A survey of human-in-the-loop for machine learning

Machine learning has become the state-of-the-art technique for many tasks including computer vision, natural language processing, speech processing tasks, etc. However, the unique challenges posed by machine learning suggest that incorporating user knowledge into the system can be beneficial. The pu...

Full description

Saved in:
Bibliographic Details
Published inFuture generation computer systems Vol. 135; pp. 364 - 381
Main Authors Wu, Xingjiao, Xiao, Luwei, Sun, Yixuan, Zhang, Junhang, Ma, Tianlong, He, Liang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2022
Subjects
Online AccessGet full text
ISSN0167-739X
1872-7115
DOI10.1016/j.future.2022.05.014

Cover

Loading…
Abstract Machine learning has become the state-of-the-art technique for many tasks including computer vision, natural language processing, speech processing tasks, etc. However, the unique challenges posed by machine learning suggest that incorporating user knowledge into the system can be beneficial. The purpose of integrating human domain knowledge is also to promote the automation of machine learning. Human-in-the-loop is an area that we see as increasingly important in future research due to the knowledge learned by machine learning cannot win human domain knowledge. Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize the major approaches in the field; along with their technical strengths/weaknesses, we have a simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and to motivate interested readers to consider approaches for designing effective human-in-the-loop solutions. •Survey existing works on human-in-the-loop from the data perspective.•Summarize approaches in the HITL, along with their technical strengths/weaknesses.•Discussion of some open challenges and opportunities in the HITL.•Provide a high-level summarization for human-in-the-loop.•Motivates interested readers to consider approaches for designing effective HITL.
AbstractList Machine learning has become the state-of-the-art technique for many tasks including computer vision, natural language processing, speech processing tasks, etc. However, the unique challenges posed by machine learning suggest that incorporating user knowledge into the system can be beneficial. The purpose of integrating human domain knowledge is also to promote the automation of machine learning. Human-in-the-loop is an area that we see as increasingly important in future research due to the knowledge learned by machine learning cannot win human domain knowledge. Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize the major approaches in the field; along with their technical strengths/weaknesses, we have a simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and to motivate interested readers to consider approaches for designing effective human-in-the-loop solutions. •Survey existing works on human-in-the-loop from the data perspective.•Summarize approaches in the HITL, along with their technical strengths/weaknesses.•Discussion of some open challenges and opportunities in the HITL.•Provide a high-level summarization for human-in-the-loop.•Motivates interested readers to consider approaches for designing effective HITL.
Author Sun, Yixuan
Wu, Xingjiao
Zhang, Junhang
Ma, Tianlong
Xiao, Luwei
He, Liang
Author_xml – sequence: 1
  givenname: Xingjiao
  orcidid: 0000-0001-9146-051X
  surname: Wu
  fullname: Wu, Xingjiao
  organization: Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
– sequence: 2
  givenname: Luwei
  surname: Xiao
  fullname: Xiao, Luwei
  organization: School of Computer Science and Technology, East China Normal University, Shanghai, China
– sequence: 3
  givenname: Yixuan
  surname: Sun
  fullname: Sun, Yixuan
  organization: Fudan University, Shanghai, China
– sequence: 4
  givenname: Junhang
  surname: Zhang
  fullname: Zhang, Junhang
  organization: School of Computer Science and Technology, East China Normal University, Shanghai, China
– sequence: 5
  givenname: Tianlong
  surname: Ma
  fullname: Ma, Tianlong
  organization: Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
– sequence: 6
  givenname: Liang
  surname: He
  fullname: He, Liang
  email: lhe@cs.ecnu.edu.cn
  organization: Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
BookMark eNqFj09LwzAYh4NMcJt-Aw_9AqlvkqbtPAhj-A8GXhS8hTR94zK6ZKTpYN_ejnnyoKff5fc88MzIxAePhNwyyBmw8m6b2yENEXMOnOcgc2DFBZmyuuK0YkxOyHS8VbQSi88rMuv7LQCwSrAp4cusH-IBj1mw2WbYaU-dp2mDtAthn9kQs502G-cx61BH7_zXNbm0uuvx5mfn5OPp8X31Qtdvz6-r5ZoaAWWizLa6LGXZtEIKU3CjbQtYSFkCamGwqG2layYbbBtAaLCRtrTjSS8WugYu5uT-7DUx9H1Eq4xLOrngU9SuUwzUqV5t1bleneoVSDXWj3DxC95Ht9Px-B_2cMZwDDs4jKo3Dr3B1kU0SbXB_S34BpIKeak
CitedBy_id crossref_primary_10_1007_s10462_024_10974_1
crossref_primary_10_1109_ACCESS_2024_3440647
crossref_primary_10_1109_THMS_2024_3467370
crossref_primary_10_1016_j_autcon_2023_105260
crossref_primary_10_1016_j_compcom_2024_102826
crossref_primary_10_1145_3657643
crossref_primary_10_1016_j_jpi_2023_100347
crossref_primary_10_1016_j_engappai_2023_106803
crossref_primary_10_1016_j_chbah_2025_100145
crossref_primary_10_1145_3649457
crossref_primary_10_1145_3676279
crossref_primary_10_1080_21681163_2022_2157747
crossref_primary_10_1007_s12369_023_01020_1
crossref_primary_10_1017_dce_2024_60
crossref_primary_10_3390_en17091992
crossref_primary_10_1109_ACCESS_2023_3267813
crossref_primary_10_3390_info16040252
crossref_primary_10_1016_j_ress_2024_110368
crossref_primary_10_18231_j_ijashnb_2024_020
crossref_primary_10_2196_40589
crossref_primary_10_1016_j_apmt_2024_102371
crossref_primary_10_1186_s12938_024_01238_8
crossref_primary_10_1007_s10489_024_05657_x
crossref_primary_10_1016_j_compind_2024_104187
crossref_primary_10_1109_ACCESS_2024_3365550
crossref_primary_10_3390_app14010463
crossref_primary_10_1080_10447318_2024_2413293
crossref_primary_10_1115_1_4063238
crossref_primary_10_1016_j_aei_2024_102887
crossref_primary_10_1080_0144929X_2022_2164214
crossref_primary_10_54699_andhd_1386667
crossref_primary_10_1038_s41597_024_03766_3
crossref_primary_10_1007_s11227_022_04420_8
crossref_primary_10_4236_ijis_2024_141001
crossref_primary_10_1038_s41388_023_02826_z
crossref_primary_10_1016_j_compbiomed_2023_107295
crossref_primary_10_1007_s42486_022_00115_4
crossref_primary_10_1016_j_eswa_2024_125378
crossref_primary_10_3390_math11133010
crossref_primary_10_1007_s00432_025_06134_9
crossref_primary_10_1016_j_foodcont_2024_111121
crossref_primary_10_1080_10630732_2024_2402676
crossref_primary_10_1093_llc_fqad018
crossref_primary_10_1109_ACCESS_2024_3447067
crossref_primary_10_1016_j_engappai_2024_107875
crossref_primary_10_1109_ACCESS_2024_3504735
crossref_primary_10_1109_TEVC_2023_3255246
crossref_primary_10_1007_s12599_025_00928_4
crossref_primary_10_1109_TPAMI_2024_3387317
crossref_primary_10_1007_s11257_023_09385_8
crossref_primary_10_24137_raeic_11_e_3
crossref_primary_10_1080_08839514_2024_2349410
crossref_primary_10_1016_j_jechem_2024_07_045
crossref_primary_10_1007_s10579_023_09680_1
crossref_primary_10_1109_ACCESS_2024_3361404
crossref_primary_10_1007_s11042_024_20414_5
crossref_primary_10_1007_s10559_023_00608_9
crossref_primary_10_3390_heritage7020038
crossref_primary_10_1016_j_inffus_2024_102223
crossref_primary_10_1007_s12369_025_01234_5
crossref_primary_10_1016_j_future_2023_09_029
crossref_primary_10_1016_j_isprsjprs_2024_02_020
crossref_primary_10_1016_j_eswa_2024_124839
crossref_primary_10_1016_j_csbj_2024_05_004
crossref_primary_10_1016_j_acha_2024_101719
crossref_primary_10_1016_j_scico_2025_103296
crossref_primary_10_1016_j_ipm_2023_103508
crossref_primary_10_1371_journal_pdig_0000521
crossref_primary_10_1016_j_eswa_2023_123131
crossref_primary_10_4018_IJSWIS_326120
crossref_primary_10_1088_2632_2153_ace417
crossref_primary_10_1093_scan_nsae014
crossref_primary_10_1177_02783649231207974
crossref_primary_10_1080_01691864_2024_2415093
crossref_primary_10_3390_computation12020024
crossref_primary_10_3390_e25121666
crossref_primary_10_1007_s11633_023_1456_2
crossref_primary_10_3390_math12172644
crossref_primary_10_1016_j_ccc_2023_03_004
crossref_primary_10_1016_j_procir_2023_09_088
crossref_primary_10_3389_frai_2024_1460065
crossref_primary_10_3390_info15110728
crossref_primary_10_1007_s10844_024_00885_6
crossref_primary_10_1016_j_compag_2024_109452
crossref_primary_10_1016_j_eswa_2024_124181
crossref_primary_10_1016_j_heliyon_2024_e32189
crossref_primary_10_1259_bjr_20230142
crossref_primary_10_1016_j_eswa_2023_121198
crossref_primary_10_1016_j_future_2022_12_018
crossref_primary_10_1007_s10462_025_11112_1
crossref_primary_10_1016_j_knosys_2023_110723
crossref_primary_10_1016_j_rcim_2023_102673
crossref_primary_10_1007_s10845_023_02270_6
crossref_primary_10_1016_j_commtr_2023_100095
crossref_primary_10_1016_j_joi_2024_101569
crossref_primary_10_1109_LRA_2023_3268598
crossref_primary_10_3390_e24040531
crossref_primary_10_1080_23812346_2024_2434983
crossref_primary_10_1142_S0218126625500549
crossref_primary_10_1007_s10489_024_05817_z
crossref_primary_10_1109_ACCESS_2024_3383444
crossref_primary_10_1002_aisy_202400986
crossref_primary_10_1007_s11042_024_20297_6
crossref_primary_10_1145_3664522
crossref_primary_10_1108_IJPCC_07_2024_0224
crossref_primary_10_1073_pnas_2309510120
crossref_primary_10_2478_jdis_2024_0019
crossref_primary_10_3390_mti5120073
crossref_primary_10_1007_s43681_024_00489_4
crossref_primary_10_1016_j_envsoft_2025_106338
crossref_primary_10_3724_2096_7004_di_2024_0051
crossref_primary_10_1016_j_neucom_2024_127798
crossref_primary_10_1145_3696461
crossref_primary_10_1007_s42001_024_00307_1
crossref_primary_10_1007_s10270_024_01229_2
crossref_primary_10_3390_app131910667
crossref_primary_10_2196_57114
crossref_primary_10_3390_app15031555
crossref_primary_10_1016_j_earscirev_2023_104438
crossref_primary_10_1515_jpem_2023_0554
crossref_primary_10_1007_s11442_024_2202_6
crossref_primary_10_1016_j_ejrad_2023_110934
crossref_primary_10_1016_j_procs_2024_02_119
crossref_primary_10_1007_s12293_024_00415_5
crossref_primary_10_1007_s44267_024_00052_z
crossref_primary_10_1162_tacl_a_00731
crossref_primary_10_3390_ai5020041
crossref_primary_10_1109_TASLP_2023_3293046
crossref_primary_10_3389_fonc_2022_1061024
crossref_primary_10_1080_2573234X_2024_2436578
crossref_primary_10_1007_s11135_025_02108_8
crossref_primary_10_1016_j_iswa_2024_200448
crossref_primary_10_1016_j_future_2025_107816
crossref_primary_10_3390_sym16121608
crossref_primary_10_1186_s13321_022_00667_8
crossref_primary_10_32628_CSEIT2390682
crossref_primary_10_1007_s43681_024_00428_3
crossref_primary_10_1177_18747655241301199
crossref_primary_10_1002_pra2_1034
crossref_primary_10_1007_s00521_024_09510_7
crossref_primary_10_1016_j_datak_2024_102304
crossref_primary_10_1145_3564276
crossref_primary_10_1186_s41239_022_00372_4
crossref_primary_10_1086_730710
crossref_primary_10_1016_j_epidem_2024_100756
crossref_primary_10_1007_s12559_024_10311_2
crossref_primary_10_1016_j_agsy_2023_103607
crossref_primary_10_1061_JCCEE5_CPENG_5939
crossref_primary_10_1039_D3SC01303K
crossref_primary_10_3389_fcomp_2024_1379788
crossref_primary_10_1007_s10660_024_09876_9
crossref_primary_10_1145_3603710
crossref_primary_10_1016_j_ins_2024_121035
crossref_primary_10_1109_ACCESS_2024_3401547
crossref_primary_10_1109_ACCESS_2024_3521596
crossref_primary_10_1093_jamia_ocae101
crossref_primary_10_1021_acs_chemmater_4c02726
crossref_primary_10_3390_fi15100332
crossref_primary_10_1016_j_ins_2023_119117
crossref_primary_10_1109_TNNLS_2023_3329368
crossref_primary_10_1016_j_ijhcs_2024_103412
crossref_primary_10_3390_software3040024
crossref_primary_10_3390_en17030638
crossref_primary_10_3390_computers13100252
crossref_primary_10_1016_j_compcom_2025_102915
crossref_primary_10_1162_dint_a_00235
crossref_primary_10_3390_math10193618
crossref_primary_10_1093_jmicro_dfae028
crossref_primary_10_1016_j_cej_2023_146280
crossref_primary_10_1109_ACCESS_2024_3398192
crossref_primary_10_1088_1674_1137_ad50ab
crossref_primary_10_1007_s10489_023_05223_x
crossref_primary_10_3233_IA_240033
crossref_primary_10_1016_j_cose_2024_103940
crossref_primary_10_3390_technologies11040107
crossref_primary_10_1016_j_ress_2024_110682
crossref_primary_10_1016_j_cobeha_2025_101482
crossref_primary_10_3390_s24051509
crossref_primary_10_1109_ACCESS_2025_3536095
crossref_primary_10_1109_ACCESS_2025_3542417
crossref_primary_10_1016_j_nec_2024_08_008
crossref_primary_10_1002_med4_70
crossref_primary_10_1007_s12652_023_04750_2
crossref_primary_10_1140_epjds_s13688_024_00500_2
crossref_primary_10_2196_43014
crossref_primary_10_1145_3705725
crossref_primary_10_1017_mem_2024_2
crossref_primary_10_1016_j_rse_2023_113932
crossref_primary_10_3390_systems11110548
crossref_primary_10_1177_14707853241251954
crossref_primary_10_1016_j_rser_2023_113443
crossref_primary_10_3390_su14137938
crossref_primary_10_1016_j_chbah_2024_100053
crossref_primary_10_1016_j_artint_2023_104059
crossref_primary_10_1007_s43503_024_00025_7
crossref_primary_10_1088_1361_6560_ad997e
crossref_primary_10_1016_j_techfore_2023_123076
crossref_primary_10_2139_ssrn_4504855
crossref_primary_10_1016_j_oceaneng_2024_119406
crossref_primary_10_1016_j_dim_2024_100078
crossref_primary_10_1016_j_engappai_2023_107152
crossref_primary_10_1016_j_eswa_2023_120030
crossref_primary_10_1016_j_ipm_2022_103106
crossref_primary_10_1016_j_procs_2024_04_043
crossref_primary_10_1177_20552076231186520
crossref_primary_10_1145_3637210
crossref_primary_10_1016_j_eswa_2025_126703
crossref_primary_10_1038_s41597_024_03218_y
crossref_primary_10_1109_TVCG_2024_3456325
crossref_primary_10_3390_technologies12120259
crossref_primary_10_1007_s00170_024_13639_z
crossref_primary_10_1007_s44206_024_00158_3
crossref_primary_10_1016_j_atech_2024_100634
crossref_primary_10_1007_s43621_024_00641_4
crossref_primary_10_1145_3653708
crossref_primary_10_1016_j_iot_2023_101048
crossref_primary_10_1016_j_daach_2024_e00343
crossref_primary_10_1080_21670811_2024_2396068
crossref_primary_10_3390_bioengineering11100984
crossref_primary_10_1109_TCSS_2024_3404236
crossref_primary_10_22201_cuaieed_20074751e_2025_33_90977
crossref_primary_10_1007_s11301_024_00455_8
crossref_primary_10_1021_acs_jpclett_4c01111
crossref_primary_10_1080_21642583_2025_2467083
crossref_primary_10_2196_48142
crossref_primary_10_3389_frai_2024_1455331
crossref_primary_10_1007_s11276_025_03903_9
crossref_primary_10_3390_educsci13100987
crossref_primary_10_3390_mti9030026
crossref_primary_10_3390_buildings13010163
crossref_primary_10_3390_jcm12103576
crossref_primary_10_1016_j_ipm_2024_103964
Cites_doi 10.1609/hcomp.v6i1.13337
10.1016/j.knosys.2021.106916
10.1007/s10489-018-1361-5
10.1016/j.apergo.2020.103267
10.1561/1100000073
10.1016/j.media.2021.102062
10.1609/aaai.v35i7.16734
10.1145/2964284.2984059
10.18653/v1/2021.dash-1.10
10.1109/TETCI.2021.3139998
10.1016/j.ins.2021.07.020
10.1145/3009906
10.1145/2939502.2939505
10.1145/3209900.3209913
10.1109/TPAMI.2021.3059968
10.1145/2491411.2491450
10.1111/mice.12495
10.1093/bioinformatics/btz420
10.1145/3133956.3134105
10.24032/ijeacs/0207/05
10.24963/ijcai.2019/884
10.14778/3137765.3137833
10.1016/j.websem.2019.100546
10.1145/3077257.3077268
10.1609/aaai.v34i09.7104
10.1109/TMI.2018.2791721
10.1109/TASLP.2020.3042009
10.1007/978-3-030-49904-4_2
10.1007/s12650-019-00580-7
10.1631/FITEE.1601883
10.1007/978-3-030-21348-0_9
10.1126/science.aal5054
10.1016/j.neucom.2021.03.035
10.3390/app10030957
10.3233/SW-180333
10.1145/3185517
10.1145/3391743
10.1109/TPAMI.2021.3063611
10.1016/j.inffus.2020.09.007
10.1145/3209889.3209897
10.1145/508171.508178
10.1609/aaai.v33i01.33012547
10.1061/9780784482438.060
10.1016/j.neucom.2020.04.071
10.1109/79.581363
10.1016/j.ijhcs.2017.03.007
10.1016/j.inffus.2020.08.023
10.1145/3328519.3329132
10.1007/978-3-030-58542-6_20
10.1007/s13755-020-00135-3
10.1007/s00170-021-06977-9
10.1162/tacl_a_00279
10.1016/j.artint.2021.103500
10.1007/s11263-013-0675-3
10.1109/TNNLS.2020.3011559
10.1007/978-3-030-34770-3_10
10.1145/3150977
10.1145/2939672.2939778
10.1145/3214366
10.1038/nature14539
10.1109/TPAMI.2019.2963663
10.1007/s11263-015-0814-0
10.1007/s10462-020-09892-9
10.1007/s10115-012-0507-8
10.1162/tacl_a_00338
10.1016/j.autcon.2018.10.019
10.1109/TPAMI.2016.2644615
10.1145/3387939.3391592
10.1016/j.inffus.2021.01.008
10.1609/aaai.v30i1.9833
10.1016/j.apenergy.2019.01.070
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2022.05.014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 381
ExternalDocumentID 10_1016_j_future_2022_05_014
S0167739X22001790
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-1fda6656bd353c42cafd0e45560ea3ce48f7a815bedb0e0beb5f6fafda99a8023
IEDL.DBID .~1
ISSN 0167-739X
IngestDate Thu Apr 24 23:03:43 EDT 2025
Tue Jul 01 01:42:50 EDT 2025
Fri Feb 23 02:39:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Computer vision
Data processing
Natural language processing
Machine learning
Human-in-the-loop
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-1fda6656bd353c42cafd0e45560ea3ce48f7a815bedb0e0beb5f6fafda99a8023
ORCID 0000-0001-9146-051X
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_future_2022_05_014
crossref_primary_10_1016_j_future_2022_05_014
elsevier_sciencedirect_doi_10_1016_j_future_2022_05_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Siméoni, Budnik, Avrithis, Gravier (b34) 2021
Wojke, Bewley, Paulus (b94) 2017
L. Rosenberg, Artificial Swarm Intelligence, a Human-in-the-loop approach to AI, in: The AAAI Conference on Artificial Intelligence, 30, (1) 2016.
Y. Shoshitaishvili, M. Weissbacher, L. Dresel, C. Salls, R. Wang, C. Kruegel, G. Vigna, Rise of the hacrs: Augmenting autonomous cyber reasoning systems with human assistance, in: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017, pp. 347–362.
Ma (b127) 2018
Zou, Shi, Guo, Ye (b91) 2019
Weber, Hußmann, Han, Matthes, Liu (b98) 2020
Bai, Liu, Zhang (b74) 2020; 29
Xiao, Hu, Chen, Xue, Chen, Gu, Tang (b85) 2020
Zhuang, Wu, Chen, Pan (b23) 2017; 18
Butler, Oster, Togelius (b60) 2020
Girshick (b90) 2015
Zaib, Sheng, Emma Zhang (b8) 2020
Minaee, Boykov, Porikli, Plaza, Kehtarnavaz, Terzopoulos (b101) 2021
L.F. Cranor, A framework for reasoning about the human in the loop, in: Proceedings of the 1st Conference on Usability, Psychology, and Security, 2008, pp. 1–15.
Zhou, Lapedriza, Xiao, Torralba, Oliva (b3) 2014
Chopra, Auli, Rush (b82) 2016
Böhme, Geethal, Pham (b131) 2020
Wang, Li, Zuluaga, Pratt, Patel, Aertsen, Doel, David, Deprest, Ourselin (b42) 2018; 37
Wogalter (b126) 2018
Ziegler, Stiennon, Wu, Brown, Radford, Amodei, Christiano, Irving (b78) 2019
Klie, de Castilho, Gurevych (b59) 2020
Salam, Koone, Thirumuruganathan, Das, Basu Roy (b128) 2019
Oh, Lee, Xu, Kim (b109) 2019
Chen, Hou, Cui, Che, Liu, Yu (b41) 2020
Qiu, Sun, Xu, Shao, Dai, Huang (b7) 2020
Xiao, Hu, Chen, Xue, Gu, Chen, Zhang (b84) 2020; 10
Jung, Jazizadeh (b27) 2019; 239
Jwo, Lin, Lee (b153) 2021; 114
Metzner, Utsch, Walter, Hofstetter, Ramer, Blank, Franke (b135) 2020
Shi, Jain (b36) 2021
L. Berti-Equille, Reinforcement learning for data preparation with active reward learning, in: International Conference on Internet Science, 2019, pp. 121–132.
Banham, Katsaggelos (b95) 1997; 14
K. Qian, P.C. Raman, Y. Li, L. Popa, Partner: Human-in-the-loop entity name understanding with deep learning, in: The AAAI Conference on Artificial Intelligence, 34, (09) 2020, pp. 13634–13635.
Li (b46) 2017; 10
A.L. Gentile, D. Gruhl, P. Ristoski, S. Welch, Explore and exploit. Dictionary expansion with human-in-the-loop, in: European Semantic Web Conference, 2019, pp. 131–145.
Song, Wang, Jiang, Liu, Rao (b73) 2019
Liu, Wang, Gong, Lu, Tao (b55) 2019
Murata, Dobashi (b106) 2019
Jolfaei, Usman, Roveri, Sheng, Palaniswami, Kant (b159) 2022; 6
K. Muthuraman, F. Reiss, H. Xu, B. Cutler, Z. Eichenberger, Data Cleaning Tools for Token Classification Tasks, in: Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances, 2021, pp. 59–61.
He, Michael, Lewis, Zettlemoyer (b43) 2016
Kreutzer, Riezler, Lawrence (b150) 2021
Yu, Seff, Zhang, Song, Funkhouser, Xiao (b33) 2015
Ulyanov, Vedaldi, Lempitsky (b99) 2018
Hartmann, Shiller, Azaria (b19) 2019
Chen, Leng, Labi (b17) 2020; 35
Renner (b132) 2020
M.T. Ribeiro, S. Singh, C. Guestrin, ” Why should i trust you?” Explaining the predictions of any classifier, in: Annual ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2016, pp. 1135–1144.
Khan, Naseer, Hayat, Zamir, Khan, Shah (b39) 2021
Arora, Doshi (b141) 2021; 297
Fu, Yan, Fan (b111) 2018
Shen, Zhu, Zhang, Wang, Chen, Xu, Shao (b6) 2021; 66
Wang, Zhang, Yao, Fu (b35) 2021
Wang, Yang, Ma, Xu, Zhong, Deng, Gao (b14) 2020
Liu, Guo, AI, Mahmud (b81) 2021
Stiennon, Ouyang, Wu, Ziegler, Lowe, Voss, Radford, Amodei, Christiano (b79) 2020; 33
Fu, Zhu, Li (b147) 2013; 35
Xu, Price, Cohen, Yang, Huang (b115) 2016
Marquand (b156) 2021
Taleb, Lippert, Klein, Nabi (b104) 2021
Odekerken, Bex (b120) 2020
Demartini, Mizzaro, Spina (b119) 2020; 43
A. Doan, A. Ardalan, J. Ballard, S. Das, Y. Govind, P. Konda, H. Li, S. Mudgal, E. Paulson, G.P. Suganthan, et al., Human-in-the-loop challenges for entity matching: A midterm report, in: Proceedings of the 2nd Workshop on Human-in-the-Loop Data Analytics, 2017, pp. 1–6.
Shilton (b158) 2018; 12
Zhang, Wang, Fan, Ji, Liu (b67) 2021
Criminisi, Perez, Toyama (b96) 2003; 2
Benard, Gygli (b108) 2017
Z.J. Wang, D. Choi, S. Xu, D. Yang, Putting Humans in the Natural Language Processing Loop: A Survey, in: Proceedings of the First Workshop on Bridging Human–Computer Interaction and Natural Language Processing, 2021, pp. 47–52.
Meng, Wang, Zhou, Shen, Jia, Van Gool (b66) 2021
Zhang, He, Dragut, Vucetic (b51) 2019
Karmakharm, Aletras, Bontcheva (b72) 2019
Burges, Shaked, Renshaw, Lazier, Deeds, Hamilton, Hullender (b112) 2005
Holzinger, Malle, Saranti, Pfeifer (b140) 2021; 71
Tehrani, Wang, Wang (b31) 2019
Yao, Gall, Leistner, Van Gool (b92) 2012
Singh, Mahmoud (b118) 2020
Settles (b154) 2011
Dong, Wang, Abbas (b1) 2021; 40
Davidson, Graham, Beck, Marler, Fischer (b133) 2021; 90
M. Fischer, K. Kobs, A. Hotho, NICER: Aesthetic Image Enhancement with Humans in the Loop, in: The Thirteenth International Conference on Advances in Computer-Human Interactions, 2020, pp. 357–362.
Agnisarman, Lopes, Madathil, Piratla, Gramopadhye (b28) 2019; 97
J.Z. Self, R.K. Vinayagam, J. Fry, C. North, Bridging the gap between user intention and model parameters for human-in-the-loop data analytics, in: Proceedings of the Workshop on Human-in-the-Loop Data Analytics, 2016, pp. 1–6.
Li, Miller, Chopra, Ranzato, Weston (b143) 2016
Holzinger, Plass, Kickmeier-Rust, Holzinger, Crişan, Pintea, Palade (b22) 2019; 49
Kumar, Smith-Renner, Findlater, Seppi, Boyd-Graber (b24) 2019
Diligenti, Roychowdhury, Gori (b16) 2017
Krokos, Cheng, Chang, Nebesh, Paul, Whitley, Varshney (b58) 2019; 9
N. Li, S. Adepu, E. Kang, D. Garlan, Explanations for human-on-the-loop: A probabilistic model checking approach, in: Proceedings of the IEEE/ACM 15th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, 2020, pp. 181–187.
Wu, Zheng, Ma, Ye, He (b88) 2021; 577
Niu, Li, Wang, Lin (b38) 2020; 17
A. Doan, Human-in-the-loop data analysis: a personal perspective, in: Proceedings of the Workshop on Human-in-the-Loop Data Analytics, 2018, pp. 1–6.
Adhikari, Huttunen (b68) 2021
Devlin, Chang, Lee, Toutanova (b11) 2019
Radford, Narasimhan, Salimans, Sutskever (b12) 2018
Wallace, Rodriguez, Feng, Yamada, Boyd-Graber (b56) 2019; 7
A. Machiry, R. Tahiliani, M. Naik, Dynodroid: An input generation system for android apps, in: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, 2013, pp. 224–234.
Martinez-Rodriguez, Hogan, Lopez-Arevalo (b69) 2020; 11
Zhao, Liu, Lin, Zhu, Han (b5) 2020; 33
Chai, Li (b30) 2020
Madono, Nakano, Kobayashi, Ogawa (b93) 2020
Zhang, Fiers, Witte, Jackson, Poggensee, Atkeson, Collins (b148) 2017; 356
S. Brostoff, M.A. Sasse, Safe and sound: a safety-critical approach to security, in: Proceedings of the 2001 Workshop on New Security Paradigms, 2001, pp. 41–50.
Zhou, Liu, Qiao, Xiang, Change Loy (b161) 2021
Ravanbakhsh, Tschernezki, Last, Klein, Batmanghelich, Tresp, Nabi (b105) 2020
Kim, Pardo (b47) 2018; 8
H. Ye, W. Shao, H. Wang, J. Ma, L. Wang, Y. Zheng, X. Xue, Face recognition via active annotation and learning, in: ACM International Conference on Multimedia, 2016, pp. 1058–1062.
Yao, Lin, Xia, Zhao, Zhou (b113) 2020; 11
Khan, Niu, Sandiwarno, Prince (b32) 2021; 54
Pham (b40) 2021; 9
Ristoski, Gentile, Alba, Gruhl, Welch (b61) 2020; 60
Yao, Su, Sun, Yih (b77) 2019
Polisetty Venkata Sai (b136) 2020
Shukla, Potnis, Dwivedy (b110) 2017; 2
Wiriyathammabhum, Summers-Stay, Fermüller, Aloimonos (b139) 2016; 49
Xu, Dainoff, Ge, Gao (b160) 2022
Budd, Robinson, Kainz (b26) 2021; 71
Amirpourazarian, Pinheiro, Fonseca, Ghanbari, Pereira (b144) 2021
Smith, Kumar, Boyd-Graber, Seppi, Findlater (b151) 2018
Z. Yao, X. Li, J. Gao, B. Sadler, H. Sun, Interactive semantic parsing for if-then recipes via hierarchical reinforcement learning, in: The AAAI Conference on Artificial Intelligence, 33, (01) 2019, pp. 2547–2554.
Hancock, Bordes, Mazare, Weston (b80) 2019
Wu, Xu, Zheng, Ye, Yang, He (b89) 2020; 403
Wang, Chen, Wang, Ma (b103) 2020
T.-N. Le, A. Sugimoto, S. Ono, H. Kawasaki, Toward interactive self-annotation for video object bounding box: Recurrent self-learning and hierarchical annotation based framework, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 3231–3240.
Zhang, Wang, Liu, Tao (b20) 2018; 18
Y. Lin, S.L. Pintea, J.C. van Gemert, Deep hough-transform line priors, in: ECCV, 2020, pp. 323–340.
D. Xin, L. Ma, J. Liu, S. Macke, S. Song, A. Parameswaran, Accelerating human-in-the-loop machine learning: Challenges and opportunities, in: Proceedings of the Second Workshop on Data Management for End-To-End Machine Learning, 2018, pp. 1–4.
Gurajada, Popa, Qian, Sen (b53) 2019
Benedikt, Joshi, Nolan, Henstra-Hill, Shaw, Hook (b29) 2020
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b10) 2017
Yang, Sun, Zhang, Liu (b146) 2020
Hudec, Mináriková, Mesiar, Saranti, Holzinger (b116) 2021; 220
Bartolo, Roberts, Welbl, Riedel, Stenetorp (b64) 2020; 8
Y. Tay, M. Dehghani, D. Bahri, D. Metzler
R. Zhang, F. Torabi, L. Guan, D.H. Ballard, P. Stone, Leveraging Human Guidance for Deep Reinforcement Learning Tasks, in: International Joint Conference on Artificial Intelligence (IJCAI), 2019.
H.O. Demirel, Digital Human-in-the-Loop Framework, in: International Conference on Human-Computer Interaction, 2020, pp. 18–32.
Ren, Yeh, Schwing (b37) 2020; 33
Zhu, Lu, Deng, Yang, Fogo, Huo (b137) 2020
Badrinarayanan, Kendall, Cipolla (b102) 2017; 39
Wrede, Hellander (b130) 2019; 35
Kovashka, Parikh, Grauman (b123) 2015; 115
Caelles, Maninis, Pont-Tuset, Leal-Taixé, Cremers, Van Gool (b114) 2017
Lee, Smith, Seppi, Elmqvist, Boyd-Graber, Findlater (b155) 2017; 105
Dudley, Kristensson (b157) 2018; 8
Liu, Reda, Shih, Wang, Tao, Catanzaro (b97) 2018
Y. Lou, M. Uddin, N. Brown, M. Cafarella, Knowledge graph programming with a human-in-the-loop: Preliminary results, in: Proceedings of the Workshop on Human-in-the-Loop Data Analytics, 2019, pp. 1–7.
Li, Yang, Hertzmann, Zhang, Xu (b4) 2021; 43
Zhuang, Li, Zhong, Feng (b45) 2017
B. Nushi,
Wang (10.1016/j.future.2022.05.014_b14) 2020
Oh (10.1016/j.future.2022.05.014_b109) 2019
Marquand (10.1016/j.future.2022.05.014_b156) 2021
Habermann (10.1016/j.future.2022.05.014_b13) 2020
Zhou (10.1016/j.future.2022.05.014_b161) 2021
Settles (10.1016/j.future.2022.05.014_b154) 2011
Karmakharm (10.1016/j.future.2022.05.014_b72) 2019
Chen (10.1016/j.future.2022.05.014_b17) 2020; 35
Li (10.1016/j.future.2022.05.014_b143) 2016
Weber (10.1016/j.future.2022.05.014_b98) 2020
Khan (10.1016/j.future.2022.05.014_b39) 2021
Wu (10.1016/j.future.2022.05.014_b89) 2020; 403
10.1016/j.future.2022.05.014_b107
Wogalter (10.1016/j.future.2022.05.014_b126) 2018
Girshick (10.1016/j.future.2022.05.014_b90) 2015
Kovashka (10.1016/j.future.2022.05.014_b123) 2015; 115
10.1016/j.future.2022.05.014_b121
10.1016/j.future.2022.05.014_b122
Ziegler (10.1016/j.future.2022.05.014_b78) 2019
Liu (10.1016/j.future.2022.05.014_b81) 2021
Radford (10.1016/j.future.2022.05.014_b12) 2018
Ren (10.1016/j.future.2022.05.014_b37) 2020; 33
Martinez-Rodriguez (10.1016/j.future.2022.05.014_b69) 2020; 11
Dong (10.1016/j.future.2022.05.014_b1) 2021; 40
Li (10.1016/j.future.2022.05.014_b4) 2021; 43
Meng (10.1016/j.future.2022.05.014_b66) 2021
Smith (10.1016/j.future.2022.05.014_b151) 2018
Vaswani (10.1016/j.future.2022.05.014_b10) 2017
Taleb (10.1016/j.future.2022.05.014_b104) 2021
He (10.1016/j.future.2022.05.014_b43) 2016
10.1016/j.future.2022.05.014_b117
Shilton (10.1016/j.future.2022.05.014_b158) 2018; 12
10.1016/j.future.2022.05.014_b48
Jung (10.1016/j.future.2022.05.014_b27) 2019; 239
10.1016/j.future.2022.05.014_b44
Holzinger (10.1016/j.future.2022.05.014_b140) 2021; 71
Wang (10.1016/j.future.2022.05.014_b42) 2018; 37
Zhang (10.1016/j.future.2022.05.014_b51) 2019
Plummer (10.1016/j.future.2022.05.014_b129) 2019
Zhang (10.1016/j.future.2022.05.014_b20) 2018; 18
Butler (10.1016/j.future.2022.05.014_b60) 2020
Madono (10.1016/j.future.2022.05.014_b93) 2020
Zhuang (10.1016/j.future.2022.05.014_b23) 2017; 18
Agnisarman (10.1016/j.future.2022.05.014_b28) 2019; 97
Ma (10.1016/j.future.2022.05.014_b127) 2018
Shi (10.1016/j.future.2022.05.014_b36) 2021
Siméoni (10.1016/j.future.2022.05.014_b34) 2021
10.1016/j.future.2022.05.014_b18
Shukla (10.1016/j.future.2022.05.014_b110) 2017; 2
Kapoor (10.1016/j.future.2022.05.014_b152) 2014; 108
Yao (10.1016/j.future.2022.05.014_b92) 2012
Fan (10.1016/j.future.2022.05.014_b57) 2019; 22
Bahrami (10.1016/j.future.2022.05.014_b9) 2021; 66
Song (10.1016/j.future.2022.05.014_b73) 2019
Niu (10.1016/j.future.2022.05.014_b38) 2020; 17
Dong (10.1016/j.future.2022.05.014_b49) 2018
Ulyanov (10.1016/j.future.2022.05.014_b99) 2018
Holzinger (10.1016/j.future.2022.05.014_b22) 2019; 49
Kim (10.1016/j.future.2022.05.014_b47) 2018; 8
Demartini (10.1016/j.future.2022.05.014_b119) 2020; 43
Wiriyathammabhum (10.1016/j.future.2022.05.014_b139) 2016; 49
Metzner (10.1016/j.future.2022.05.014_b135) 2020
Krokos (10.1016/j.future.2022.05.014_b58) 2019; 9
Hudec (10.1016/j.future.2022.05.014_b116) 2021; 220
Qiu (10.1016/j.future.2022.05.014_b7) 2020
Fu (10.1016/j.future.2022.05.014_b147) 2013; 35
Böhme (10.1016/j.future.2022.05.014_b131) 2020
Dudley (10.1016/j.future.2022.05.014_b157) 2018; 8
10.1016/j.future.2022.05.014_b25
10.1016/j.future.2022.05.014_b21
Yang (10.1016/j.future.2022.05.014_b146) 2020
Pham (10.1016/j.future.2022.05.014_b40) 2021; 9
Ravanbakhsh (10.1016/j.future.2022.05.014_b105) 2020
Yao (10.1016/j.future.2022.05.014_b113) 2020; 11
Jwo (10.1016/j.future.2022.05.014_b153) 2021; 114
10.1016/j.future.2022.05.014_b70
Xu (10.1016/j.future.2022.05.014_b115) 2016
Odekerken (10.1016/j.future.2022.05.014_b120) 2020
Zhu (10.1016/j.future.2022.05.014_b137) 2020
Xiao (10.1016/j.future.2022.05.014_b84) 2020; 10
Bai (10.1016/j.future.2022.05.014_b74) 2020; 29
Brutzkus (10.1016/j.future.2022.05.014_b2) 2019
Chen (10.1016/j.future.2022.05.014_b41) 2020
Stiennon (10.1016/j.future.2022.05.014_b79) 2020; 33
Wrede (10.1016/j.future.2022.05.014_b130) 2019; 35
Klie (10.1016/j.future.2022.05.014_b59) 2020
Hancock (10.1016/j.future.2022.05.014_b80) 2019
Burges (10.1016/j.future.2022.05.014_b112) 2005
Tehrani (10.1016/j.future.2022.05.014_b31) 2019
Wallace (10.1016/j.future.2022.05.014_b56) 2019; 7
Chopra (10.1016/j.future.2022.05.014_b82) 2016
10.1016/j.future.2022.05.014_b149
Yao (10.1016/j.future.2022.05.014_b77) 2019
Shen (10.1016/j.future.2022.05.014_b6) 2021; 66
10.1016/j.future.2022.05.014_b76
Criminisi (10.1016/j.future.2022.05.014_b96) 2003; 2
10.1016/j.future.2022.05.014_b75
Zhang (10.1016/j.future.2022.05.014_b148) 2017; 356
Liu (10.1016/j.future.2022.05.014_b55) 2019
10.1016/j.future.2022.05.014_b83
Wan (10.1016/j.future.2022.05.014_b145) 2021; 32
Jolfaei (10.1016/j.future.2022.05.014_b159) 2022; 6
Badrinarayanan (10.1016/j.future.2022.05.014_b102) 2017; 39
Renner (10.1016/j.future.2022.05.014_b132) 2020
Hartmann (10.1016/j.future.2022.05.014_b19) 2019
Wang (10.1016/j.future.2022.05.014_b35) 2021
Salam (10.1016/j.future.2022.05.014_b128) 2019
Benedikt (10.1016/j.future.2022.05.014_b29) 2020
Singh (10.1016/j.future.2022.05.014_b118) 2020
Zhou (10.1016/j.future.2022.05.014_b3) 2014
Banham (10.1016/j.future.2022.05.014_b95) 1997; 14
Khan (10.1016/j.future.2022.05.014_b32) 2021; 54
Wang (10.1016/j.future.2022.05.014_b103) 2020
Zhang (10.1016/j.future.2022.05.014_b67) 2021
Li (10.1016/j.future.2022.05.014_b46) 2017; 10
Murata (10.1016/j.future.2022.05.014_b106) 2019
Chai (10.1016/j.future.2022.05.014_b30) 2020
10.1016/j.future.2022.05.014_b87
10.1016/j.future.2022.05.014_b86
Xiao (10.1016/j.future.2022.05.014_b85) 2020
Lee (10.1016/j.future.2022.05.014_b155) 2017; 105
Zou (10.1016/j.future.2022.05.014_b91) 2019
10.1016/j.future.2022.05.014_b50
10.1016/j.future.2022.05.014_b52
Budd (10.1016/j.future.2022.05.014_b26) 2021; 71
Davidson (10.1016/j.future.2022.05.014_b133) 2021; 90
Xu (10.1016/j.future.2022.05.014_b160) 2022
Yu (10.1016/j.future.2022.05.014_b33) 2015
Zhao (10.1016/j.future.2022.05.014_b5) 2020; 33
Amirpourazarian (10.1016/j.future.2022.05.014_b144) 2021
Minaee (10.1016/j.future.2022.05.014_b101) 2021
Bartolo (10.1016/j.future.2022.05.014_b64) 2020; 8
Arora (10.1016/j.future.2022.05.014_b141) 2021; 297
Diligenti (10.1016/j.future.2022.05.014_b16) 2017
Kreutzer (10.1016/j.future.2022.05.014_b150) 2021
Polisetty Venkata Sai (10.1016/j.future.2022.05.014_b136) 2020
Wojke (10.1016/j.future.2022.05.014_b94) 2017
Kumar (10.1016/j.future.2022.05.014_b24) 2019
10.1016/j.future.2022.05.014_b54
10.1016/j.future.2022.05.014_b124
10.1016/j.future.2022.05.014_b125
Benard (10.1016/j.future.2022.05.014_b108) 2017
Zhuang (10.1016/j.future.2022.05.014_b45) 2017
10.1016/j.future.2022.05.014_b142
10.1016/j.future.2022.05.014_b63
10.1016/j.future.2022.05.014_b62
Fu (10.1016/j.future.2022.05.014_b111) 2018
Adhikari (10.1016/j.future.2022.05.014_b68) 2021
Caelles (10.1016/j.future.2022.05.014_b114) 2017
Liu (10.1016/j.future.2022.05.014_b97) 2018
Gurajada (10.1016/j.future.2022.05.014_b53) 2019
Roels (10.1016/j.future.2022.05.014_b100) 2019
Devlin (10.1016/j.future.2022.05.014_b11) 2019
Ristoski (10.1016/j.future.2022.05.014_b61) 2020; 60
LeCun (10.1016/j.future.2022.05.014_b71) 2015; 521
Zaib (10.1016/j.future.2022.05.014_b8) 2020
Jia (10.1016/j.future.2022.05.014_b15) 2021; 448
10.1016/j.future.2022.05.014_b138
Wu (10.1016/j.future.2022.05.014_b88) 2021; 577
10.1016/j.future.2022.05.014_b65
10.1016/j.future.2022.05.014_b134
References_xml – reference: J.Z. Self, R.K. Vinayagam, J. Fry, C. North, Bridging the gap between user intention and model parameters for human-in-the-loop data analytics, in: Proceedings of the Workshop on Human-in-the-Loop Data Analytics, 2016, pp. 1–6.
– volume: 220
  year: 2021
  ident: b116
  article-title: Classification by ordinal sums of conjunctive and disjunctive functions for explainable AI and interpretable machine learning solutions
  publication-title: Knowl.-Based Syst.
– reference: Y. Tay, M. Dehghani, D. Bahri, D. Metzler,
– volume: 356
  start-page: 1280
  year: 2017
  end-page: 1284
  ident: b148
  article-title: Human-in-the-loop optimization of exoskeleton assistance during walking
  publication-title: Science
– start-page: 221
  year: 2017
  end-page: 230
  ident: b114
  article-title: One-shot video object segmentation
  publication-title: CVPR
– reference: L.F. Cranor, A framework for reasoning about the human in the loop, in: Proceedings of the 1st Conference on Usability, Psychology, and Security, 2008, pp. 1–15.
– volume: 29
  start-page: 503
  year: 2020
  end-page: 514
  ident: b74
  article-title: Investigating typed syntactic dependencies for targeted sentiment classification using graph attention neural network
  publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process.
– reference: A. Machiry, R. Tahiliani, M. Naik, Dynodroid: An input generation system for android apps, in: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, 2013, pp. 224–234.
– volume: 66
  start-page: 54
  year: 2021
  end-page: 63
  ident: b6
  article-title: Heterogeneous data fusion for predicting mild cognitive impairment conversion
  publication-title: Inf. Fusion
– volume: 35
  start-page: 5199
  year: 2019
  end-page: 5206
  ident: b130
  article-title: Smart computational exploration of stochastic gene regulatory network models using human-in-the-loop semi-supervised learning
  publication-title: Bioinformatics
– volume: 33
  start-page: 7559
  year: 2020
  end-page: 7570
  ident: b5
  article-title: Differentiable augmentation for data-efficient gan training
  publication-title: NIPS
– reference: K. Muthuraman, F. Reiss, H. Xu, B. Cutler, Z. Eichenberger, Data Cleaning Tools for Token Classification Tasks, in: Proceedings of the Second Workshop on Data Science with Human in the Loop: Language Advances, 2021, pp. 59–61.
– start-page: 1
  year: 2020
  ident: b103
  article-title: Efficiently troubleshooting image segmentation models with human-in-the-loop
– volume: 35
  start-page: 305
  year: 2020
  end-page: 321
  ident: b17
  article-title: A deep learning algorithm for simulating autonomous driving considering prior knowledge and temporal information
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– reference: Z. Yao, X. Li, J. Gao, B. Sadler, H. Sun, Interactive semantic parsing for if-then recipes via hierarchical reinforcement learning, in: The AAAI Conference on Artificial Intelligence, 33, (01) 2019, pp. 2547–2554.
– reference: Y. Shoshitaishvili, M. Weissbacher, L. Dresel, C. Salls, R. Wang, C. Kruegel, G. Vigna, Rise of the hacrs: Augmenting autonomous cyber reasoning systems with human assistance, in: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017, pp. 347–362.
– start-page: 93
  year: 2016
  end-page: 98
  ident: b82
  article-title: Abstractive sentence summarization with attentive recurrent neural networks
  publication-title: NAACL
– start-page: 3528
  year: 2018
  end-page: 3532
  ident: b111
  article-title: Image aesthetics assessment using composite features from off-the-shelf deep models
  publication-title: ICIP
– year: 2019
  ident: b100
  article-title: A human-in-the-loop approach for semi-automated image restoration in electron microscopy
  publication-title: BioRxiv
– volume: 9
  start-page: 1
  year: 2019
  end-page: 27
  ident: b58
  article-title: Enhancing deep learning with visual interactions
  publication-title: ACM Trans. Interact. Intell. Syst. (TiiS)
– reference: K. Qian, P.C. Raman, Y. Li, L. Popa, Partner: Human-in-the-loop entity name understanding with deep learning, in: The AAAI Conference on Artificial Intelligence, 34, (09) 2020, pp. 13634–13635.
– volume: 33
  year: 2020
  ident: b37
  article-title: Not all unlabeled data are equal: Learning to weight data in semi-supervised learning
  publication-title: NIPS
– volume: 8
  start-page: 1
  year: 2018
  end-page: 23
  ident: b47
  article-title: A human-in-the-loop system for sound event detection and annotation
  publication-title: ACM Trans. Interact. Intell. Syst. (TiiS)
– start-page: 3667
  year: 2019
  end-page: 3684
  ident: b80
  article-title: Learning from dialogue after deployment: Feed yourself, chatbot!
  publication-title: ACL
– volume: 71
  start-page: 28
  year: 2021
  end-page: 37
  ident: b140
  article-title: Towards multi-modal causability with graph neural networks enabling information fusion for explainable AI
  publication-title: Inf. Fusion
– start-page: 6122
  year: 2019
  end-page: 6131
  ident: b55
  article-title: Deep reinforcement active learning for human-in-the-loop person re-identification
  publication-title: ICCV
– year: 2019
  ident: b78
  article-title: Fine-tuning language models from human preferences
– start-page: 3242
  year: 2012
  end-page: 3249
  ident: b92
  article-title: Interactive object detection
  publication-title: CVPR
– start-page: 373
  year: 2016
  end-page: 381
  ident: b115
  article-title: Deep interactive object selection
  publication-title: CVPR
– start-page: 920
  year: 2017
  end-page: 923
  ident: b16
  article-title: Integrating prior knowledge into deep learning
  publication-title: ICMLA
– year: 2015
  ident: b33
  article-title: LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop
– year: 2019
  ident: b24
  article-title: Why didn’t you listen to me? Comparing user control of human-in-the-loop topic models
  publication-title: ACL
– volume: 18
  start-page: 69
  year: 2018
  end-page: 76
  ident: b20
  article-title: Towards improving diagnosis of skin diseases by combining deep neural network and human knowledge
  publication-title: BMC Med. Inform. Decis. Mak.
– reference: A. Doan, Human-in-the-loop data analysis: a personal perspective, in: Proceedings of the Workshop on Human-in-the-Loop Data Analytics, 2018, pp. 1–6.
– reference: N. Li, S. Adepu, E. Kang, D. Garlan, Explanations for human-on-the-loop: A probabilistic model checking approach, in: Proceedings of the IEEE/ACM 15th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, 2020, pp. 181–187.
– start-page: 85
  year: 2018
  end-page: 100
  ident: b97
  article-title: Image inpainting for irregular holes using partial convolutions
  publication-title: ECCV
– reference: M. Fischer, K. Kobs, A. Hotho, NICER: Aesthetic Image Enhancement with Humans in the Loop, in: The Thirteenth International Conference on Advances in Computer-Human Interactions, 2020, pp. 357–362.
– year: 2019
  ident: b91
  article-title: Object detection in 20 years: A survey
– start-page: 5247
  year: 2019
  end-page: 5256
  ident: b109
  article-title: Fast user-guided video object segmentation by interaction-and-propagation networks
  publication-title: CVPR
– start-page: 1
  year: 2022
  end-page: 25
  ident: b160
  article-title: Transitioning to human interaction with AI systems: New challenges and opportunities for HCI professionals to enable human-centered AI
  publication-title: Int. J. Hum.–Comput. Interaction
– year: 2021
  ident: b161
  article-title: Domain generalization: A survey
– volume: 8
  start-page: 662
  year: 2020
  end-page: 678
  ident: b64
  article-title: Beat the AI: Investigating adversarial human annotation for reading comprehension
  publication-title: Trans. Assoc. Comput. Linguist.
– start-page: 1467
  year: 2011
  end-page: 1478
  ident: b154
  article-title: Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances
  publication-title: EMNLP
– start-page: 1
  year: 2020
  end-page: 26
  ident: b7
  article-title: Pre-trained models for natural language processing: A survey
  publication-title: Sci. China Technol. Sci.
– start-page: 1
  year: 2021
  ident: b144
  article-title: Quality evaluation of holographic images coded with standard codecs
  publication-title: IEEE Trans. Multimed.
– start-page: 3645
  year: 2017
  end-page: 3649
  ident: b94
  article-title: Simple online and realtime tracking with a deep association metric
  publication-title: ICIP
– volume: 66
  start-page: 213
  year: 2021
  end-page: 228
  ident: b9
  article-title: Joint auto-weighted graph fusion and scalable semi-supervised learning
  publication-title: Inf. Fusion
– start-page: 214
  year: 2020
  end-page: 222
  ident: b137
  article-title: Easierpath: An open-source tool for human-in-the-loop deep learning of renal pathology
  publication-title: Interpretable and Annotation-Efficient Learning for Medical Image Computing
– start-page: 1
  year: 2021
  ident: b101
  article-title: Image segmentation using deep learning: A survey
  publication-title: IEEE Trans. PAMI
– start-page: 487
  year: 2014
  end-page: 495
  ident: b3
  article-title: Learning deep features for scene recognition using places database
  publication-title: NIPS
– volume: 448
  start-page: 179
  year: 2021
  end-page: 204
  ident: b15
  article-title: A survey: Deep learning for hyperspectral image classification with few labeled samples
  publication-title: Neurocomputing
– reference: Z.J. Wang, D. Choi, S. Xu, D. Yang, Putting Humans in the Natural Language Processing Loop: A Survey, in: Proceedings of the First Workshop on Bridging Human–Computer Interaction and Natural Language Processing, 2021, pp. 47–52.
– year: 2021
  ident: b156
  article-title: Automated Modeling of Human-in-the-Loop Systems
– start-page: 2969
  year: 2019
  end-page: 2970
  ident: b53
  article-title: Learning-based methods with human-in-the-loop for entity resolution
  publication-title: CIKM
– reference: Y. Lin, S.L. Pintea, J.C. van Gemert, Deep hough-transform line priors, in: ECCV, 2020, pp. 323–340.
– volume: 54
  start-page: 95
  year: 2021
  end-page: 135
  ident: b32
  article-title: Deep learning techniques for rating prediction: a survey of the state-of-the-art
  publication-title: Artif. Intell. Rev.
– volume: 108
  start-page: 148
  year: 2014
  end-page: 164
  ident: b152
  article-title: Collaborative personalization of image enhancement
  publication-title: IJCV
– start-page: 1612
  year: 2019
  end-page: 1622
  ident: b128
  article-title: A human-in-the-loop attribute design framework for classification
  publication-title: WWW
– reference: H.O. Demirel, Digital Human-in-the-Loop Framework, in: International Conference on Human-Computer Interaction, 2020, pp. 18–32.
– volume: 114
  start-page: 1741
  year: 2021
  end-page: 1752
  ident: b153
  article-title: Smart technology–driven aspects for human-in-the-loop smart manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 11
  start-page: 255
  year: 2020
  end-page: 335
  ident: b69
  article-title: Information extraction meets the semantic web: A survey
  publication-title: Semant. Web
– start-page: 661
  year: 2021
  end-page: 673
  ident: b104
  article-title: Multimodal self-supervised learning for medical image analysis
  publication-title: IPMI
– volume: 32
  start-page: 3287
  year: 2021
  end-page: 3292
  ident: b145
  article-title: Human-in-the-loop low-shot learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1
  year: 2020
  end-page: 8
  ident: b60
  article-title: Human-in-the-loop AI for analysis of free response facial expression label sets
  publication-title: IVA
– start-page: 1
  year: 2016
  end-page: 23
  ident: b143
  article-title: Dialogue learning with human-in-the-loop
  publication-title: ICLR
– start-page: 2795
  year: 2021
  end-page: 2804
  ident: b36
  article-title: Boosting unconstrained face recognition with auxiliary unlabeled data
  publication-title: CVPR
– start-page: 239
  year: 2020
  end-page: 242
  ident: b120
  article-title: Towards transparent human-in-the-loop classification of fraudulent web shops
  publication-title: Legal Knowledge and Information Systems
– volume: 22
  start-page: 955
  year: 2019
  end-page: 971
  ident: b57
  article-title: An interactive visual analytics approach for network anomaly detection through smart labeling
  publication-title: J. Vis.
– reference: I. Arous, L. Dolamic, J. Yang, A. Bhardwaj, G. Cuccu, P. Cudré-Mauroux, MARTA: Leveraging Human Rationales for Explainable Text Classification, in: The AAAI Conference on Artificial Intelligence, 35, (7) 2021, pp. 5868–5876.
– start-page: 1226
  year: 2020
  end-page: 1233
  ident: b93
  article-title: Efficient human-in-the-loop object detection using bi-directional deep SORT and annotation-free segment identification
  publication-title: APSIPA ASC
– start-page: 33
  year: 2018
  end-page: 49
  ident: b126
  article-title: Communication-human information processing (C-HIP) model
  publication-title: Forensic Human Factors and Ergonomics
– start-page: 5642
  year: 2021
  end-page: 5651
  ident: b67
  article-title: Generating manga from illustrations via mimicking manga creation workflow
  publication-title: CVPR
– start-page: 243
  year: 2020
  end-page: 253
  ident: b98
  article-title: Draw with me: Human-in-the-loop for image restoration
  publication-title: IUI
– start-page: 2305
  year: 2019
  end-page: 2313
  ident: b51
  article-title: How to invest my time: Lessons from human-in-the-loop entity extraction
  publication-title: KDD
– reference: B. Nushi, E. Kamar, E. Horvitz, Towards accountable ai: Hybrid human-machine analyses for characterizing system failure, in: The AAAI Conference on Artificial Intelligence, 6, (1) 2018.
– reference: A. Doan, A. Ardalan, J. Ballard, S. Das, Y. Govind, P. Konda, H. Li, S. Mudgal, E. Paulson, G.P. Suganthan, et al., Human-in-the-loop challenges for entity matching: A midterm report, in: Proceedings of the 2nd Workshop on Human-in-the-Loop Data Analytics, 2017, pp. 1–6.
– volume: 49
  start-page: 2401
  year: 2019
  end-page: 2414
  ident: b22
  article-title: Interactive machine learning: experimental evidence for the human in the algorithmic loop
  publication-title: Appl. Intell.
– start-page: 293
  year: 2018
  end-page: 304
  ident: b151
  article-title: Closing the loop: User-centered design and evaluation of a human-in-the-loop topic modeling system
  publication-title: IUI
– volume: 17
  start-page: 1611
  year: 2020
  end-page: 1622
  ident: b38
  article-title: Defect image sample generation with GAN for improving defect recognition
  publication-title: IEEE Trans. Autom. Sci. Eng.
– start-page: 7870
  year: 2020
  end-page: 7881
  ident: b41
  article-title: Recall and learn: Fine-tuning deep pretrained language models with less forgetting
  publication-title: EMNLP
– volume: 2
  start-page: II
  year: 2003
  ident: b96
  article-title: Object removal by exemplar-based inpainting
  publication-title: CVPR
– start-page: 822
  year: 2019
  end-page: 830
  ident: b2
  article-title: Why do larger models generalize better? A theoretical perspective via the XOR problem
  publication-title: ICML
– volume: 6
  start-page: 2
  year: 2022
  end-page: 5
  ident: b159
  article-title: Guest editorial: Computational intelligence for human-in-the-loop cyber physical systems
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– reference: L. Berti-Equille, Reinforcement learning for data preparation with active reward learning, in: International Conference on Internet Science, 2019, pp. 121–132.
– reference: L. Rosenberg, Artificial Swarm Intelligence, a Human-in-the-loop approach to AI, in: The AAAI Conference on Artificial Intelligence, 30, (1) 2016.
– start-page: 37
  year: 2021
  end-page: 43
  ident: b150
  article-title: Offline reinforcement learning from human feedback in real-world sequence-to-sequence tasks
  publication-title: SPNLP
– start-page: 1
  year: 2018
  ident: b127
  article-title: Towards understanding and simplifying human-in-the-loop machine learning
– start-page: 9446
  year: 2018
  end-page: 9454
  ident: b99
  article-title: Deep image prior
  publication-title: CVPR
– volume: 11
  start-page: 1
  year: 2020
  end-page: 47
  ident: b113
  article-title: Video object segmentation and tracking: A survey
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– volume: 43
  start-page: 1
  year: 2020
  end-page: 10
  ident: b119
  article-title: Human-in-the-loop artificial intelligence for fighting online misinformation: Challenges and opportunities
  publication-title: Bull. Tech. Committee Data Eng.
– start-page: 115
  year: 2019
  end-page: 120
  ident: b72
  article-title: Journalist-in-the-loop: Continuous learning as a service for rumour analysis
  publication-title: EMNLP
– start-page: 516
  year: 2020
  end-page: 523
  ident: b14
  article-title: Weak supervision for fake news detection via reinforcement learning
  publication-title: AAAI, Vol. 34
– start-page: 170
  year: 2021
  ident: b81
  article-title: When and why does a model fail? A human-in-the-loop error detection framework for sentiment analysis
  publication-title: NAACL-HLT 2021
– volume: 2
  start-page: 232
  year: 2017
  end-page: 235
  ident: b110
  article-title: A review on image enhancement techniques
  publication-title: IJEACS
– start-page: 37
  year: 2020
  ident: b30
  article-title: Human-in-the-loop techniques in machine learning
  publication-title: Data Eng.
– start-page: 4040
  year: 2021
  end-page: 4046
  ident: b68
  article-title: Iterative bounding box annotation for object detection
  publication-title: ICPR
– volume: 18
  start-page: 3
  year: 2017
  end-page: 14
  ident: b23
  article-title: Challenges and opportunities: from big data to knowledge in AI 2.0
  publication-title: Front. Inf. Technol. Electron. Eng.
– year: 2020
  ident: b132
  article-title: Designing for the Human in the Loop: Transparency and Control in Interactive Machine Learning
– start-page: 1040
  year: 2020
  end-page: 1044
  ident: b105
  article-title: Human-machine collaboration for medical image segmentation
  publication-title: ICASSP
– volume: 33
  start-page: 3008
  year: 2020
  end-page: 3021
  ident: b79
  article-title: Learning to summarize with human feedback
  publication-title: NIPS
– volume: 71
  year: 2021
  ident: b26
  article-title: A survey on active learning and human-in-the-loop deep learning for medical image analysis
  publication-title: Med. Image Anal.
– volume: 14
  start-page: 24
  year: 1997
  end-page: 41
  ident: b95
  article-title: Digital image restoration
  publication-title: IEEE Signal Process. Mag.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 37
  ident: b157
  article-title: A review of user interface design for interactive machine learning
  publication-title: ACM Trans. Interact. Intell. Syst. (TiiS)
– volume: 40
  year: 2021
  ident: b1
  article-title: A survey on deep learning and its applications
  publication-title: Comp. Sci. Rev.
– start-page: 5052
  year: 2020
  end-page: 5063
  ident: b13
  article-title: Deepcap: Monocular human performance capture using weak supervision
  publication-title: CVPR
– start-page: 1645
  year: 2018
  end-page: 1650
  ident: b49
  article-title: Data integration and machine learning: A natural synergy
  publication-title: COMAD
– volume: 35
  start-page: 249
  year: 2013
  end-page: 283
  ident: b147
  article-title: A survey on instance selection for active learning
  publication-title: Knowl. Inf. Syst.
– year: 2017
  ident: b10
  article-title: Attention is all you need
  publication-title: NIPS
– reference: D. Xin, L. Ma, J. Liu, S. Macke, S. Song, A. Parameswaran, Accelerating human-in-the-loop machine learning: Challenges and opportunities, in: Proceedings of the Second Workshop on Data Management for End-To-End Machine Learning, 2018, pp. 1–4.
– start-page: 1440
  year: 2015
  end-page: 1448
  ident: b90
  article-title: Fast r-cnn
  publication-title: ICCV
– volume: 10
  start-page: 2006
  year: 2017
  end-page: 2017
  ident: b46
  article-title: Human-in-the-loop data integration
  publication-title: Proc. VLDB Endow.
– volume: 115
  start-page: 185
  year: 2015
  end-page: 210
  ident: b123
  article-title: Whittlesearch: Interactive image search with relative attribute feedback
  publication-title: IJCV
– start-page: 89
  year: 2005
  end-page: 96
  ident: b112
  article-title: Learning to rank using gradient descent
  publication-title: ICML
– volume: 7
  start-page: 387
  year: 2019
  end-page: 401
  ident: b56
  article-title: Trick me if you can: Human-in-the-loop generation of adversarial examples for question answering
  publication-title: Trans. Assoc. Comput. Linguist.
– start-page: 1917
  year: 2017
  end-page: 1926
  ident: b45
  article-title: Hike: A hybrid human-machine method for entity alignment in large-scale knowledge bases
  publication-title: CIKM
– start-page: 2237
  year: 2020
  end-page: 2242
  ident: b118
  article-title: Human-in-the-loop error precursor detection using language translation modeling of HMI states
  publication-title: SMC
– start-page: 1220
  year: 2021
  end-page: 1227
  ident: b34
  article-title: Rethinking deep active learning: Using unlabeled data at model training
  publication-title: ICPR
– volume: 577
  start-page: 436
  year: 2021
  end-page: 448
  ident: b88
  article-title: Document image layout analysis via explicit edge embedding network
  publication-title: Inform. Sci.
– reference: T.-N. Le, A. Sugimoto, S. Ono, H. Kawasaki, Toward interactive self-annotation for video object bounding box: Recurrent self-learning and hierarchical annotation based framework, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 3231–3240.
– volume: 10
  start-page: 957
  year: 2020
  ident: b84
  article-title: Targeted sentiment classification based on attentional encoding and graph convolutional networks
  publication-title: Appl. Sci.
– start-page: 1
  year: 2020
  end-page: 11
  ident: b146
  article-title: Optimal energy operation strategy for we-energy of energy internet based on hybrid reinforcement learning with human-in-the-loop
  publication-title: IEEE Trans. Syst. Man, Cybern.: Syst.
– volume: 297
  year: 2021
  ident: b141
  article-title: A survey of inverse reinforcement learning: Challenges, methods and progress
  publication-title: Artificial Intelligence
– year: 2019
  ident: b77
  article-title: Model-based interactive semantic parsing: A unified formulation and a text-to-SQL case study
  publication-title: EMNLP
– volume: 403
  start-page: 13
  year: 2020
  end-page: 20
  ident: b89
  article-title: Fast video crowd counting with a temporal aware network
  publication-title: Neurocomputing
– start-page: 4171
  year: 2019
  end-page: 4186
  ident: b11
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: NAACL
– reference: H. Ye, W. Shao, H. Wang, J. Ma, L. Wang, Y. Zheng, X. Xue, Face recognition via active annotation and learning, in: ACM International Conference on Multimedia, 2016, pp. 1058–1062.
– reference: M.T. Ribeiro, S. Singh, C. Guestrin, ” Why should i trust you?” Explaining the predictions of any classifier, in: Annual ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2016, pp. 1135–1144.
– start-page: 1
  year: 2020
  end-page: 4
  ident: b8
  article-title: A short survey of pre-trained language models for conversational AI-A new age in NLP
  publication-title: ACSW
– start-page: 186
  year: 2019
  end-page: 193
  ident: b19
  article-title: Deep reinforcement learning for time optimal velocity control using prior knowledge
  publication-title: ICTAI
– volume: 60
  year: 2020
  ident: b61
  article-title: Large-scale relation extraction from web documents and knowledge graphs with human-in-the-loop
  publication-title: J. Web Semant.
– start-page: 274
  year: 2020
  end-page: 285
  ident: b131
  article-title: Human-in-the-loop automatic program repair
  publication-title: ICST
– volume: 12
  year: 2018
  ident: b158
  article-title: Values and ethics in human-computer interaction
  publication-title: Found. Trends® Hum.–Comput. Interaction
– start-page: 2048
  year: 2019
  end-page: 2057
  ident: b129
  article-title: Give me a hint! navigating image databases using human-in-the-loop feedback
  publication-title: WACV
– volume: 97
  start-page: 52
  year: 2019
  end-page: 76
  ident: b28
  article-title: A survey of automation-enabled human-in-the-loop systems for infrastructure visual inspection
  publication-title: Autom. Constr.
– start-page: 93
  year: 2019
  end-page: 103
  ident: b73
  article-title: Targeted sentiment classification with attentional encoder network
  publication-title: ICANN
– start-page: 1
  year: 2020
  end-page: 20
  ident: b85
  article-title: Multi-head self-attention based gated graph convolutional networks for aspect-based sentiment classification
  publication-title: Multimedia Tools Appl.
– start-page: 2337
  year: 2016
  end-page: 2342
  ident: b43
  article-title: Human-in-the-loop parsing
  publication-title: EMNLP
– year: 2018
  ident: b12
  article-title: Improving language understanding by generative pre-training
– start-page: 374
  year: 2019
  end-page: 377
  ident: b106
  article-title: Automatic image enhancement taking into account user preference
  publication-title: CW
– year: 2017
  ident: b108
  article-title: Interactive video object segmentation in the wild
– volume: 49
  start-page: 1
  year: 2016
  end-page: 44
  ident: b139
  article-title: Computer vision and natural language processing: recent approaches in multimedia and robotics
  publication-title: ACM Comput. Surv.
– start-page: 488
  year: 2020
  end-page: 497
  ident: b29
  article-title: Human-in-the-loop AI in government: A case study
  publication-title: IUI
– year: 2020
  ident: b136
  article-title: Information Preparation with the Human in the Loop
– reference: S. Brostoff, M.A. Sasse, Safe and sound: a safety-critical approach to security, in: Proceedings of the 2001 Workshop on New Security Paradigms, 2001, pp. 41–50.
– start-page: 1520
  year: 2020
  end-page: 1525
  ident: b135
  article-title: A system for human-in-the-loop simulation of industrial collaborative robot applications
  publication-title: CASE
– reference: A.L. Gentile, D. Gruhl, P. Ristoski, S. Welch, Explore and exploit. Dictionary expansion with human-in-the-loop, in: European Semantic Web Conference, 2019, pp. 131–145.
– volume: 37
  start-page: 1562
  year: 2018
  end-page: 1573
  ident: b42
  article-title: Interactive medical image segmentation using deep learning with image-specific fine tuning
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1
  year: 2021
  ident: b66
  article-title: Towards a weakly supervised framework for 3d point cloud object detection and annotation
  publication-title: IEEE Trans. PAMI
– volume: 43
  start-page: 2388
  year: 2021
  end-page: 2399
  ident: b4
  article-title: LayoutGAN: Synthesizing graphic layouts with vector-wireframe adversarial networks
  publication-title: IEEE Trans. PAMI
– reference: R. Zhang, F. Torabi, L. Guan, D.H. Ballard, P. Stone, Leveraging Human Guidance for Deep Reinforcement Learning Tasks, in: International Joint Conference on Artificial Intelligence (IJCAI), 2019.
– year: 2021
  ident: b39
  article-title: Transformers in vision: A survey
  publication-title: ACM Comput. Surv.
– start-page: 6982
  year: 2020
  end-page: 6993
  ident: b59
  article-title: From zero to hero: Human-in-the-loop entity linking in low resource domains
  publication-title: ACL
– start-page: 470
  year: 2019
  end-page: 478
  ident: b31
  article-title: Review of human-in-the-loop cyber-physical systems (HiLCPS): The current status from human perspective
  publication-title: Comput. Civ. Eng. 2019: Data, Sens. Anal.
– start-page: 1
  year: 2021
  ident: b35
  article-title: How to trust unlabeled data instance credibility inference for few-shot learning
  publication-title: IEEE Trans. PAMI
– volume: 90
  year: 2021
  ident: b133
  article-title: Improving human-in-the-loop simulation to optimize soldier-systems integration
  publication-title: Applied Ergon.
– volume: 239
  start-page: 1471
  year: 2019
  end-page: 1508
  ident: b27
  article-title: Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions
  publication-title: Appl. Energy
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b71
  article-title: Deep learning
  publication-title: Nature
– volume: 9
  start-page: 1
  year: 2021
  end-page: 11
  ident: b40
  article-title: Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning?
  publication-title: Health Inf. Sci. Syst.
– reference: Y. Lou, M. Uddin, N. Brown, M. Cafarella, Knowledge graph programming with a human-in-the-loop: Preliminary results, in: Proceedings of the Workshop on Human-in-the-Loop Data Analytics, 2019, pp. 1–7.
– volume: 105
  start-page: 28
  year: 2017
  end-page: 42
  ident: b155
  article-title: The human touch: How non-expert users perceive, interpret, and fix topic models
  publication-title: Int. J. Hum.-Comput. Stud.
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b102
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. PAMI
– volume: 33
  start-page: 3008
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b79
  article-title: Learning to summarize with human feedback
  publication-title: NIPS
– start-page: 374
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b106
  article-title: Automatic image enhancement taking into account user preference
– ident: 10.1016/j.future.2022.05.014_b86
  doi: 10.1609/hcomp.v6i1.13337
– volume: 220
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b116
  article-title: Classification by ordinal sums of conjunctive and disjunctive functions for explainable AI and interpretable machine learning solutions
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106916
– volume: 49
  start-page: 2401
  issue: 7
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b22
  article-title: Interactive machine learning: experimental evidence for the human in the algorithmic loop
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1361-5
– volume: 90
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b133
  article-title: Improving human-in-the-loop simulation to optimize soldier-systems integration
  publication-title: Applied Ergon.
  doi: 10.1016/j.apergo.2020.103267
– volume: 33
  start-page: 7559
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b5
  article-title: Differentiable augmentation for data-efficient gan training
  publication-title: NIPS
– start-page: 2969
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b53
  article-title: Learning-based methods with human-in-the-loop for entity resolution
– start-page: 488
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b29
  article-title: Human-in-the-loop AI in government: A case study
– volume: 12
  issue: 2
  year: 2018
  ident: 10.1016/j.future.2022.05.014_b158
  article-title: Values and ethics in human-computer interaction
  publication-title: Found. Trends® Hum.–Comput. Interaction
  doi: 10.1561/1100000073
– start-page: 516
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b14
  article-title: Weak supervision for fake news detection via reinforcement learning
– year: 2019
  ident: 10.1016/j.future.2022.05.014_b100
  article-title: A human-in-the-loop approach for semi-automated image restoration in electron microscopy
  publication-title: BioRxiv
– ident: 10.1016/j.future.2022.05.014_b107
– year: 2020
  ident: 10.1016/j.future.2022.05.014_b132
– start-page: 4171
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b11
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
– start-page: 1612
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b128
  article-title: A human-in-the-loop attribute design framework for classification
– volume: 71
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b26
  article-title: A survey on active learning and human-in-the-loop deep learning for medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102062
– start-page: 1
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b103
– start-page: 1917
  year: 2017
  ident: 10.1016/j.future.2022.05.014_b45
  article-title: Hike: A hybrid human-machine method for entity alignment in large-scale knowledge bases
– ident: 10.1016/j.future.2022.05.014_b75
  doi: 10.1609/aaai.v35i7.16734
– start-page: 1
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b144
  article-title: Quality evaluation of holographic images coded with standard codecs
  publication-title: IEEE Trans. Multimed.
– ident: 10.1016/j.future.2022.05.014_b70
  doi: 10.1145/2964284.2984059
– ident: 10.1016/j.future.2022.05.014_b65
  doi: 10.18653/v1/2021.dash-1.10
– start-page: 293
  year: 2018
  ident: 10.1016/j.future.2022.05.014_b151
  article-title: Closing the loop: User-centered design and evaluation of a human-in-the-loop topic modeling system
– volume: 6
  start-page: 2
  issue: 1
  year: 2022
  ident: 10.1016/j.future.2022.05.014_b159
  article-title: Guest editorial: Computational intelligence for human-in-the-loop cyber physical systems
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2021.3139998
– year: 2018
  ident: 10.1016/j.future.2022.05.014_b12
– start-page: 1520
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b135
  article-title: A system for human-in-the-loop simulation of industrial collaborative robot applications
– start-page: 1040
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b105
  article-title: Human-machine collaboration for medical image segmentation
– volume: 577
  start-page: 436
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b88
  article-title: Document image layout analysis via explicit edge embedding network
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.07.020
– volume: 49
  start-page: 1
  issue: 4
  year: 2016
  ident: 10.1016/j.future.2022.05.014_b139
  article-title: Computer vision and natural language processing: recent approaches in multimedia and robotics
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3009906
– ident: 10.1016/j.future.2022.05.014_b44
  doi: 10.1145/2939502.2939505
– ident: 10.1016/j.future.2022.05.014_b48
  doi: 10.1145/3209900.3209913
– start-page: 1
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b7
  article-title: Pre-trained models for natural language processing: A survey
  publication-title: Sci. China Technol. Sci.
– start-page: 3528
  year: 2018
  ident: 10.1016/j.future.2022.05.014_b111
  article-title: Image aesthetics assessment using composite features from off-the-shelf deep models
– start-page: 214
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b137
  article-title: Easierpath: An open-source tool for human-in-the-loop deep learning of renal pathology
– volume: 18
  start-page: 69
  issue: 2
  year: 2018
  ident: 10.1016/j.future.2022.05.014_b20
  article-title: Towards improving diagnosis of skin diseases by combining deep neural network and human knowledge
  publication-title: BMC Med. Inform. Decis. Mak.
– start-page: 93
  year: 2016
  ident: 10.1016/j.future.2022.05.014_b82
  article-title: Abstractive sentence summarization with attentive recurrent neural networks
– start-page: 1
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b101
  article-title: Image segmentation using deep learning: A survey
  publication-title: IEEE Trans. PAMI
  doi: 10.1109/TPAMI.2021.3059968
– ident: 10.1016/j.future.2022.05.014_b122
  doi: 10.1145/2491411.2491450
– volume: 35
  start-page: 305
  issue: 4
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b17
  article-title: A deep learning algorithm for simulating autonomous driving considering prior knowledge and temporal information
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12495
– year: 2020
  ident: 10.1016/j.future.2022.05.014_b136
– start-page: 1
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b35
  article-title: How to trust unlabeled data instance credibility inference for few-shot learning
  publication-title: IEEE Trans. PAMI
– volume: 35
  start-page: 5199
  issue: 24
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b130
  article-title: Smart computational exploration of stochastic gene regulatory network models using human-in-the-loop semi-supervised learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz420
– ident: 10.1016/j.future.2022.05.014_b125
  doi: 10.1145/3133956.3134105
– volume: 2
  start-page: 232
  issue: 7
  year: 2017
  ident: 10.1016/j.future.2022.05.014_b110
  article-title: A review on image enhancement techniques
  publication-title: IJEACS
  doi: 10.24032/ijeacs/0207/05
– start-page: 5052
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b13
  article-title: Deepcap: Monocular human performance capture using weak supervision
– start-page: 2305
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b51
  article-title: How to invest my time: Lessons from human-in-the-loop entity extraction
– start-page: 1220
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b34
  article-title: Rethinking deep active learning: Using unlabeled data at model training
– start-page: 1
  year: 2022
  ident: 10.1016/j.future.2022.05.014_b160
  article-title: Transitioning to human interaction with AI systems: New challenges and opportunities for HCI professionals to enable human-centered AI
  publication-title: Int. J. Hum.–Comput. Interaction
– start-page: 115
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b72
  article-title: Journalist-in-the-loop: Continuous learning as a service for rumour analysis
– year: 2021
  ident: 10.1016/j.future.2022.05.014_b161
– start-page: 1440
  year: 2015
  ident: 10.1016/j.future.2022.05.014_b90
  article-title: Fast r-cnn
– ident: 10.1016/j.future.2022.05.014_b21
  doi: 10.24963/ijcai.2019/884
– start-page: 2237
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b118
  article-title: Human-in-the-loop error precursor detection using language translation modeling of HMI states
– volume: 10
  start-page: 2006
  issue: 12
  year: 2017
  ident: 10.1016/j.future.2022.05.014_b46
  article-title: Human-in-the-loop data integration
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3137765.3137833
– start-page: 1467
  year: 2011
  ident: 10.1016/j.future.2022.05.014_b154
  article-title: Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances
– volume: 40
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b1
  article-title: A survey on deep learning and its applications
  publication-title: Comp. Sci. Rev.
– volume: 60
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b61
  article-title: Large-scale relation extraction from web documents and knowledge graphs with human-in-the-loop
  publication-title: J. Web Semant.
  doi: 10.1016/j.websem.2019.100546
– start-page: 93
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b73
  article-title: Targeted sentiment classification with attentional encoder network
– ident: 10.1016/j.future.2022.05.014_b142
  doi: 10.1145/3077257.3077268
– ident: 10.1016/j.future.2022.05.014_b62
  doi: 10.1609/aaai.v34i09.7104
– volume: 37
  start-page: 1562
  issue: 7
  year: 2018
  ident: 10.1016/j.future.2022.05.014_b42
  article-title: Interactive medical image segmentation using deep learning with image-specific fine tuning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2791721
– volume: 29
  start-page: 503
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b74
  article-title: Investigating typed syntactic dependencies for targeted sentiment classification using graph attention neural network
  publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process.
  doi: 10.1109/TASLP.2020.3042009
– ident: 10.1016/j.future.2022.05.014_b134
  doi: 10.1007/978-3-030-49904-4_2
– volume: 22
  start-page: 955
  issue: 5
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b57
  article-title: An interactive visual analytics approach for network anomaly detection through smart labeling
  publication-title: J. Vis.
  doi: 10.1007/s12650-019-00580-7
– volume: 18
  start-page: 3
  issue: 1
  year: 2017
  ident: 10.1016/j.future.2022.05.014_b23
  article-title: Challenges and opportunities: from big data to knowledge in AI 2.0
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/FITEE.1601883
– start-page: 4040
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b68
  article-title: Iterative bounding box annotation for object detection
– year: 2019
  ident: 10.1016/j.future.2022.05.014_b77
  article-title: Model-based interactive semantic parsing: A unified formulation and a text-to-SQL case study
– start-page: 239
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b120
  article-title: Towards transparent human-in-the-loop classification of fraudulent web shops
– ident: 10.1016/j.future.2022.05.014_b63
– volume: 33
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b37
  article-title: Not all unlabeled data are equal: Learning to weight data in semi-supervised learning
  publication-title: NIPS
– start-page: 2795
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b36
  article-title: Boosting unconstrained face recognition with auxiliary unlabeled data
– start-page: 221
  year: 2017
  ident: 10.1016/j.future.2022.05.014_b114
  article-title: One-shot video object segmentation
– start-page: 5642
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b67
  article-title: Generating manga from illustrations via mimicking manga creation workflow
– year: 2019
  ident: 10.1016/j.future.2022.05.014_b24
  article-title: Why didn’t you listen to me? Comparing user control of human-in-the-loop topic models
– start-page: 33
  year: 2018
  ident: 10.1016/j.future.2022.05.014_b126
  article-title: Communication-human information processing (C-HIP) model
– start-page: 9446
  year: 2018
  ident: 10.1016/j.future.2022.05.014_b99
  article-title: Deep image prior
– ident: 10.1016/j.future.2022.05.014_b50
  doi: 10.1007/978-3-030-21348-0_9
– ident: 10.1016/j.future.2022.05.014_b117
– volume: 356
  start-page: 1280
  issue: 6344
  year: 2017
  ident: 10.1016/j.future.2022.05.014_b148
  article-title: Human-in-the-loop optimization of exoskeleton assistance during walking
  publication-title: Science
  doi: 10.1126/science.aal5054
– volume: 448
  start-page: 179
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b15
  article-title: A survey: Deep learning for hyperspectral image classification with few labeled samples
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.035
– start-page: 37
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b30
  article-title: Human-in-the-loop techniques in machine learning
  publication-title: Data Eng.
– volume: 10
  start-page: 957
  issue: 3
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b84
  article-title: Targeted sentiment classification based on attentional encoding and graph convolutional networks
  publication-title: Appl. Sci.
  doi: 10.3390/app10030957
– ident: 10.1016/j.future.2022.05.014_b149
– volume: 11
  start-page: 255
  issue: 2
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b69
  article-title: Information extraction meets the semantic web: A survey
  publication-title: Semant. Web
  doi: 10.3233/SW-180333
– volume: 8
  start-page: 1
  issue: 2
  year: 2018
  ident: 10.1016/j.future.2022.05.014_b157
  article-title: A review of user interface design for interactive machine learning
  publication-title: ACM Trans. Interact. Intell. Syst. (TiiS)
  doi: 10.1145/3185517
– start-page: 6982
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b59
  article-title: From zero to hero: Human-in-the-loop entity linking in low resource domains
– start-page: 3667
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b80
  article-title: Learning from dialogue after deployment: Feed yourself, chatbot!
– volume: 11
  start-page: 1
  issue: 4
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b113
  article-title: Video object segmentation and tracking: A survey
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
  doi: 10.1145/3391743
– start-page: 6122
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b55
  article-title: Deep reinforcement active learning for human-in-the-loop person re-identification
– volume: 2
  start-page: II
  year: 2003
  ident: 10.1016/j.future.2022.05.014_b96
  article-title: Object removal by exemplar-based inpainting
– start-page: 1
  year: 2016
  ident: 10.1016/j.future.2022.05.014_b143
  article-title: Dialogue learning with human-in-the-loop
  publication-title: ICLR
– year: 2019
  ident: 10.1016/j.future.2022.05.014_b78
– start-page: 1
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b66
  article-title: Towards a weakly supervised framework for 3d point cloud object detection and annotation
  publication-title: IEEE Trans. PAMI
  doi: 10.1109/TPAMI.2021.3063611
– volume: 66
  start-page: 213
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b9
  article-title: Joint auto-weighted graph fusion and scalable semi-supervised learning
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.09.007
– start-page: 487
  year: 2014
  ident: 10.1016/j.future.2022.05.014_b3
  article-title: Learning deep features for scene recognition using places database
– ident: 10.1016/j.future.2022.05.014_b25
  doi: 10.1145/3209889.3209897
– year: 2017
  ident: 10.1016/j.future.2022.05.014_b10
  article-title: Attention is all you need
– start-page: 1
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b60
  article-title: Human-in-the-loop AI for analysis of free response facial expression label sets
– ident: 10.1016/j.future.2022.05.014_b121
  doi: 10.1145/508171.508178
– ident: 10.1016/j.future.2022.05.014_b76
  doi: 10.1609/aaai.v33i01.33012547
– start-page: 470
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b31
  article-title: Review of human-in-the-loop cyber-physical systems (HiLCPS): The current status from human perspective
  publication-title: Comput. Civ. Eng. 2019: Data, Sens. Anal.
  doi: 10.1061/9780784482438.060
– volume: 403
  start-page: 13
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b89
  article-title: Fast video crowd counting with a temporal aware network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.071
– volume: 14
  start-page: 24
  issue: 2
  year: 1997
  ident: 10.1016/j.future.2022.05.014_b95
  article-title: Digital image restoration
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.581363
– volume: 105
  start-page: 28
  year: 2017
  ident: 10.1016/j.future.2022.05.014_b155
  article-title: The human touch: How non-expert users perceive, interpret, and fix topic models
  publication-title: Int. J. Hum.-Comput. Stud.
  doi: 10.1016/j.ijhcs.2017.03.007
– volume: 66
  start-page: 54
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b6
  article-title: Heterogeneous data fusion for predicting mild cognitive impairment conversion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.08.023
– ident: 10.1016/j.future.2022.05.014_b83
– start-page: 2048
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b129
  article-title: Give me a hint! navigating image databases using human-in-the-loop feedback
– ident: 10.1016/j.future.2022.05.014_b54
  doi: 10.1145/3328519.3329132
– start-page: 1
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b146
  article-title: Optimal energy operation strategy for we-energy of energy internet based on hybrid reinforcement learning with human-in-the-loop
  publication-title: IEEE Trans. Syst. Man, Cybern.: Syst.
– ident: 10.1016/j.future.2022.05.014_b18
  doi: 10.1007/978-3-030-58542-6_20
– volume: 9
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b40
  article-title: Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning?
  publication-title: Health Inf. Sci. Syst.
  doi: 10.1007/s13755-020-00135-3
– start-page: 1645
  year: 2018
  ident: 10.1016/j.future.2022.05.014_b49
  article-title: Data integration and machine learning: A natural synergy
– start-page: 274
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b131
  article-title: Human-in-the-loop automatic program repair
– volume: 114
  start-page: 1741
  issue: 5
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b153
  article-title: Smart technology–driven aspects for human-in-the-loop smart manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-021-06977-9
– volume: 7
  start-page: 387
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b56
  article-title: Trick me if you can: Human-in-the-loop generation of adversarial examples for question answering
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00279
– year: 2017
  ident: 10.1016/j.future.2022.05.014_b108
– volume: 297
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b141
  article-title: A survey of inverse reinforcement learning: Challenges, methods and progress
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2021.103500
– start-page: 2337
  year: 2016
  ident: 10.1016/j.future.2022.05.014_b43
  article-title: Human-in-the-loop parsing
– volume: 108
  start-page: 148
  issue: 1–2
  year: 2014
  ident: 10.1016/j.future.2022.05.014_b152
  article-title: Collaborative personalization of image enhancement
  publication-title: IJCV
  doi: 10.1007/s11263-013-0675-3
– volume: 32
  start-page: 3287
  issue: 7
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b145
  article-title: Human-in-the-loop low-shot learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3011559
– start-page: 920
  year: 2017
  ident: 10.1016/j.future.2022.05.014_b16
  article-title: Integrating prior knowledge into deep learning
– ident: 10.1016/j.future.2022.05.014_b52
  doi: 10.1007/978-3-030-34770-3_10
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b58
  article-title: Enhancing deep learning with visual interactions
  publication-title: ACM Trans. Interact. Intell. Syst. (TiiS)
  doi: 10.1145/3150977
– ident: 10.1016/j.future.2022.05.014_b87
  doi: 10.1145/2939672.2939778
– year: 2015
  ident: 10.1016/j.future.2022.05.014_b33
– start-page: 186
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b19
  article-title: Deep reinforcement learning for time optimal velocity control using prior knowledge
– volume: 17
  start-page: 1611
  issue: 3
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b38
  article-title: Defect image sample generation with GAN for improving defect recognition
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 8
  start-page: 1
  issue: 2
  year: 2018
  ident: 10.1016/j.future.2022.05.014_b47
  article-title: A human-in-the-loop system for sound event detection and annotation
  publication-title: ACM Trans. Interact. Intell. Syst. (TiiS)
  doi: 10.1145/3214366
– start-page: 243
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b98
  article-title: Draw with me: Human-in-the-loop for image restoration
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.future.2022.05.014_b71
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 5247
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b109
  article-title: Fast user-guided video object segmentation by interaction-and-propagation networks
– start-page: 373
  year: 2016
  ident: 10.1016/j.future.2022.05.014_b115
  article-title: Deep interactive object selection
– start-page: 3645
  year: 2017
  ident: 10.1016/j.future.2022.05.014_b94
  article-title: Simple online and realtime tracking with a deep association metric
– year: 2019
  ident: 10.1016/j.future.2022.05.014_b91
– volume: 43
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b119
  article-title: Human-in-the-loop artificial intelligence for fighting online misinformation: Challenges and opportunities
  publication-title: Bull. Tech. Committee Data Eng.
– start-page: 1
  year: 2018
  ident: 10.1016/j.future.2022.05.014_b127
– volume: 43
  start-page: 2388
  issue: 7
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b4
  article-title: LayoutGAN: Synthesizing graphic layouts with vector-wireframe adversarial networks
  publication-title: IEEE Trans. PAMI
  doi: 10.1109/TPAMI.2019.2963663
– volume: 115
  start-page: 185
  issue: 2
  year: 2015
  ident: 10.1016/j.future.2022.05.014_b123
  article-title: Whittlesearch: Interactive image search with relative attribute feedback
  publication-title: IJCV
  doi: 10.1007/s11263-015-0814-0
– volume: 54
  start-page: 95
  issue: 1
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b32
  article-title: Deep learning techniques for rating prediction: a survey of the state-of-the-art
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09892-9
– start-page: 1
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b85
  article-title: Multi-head self-attention based gated graph convolutional networks for aspect-based sentiment classification
  publication-title: Multimedia Tools Appl.
– volume: 35
  start-page: 249
  issue: 2
  year: 2013
  ident: 10.1016/j.future.2022.05.014_b147
  article-title: A survey on instance selection for active learning
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-012-0507-8
– start-page: 822
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b2
  article-title: Why do larger models generalize better? A theoretical perspective via the XOR problem
– start-page: 37
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b150
  article-title: Offline reinforcement learning from human feedback in real-world sequence-to-sequence tasks
– volume: 8
  start-page: 662
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b64
  article-title: Beat the AI: Investigating adversarial human annotation for reading comprehension
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00338
– year: 2021
  ident: 10.1016/j.future.2022.05.014_b156
– volume: 97
  start-page: 52
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b28
  article-title: A survey of automation-enabled human-in-the-loop systems for infrastructure visual inspection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.10.019
– start-page: 170
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b81
  article-title: When and why does a model fail? A human-in-the-loop error detection framework for sentiment analysis
  publication-title: NAACL-HLT 2021
– start-page: 1
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b8
  article-title: A short survey of pre-trained language models for conversational AI-A new age in NLP
– start-page: 89
  year: 2005
  ident: 10.1016/j.future.2022.05.014_b112
  article-title: Learning to rank using gradient descent
– start-page: 661
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b104
  article-title: Multimodal self-supervised learning for medical image analysis
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.future.2022.05.014_b102
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. PAMI
  doi: 10.1109/TPAMI.2016.2644615
– ident: 10.1016/j.future.2022.05.014_b138
  doi: 10.1145/3387939.3391592
– volume: 71
  start-page: 28
  year: 2021
  ident: 10.1016/j.future.2022.05.014_b140
  article-title: Towards multi-modal causability with graph neural networks enabling information fusion for explainable AI
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.01.008
– ident: 10.1016/j.future.2022.05.014_b124
  doi: 10.1609/aaai.v30i1.9833
– start-page: 1226
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b93
  article-title: Efficient human-in-the-loop object detection using bi-directional deep SORT and annotation-free segment identification
– start-page: 85
  year: 2018
  ident: 10.1016/j.future.2022.05.014_b97
  article-title: Image inpainting for irregular holes using partial convolutions
– year: 2021
  ident: 10.1016/j.future.2022.05.014_b39
  article-title: Transformers in vision: A survey
  publication-title: ACM Comput. Surv.
– start-page: 7870
  year: 2020
  ident: 10.1016/j.future.2022.05.014_b41
  article-title: Recall and learn: Fine-tuning deep pretrained language models with less forgetting
– volume: 239
  start-page: 1471
  year: 2019
  ident: 10.1016/j.future.2022.05.014_b27
  article-title: Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.070
– start-page: 3242
  year: 2012
  ident: 10.1016/j.future.2022.05.014_b92
  article-title: Interactive object detection
SSID ssj0001731
Score 2.7195432
SecondaryResourceType review_article
Snippet Machine learning has become the state-of-the-art technique for many tasks including computer vision, natural language processing, speech processing tasks, etc....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 364
SubjectTerms Computer vision
Data processing
Deep learning
Human-in-the-loop
Machine learning
Natural language processing
Title A survey of human-in-the-loop for machine learning
URI https://dx.doi.org/10.1016/j.future.2022.05.014
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvXjxLdZHycFr7D6SZvdYiqUq9qKF3kKeUqnbUlvBi7_dZDfrA0TB4y4zsHybnXzDfvkG4DyLhdBSK2ytdQ2KSDIsqNVYSZsTEXvK7P_o3o66wzG5ntBJA_r1WRgvqwy1v6rpZbUOdzoBzc5iOu3ceQE9S_NJ4mVBLPd9OyHMr_KLt0-ZR8zCTEJXEHx0fXyu1HhVvh2uS0ySyr-T_Lw9fdlyBjuwFbgi6lWPswsNU-zBdj2HAYXPch-SHnpeL1_MK5pbVA7dw9MCO2aHZ_P5Ajlaip5KzaRBYUjEwwGMB5f3_SEOsxCwcqR-hWOrRddxL6lTmiqSKGF1ZAh1hMWIVBmSWSaymEqjZWQiaSS1XeuCRJ4Lb_J2CM1iXpgjQFopwjTNUkNSIhSRuWAqYloSb-0j8xakNQRcBaNwP69ixmtF2COvgOMeOB5R7oBrAf7IWlRGGX_Esxpd_u2Fc1fLf808_nfmCWz6q0qLdwrN1XJtzhynWMl2uWjasNG7uhmO3gEmWM3P
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA1je9AX7-K85sHXsF6SpX0cw7G5y4sb7C3kKpPZjrkJ_nuTNh0KouBrmw_KaXpyQk_OB8B9EnKuhJLIGGM3KDxKECdGISlMinnoJLP7ozuetPsz_Dgn8xroVmdhnK3Sc3_J6QVb-ystj2ZrtVi0npyBnsbpPHK2IJrafXvDpVOROmh0BsP-ZEfIIfVtCS0nuILqBF1h8yqjO-xGMYrKCE_88wr1ZdXpHYEDLxdhp3yiY1DT2Qk4rFoxQP9lnoKoA9-263f9AXMDi757aJEhK-7QMs9X0CpT-FrYJjX0fSKez8Cs9zDt9pFvh4Ck1fUbFBrF21Z-CRWTWOJIcqMCjYnVLJrHUuPEUJ6ERGglAh0ILYhpGzuIpyl3OW_noJ7lmb4AUEmJqSJJrHGMucQi5VQGVAns0n1E2gRxBQGTPivctaxYssoU9sJK4JgDjgWEWeCaAO2qVmVWxh_jaYUu-_bOmaXzXysv_115B_b60_GIjQaT4RXYd3dKa941qG_WW31jJcZG3Pop9AlD-9CA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+human-in-the-loop+for+machine+learning&rft.jtitle=Future+generation+computer+systems&rft.au=Wu%2C+Xingjiao&rft.au=Xiao%2C+Luwei&rft.au=Sun%2C+Yixuan&rft.au=Zhang%2C+Junhang&rft.date=2022-10-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=135&rft.spage=364&rft.epage=381&rft_id=info:doi/10.1016%2Fj.future.2022.05.014&rft.externalDocID=S0167739X22001790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon