J.C. van Gemert, Deep hough-transform line priors, in: ECCV, 2020, pp. 323–340. D. Xin, L. Ma, J. Liu, S. Macke, S. Song, A. Parameswaran, Accelerating human-in-the-loop machine learning: Challenges and opportunities, in: Proceedings of the Second Workshop on Data Management for End-To-End Machine Learning, 2018, pp. 1–4. Gurajada, Popa, Qian, Sen (b53) 2019 Benedikt, Joshi, Nolan, Henstra-Hill, Shaw, Hook (b29) 2020 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b10) 2017 Yang, Sun, Zhang, Liu (b146) 2020 Hudec, Mináriková, Mesiar, Saranti, Holzinger (b116) 2021; 220 Bartolo, Roberts, Welbl, Riedel, Stenetorp (b64) 2020; 8 Y. Tay, M. Dehghani, D. Bahri, D. Metzler R. Zhang, F. Torabi, L. Guan, D.H. Ballard, P. Stone, Leveraging Human Guidance for Deep Reinforcement Learning Tasks, in: International Joint Conference on Artificial Intelligence (IJCAI), 2019. H.O. Demirel, Digital Human-in-the-Loop Framework, in: International Conference on Human-Computer Interaction, 2020, pp. 18–32. Ren, Yeh, Schwing (b37) 2020; 33 Zhu, Lu, Deng, Yang, Fogo, Huo (b137) 2020 Badrinarayanan, Kendall, Cipolla (b102) 2017; 39 Wrede, Hellander (b130) 2019; 35 Kovashka, Parikh, Grauman (b123) 2015; 115 Caelles, Maninis, Pont-Tuset, Leal-Taixé, Cremers, Van Gool (b114) 2017 Lee, Smith, Seppi, Elmqvist, Boyd-Graber, Findlater (b155) 2017; 105 Dudley, Kristensson (b157) 2018; 8 Liu, Reda, Shih, Wang, Tao, Catanzaro (b97) 2018 Y. Lou, M. Uddin, N. Brown, M. Cafarella, Knowledge graph programming with a human-in-the-loop: Preliminary results, in: Proceedings of the Workshop on Human-in-the-Loop Data Analytics, 2019, pp. 1–7. Li, Yang, Hertzmann, Zhang, Xu (b4) 2021; 43 Zhuang, Li, Zhong, Feng (b45) 2017 B. Nushi, Wang (10.1016/j.future.2022.05.014_b14) 2020 Oh (10.1016/j.future.2022.05.014_b109) 2019 Marquand (10.1016/j.future.2022.05.014_b156) 2021 Habermann (10.1016/j.future.2022.05.014_b13) 2020 Zhou (10.1016/j.future.2022.05.014_b161) 2021 Settles (10.1016/j.future.2022.05.014_b154) 2011 Karmakharm (10.1016/j.future.2022.05.014_b72) 2019 Chen (10.1016/j.future.2022.05.014_b17) 2020; 35 Li (10.1016/j.future.2022.05.014_b143) 2016 Weber (10.1016/j.future.2022.05.014_b98) 2020 Khan (10.1016/j.future.2022.05.014_b39) 2021 Wu (10.1016/j.future.2022.05.014_b89) 2020; 403 10.1016/j.future.2022.05.014_b107 Wogalter (10.1016/j.future.2022.05.014_b126) 2018 Girshick (10.1016/j.future.2022.05.014_b90) 2015 Kovashka (10.1016/j.future.2022.05.014_b123) 2015; 115 10.1016/j.future.2022.05.014_b121 10.1016/j.future.2022.05.014_b122 Ziegler (10.1016/j.future.2022.05.014_b78) 2019 Liu (10.1016/j.future.2022.05.014_b81) 2021 Radford (10.1016/j.future.2022.05.014_b12) 2018 Ren (10.1016/j.future.2022.05.014_b37) 2020; 33 Martinez-Rodriguez (10.1016/j.future.2022.05.014_b69) 2020; 11 Dong (10.1016/j.future.2022.05.014_b1) 2021; 40 Li (10.1016/j.future.2022.05.014_b4) 2021; 43 Meng (10.1016/j.future.2022.05.014_b66) 2021 Smith (10.1016/j.future.2022.05.014_b151) 2018 Vaswani (10.1016/j.future.2022.05.014_b10) 2017 Taleb (10.1016/j.future.2022.05.014_b104) 2021 He (10.1016/j.future.2022.05.014_b43) 2016 10.1016/j.future.2022.05.014_b117 Shilton (10.1016/j.future.2022.05.014_b158) 2018; 12 10.1016/j.future.2022.05.014_b48 Jung (10.1016/j.future.2022.05.014_b27) 2019; 239 10.1016/j.future.2022.05.014_b44 Holzinger (10.1016/j.future.2022.05.014_b140) 2021; 71 Wang (10.1016/j.future.2022.05.014_b42) 2018; 37 Zhang (10.1016/j.future.2022.05.014_b51) 2019 Plummer (10.1016/j.future.2022.05.014_b129) 2019 Zhang (10.1016/j.future.2022.05.014_b20) 2018; 18 Butler (10.1016/j.future.2022.05.014_b60) 2020 Madono (10.1016/j.future.2022.05.014_b93) 2020 Zhuang (10.1016/j.future.2022.05.014_b23) 2017; 18 Agnisarman (10.1016/j.future.2022.05.014_b28) 2019; 97 Ma (10.1016/j.future.2022.05.014_b127) 2018 Shi (10.1016/j.future.2022.05.014_b36) 2021 Siméoni (10.1016/j.future.2022.05.014_b34) 2021 10.1016/j.future.2022.05.014_b18 Shukla (10.1016/j.future.2022.05.014_b110) 2017; 2 Kapoor (10.1016/j.future.2022.05.014_b152) 2014; 108 Yao (10.1016/j.future.2022.05.014_b92) 2012 Fan (10.1016/j.future.2022.05.014_b57) 2019; 22 Bahrami (10.1016/j.future.2022.05.014_b9) 2021; 66 Song (10.1016/j.future.2022.05.014_b73) 2019 Niu (10.1016/j.future.2022.05.014_b38) 2020; 17 Dong (10.1016/j.future.2022.05.014_b49) 2018 Ulyanov (10.1016/j.future.2022.05.014_b99) 2018 Holzinger (10.1016/j.future.2022.05.014_b22) 2019; 49 Kim (10.1016/j.future.2022.05.014_b47) 2018; 8 Demartini (10.1016/j.future.2022.05.014_b119) 2020; 43 Wiriyathammabhum (10.1016/j.future.2022.05.014_b139) 2016; 49 Metzner (10.1016/j.future.2022.05.014_b135) 2020 Krokos (10.1016/j.future.2022.05.014_b58) 2019; 9 Hudec (10.1016/j.future.2022.05.014_b116) 2021; 220 Qiu (10.1016/j.future.2022.05.014_b7) 2020 Fu (10.1016/j.future.2022.05.014_b147) 2013; 35 Böhme (10.1016/j.future.2022.05.014_b131) 2020 Dudley (10.1016/j.future.2022.05.014_b157) 2018; 8 10.1016/j.future.2022.05.014_b25 10.1016/j.future.2022.05.014_b21 Yang (10.1016/j.future.2022.05.014_b146) 2020 Pham (10.1016/j.future.2022.05.014_b40) 2021; 9 Ravanbakhsh (10.1016/j.future.2022.05.014_b105) 2020 Yao (10.1016/j.future.2022.05.014_b113) 2020; 11 Jwo (10.1016/j.future.2022.05.014_b153) 2021; 114 10.1016/j.future.2022.05.014_b70 Xu (10.1016/j.future.2022.05.014_b115) 2016 Odekerken (10.1016/j.future.2022.05.014_b120) 2020 Zhu (10.1016/j.future.2022.05.014_b137) 2020 Xiao (10.1016/j.future.2022.05.014_b84) 2020; 10 Bai (10.1016/j.future.2022.05.014_b74) 2020; 29 Brutzkus (10.1016/j.future.2022.05.014_b2) 2019 Chen (10.1016/j.future.2022.05.014_b41) 2020 Stiennon (10.1016/j.future.2022.05.014_b79) 2020; 33 Wrede (10.1016/j.future.2022.05.014_b130) 2019; 35 Klie (10.1016/j.future.2022.05.014_b59) 2020 Hancock (10.1016/j.future.2022.05.014_b80) 2019 Burges (10.1016/j.future.2022.05.014_b112) 2005 Tehrani (10.1016/j.future.2022.05.014_b31) 2019 Wallace (10.1016/j.future.2022.05.014_b56) 2019; 7 Chopra (10.1016/j.future.2022.05.014_b82) 2016 10.1016/j.future.2022.05.014_b149 Yao (10.1016/j.future.2022.05.014_b77) 2019 Shen (10.1016/j.future.2022.05.014_b6) 2021; 66 10.1016/j.future.2022.05.014_b76 Criminisi (10.1016/j.future.2022.05.014_b96) 2003; 2 10.1016/j.future.2022.05.014_b75 Zhang (10.1016/j.future.2022.05.014_b148) 2017; 356 Liu (10.1016/j.future.2022.05.014_b55) 2019 10.1016/j.future.2022.05.014_b83 Wan (10.1016/j.future.2022.05.014_b145) 2021; 32 Jolfaei (10.1016/j.future.2022.05.014_b159) 2022; 6 Badrinarayanan (10.1016/j.future.2022.05.014_b102) 2017; 39 Renner (10.1016/j.future.2022.05.014_b132) 2020 Hartmann (10.1016/j.future.2022.05.014_b19) 2019 Wang (10.1016/j.future.2022.05.014_b35) 2021 Salam (10.1016/j.future.2022.05.014_b128) 2019 Benedikt (10.1016/j.future.2022.05.014_b29) 2020 Singh (10.1016/j.future.2022.05.014_b118) 2020 Zhou (10.1016/j.future.2022.05.014_b3) 2014 Banham (10.1016/j.future.2022.05.014_b95) 1997; 14 Khan (10.1016/j.future.2022.05.014_b32) 2021; 54 Wang (10.1016/j.future.2022.05.014_b103) 2020 Zhang (10.1016/j.future.2022.05.014_b67) 2021 Li (10.1016/j.future.2022.05.014_b46) 2017; 10 Murata (10.1016/j.future.2022.05.014_b106) 2019 Chai (10.1016/j.future.2022.05.014_b30) 2020 10.1016/j.future.2022.05.014_b87 10.1016/j.future.2022.05.014_b86 Xiao (10.1016/j.future.2022.05.014_b85) 2020 Lee (10.1016/j.future.2022.05.014_b155) 2017; 105 Zou (10.1016/j.future.2022.05.014_b91) 2019 10.1016/j.future.2022.05.014_b50 10.1016/j.future.2022.05.014_b52 Budd (10.1016/j.future.2022.05.014_b26) 2021; 71 Davidson (10.1016/j.future.2022.05.014_b133) 2021; 90 Xu (10.1016/j.future.2022.05.014_b160) 2022 Yu (10.1016/j.future.2022.05.014_b33) 2015 Zhao (10.1016/j.future.2022.05.014_b5) 2020; 33 Amirpourazarian (10.1016/j.future.2022.05.014_b144) 2021 Minaee (10.1016/j.future.2022.05.014_b101) 2021 Bartolo (10.1016/j.future.2022.05.014_b64) 2020; 8 Arora (10.1016/j.future.2022.05.014_b141) 2021; 297 Diligenti (10.1016/j.future.2022.05.014_b16) 2017 Kreutzer (10.1016/j.future.2022.05.014_b150) 2021 Polisetty Venkata Sai (10.1016/j.future.2022.05.014_b136) 2020 Wojke (10.1016/j.future.2022.05.014_b94) 2017 Kumar (10.1016/j.future.2022.05.014_b24) 2019 10.1016/j.future.2022.05.014_b54 10.1016/j.future.2022.05.014_b124 10.1016/j.future.2022.05.014_b125 Benard (10.1016/j.future.2022.05.014_b108) 2017 Zhuang (10.1016/j.future.2022.05.014_b45) 2017 10.1016/j.future.2022.05.014_b142 10.1016/j.future.2022.05.014_b63 10.1016/j.future.2022.05.014_b62 Fu (10.1016/j.future.2022.05.014_b111) 2018 Adhikari (10.1016/j.future.2022.05.014_b68) 2021 Caelles (10.1016/j.future.2022.05.014_b114) 2017 Liu (10.1016/j.future.2022.05.014_b97) 2018 Gurajada (10.1016/j.future.2022.05.014_b53) 2019 Roels (10.1016/j.future.2022.05.014_b100) 2019 Devlin (10.1016/j.future.2022.05.014_b11) 2019 Ristoski (10.1016/j.future.2022.05.014_b61) 2020; 60 LeCun (10.1016/j.future.2022.05.014_b71) 2015; 521 Zaib (10.1016/j.future.2022.05.014_b8) 2020 Jia (10.1016/j.future.2022.05.014_b15) 2021; 448 10.1016/j.future.2022.05.014_b138 Wu (10.1016/j.future.2022.05.014_b88) 2021; 577 10.1016/j.future.2022.05.014_b65 10.1016/j.future.2022.05.014_b134 |
References_xml | – reference: J.Z. Self, R.K. Vinayagam, J. Fry, C. North, Bridging the gap between user intention and model parameters for human-in-the-loop data analytics, in: Proceedings of the Workshop on Human-in-the-Loop Data Analytics, 2016, pp. 1–6. – volume: 220 year: 2021 ident: b116 article-title: Classification by ordinal sums of conjunctive and disjunctive functions for explainable AI and interpretable machine learning solutions publication-title: Knowl.-Based Syst. – reference: Y. Tay, M. Dehghani, D. Bahri, D. Metzler, – volume: 356 start-page: 1280 year: 2017 end-page: 1284 ident: b148 article-title: Human-in-the-loop optimization of exoskeleton assistance during walking publication-title: Science – start-page: 221 year: 2017 end-page: 230 ident: b114 article-title: One-shot video object segmentation publication-title: CVPR – reference: L.F. Cranor, A framework for reasoning about the human in the loop, in: Proceedings of the 1st Conference on Usability, Psychology, and Security, 2008, pp. 1–15. – volume: 29 start-page: 503 year: 2020 end-page: 514 ident: b74 article-title: Investigating typed syntactic dependencies for targeted sentiment classification using graph attention neural network publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process. – reference: A. Machiry, R. Tahiliani, M. Naik, Dynodroid: An input generation system for android apps, in: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, 2013, pp. 224–234. – volume: 66 start-page: 54 year: 2021 end-page: 63 ident: b6 article-title: Heterogeneous data fusion for predicting mild cognitive impairment conversion publication-title: Inf. Fusion – volume: 35 start-page: 5199 year: 2019 end-page: 5206 ident: b130 article-title: Smart computational exploration of stochastic gene regulatory network models using human-in-the-loop semi-supervised learning publication-title: Bioinformatics – volume: 33 start-page: 7559 year: 2020 end-page: 7570 ident: b5 article-title: Differentiable augmentation for data-efficient gan training publication-title: NIPS – reference: K. Muthuraman, F. Reiss, H. Xu, B. Cutler, Z. Eichenberger, Data Cleaning Tools for Token Classification Tasks, in: Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances, 2021, pp. 59–61. – start-page: 1 year: 2020 ident: b103 article-title: Efficiently troubleshooting image segmentation models with human-in-the-loop – volume: 35 start-page: 305 year: 2020 end-page: 321 ident: b17 article-title: A deep learning algorithm for simulating autonomous driving considering prior knowledge and temporal information publication-title: Comput.-Aided Civ. Infrastruct. Eng. – reference: Z. Yao, X. Li, J. Gao, B. Sadler, H. Sun, Interactive semantic parsing for if-then recipes via hierarchical reinforcement learning, in: The AAAI Conference on Artificial Intelligence, 33, (01) 2019, pp. 2547–2554. – reference: Y. Shoshitaishvili, M. Weissbacher, L. Dresel, C. Salls, R. Wang, C. Kruegel, G. Vigna, Rise of the hacrs: Augmenting autonomous cyber reasoning systems with human assistance, in: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017, pp. 347–362. – start-page: 93 year: 2016 end-page: 98 ident: b82 article-title: Abstractive sentence summarization with attentive recurrent neural networks publication-title: NAACL – start-page: 3528 year: 2018 end-page: 3532 ident: b111 article-title: Image aesthetics assessment using composite features from off-the-shelf deep models publication-title: ICIP – year: 2019 ident: b100 article-title: A human-in-the-loop approach for semi-automated image restoration in electron microscopy publication-title: BioRxiv – volume: 9 start-page: 1 year: 2019 end-page: 27 ident: b58 article-title: Enhancing deep learning with visual interactions publication-title: ACM Trans. Interact. Intell. Syst. (TiiS) – reference: K. Qian, P.C. Raman, Y. Li, L. Popa, Partner: Human-in-the-loop entity name understanding with deep learning, in: The AAAI Conference on Artificial Intelligence, 34, (09) 2020, pp. 13634–13635. – volume: 33 year: 2020 ident: b37 article-title: Not all unlabeled data are equal: Learning to weight data in semi-supervised learning publication-title: NIPS – volume: 8 start-page: 1 year: 2018 end-page: 23 ident: b47 article-title: A human-in-the-loop system for sound event detection and annotation publication-title: ACM Trans. Interact. Intell. Syst. (TiiS) – start-page: 3667 year: 2019 end-page: 3684 ident: b80 article-title: Learning from dialogue after deployment: Feed yourself, chatbot! publication-title: ACL – volume: 71 start-page: 28 year: 2021 end-page: 37 ident: b140 article-title: Towards multi-modal causability with graph neural networks enabling information fusion for explainable AI publication-title: Inf. Fusion – start-page: 6122 year: 2019 end-page: 6131 ident: b55 article-title: Deep reinforcement active learning for human-in-the-loop person re-identification publication-title: ICCV – year: 2019 ident: b78 article-title: Fine-tuning language models from human preferences – start-page: 3242 year: 2012 end-page: 3249 ident: b92 article-title: Interactive object detection publication-title: CVPR – start-page: 373 year: 2016 end-page: 381 ident: b115 article-title: Deep interactive object selection publication-title: CVPR – start-page: 920 year: 2017 end-page: 923 ident: b16 article-title: Integrating prior knowledge into deep learning publication-title: ICMLA – year: 2015 ident: b33 article-title: LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop – year: 2019 ident: b24 article-title: Why didn’t you listen to me? Comparing user control of human-in-the-loop topic models publication-title: ACL – volume: 18 start-page: 69 year: 2018 end-page: 76 ident: b20 article-title: Towards improving diagnosis of skin diseases by combining deep neural network and human knowledge publication-title: BMC Med. Inform. Decis. Mak. – reference: A. Doan, Human-in-the-loop data analysis: a personal perspective, in: Proceedings of the Workshop on Human-in-the-Loop Data Analytics, 2018, pp. 1–6. – reference: N. Li, S. Adepu, E. Kang, D. Garlan, Explanations for human-on-the-loop: A probabilistic model checking approach, in: Proceedings of the IEEE/ACM 15th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, 2020, pp. 181–187. – start-page: 85 year: 2018 end-page: 100 ident: b97 article-title: Image inpainting for irregular holes using partial convolutions publication-title: ECCV – reference: M. Fischer, K. Kobs, A. Hotho, NICER: Aesthetic Image Enhancement with Humans in the Loop, in: The Thirteenth International Conference on Advances in Computer-Human Interactions, 2020, pp. 357–362. – year: 2019 ident: b91 article-title: Object detection in 20 years: A survey – start-page: 5247 year: 2019 end-page: 5256 ident: b109 article-title: Fast user-guided video object segmentation by interaction-and-propagation networks publication-title: CVPR – start-page: 1 year: 2022 end-page: 25 ident: b160 article-title: Transitioning to human interaction with AI systems: New challenges and opportunities for HCI professionals to enable human-centered AI publication-title: Int. J. Hum.–Comput. Interaction – year: 2021 ident: b161 article-title: Domain generalization: A survey – volume: 8 start-page: 662 year: 2020 end-page: 678 ident: b64 article-title: Beat the AI: Investigating adversarial human annotation for reading comprehension publication-title: Trans. Assoc. Comput. Linguist. – start-page: 1467 year: 2011 end-page: 1478 ident: b154 article-title: Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances publication-title: EMNLP – start-page: 1 year: 2020 end-page: 26 ident: b7 article-title: Pre-trained models for natural language processing: A survey publication-title: Sci. China Technol. Sci. – start-page: 1 year: 2021 ident: b144 article-title: Quality evaluation of holographic images coded with standard codecs publication-title: IEEE Trans. Multimed. – start-page: 3645 year: 2017 end-page: 3649 ident: b94 article-title: Simple online and realtime tracking with a deep association metric publication-title: ICIP – volume: 66 start-page: 213 year: 2021 end-page: 228 ident: b9 article-title: Joint auto-weighted graph fusion and scalable semi-supervised learning publication-title: Inf. Fusion – start-page: 214 year: 2020 end-page: 222 ident: b137 article-title: Easierpath: An open-source tool for human-in-the-loop deep learning of renal pathology publication-title: Interpretable and Annotation-Efficient Learning for Medical Image Computing – start-page: 1 year: 2021 ident: b101 article-title: Image segmentation using deep learning: A survey publication-title: IEEE Trans. PAMI – start-page: 487 year: 2014 end-page: 495 ident: b3 article-title: Learning deep features for scene recognition using places database publication-title: NIPS – volume: 448 start-page: 179 year: 2021 end-page: 204 ident: b15 article-title: A survey: Deep learning for hyperspectral image classification with few labeled samples publication-title: Neurocomputing – reference: Z.J. Wang, D. Choi, S. Xu, D. Yang, Putting Humans in the Natural Language Processing Loop: A Survey, in: Proceedings of the First Workshop on Bridging Human–Computer Interaction and Natural Language Processing, 2021, pp. 47–52. – year: 2021 ident: b156 article-title: Automated Modeling of Human-in-the-Loop Systems – start-page: 2969 year: 2019 end-page: 2970 ident: b53 article-title: Learning-based methods with human-in-the-loop for entity resolution publication-title: CIKM – reference: Y. Lin, S.L. Pintea, J.C. van Gemert, Deep hough-transform line priors, in: ECCV, 2020, pp. 323–340. – volume: 54 start-page: 95 year: 2021 end-page: 135 ident: b32 article-title: Deep learning techniques for rating prediction: a survey of the state-of-the-art publication-title: Artif. Intell. Rev. – volume: 108 start-page: 148 year: 2014 end-page: 164 ident: b152 article-title: Collaborative personalization of image enhancement publication-title: IJCV – start-page: 1612 year: 2019 end-page: 1622 ident: b128 article-title: A human-in-the-loop attribute design framework for classification publication-title: WWW – reference: H.O. Demirel, Digital Human-in-the-Loop Framework, in: International Conference on Human-Computer Interaction, 2020, pp. 18–32. – volume: 114 start-page: 1741 year: 2021 end-page: 1752 ident: b153 article-title: Smart technology–driven aspects for human-in-the-loop smart manufacturing publication-title: Int. J. Adv. Manuf. Technol. – volume: 11 start-page: 255 year: 2020 end-page: 335 ident: b69 article-title: Information extraction meets the semantic web: A survey publication-title: Semant. Web – start-page: 661 year: 2021 end-page: 673 ident: b104 article-title: Multimodal self-supervised learning for medical image analysis publication-title: IPMI – volume: 32 start-page: 3287 year: 2021 end-page: 3292 ident: b145 article-title: Human-in-the-loop low-shot learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1 year: 2020 end-page: 8 ident: b60 article-title: Human-in-the-loop AI for analysis of free response facial expression label sets publication-title: IVA – start-page: 1 year: 2016 end-page: 23 ident: b143 article-title: Dialogue learning with human-in-the-loop publication-title: ICLR – start-page: 2795 year: 2021 end-page: 2804 ident: b36 article-title: Boosting unconstrained face recognition with auxiliary unlabeled data publication-title: CVPR – start-page: 239 year: 2020 end-page: 242 ident: b120 article-title: Towards transparent human-in-the-loop classification of fraudulent web shops publication-title: Legal Knowledge and Information Systems – volume: 22 start-page: 955 year: 2019 end-page: 971 ident: b57 article-title: An interactive visual analytics approach for network anomaly detection through smart labeling publication-title: J. Vis. – reference: I. Arous, L. Dolamic, J. Yang, A. Bhardwaj, G. Cuccu, P. Cudré-Mauroux, MARTA: Leveraging Human Rationales for Explainable Text Classification, in: The AAAI Conference on Artificial Intelligence, 35, (7) 2021, pp. 5868–5876. – start-page: 1226 year: 2020 end-page: 1233 ident: b93 article-title: Efficient human-in-the-loop object detection using bi-directional deep SORT and annotation-free segment identification publication-title: APSIPA ASC – start-page: 33 year: 2018 end-page: 49 ident: b126 article-title: Communication-human information processing (C-HIP) model publication-title: Forensic Human Factors and Ergonomics – start-page: 5642 year: 2021 end-page: 5651 ident: b67 article-title: Generating manga from illustrations via mimicking manga creation workflow publication-title: CVPR – start-page: 243 year: 2020 end-page: 253 ident: b98 article-title: Draw with me: Human-in-the-loop for image restoration publication-title: IUI – start-page: 2305 year: 2019 end-page: 2313 ident: b51 article-title: How to invest my time: Lessons from human-in-the-loop entity extraction publication-title: KDD – reference: B. Nushi, E. Kamar, E. Horvitz, Towards accountable ai: Hybrid human-machine analyses for characterizing system failure, in: The AAAI Conference on Artificial Intelligence, 6, (1) 2018. – reference: A. Doan, A. Ardalan, J. Ballard, S. Das, Y. Govind, P. Konda, H. Li, S. Mudgal, E. Paulson, G.P. Suganthan, et al., Human-in-the-loop challenges for entity matching: A midterm report, in: Proceedings of the 2nd Workshop on Human-in-the-Loop Data Analytics, 2017, pp. 1–6. – volume: 49 start-page: 2401 year: 2019 end-page: 2414 ident: b22 article-title: Interactive machine learning: experimental evidence for the human in the algorithmic loop publication-title: Appl. Intell. – start-page: 293 year: 2018 end-page: 304 ident: b151 article-title: Closing the loop: User-centered design and evaluation of a human-in-the-loop topic modeling system publication-title: IUI – volume: 17 start-page: 1611 year: 2020 end-page: 1622 ident: b38 article-title: Defect image sample generation with GAN for improving defect recognition publication-title: IEEE Trans. Autom. Sci. Eng. – start-page: 7870 year: 2020 end-page: 7881 ident: b41 article-title: Recall and learn: Fine-tuning deep pretrained language models with less forgetting publication-title: EMNLP – volume: 2 start-page: II year: 2003 ident: b96 article-title: Object removal by exemplar-based inpainting publication-title: CVPR – start-page: 822 year: 2019 end-page: 830 ident: b2 article-title: Why do larger models generalize better? A theoretical perspective via the XOR problem publication-title: ICML – volume: 6 start-page: 2 year: 2022 end-page: 5 ident: b159 article-title: Guest editorial: Computational intelligence for human-in-the-loop cyber physical systems publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – reference: L. Berti-Equille, Reinforcement learning for data preparation with active reward learning, in: International Conference on Internet Science, 2019, pp. 121–132. – reference: L. Rosenberg, Artificial Swarm Intelligence, a Human-in-the-loop approach to AI, in: The AAAI Conference on Artificial Intelligence, 30, (1) 2016. – start-page: 37 year: 2021 end-page: 43 ident: b150 article-title: Offline reinforcement learning from human feedback in real-world sequence-to-sequence tasks publication-title: SPNLP – start-page: 1 year: 2018 ident: b127 article-title: Towards understanding and simplifying human-in-the-loop machine learning – start-page: 9446 year: 2018 end-page: 9454 ident: b99 article-title: Deep image prior publication-title: CVPR – volume: 11 start-page: 1 year: 2020 end-page: 47 ident: b113 article-title: Video object segmentation and tracking: A survey publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – volume: 43 start-page: 1 year: 2020 end-page: 10 ident: b119 article-title: Human-in-the-loop artificial intelligence for fighting online misinformation: Challenges and opportunities publication-title: Bull. Tech. Committee Data Eng. – start-page: 115 year: 2019 end-page: 120 ident: b72 article-title: Journalist-in-the-loop: Continuous learning as a service for rumour analysis publication-title: EMNLP – start-page: 516 year: 2020 end-page: 523 ident: b14 article-title: Weak supervision for fake news detection via reinforcement learning publication-title: AAAI, Vol. 34 – start-page: 170 year: 2021 ident: b81 article-title: When and why does a model fail? A human-in-the-loop error detection framework for sentiment analysis publication-title: NAACL-HLT 2021 – volume: 2 start-page: 232 year: 2017 end-page: 235 ident: b110 article-title: A review on image enhancement techniques publication-title: IJEACS – start-page: 37 year: 2020 ident: b30 article-title: Human-in-the-loop techniques in machine learning publication-title: Data Eng. – start-page: 4040 year: 2021 end-page: 4046 ident: b68 article-title: Iterative bounding box annotation for object detection publication-title: ICPR – volume: 18 start-page: 3 year: 2017 end-page: 14 ident: b23 article-title: Challenges and opportunities: from big data to knowledge in AI 2.0 publication-title: Front. Inf. Technol. Electron. Eng. – year: 2020 ident: b132 article-title: Designing for the Human in the Loop: Transparency and Control in Interactive Machine Learning – start-page: 1040 year: 2020 end-page: 1044 ident: b105 article-title: Human-machine collaboration for medical image segmentation publication-title: ICASSP – volume: 33 start-page: 3008 year: 2020 end-page: 3021 ident: b79 article-title: Learning to summarize with human feedback publication-title: NIPS – volume: 71 year: 2021 ident: b26 article-title: A survey on active learning and human-in-the-loop deep learning for medical image analysis publication-title: Med. Image Anal. – volume: 14 start-page: 24 year: 1997 end-page: 41 ident: b95 article-title: Digital image restoration publication-title: IEEE Signal Process. Mag. – volume: 8 start-page: 1 year: 2018 end-page: 37 ident: b157 article-title: A review of user interface design for interactive machine learning publication-title: ACM Trans. Interact. Intell. Syst. (TiiS) – volume: 40 year: 2021 ident: b1 article-title: A survey on deep learning and its applications publication-title: Comp. Sci. Rev. – start-page: 5052 year: 2020 end-page: 5063 ident: b13 article-title: Deepcap: Monocular human performance capture using weak supervision publication-title: CVPR – start-page: 1645 year: 2018 end-page: 1650 ident: b49 article-title: Data integration and machine learning: A natural synergy publication-title: COMAD – volume: 35 start-page: 249 year: 2013 end-page: 283 ident: b147 article-title: A survey on instance selection for active learning publication-title: Knowl. Inf. Syst. – year: 2017 ident: b10 article-title: Attention is all you need publication-title: NIPS – reference: D. Xin, L. Ma, J. Liu, S. Macke, S. Song, A. Parameswaran, Accelerating human-in-the-loop machine learning: Challenges and opportunities, in: Proceedings of the Second Workshop on Data Management for End-To-End Machine Learning, 2018, pp. 1–4. – start-page: 1440 year: 2015 end-page: 1448 ident: b90 article-title: Fast r-cnn publication-title: ICCV – volume: 10 start-page: 2006 year: 2017 end-page: 2017 ident: b46 article-title: Human-in-the-loop data integration publication-title: Proc. VLDB Endow. – volume: 115 start-page: 185 year: 2015 end-page: 210 ident: b123 article-title: Whittlesearch: Interactive image search with relative attribute feedback publication-title: IJCV – start-page: 89 year: 2005 end-page: 96 ident: b112 article-title: Learning to rank using gradient descent publication-title: ICML – volume: 7 start-page: 387 year: 2019 end-page: 401 ident: b56 article-title: Trick me if you can: Human-in-the-loop generation of adversarial examples for question answering publication-title: Trans. Assoc. Comput. Linguist. – start-page: 1917 year: 2017 end-page: 1926 ident: b45 article-title: Hike: A hybrid human-machine method for entity alignment in large-scale knowledge bases publication-title: CIKM – start-page: 2237 year: 2020 end-page: 2242 ident: b118 article-title: Human-in-the-loop error precursor detection using language translation modeling of HMI states publication-title: SMC – start-page: 1220 year: 2021 end-page: 1227 ident: b34 article-title: Rethinking deep active learning: Using unlabeled data at model training publication-title: ICPR – volume: 577 start-page: 436 year: 2021 end-page: 448 ident: b88 article-title: Document image layout analysis via explicit edge embedding network publication-title: Inform. Sci. – reference: T.-N. Le, A. Sugimoto, S. Ono, H. Kawasaki, Toward interactive self-annotation for video object bounding box: Recurrent self-learning and hierarchical annotation based framework, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 3231–3240. – volume: 10 start-page: 957 year: 2020 ident: b84 article-title: Targeted sentiment classification based on attentional encoding and graph convolutional networks publication-title: Appl. Sci. – start-page: 1 year: 2020 end-page: 11 ident: b146 article-title: Optimal energy operation strategy for we-energy of energy internet based on hybrid reinforcement learning with human-in-the-loop publication-title: IEEE Trans. Syst. Man, Cybern.: Syst. – volume: 297 year: 2021 ident: b141 article-title: A survey of inverse reinforcement learning: Challenges, methods and progress publication-title: Artificial Intelligence – year: 2019 ident: b77 article-title: Model-based interactive semantic parsing: A unified formulation and a text-to-SQL case study publication-title: EMNLP – volume: 403 start-page: 13 year: 2020 end-page: 20 ident: b89 article-title: Fast video crowd counting with a temporal aware network publication-title: Neurocomputing – start-page: 4171 year: 2019 end-page: 4186 ident: b11 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: NAACL – reference: H. Ye, W. Shao, H. Wang, J. Ma, L. Wang, Y. Zheng, X. Xue, Face recognition via active annotation and learning, in: ACM International Conference on Multimedia, 2016, pp. 1058–1062. – reference: M.T. Ribeiro, S. Singh, C. Guestrin, ” Why should i trust you?” Explaining the predictions of any classifier, in: Annual ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2016, pp. 1135–1144. – start-page: 1 year: 2020 end-page: 4 ident: b8 article-title: A short survey of pre-trained language models for conversational AI-A new age in NLP publication-title: ACSW – start-page: 186 year: 2019 end-page: 193 ident: b19 article-title: Deep reinforcement learning for time optimal velocity control using prior knowledge publication-title: ICTAI – volume: 60 year: 2020 ident: b61 article-title: Large-scale relation extraction from web documents and knowledge graphs with human-in-the-loop publication-title: J. Web Semant. – start-page: 274 year: 2020 end-page: 285 ident: b131 article-title: Human-in-the-loop automatic program repair publication-title: ICST – volume: 12 year: 2018 ident: b158 article-title: Values and ethics in human-computer interaction publication-title: Found. Trends® Hum.–Comput. Interaction – start-page: 2048 year: 2019 end-page: 2057 ident: b129 article-title: Give me a hint! navigating image databases using human-in-the-loop feedback publication-title: WACV – volume: 97 start-page: 52 year: 2019 end-page: 76 ident: b28 article-title: A survey of automation-enabled human-in-the-loop systems for infrastructure visual inspection publication-title: Autom. Constr. – start-page: 93 year: 2019 end-page: 103 ident: b73 article-title: Targeted sentiment classification with attentional encoder network publication-title: ICANN – start-page: 1 year: 2020 end-page: 20 ident: b85 article-title: Multi-head self-attention based gated graph convolutional networks for aspect-based sentiment classification publication-title: Multimedia Tools Appl. – start-page: 2337 year: 2016 end-page: 2342 ident: b43 article-title: Human-in-the-loop parsing publication-title: EMNLP – year: 2018 ident: b12 article-title: Improving language understanding by generative pre-training – start-page: 374 year: 2019 end-page: 377 ident: b106 article-title: Automatic image enhancement taking into account user preference publication-title: CW – year: 2017 ident: b108 article-title: Interactive video object segmentation in the wild – volume: 49 start-page: 1 year: 2016 end-page: 44 ident: b139 article-title: Computer vision and natural language processing: recent approaches in multimedia and robotics publication-title: ACM Comput. Surv. – start-page: 488 year: 2020 end-page: 497 ident: b29 article-title: Human-in-the-loop AI in government: A case study publication-title: IUI – year: 2020 ident: b136 article-title: Information Preparation with the Human in the Loop – reference: S. Brostoff, M.A. Sasse, Safe and sound: a safety-critical approach to security, in: Proceedings of the 2001 Workshop on New Security Paradigms, 2001, pp. 41–50. – start-page: 1520 year: 2020 end-page: 1525 ident: b135 article-title: A system for human-in-the-loop simulation of industrial collaborative robot applications publication-title: CASE – reference: A.L. Gentile, D. Gruhl, P. Ristoski, S. Welch, Explore and exploit. Dictionary expansion with human-in-the-loop, in: European Semantic Web Conference, 2019, pp. 131–145. – volume: 37 start-page: 1562 year: 2018 end-page: 1573 ident: b42 article-title: Interactive medical image segmentation using deep learning with image-specific fine tuning publication-title: IEEE Trans. Med. Imaging – start-page: 1 year: 2021 ident: b66 article-title: Towards a weakly supervised framework for 3d point cloud object detection and annotation publication-title: IEEE Trans. PAMI – volume: 43 start-page: 2388 year: 2021 end-page: 2399 ident: b4 article-title: LayoutGAN: Synthesizing graphic layouts with vector-wireframe adversarial networks publication-title: IEEE Trans. PAMI – reference: R. Zhang, F. Torabi, L. Guan, D.H. Ballard, P. Stone, Leveraging Human Guidance for Deep Reinforcement Learning Tasks, in: International Joint Conference on Artificial Intelligence (IJCAI), 2019. – year: 2021 ident: b39 article-title: Transformers in vision: A survey publication-title: ACM Comput. Surv. – start-page: 6982 year: 2020 end-page: 6993 ident: b59 article-title: From zero to hero: Human-in-the-loop entity linking in low resource domains publication-title: ACL – start-page: 470 year: 2019 end-page: 478 ident: b31 article-title: Review of human-in-the-loop cyber-physical systems (HiLCPS): The current status from human perspective publication-title: Comput. Civ. Eng. 2019: Data, Sens. Anal. – start-page: 1 year: 2021 ident: b35 article-title: How to trust unlabeled data instance credibility inference for few-shot learning publication-title: IEEE Trans. PAMI – volume: 90 year: 2021 ident: b133 article-title: Improving human-in-the-loop simulation to optimize soldier-systems integration publication-title: Applied Ergon. – volume: 239 start-page: 1471 year: 2019 end-page: 1508 ident: b27 article-title: Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions publication-title: Appl. Energy – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b71 article-title: Deep learning publication-title: Nature – volume: 9 start-page: 1 year: 2021 end-page: 11 ident: b40 article-title: Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning? publication-title: Health Inf. Sci. Syst. – reference: Y. Lou, M. Uddin, N. Brown, M. Cafarella, Knowledge graph programming with a human-in-the-loop: Preliminary results, in: Proceedings of the Workshop on Human-in-the-Loop Data Analytics, 2019, pp. 1–7. – volume: 105 start-page: 28 year: 2017 end-page: 42 ident: b155 article-title: The human touch: How non-expert users perceive, interpret, and fix topic models publication-title: Int. J. Hum.-Comput. Stud. – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b102 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. PAMI – volume: 33 start-page: 3008 year: 2020 ident: 10.1016/j.future.2022.05.014_b79 article-title: Learning to summarize with human feedback publication-title: NIPS – start-page: 374 year: 2019 ident: 10.1016/j.future.2022.05.014_b106 article-title: Automatic image enhancement taking into account user preference – ident: 10.1016/j.future.2022.05.014_b86 doi: 10.1609/hcomp.v6i1.13337 – volume: 220 year: 2021 ident: 10.1016/j.future.2022.05.014_b116 article-title: Classification by ordinal sums of conjunctive and disjunctive functions for explainable AI and interpretable machine learning solutions publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106916 – volume: 49 start-page: 2401 issue: 7 year: 2019 ident: 10.1016/j.future.2022.05.014_b22 article-title: Interactive machine learning: experimental evidence for the human in the algorithmic loop publication-title: Appl. Intell. doi: 10.1007/s10489-018-1361-5 – volume: 90 year: 2021 ident: 10.1016/j.future.2022.05.014_b133 article-title: Improving human-in-the-loop simulation to optimize soldier-systems integration publication-title: Applied Ergon. doi: 10.1016/j.apergo.2020.103267 – volume: 33 start-page: 7559 year: 2020 ident: 10.1016/j.future.2022.05.014_b5 article-title: Differentiable augmentation for data-efficient gan training publication-title: NIPS – start-page: 2969 year: 2019 ident: 10.1016/j.future.2022.05.014_b53 article-title: Learning-based methods with human-in-the-loop for entity resolution – start-page: 488 year: 2020 ident: 10.1016/j.future.2022.05.014_b29 article-title: Human-in-the-loop AI in government: A case study – volume: 12 issue: 2 year: 2018 ident: 10.1016/j.future.2022.05.014_b158 article-title: Values and ethics in human-computer interaction publication-title: Found. Trends® Hum.–Comput. Interaction doi: 10.1561/1100000073 – start-page: 516 year: 2020 ident: 10.1016/j.future.2022.05.014_b14 article-title: Weak supervision for fake news detection via reinforcement learning – year: 2019 ident: 10.1016/j.future.2022.05.014_b100 article-title: A human-in-the-loop approach for semi-automated image restoration in electron microscopy publication-title: BioRxiv – ident: 10.1016/j.future.2022.05.014_b107 – year: 2020 ident: 10.1016/j.future.2022.05.014_b132 – start-page: 4171 year: 2019 ident: 10.1016/j.future.2022.05.014_b11 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding – start-page: 1612 year: 2019 ident: 10.1016/j.future.2022.05.014_b128 article-title: A human-in-the-loop attribute design framework for classification – volume: 71 year: 2021 ident: 10.1016/j.future.2022.05.014_b26 article-title: A survey on active learning and human-in-the-loop deep learning for medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102062 – start-page: 1 year: 2020 ident: 10.1016/j.future.2022.05.014_b103 – start-page: 1917 year: 2017 ident: 10.1016/j.future.2022.05.014_b45 article-title: Hike: A hybrid human-machine method for entity alignment in large-scale knowledge bases – ident: 10.1016/j.future.2022.05.014_b75 doi: 10.1609/aaai.v35i7.16734 – start-page: 1 year: 2021 ident: 10.1016/j.future.2022.05.014_b144 article-title: Quality evaluation of holographic images coded with standard codecs publication-title: IEEE Trans. Multimed. – ident: 10.1016/j.future.2022.05.014_b70 doi: 10.1145/2964284.2984059 – ident: 10.1016/j.future.2022.05.014_b65 doi: 10.18653/v1/2021.dash-1.10 – start-page: 293 year: 2018 ident: 10.1016/j.future.2022.05.014_b151 article-title: Closing the loop: User-centered design and evaluation of a human-in-the-loop topic modeling system – volume: 6 start-page: 2 issue: 1 year: 2022 ident: 10.1016/j.future.2022.05.014_b159 article-title: Guest editorial: Computational intelligence for human-in-the-loop cyber physical systems publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2021.3139998 – year: 2018 ident: 10.1016/j.future.2022.05.014_b12 – start-page: 1520 year: 2020 ident: 10.1016/j.future.2022.05.014_b135 article-title: A system for human-in-the-loop simulation of industrial collaborative robot applications – start-page: 1040 year: 2020 ident: 10.1016/j.future.2022.05.014_b105 article-title: Human-machine collaboration for medical image segmentation – volume: 577 start-page: 436 year: 2021 ident: 10.1016/j.future.2022.05.014_b88 article-title: Document image layout analysis via explicit edge embedding network publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.07.020 – volume: 49 start-page: 1 issue: 4 year: 2016 ident: 10.1016/j.future.2022.05.014_b139 article-title: Computer vision and natural language processing: recent approaches in multimedia and robotics publication-title: ACM Comput. Surv. doi: 10.1145/3009906 – ident: 10.1016/j.future.2022.05.014_b44 doi: 10.1145/2939502.2939505 – ident: 10.1016/j.future.2022.05.014_b48 doi: 10.1145/3209900.3209913 – start-page: 1 year: 2020 ident: 10.1016/j.future.2022.05.014_b7 article-title: Pre-trained models for natural language processing: A survey publication-title: Sci. China Technol. Sci. – start-page: 3528 year: 2018 ident: 10.1016/j.future.2022.05.014_b111 article-title: Image aesthetics assessment using composite features from off-the-shelf deep models – start-page: 214 year: 2020 ident: 10.1016/j.future.2022.05.014_b137 article-title: Easierpath: An open-source tool for human-in-the-loop deep learning of renal pathology – volume: 18 start-page: 69 issue: 2 year: 2018 ident: 10.1016/j.future.2022.05.014_b20 article-title: Towards improving diagnosis of skin diseases by combining deep neural network and human knowledge publication-title: BMC Med. Inform. Decis. Mak. – start-page: 93 year: 2016 ident: 10.1016/j.future.2022.05.014_b82 article-title: Abstractive sentence summarization with attentive recurrent neural networks – start-page: 1 year: 2021 ident: 10.1016/j.future.2022.05.014_b101 article-title: Image segmentation using deep learning: A survey publication-title: IEEE Trans. PAMI doi: 10.1109/TPAMI.2021.3059968 – ident: 10.1016/j.future.2022.05.014_b122 doi: 10.1145/2491411.2491450 – volume: 35 start-page: 305 issue: 4 year: 2020 ident: 10.1016/j.future.2022.05.014_b17 article-title: A deep learning algorithm for simulating autonomous driving considering prior knowledge and temporal information publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12495 – year: 2020 ident: 10.1016/j.future.2022.05.014_b136 – start-page: 1 year: 2021 ident: 10.1016/j.future.2022.05.014_b35 article-title: How to trust unlabeled data instance credibility inference for few-shot learning publication-title: IEEE Trans. PAMI – volume: 35 start-page: 5199 issue: 24 year: 2019 ident: 10.1016/j.future.2022.05.014_b130 article-title: Smart computational exploration of stochastic gene regulatory network models using human-in-the-loop semi-supervised learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz420 – ident: 10.1016/j.future.2022.05.014_b125 doi: 10.1145/3133956.3134105 – volume: 2 start-page: 232 issue: 7 year: 2017 ident: 10.1016/j.future.2022.05.014_b110 article-title: A review on image enhancement techniques publication-title: IJEACS doi: 10.24032/ijeacs/0207/05 – start-page: 5052 year: 2020 ident: 10.1016/j.future.2022.05.014_b13 article-title: Deepcap: Monocular human performance capture using weak supervision – start-page: 2305 year: 2019 ident: 10.1016/j.future.2022.05.014_b51 article-title: How to invest my time: Lessons from human-in-the-loop entity extraction – start-page: 1220 year: 2021 ident: 10.1016/j.future.2022.05.014_b34 article-title: Rethinking deep active learning: Using unlabeled data at model training – start-page: 1 year: 2022 ident: 10.1016/j.future.2022.05.014_b160 article-title: Transitioning to human interaction with AI systems: New challenges and opportunities for HCI professionals to enable human-centered AI publication-title: Int. J. Hum.–Comput. Interaction – start-page: 115 year: 2019 ident: 10.1016/j.future.2022.05.014_b72 article-title: Journalist-in-the-loop: Continuous learning as a service for rumour analysis – year: 2021 ident: 10.1016/j.future.2022.05.014_b161 – start-page: 1440 year: 2015 ident: 10.1016/j.future.2022.05.014_b90 article-title: Fast r-cnn – ident: 10.1016/j.future.2022.05.014_b21 doi: 10.24963/ijcai.2019/884 – start-page: 2237 year: 2020 ident: 10.1016/j.future.2022.05.014_b118 article-title: Human-in-the-loop error precursor detection using language translation modeling of HMI states – volume: 10 start-page: 2006 issue: 12 year: 2017 ident: 10.1016/j.future.2022.05.014_b46 article-title: Human-in-the-loop data integration publication-title: Proc. VLDB Endow. doi: 10.14778/3137765.3137833 – start-page: 1467 year: 2011 ident: 10.1016/j.future.2022.05.014_b154 article-title: Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances – volume: 40 year: 2021 ident: 10.1016/j.future.2022.05.014_b1 article-title: A survey on deep learning and its applications publication-title: Comp. Sci. Rev. – volume: 60 year: 2020 ident: 10.1016/j.future.2022.05.014_b61 article-title: Large-scale relation extraction from web documents and knowledge graphs with human-in-the-loop publication-title: J. Web Semant. doi: 10.1016/j.websem.2019.100546 – start-page: 93 year: 2019 ident: 10.1016/j.future.2022.05.014_b73 article-title: Targeted sentiment classification with attentional encoder network – ident: 10.1016/j.future.2022.05.014_b142 doi: 10.1145/3077257.3077268 – ident: 10.1016/j.future.2022.05.014_b62 doi: 10.1609/aaai.v34i09.7104 – volume: 37 start-page: 1562 issue: 7 year: 2018 ident: 10.1016/j.future.2022.05.014_b42 article-title: Interactive medical image segmentation using deep learning with image-specific fine tuning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2791721 – volume: 29 start-page: 503 year: 2020 ident: 10.1016/j.future.2022.05.014_b74 article-title: Investigating typed syntactic dependencies for targeted sentiment classification using graph attention neural network publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process. doi: 10.1109/TASLP.2020.3042009 – ident: 10.1016/j.future.2022.05.014_b134 doi: 10.1007/978-3-030-49904-4_2 – volume: 22 start-page: 955 issue: 5 year: 2019 ident: 10.1016/j.future.2022.05.014_b57 article-title: An interactive visual analytics approach for network anomaly detection through smart labeling publication-title: J. Vis. doi: 10.1007/s12650-019-00580-7 – volume: 18 start-page: 3 issue: 1 year: 2017 ident: 10.1016/j.future.2022.05.014_b23 article-title: Challenges and opportunities: from big data to knowledge in AI 2.0 publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.1601883 – start-page: 4040 year: 2021 ident: 10.1016/j.future.2022.05.014_b68 article-title: Iterative bounding box annotation for object detection – year: 2019 ident: 10.1016/j.future.2022.05.014_b77 article-title: Model-based interactive semantic parsing: A unified formulation and a text-to-SQL case study – start-page: 239 year: 2020 ident: 10.1016/j.future.2022.05.014_b120 article-title: Towards transparent human-in-the-loop classification of fraudulent web shops – ident: 10.1016/j.future.2022.05.014_b63 – volume: 33 year: 2020 ident: 10.1016/j.future.2022.05.014_b37 article-title: Not all unlabeled data are equal: Learning to weight data in semi-supervised learning publication-title: NIPS – start-page: 2795 year: 2021 ident: 10.1016/j.future.2022.05.014_b36 article-title: Boosting unconstrained face recognition with auxiliary unlabeled data – start-page: 221 year: 2017 ident: 10.1016/j.future.2022.05.014_b114 article-title: One-shot video object segmentation – start-page: 5642 year: 2021 ident: 10.1016/j.future.2022.05.014_b67 article-title: Generating manga from illustrations via mimicking manga creation workflow – year: 2019 ident: 10.1016/j.future.2022.05.014_b24 article-title: Why didn’t you listen to me? Comparing user control of human-in-the-loop topic models – start-page: 33 year: 2018 ident: 10.1016/j.future.2022.05.014_b126 article-title: Communication-human information processing (C-HIP) model – start-page: 9446 year: 2018 ident: 10.1016/j.future.2022.05.014_b99 article-title: Deep image prior – ident: 10.1016/j.future.2022.05.014_b50 doi: 10.1007/978-3-030-21348-0_9 – ident: 10.1016/j.future.2022.05.014_b117 – volume: 356 start-page: 1280 issue: 6344 year: 2017 ident: 10.1016/j.future.2022.05.014_b148 article-title: Human-in-the-loop optimization of exoskeleton assistance during walking publication-title: Science doi: 10.1126/science.aal5054 – volume: 448 start-page: 179 year: 2021 ident: 10.1016/j.future.2022.05.014_b15 article-title: A survey: Deep learning for hyperspectral image classification with few labeled samples publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.035 – start-page: 37 year: 2020 ident: 10.1016/j.future.2022.05.014_b30 article-title: Human-in-the-loop techniques in machine learning publication-title: Data Eng. – volume: 10 start-page: 957 issue: 3 year: 2020 ident: 10.1016/j.future.2022.05.014_b84 article-title: Targeted sentiment classification based on attentional encoding and graph convolutional networks publication-title: Appl. Sci. doi: 10.3390/app10030957 – ident: 10.1016/j.future.2022.05.014_b149 – volume: 11 start-page: 255 issue: 2 year: 2020 ident: 10.1016/j.future.2022.05.014_b69 article-title: Information extraction meets the semantic web: A survey publication-title: Semant. Web doi: 10.3233/SW-180333 – volume: 8 start-page: 1 issue: 2 year: 2018 ident: 10.1016/j.future.2022.05.014_b157 article-title: A review of user interface design for interactive machine learning publication-title: ACM Trans. Interact. Intell. Syst. (TiiS) doi: 10.1145/3185517 – start-page: 6982 year: 2020 ident: 10.1016/j.future.2022.05.014_b59 article-title: From zero to hero: Human-in-the-loop entity linking in low resource domains – start-page: 3667 year: 2019 ident: 10.1016/j.future.2022.05.014_b80 article-title: Learning from dialogue after deployment: Feed yourself, chatbot! – volume: 11 start-page: 1 issue: 4 year: 2020 ident: 10.1016/j.future.2022.05.014_b113 article-title: Video object segmentation and tracking: A survey publication-title: ACM Trans. Intell. Syst. Technol. (TIST) doi: 10.1145/3391743 – start-page: 6122 year: 2019 ident: 10.1016/j.future.2022.05.014_b55 article-title: Deep reinforcement active learning for human-in-the-loop person re-identification – volume: 2 start-page: II year: 2003 ident: 10.1016/j.future.2022.05.014_b96 article-title: Object removal by exemplar-based inpainting – start-page: 1 year: 2016 ident: 10.1016/j.future.2022.05.014_b143 article-title: Dialogue learning with human-in-the-loop publication-title: ICLR – year: 2019 ident: 10.1016/j.future.2022.05.014_b78 – start-page: 1 year: 2021 ident: 10.1016/j.future.2022.05.014_b66 article-title: Towards a weakly supervised framework for 3d point cloud object detection and annotation publication-title: IEEE Trans. PAMI doi: 10.1109/TPAMI.2021.3063611 – volume: 66 start-page: 213 year: 2021 ident: 10.1016/j.future.2022.05.014_b9 article-title: Joint auto-weighted graph fusion and scalable semi-supervised learning publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.09.007 – start-page: 487 year: 2014 ident: 10.1016/j.future.2022.05.014_b3 article-title: Learning deep features for scene recognition using places database – ident: 10.1016/j.future.2022.05.014_b25 doi: 10.1145/3209889.3209897 – year: 2017 ident: 10.1016/j.future.2022.05.014_b10 article-title: Attention is all you need – start-page: 1 year: 2020 ident: 10.1016/j.future.2022.05.014_b60 article-title: Human-in-the-loop AI for analysis of free response facial expression label sets – ident: 10.1016/j.future.2022.05.014_b121 doi: 10.1145/508171.508178 – ident: 10.1016/j.future.2022.05.014_b76 doi: 10.1609/aaai.v33i01.33012547 – start-page: 470 year: 2019 ident: 10.1016/j.future.2022.05.014_b31 article-title: Review of human-in-the-loop cyber-physical systems (HiLCPS): The current status from human perspective publication-title: Comput. Civ. Eng. 2019: Data, Sens. Anal. doi: 10.1061/9780784482438.060 – volume: 403 start-page: 13 year: 2020 ident: 10.1016/j.future.2022.05.014_b89 article-title: Fast video crowd counting with a temporal aware network publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.071 – volume: 14 start-page: 24 issue: 2 year: 1997 ident: 10.1016/j.future.2022.05.014_b95 article-title: Digital image restoration publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.581363 – volume: 105 start-page: 28 year: 2017 ident: 10.1016/j.future.2022.05.014_b155 article-title: The human touch: How non-expert users perceive, interpret, and fix topic models publication-title: Int. J. Hum.-Comput. Stud. doi: 10.1016/j.ijhcs.2017.03.007 – volume: 66 start-page: 54 year: 2021 ident: 10.1016/j.future.2022.05.014_b6 article-title: Heterogeneous data fusion for predicting mild cognitive impairment conversion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.08.023 – ident: 10.1016/j.future.2022.05.014_b83 – start-page: 2048 year: 2019 ident: 10.1016/j.future.2022.05.014_b129 article-title: Give me a hint! navigating image databases using human-in-the-loop feedback – ident: 10.1016/j.future.2022.05.014_b54 doi: 10.1145/3328519.3329132 – start-page: 1 year: 2020 ident: 10.1016/j.future.2022.05.014_b146 article-title: Optimal energy operation strategy for we-energy of energy internet based on hybrid reinforcement learning with human-in-the-loop publication-title: IEEE Trans. Syst. Man, Cybern.: Syst. – ident: 10.1016/j.future.2022.05.014_b18 doi: 10.1007/978-3-030-58542-6_20 – volume: 9 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.future.2022.05.014_b40 article-title: Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning? publication-title: Health Inf. Sci. Syst. doi: 10.1007/s13755-020-00135-3 – start-page: 1645 year: 2018 ident: 10.1016/j.future.2022.05.014_b49 article-title: Data integration and machine learning: A natural synergy – start-page: 274 year: 2020 ident: 10.1016/j.future.2022.05.014_b131 article-title: Human-in-the-loop automatic program repair – volume: 114 start-page: 1741 issue: 5 year: 2021 ident: 10.1016/j.future.2022.05.014_b153 article-title: Smart technology–driven aspects for human-in-the-loop smart manufacturing publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-06977-9 – volume: 7 start-page: 387 year: 2019 ident: 10.1016/j.future.2022.05.014_b56 article-title: Trick me if you can: Human-in-the-loop generation of adversarial examples for question answering publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00279 – year: 2017 ident: 10.1016/j.future.2022.05.014_b108 – volume: 297 year: 2021 ident: 10.1016/j.future.2022.05.014_b141 article-title: A survey of inverse reinforcement learning: Challenges, methods and progress publication-title: Artificial Intelligence doi: 10.1016/j.artint.2021.103500 – start-page: 2337 year: 2016 ident: 10.1016/j.future.2022.05.014_b43 article-title: Human-in-the-loop parsing – volume: 108 start-page: 148 issue: 1–2 year: 2014 ident: 10.1016/j.future.2022.05.014_b152 article-title: Collaborative personalization of image enhancement publication-title: IJCV doi: 10.1007/s11263-013-0675-3 – volume: 32 start-page: 3287 issue: 7 year: 2021 ident: 10.1016/j.future.2022.05.014_b145 article-title: Human-in-the-loop low-shot learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3011559 – start-page: 920 year: 2017 ident: 10.1016/j.future.2022.05.014_b16 article-title: Integrating prior knowledge into deep learning – ident: 10.1016/j.future.2022.05.014_b52 doi: 10.1007/978-3-030-34770-3_10 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.future.2022.05.014_b58 article-title: Enhancing deep learning with visual interactions publication-title: ACM Trans. Interact. Intell. Syst. (TiiS) doi: 10.1145/3150977 – ident: 10.1016/j.future.2022.05.014_b87 doi: 10.1145/2939672.2939778 – year: 2015 ident: 10.1016/j.future.2022.05.014_b33 – start-page: 186 year: 2019 ident: 10.1016/j.future.2022.05.014_b19 article-title: Deep reinforcement learning for time optimal velocity control using prior knowledge – volume: 17 start-page: 1611 issue: 3 year: 2020 ident: 10.1016/j.future.2022.05.014_b38 article-title: Defect image sample generation with GAN for improving defect recognition publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 8 start-page: 1 issue: 2 year: 2018 ident: 10.1016/j.future.2022.05.014_b47 article-title: A human-in-the-loop system for sound event detection and annotation publication-title: ACM Trans. Interact. Intell. Syst. (TiiS) doi: 10.1145/3214366 – start-page: 243 year: 2020 ident: 10.1016/j.future.2022.05.014_b98 article-title: Draw with me: Human-in-the-loop for image restoration – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.future.2022.05.014_b71 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 5247 year: 2019 ident: 10.1016/j.future.2022.05.014_b109 article-title: Fast user-guided video object segmentation by interaction-and-propagation networks – start-page: 373 year: 2016 ident: 10.1016/j.future.2022.05.014_b115 article-title: Deep interactive object selection – start-page: 3645 year: 2017 ident: 10.1016/j.future.2022.05.014_b94 article-title: Simple online and realtime tracking with a deep association metric – year: 2019 ident: 10.1016/j.future.2022.05.014_b91 – volume: 43 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.future.2022.05.014_b119 article-title: Human-in-the-loop artificial intelligence for fighting online misinformation: Challenges and opportunities publication-title: Bull. Tech. Committee Data Eng. – start-page: 1 year: 2018 ident: 10.1016/j.future.2022.05.014_b127 – volume: 43 start-page: 2388 issue: 7 year: 2021 ident: 10.1016/j.future.2022.05.014_b4 article-title: LayoutGAN: Synthesizing graphic layouts with vector-wireframe adversarial networks publication-title: IEEE Trans. PAMI doi: 10.1109/TPAMI.2019.2963663 – volume: 115 start-page: 185 issue: 2 year: 2015 ident: 10.1016/j.future.2022.05.014_b123 article-title: Whittlesearch: Interactive image search with relative attribute feedback publication-title: IJCV doi: 10.1007/s11263-015-0814-0 – volume: 54 start-page: 95 issue: 1 year: 2021 ident: 10.1016/j.future.2022.05.014_b32 article-title: Deep learning techniques for rating prediction: a survey of the state-of-the-art publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09892-9 – start-page: 1 year: 2020 ident: 10.1016/j.future.2022.05.014_b85 article-title: Multi-head self-attention based gated graph convolutional networks for aspect-based sentiment classification publication-title: Multimedia Tools Appl. – volume: 35 start-page: 249 issue: 2 year: 2013 ident: 10.1016/j.future.2022.05.014_b147 article-title: A survey on instance selection for active learning publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-012-0507-8 – start-page: 822 year: 2019 ident: 10.1016/j.future.2022.05.014_b2 article-title: Why do larger models generalize better? A theoretical perspective via the XOR problem – start-page: 37 year: 2021 ident: 10.1016/j.future.2022.05.014_b150 article-title: Offline reinforcement learning from human feedback in real-world sequence-to-sequence tasks – volume: 8 start-page: 662 year: 2020 ident: 10.1016/j.future.2022.05.014_b64 article-title: Beat the AI: Investigating adversarial human annotation for reading comprehension publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00338 – year: 2021 ident: 10.1016/j.future.2022.05.014_b156 – volume: 97 start-page: 52 year: 2019 ident: 10.1016/j.future.2022.05.014_b28 article-title: A survey of automation-enabled human-in-the-loop systems for infrastructure visual inspection publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.10.019 – start-page: 170 year: 2021 ident: 10.1016/j.future.2022.05.014_b81 article-title: When and why does a model fail? A human-in-the-loop error detection framework for sentiment analysis publication-title: NAACL-HLT 2021 – start-page: 1 year: 2020 ident: 10.1016/j.future.2022.05.014_b8 article-title: A short survey of pre-trained language models for conversational AI-A new age in NLP – start-page: 89 year: 2005 ident: 10.1016/j.future.2022.05.014_b112 article-title: Learning to rank using gradient descent – start-page: 661 year: 2021 ident: 10.1016/j.future.2022.05.014_b104 article-title: Multimodal self-supervised learning for medical image analysis – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.future.2022.05.014_b102 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. PAMI doi: 10.1109/TPAMI.2016.2644615 – ident: 10.1016/j.future.2022.05.014_b138 doi: 10.1145/3387939.3391592 – volume: 71 start-page: 28 year: 2021 ident: 10.1016/j.future.2022.05.014_b140 article-title: Towards multi-modal causability with graph neural networks enabling information fusion for explainable AI publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.01.008 – ident: 10.1016/j.future.2022.05.014_b124 doi: 10.1609/aaai.v30i1.9833 – start-page: 1226 year: 2020 ident: 10.1016/j.future.2022.05.014_b93 article-title: Efficient human-in-the-loop object detection using bi-directional deep SORT and annotation-free segment identification – start-page: 85 year: 2018 ident: 10.1016/j.future.2022.05.014_b97 article-title: Image inpainting for irregular holes using partial convolutions – year: 2021 ident: 10.1016/j.future.2022.05.014_b39 article-title: Transformers in vision: A survey publication-title: ACM Comput. Surv. – start-page: 7870 year: 2020 ident: 10.1016/j.future.2022.05.014_b41 article-title: Recall and learn: Fine-tuning deep pretrained language models with less forgetting – volume: 239 start-page: 1471 year: 2019 ident: 10.1016/j.future.2022.05.014_b27 article-title: Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.070 – start-page: 3242 year: 2012 ident: 10.1016/j.future.2022.05.014_b92 article-title: Interactive object detection |
SSID | ssj0001731 |
Score | 2.7195432 |
SecondaryResourceType | review_article |
Snippet | Machine learning has become the state-of-the-art technique for many tasks including computer vision, natural language processing, speech processing tasks, etc.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 364 |
SubjectTerms | Computer vision Data processing Deep learning Human-in-the-loop Machine learning Natural language processing |
Title | A survey of human-in-the-loop for machine learning |
URI | https://dx.doi.org/10.1016/j.future.2022.05.014 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvXjxLdZHycFr7D6SZvdYiqUq9qKF3kKeUqnbUlvBi7_dZDfrA0TB4y4zsHybnXzDfvkG4DyLhdBSK2ytdQ2KSDIsqNVYSZsTEXvK7P_o3o66wzG5ntBJA_r1WRgvqwy1v6rpZbUOdzoBzc5iOu3ceQE9S_NJ4mVBLPd9OyHMr_KLt0-ZR8zCTEJXEHx0fXyu1HhVvh2uS0ySyr-T_Lw9fdlyBjuwFbgi6lWPswsNU-zBdj2HAYXPch-SHnpeL1_MK5pbVA7dw9MCO2aHZ_P5Ajlaip5KzaRBYUjEwwGMB5f3_SEOsxCwcqR-hWOrRddxL6lTmiqSKGF1ZAh1hMWIVBmSWSaymEqjZWQiaSS1XeuCRJ4Lb_J2CM1iXpgjQFopwjTNUkNSIhSRuWAqYloSb-0j8xakNQRcBaNwP69ixmtF2COvgOMeOB5R7oBrAf7IWlRGGX_Esxpd_u2Fc1fLf808_nfmCWz6q0qLdwrN1XJtzhynWMl2uWjasNG7uhmO3gEmWM3P |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA1je9AX7-K85sHXsF6SpX0cw7G5y4sb7C3kKpPZjrkJ_nuTNh0KouBrmw_KaXpyQk_OB8B9EnKuhJLIGGM3KDxKECdGISlMinnoJLP7ozuetPsz_Dgn8xroVmdhnK3Sc3_J6QVb-ystj2ZrtVi0npyBnsbpPHK2IJrafXvDpVOROmh0BsP-ZEfIIfVtCS0nuILqBF1h8yqjO-xGMYrKCE_88wr1ZdXpHYEDLxdhp3yiY1DT2Qk4rFoxQP9lnoKoA9-263f9AXMDi757aJEhK-7QMs9X0CpT-FrYJjX0fSKez8Cs9zDt9pFvh4Ck1fUbFBrF21Z-CRWTWOJIcqMCjYnVLJrHUuPEUJ6ERGglAh0ILYhpGzuIpyl3OW_noJ7lmb4AUEmJqSJJrHGMucQi5VQGVAns0n1E2gRxBQGTPivctaxYssoU9sJK4JgDjgWEWeCaAO2qVmVWxh_jaYUu-_bOmaXzXysv_115B_b60_GIjQaT4RXYd3dKa941qG_WW31jJcZG3Pop9AlD-9CA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+human-in-the-loop+for+machine+learning&rft.jtitle=Future+generation+computer+systems&rft.au=Wu%2C+Xingjiao&rft.au=Xiao%2C+Luwei&rft.au=Sun%2C+Yixuan&rft.au=Zhang%2C+Junhang&rft.date=2022-10-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=135&rft.spage=364&rft.epage=381&rft_id=info:doi/10.1016%2Fj.future.2022.05.014&rft.externalDocID=S0167739X22001790 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |