How sulfur-containing additives stabilize Electrode/Electrolyte interface of high voltage Graphite/LiCoO2 battery
An “effective interfacial functional group (EIFG)”, sulfonate (−O-SO2-), was discovered in the electrode/electrolyte interphase (EEI) film of cells containing PS or DTD added electrolytes, which could stabilize the interphase and inhibit the continued decomposition of the electrolyte, thereby improv...
Saved in:
Published in | Applied surface science Vol. 684; p. 161805 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An “effective interfacial functional group (EIFG)”, sulfonate (−O-SO2-), was discovered in the electrode/electrolyte interphase (EEI) film of cells containing PS or DTD added electrolytes, which could stabilize the interphase and inhibit the continued decomposition of the electrolyte, thereby improving the electrochemical performance of 4.48 V graphite/LiCoO2 full cells.
[Display omitted]
•“Effective Interfacial Functional Group (EIFG)” was discovered in EEI film.•The EIFG-containing species could stabilize the interface.•EIFG does not rely on the original functional groups of additives.
Film-forming additives have been studied as one of efficient choices to improve battery performance. However, the relationship among film-forming additives, interphase film and battery performance remain mysterious. A comparative study was conducted on the effects of four sulfur-containing cyclic additives, sulfolane (Sul), 1,2-Ethylene Sulfite (ES), 1,3-Propane sultone (PS), and 1,3,2-Dioxathiolan-2,2-oxide (DTD), on the properties of interphase film. Through time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) detection, an “effective interfacial functional group (EIFG)”, sulfonate (−O−SO2−), was discovered in the electrode/electrolyte interphase (EEI) film of cells containing PS or DTD added electrolytes. It can stabilize the interphase and inhibit the continued decomposition of the electrolyte, thereby improving the electrochemical performance of 4.48 V graphite/LiCoO2 full-cell and 4.55 V Li/LiCoO2 half-cell. The capacity retention of the full-cell after 200 cycles exceeds 87 %, and that of half-cell after 300 cycles is nearly 90 %. Based on differential electrochemical mass spectra (DEMS), XPS detection during formation process and theoretical calculation results, it can be revealed that the similar EIFG-containing components can be obtained through different reaction pathways even with additives containing different functional groups. This provides an important basis for the design of new additives/electrolytes. |
---|---|
AbstractList | An “effective interfacial functional group (EIFG)”, sulfonate (−O-SO2-), was discovered in the electrode/electrolyte interphase (EEI) film of cells containing PS or DTD added electrolytes, which could stabilize the interphase and inhibit the continued decomposition of the electrolyte, thereby improving the electrochemical performance of 4.48 V graphite/LiCoO2 full cells.
[Display omitted]
•“Effective Interfacial Functional Group (EIFG)” was discovered in EEI film.•The EIFG-containing species could stabilize the interface.•EIFG does not rely on the original functional groups of additives.
Film-forming additives have been studied as one of efficient choices to improve battery performance. However, the relationship among film-forming additives, interphase film and battery performance remain mysterious. A comparative study was conducted on the effects of four sulfur-containing cyclic additives, sulfolane (Sul), 1,2-Ethylene Sulfite (ES), 1,3-Propane sultone (PS), and 1,3,2-Dioxathiolan-2,2-oxide (DTD), on the properties of interphase film. Through time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) detection, an “effective interfacial functional group (EIFG)”, sulfonate (−O−SO2−), was discovered in the electrode/electrolyte interphase (EEI) film of cells containing PS or DTD added electrolytes. It can stabilize the interphase and inhibit the continued decomposition of the electrolyte, thereby improving the electrochemical performance of 4.48 V graphite/LiCoO2 full-cell and 4.55 V Li/LiCoO2 half-cell. The capacity retention of the full-cell after 200 cycles exceeds 87 %, and that of half-cell after 300 cycles is nearly 90 %. Based on differential electrochemical mass spectra (DEMS), XPS detection during formation process and theoretical calculation results, it can be revealed that the similar EIFG-containing components can be obtained through different reaction pathways even with additives containing different functional groups. This provides an important basis for the design of new additives/electrolytes. |
ArticleNumber | 161805 |
Author | Peng, Wenjie Li, Guangchao Guo, Huajun Wang, Zhixing Yan, Guochun Li, Xinhai Wang, Siwu Wang, Jiexi Duan, Hui |
Author_xml | – sequence: 1 givenname: Siwu surname: Wang fullname: Wang, Siwu organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 2 givenname: Huajun surname: Guo fullname: Guo, Huajun organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 3 givenname: Xinhai surname: Li fullname: Li, Xinhai organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 4 givenname: Zhixing surname: Wang fullname: Wang, Zhixing organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 5 givenname: Wenjie surname: Peng fullname: Peng, Wenjie organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 6 givenname: Jiexi surname: Wang fullname: Wang, Jiexi organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 7 givenname: Hui surname: Duan fullname: Duan, Hui organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 8 givenname: Guangchao surname: Li fullname: Li, Guangchao organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 9 givenname: Guochun surname: Yan fullname: Yan, Guochun email: happyygc@csu.edu.cn organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China |
BookMark | eNqFkE1rAjEQhnOwULX9Bz3kD-ya7Pf2UChitSB48R6y2YmObDc2iRb76xtZTz20pxmY93lhngkZ9aYHQp44iznjxewQy6M7ORUnLMliXvCK5SMyDqc6ytI0uScT5w6M8aQq0zH5XJkv6k6dPtlImd5L7LHfUdm26PEMjjovG-zwG-iiA-WtaWF227qLB4q9B6ulAmo03eNuT8-m83IHdGnlcY8eZmucm01CG-lD9PJA7rTsHDze5pRs3xbb-Spab5bv89d1pFJW-IjrvISGpTrJmxS4rsq6rJs2Z3mmkoaFvypdlEpnKishz5gO2TSra855LQudTkk21CprnLOgxdHih7QXwZm4mhIHMZgSV1NiMBWw51-YQi89BjVWYvcf_DLAEP46I1jhFEKvoEUbjInW4N8FP2YMjUI |
CitedBy_id | crossref_primary_10_1002_adfm_202420534 crossref_primary_10_1021_acsami_4c22814 |
Cites_doi | 10.1002/eem2.12207 10.1021/acsnano.3c06879 10.1002/aenm.202000012 10.1038/s41467-022-28959-5 10.1088/0957-4484/26/35/354003 10.1002/aenm.202303794 10.3389/fmats.2020.00263 10.1021/jp4010345 10.1149/2.0651503jes 10.1021/acsami.9b03359 10.1016/j.jpowsour.2021.230962 10.1021/acsaem.3c01109 10.1149/2.0181714jes 10.1021/acsaem.8b00295 10.1021/acsenergylett.4c01898 10.1038/s41560-022-01141-3 10.1149/1.2170462 10.1021/acsami.9b12020 10.1016/j.elecom.2006.11.008 10.1002/adfm.202306868 10.1016/j.nanoen.2020.104889 10.1002/ente.201901277 10.1016/j.ensm.2018.11.015 10.1016/j.ensm.2021.07.005 10.1016/j.materresbull.2020.111008 10.1149/2.0331811jes 10.1016/j.ensm.2022.05.009 10.1002/adma.202306683 10.1021/jp3081996 10.1002/anie.202216312 10.1126/science.aam6014 10.1021/acsenergylett.2c01433 10.1002/aenm.201901431 10.1021/jp509731y 10.1149/1.3268129 10.1002/inf2.12235 10.1149/2.015403jes 10.1039/C7TA05469F 10.1039/D1TA05405H 10.1002/aenm.202203449 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apsusc.2024.161805 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_apsusc_2024_161805 S0169433224025212 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ M24 M38 M41 NDZJH R2- RIG SSH WUQ |
ID | FETCH-LOGICAL-c306t-1f57eb03f25b3e1f87979bd5054c2b06188f67cf4c47e540fb0334991119a6f3 |
IEDL.DBID | .~1 |
ISSN | 0169-4332 |
IngestDate | Tue Jul 01 02:19:18 EDT 2025 Thu Apr 24 23:11:25 EDT 2025 Sat Dec 21 15:58:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion battery Film-forming additives Electrolyte Electrode/electrolyte interface |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-1f57eb03f25b3e1f87979bd5054c2b06188f67cf4c47e540fb0334991119a6f3 |
ParticipantIDs | crossref_primary_10_1016_j_apsusc_2024_161805 crossref_citationtrail_10_1016_j_apsusc_2024_161805 elsevier_sciencedirect_doi_10_1016_j_apsusc_2024_161805 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 2025-03-00 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied surface science |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Quach, Adhitama, Göldner, Das, Demelash, Winter, Karst, Placke, Glorius (b0150) 2023; 6 Yang, Zhao, Qin, Pan, Feng, Li, Wang, Yu, Li (b0035) 2024; 9 Tong, Song, Wan, Feng, Armand, Liu, Zhang, Zhou (b0155) 2021; 3 Zhang, Tsolakidou, Mariyappan, Tarascon, Trabesinger (b0110) 2021; 42 Oh, Kim, Lee, Kim, Shin, Lee, Hong, Lee, Kim (b0030) 2020; 132 von Aspern, Diddens, Kobayash, Börner, Stubbmann-Kazakova, Kozel, Röschenthaler, Smiatek, Winter, Cekic-Laskovic (b0170) 2019; 11 Lin, Yang, Tan, Li, Fu, Liu, Chen, Pan (b0185) 2017; 5 Dato, Edgington, Hung, Sinha, Liu, Lopez, Guo, He, Su (b0005) 2024; 14 Parida, Pahari, Jana (b0070) 2022; 521 Lee, Choi, Choi, Kim, Choi, Yoon, Cho (b0020) 2007; 9 Zhang, Wu, Li, Chen, Lei, Wang (b0145) 2022; 13 Zheng, Li, Zheng, Xing, Xu, Li (b0200) 2022; 5 Zuo, Xu, Li, Su, Liu (b0040) 2006; 9 Qian, Hu, Zou, Deng, Xu, Cao, Kang, Deng, Shi, Xu, Deng (b0090) 2019; 20 Li, Liu, Li, Guo, Li, Zhang (b0025) 2020; 7 Lan, Yang, Meng, Zhang, Hu (b0095) 2023; 13 Guo, Che, Lan, Lan, Li, Xing, Xu, Fan, Yu, Li (b0050) 2019; 11 Hall, Allen, Glazier, Ellis, Ma, Peters, Hill, Dahn (b0055) 2017; 164 Park, Park, Go, Nam, Oh, Han, Lee (b0140) 2022; 50 Jiang, Yang, Li, Zou, Yang, Zhang, Li (b0080) 2023; 33 Jankowski, Lindahl, Weidow, Wieczorek, Johansson (b0165) 2018; 1 Xia, Sinha, Chen, Dahn (b0175) 2014; 161 Lu, Chen (b0205) 2013; 117 Madec, Xia, Petibon, Nelson, Sun, Hill, Dahn (b0045) 2014; 118 Xiang, Wang, Cheng (b0135) 2020; 8 Smith, Burns, Trussler, Dahn (b0105) 2010; 157 Leggesse, Jiang (b0010) 2012; 116 Kim, Hwang, Kim, Park, Cha, Lee, Cho, Kwak, Choi (b0085) 2020; 10 Yan, Reeves, Foix, Li, Cometto, Mariyappan, Salanne, Tarascon (b0065) 2019; 9 Tu, Wu, Geng, Qu, Sun, Lai, Li, Zhang (b0195) 2021; 9 Wang, Liu, Li, Xia, Holoubek, Deng, Yu, Tian, Shan, Ong, Liu, Chen (b0130) 2020; 75 Wu, Li, Zheng, Zhang, Umesh, Zheng, Zheng, Yang (b0015) 2018; 165 Gervillié-Mouravieff, Boussard-Plédel, Huang, Leau, Blanquer, Ben Yahia, Doublet, Boles, Zhang, Adam, Tarascon (b0120) 2022; 7 Li, Li, Pei, Yan, Sun, Wu, Joubert, Chin, Koh, Yu, Perrino, Butz, Chu, Cui (b0115) 2017; 358 Wang, Liang, Wang, Wang, Song, Wang, Wang, Wei, He, Yang (b0125) 2023; 35 Li, Zhang, Lu, Li (b0060) 2023; 62 Borodin, Olguin, Spear, Leiter, Knap (b0190) 2015; 26 Yan, Weng, Fu, Zhang, Chen, Zheng, Zhang, Zhou, Yan, Wang, Tang, Luo, Mao, Zheng, Wang, Qiao, Yang, Sun (b0075) 2022; 7 Kim, Dahn (b0180) 2015; 162 Dachraoui, Pauer, Battaglia, Erni (b0100) 2023; 17 Zheng (10.1016/j.apsusc.2024.161805_b0200) 2022; 5 Leggesse (10.1016/j.apsusc.2024.161805_b0010) 2012; 116 Zhang (10.1016/j.apsusc.2024.161805_b0145) 2022; 13 Borodin (10.1016/j.apsusc.2024.161805_b0190) 2015; 26 Quach (10.1016/j.apsusc.2024.161805_b0150) 2023; 6 Wu (10.1016/j.apsusc.2024.161805_b0015) 2018; 165 Kim (10.1016/j.apsusc.2024.161805_b0085) 2020; 10 Jankowski (10.1016/j.apsusc.2024.161805_b0165) 2018; 1 Xiang (10.1016/j.apsusc.2024.161805_b0135) 2020; 8 Oh (10.1016/j.apsusc.2024.161805_b0030) 2020; 132 Yang (10.1016/j.apsusc.2024.161805_b0035) 2024; 9 Gervillié-Mouravieff (10.1016/j.apsusc.2024.161805_b0120) 2022; 7 Madec (10.1016/j.apsusc.2024.161805_b0045) 2014; 118 Lee (10.1016/j.apsusc.2024.161805_b0020) 2007; 9 Li (10.1016/j.apsusc.2024.161805_b0025) 2020; 7 Lin (10.1016/j.apsusc.2024.161805_b0185) 2017; 5 Zuo (10.1016/j.apsusc.2024.161805_b0040) 2006; 9 Qian (10.1016/j.apsusc.2024.161805_b0090) 2019; 20 Yan (10.1016/j.apsusc.2024.161805_b0075) 2022; 7 Jiang (10.1016/j.apsusc.2024.161805_b0080) 2023; 33 Wang (10.1016/j.apsusc.2024.161805_b0125) 2023; 35 Xia (10.1016/j.apsusc.2024.161805_b0175) 2014; 161 Yan (10.1016/j.apsusc.2024.161805_b0065) 2019; 9 Wang (10.1016/j.apsusc.2024.161805_b0130) 2020; 75 Li (10.1016/j.apsusc.2024.161805_b0060) 2023; 62 Parida (10.1016/j.apsusc.2024.161805_b0070) 2022; 521 Zhang (10.1016/j.apsusc.2024.161805_b0110) 2021; 42 Kim (10.1016/j.apsusc.2024.161805_b0180) 2015; 162 Guo (10.1016/j.apsusc.2024.161805_b0050) 2019; 11 Li (10.1016/j.apsusc.2024.161805_b0115) 2017; 358 Lu (10.1016/j.apsusc.2024.161805_b0205) 2013; 117 Tong (10.1016/j.apsusc.2024.161805_b0155) 2021; 3 Smith (10.1016/j.apsusc.2024.161805_b0105) 2010; 157 Dachraoui (10.1016/j.apsusc.2024.161805_b0100) 2023; 17 Park (10.1016/j.apsusc.2024.161805_b0140) 2022; 50 Hall (10.1016/j.apsusc.2024.161805_b0055) 2017; 164 Lan (10.1016/j.apsusc.2024.161805_b0095) 2023; 13 Dato (10.1016/j.apsusc.2024.161805_b0005) 2024; 14 Tu (10.1016/j.apsusc.2024.161805_b0195) 2021; 9 von Aspern (10.1016/j.apsusc.2024.161805_b0170) 2019; 11 |
References_xml | – volume: 9 start-page: 18306 year: 2021 end-page: 18312 ident: b0195 article-title: Oligomerized imide and thioimide organic cathode materials via a H-transfer mechanism for high capacity lithium ion batteries publication-title: Journal of Materials Chemistry A – volume: 116 start-page: 11025 year: 2012 end-page: 11033 ident: b0010 article-title: Theoretical Study of the Reductive Decomposition of Ethylene Sulfite: A Film-Forming Electrolyte Additive in Lithium Ion Batteries publication-title: The Journal of Physical Chemistry. A – volume: 132 year: 2020 ident: b0030 article-title: Effects of vinylene carbonate and 1,3-propane sultone on high-rate cycle performance and surface properties of high-nickel layered oxide cathodes publication-title: Materials Research Bulletin – volume: 7 start-page: 1157 year: 2022 end-page: 1169 ident: b0120 article-title: Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries publication-title: Nature Energy – volume: 1 start-page: 2582 year: 2018 end-page: 2591 ident: b0165 article-title: Impact of Sulfur-Containing Additives on Lithium-Ion Battery Performance: From Computational Predictions to Full-Cell Assessments publication-title: Acs Applied Energy Materials – volume: 9 start-page: 1901431 year: 2019 ident: b0065 article-title: A New Electrolyte Formulation for Securing High Temperature Cycling and Storage Performances of Na-Ion Batteries publication-title: Advanced Energy Materials – volume: 5 start-page: 19364 year: 2017 end-page: 19370 ident: b0185 article-title: Effect of sulfur-containing additives on the formation of a solid-electrolyte interphase evaluated byin situ AFM and ex situ characterizations publication-title: Journal of Materials Chemistry A – volume: 9 start-page: 801 year: 2007 end-page: 806 ident: b0020 article-title: SEI layer-forming additives for LiNi publication-title: Electrochemistry Communications – volume: 33 start-page: 2306868 year: 2023 ident: b0080 article-title: Synergistic Additives Enabling Stable Cycling of Ether Electrolyte in 4.4 V Ni-Rich/Li Metal Batteries publication-title: Advanced Functional Materials – volume: 11 start-page: 16605 year: 2019 end-page: 16618 ident: b0170 article-title: Fluorinated Cyclic Phosphorus(III)-Based Electrolyte Additives for High Voltage Application in Lithium-Ion Batteries: Impact of Structure-Reactivity Relationships on CEI Formation and Cell Performance publication-title: ACS Applied Materials & Interfaces – volume: 5 start-page: 906 year: 2022 end-page: 911 ident: b0200 article-title: Sulfolane-Graphite Incompatibility and Its Mitigation in Li-ion Batteries publication-title: Energy & Environmental Materials – volume: 35 start-page: 2306683 year: 2023 ident: b0125 article-title: Can We See SEI Directly by Naked Eyes? publication-title: Advanced Materials – volume: 6 start-page: 9837 year: 2023 end-page: 9850 ident: b0150 article-title: Molecular Design of Film-Forming Additives for Lithium-Ion Batteries: Impact of Molecular Substrate Parameters on Cell Performance publication-title: Acs Applied Energy Materials – volume: 118 start-page: 29608 year: 2014 end-page: 29622 ident: b0045 article-title: Effect of Sulfate Electrolyte Additives on LiNi publication-title: Journal of Physical Chemistry C – volume: 75 year: 2020 ident: b0130 article-title: A long-lasting dual-function electrolyte additive for stable lithium metal batteries publication-title: Nano Energy – volume: 521 year: 2022 ident: b0070 article-title: Introducing the potency of new boron-based heterocyclic anion receptor additives to regulate the solvation and transport properties of Li-ions in ethylene carbonate electrolyte of Li-Ion battery: An atomistic molecular dynamics study publication-title: Journal of Power Sources – volume: 3 start-page: 1364 year: 2021 end-page: 1392 ident: b0155 article-title: Sulfur-containing compounds as electrolyte additives for lithium-ion batteries publication-title: InfoMat – volume: 11 start-page: 38285 year: 2019 end-page: 38293 ident: b0050 article-title: Tailoring Low-Temperature Performance of a Lithium-Ion Battery via Rational Designing Interphase on an Anode publication-title: ACS Applied Materials & Interfaces – volume: 358 start-page: 506 year: 2017 end-page: 510 ident: b0115 article-title: Atomic structure of sensitive battery materials and Interfaces revealed by cryo-electron microscopy publication-title: Science – volume: 14 start-page: 2303794 year: 2024 ident: b0005 article-title: Sulfur solutions: advancing high voltage and high energy lithium batteries with organosulfur electrolytes publication-title: Advanced Energy Materials – volume: 161 start-page: A264 year: 2014 end-page: A274 ident: b0175 article-title: A Comparative Study of a Family of Sulfate Electrolyte Additives publication-title: Journal of the Electrochemical Society – volume: 9 start-page: A196 year: 2006 end-page: A199 ident: b0040 article-title: Electrochemical reduction of 1,3-propane sultone on graphite electrodes and its application in Li-ion batteries publication-title: Electrochemical and Solid State Letters – volume: 62 start-page: e202216312 year: 2023 ident: b0060 article-title: Low Concentration Sulfolane-Based Electrolyte for High Voltage Lithium Metal Batteries publication-title: Angewandte Chemie-International Edition – volume: 162 start-page: A437 year: 2015 end-page: A447 ident: b0180 article-title: The Effect of Some Nitriles as Electrolyte Additives in Li-Ion Batteries publication-title: Journal of the Electrochemical Society – volume: 7 start-page: 2677 year: 2022 end-page: 2684 ident: b0075 article-title: Tailoring Electrolyte Dehydrogenation with Trace Additives: Stabilizing the LiCoO publication-title: ACS Energy Letters – volume: 13 start-page: 1297 year: 2022 ident: b0145 article-title: A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries publication-title: Nature Communications – volume: 9 start-page: 4475 year: 2024 end-page: 4484 ident: b0035 article-title: Chemically Active Sulfonate Additive with Transition Metal and Oxygen Dual-Site Deactivation for High-Voltage LiCoO publication-title: ACS Energy Letters – volume: 26 year: 2015 ident: b0190 article-title: Towards high throughput screening of electrochemical stability of battery electrolytes publication-title: Nanotechnology – volume: 157 start-page: A196 year: 2010 end-page: A202 ident: b0105 article-title: Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries publication-title: Journal of the Electrochemical Society – volume: 164 start-page: A3445 year: 2017 end-page: A3453 ident: b0055 article-title: The Solid-Electrolyte Interphase Formation Reactions of Ethylene Sulfate and Its Synergistic Chemistry with Prop-1-ene-1,3-Sultone in Lithium-Ion Cells publication-title: Journal of the Electrochemical Society – volume: 8 start-page: 1901277 year: 2020 ident: b0135 article-title: Methyl 2,2-Difluoro-2-(Fluorosulfonyl) Acetate as a Novel Electrolyte Additive for High-Voltage LiCoO publication-title: Energy Technology – volume: 50 start-page: 75 year: 2022 end-page: 85 ident: b0140 article-title: Malonatophosphate as an SEI- and CEI-forming additive that outperforms malonatoborate for thermally robust lithium-ion batteries publication-title: Energy Storage Materials – volume: 42 start-page: 12 year: 2021 end-page: 21 ident: b0110 article-title: Unraveling gas evolution in sodium batteries by online electrochemical mass spectrometry publication-title: Energy Storage Materials – volume: 10 start-page: 2000012 year: 2020 ident: b0085 article-title: Cyclic Aminosilane-Based Additive Ensuring Stable Electrode-Electrolyte Interfaces in Li-Ion Batteries publication-title: Advanced Energy Materials – volume: 17 start-page: 20434 year: 2023 end-page: 20444 ident: b0100 article-title: Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batteries publication-title: ACS Nano – volume: 165 start-page: A2792 year: 2018 end-page: A2800 ident: b0015 article-title: The Roles of Sulfur-Containing Additives and Their Working Mechanism on the Temperature-Dependent Performances of Li-Ion Batteries publication-title: Journal of the Electrochemical Society – volume: 117 start-page: 3100 year: 2013 end-page: 3108 ident: b0205 article-title: Bond Order Analysis Based on the Laplacian of Electron Density in Fuzzy Overlap Space publication-title: The Journal of Physical Chemistry. A – volume: 13 start-page: 2203449 year: 2023 ident: b0095 article-title: A Multifunctional Electrolyte Additive With Solvation Structure Regulation and Electrode/Electrolyte Interface Manipulation Enabling High-Performance Li-Ion Batteries in Wide Temperature Range publication-title: Advanced Energy Materials – volume: 20 start-page: 208 year: 2019 end-page: 215 ident: b0090 article-title: How electrolyte additives work in Li-ion batteries publication-title: Energy Storage Materials – volume: 7 start-page: 263 year: 2020 ident: b0025 article-title: Improving Cyclic Stability of LiMn publication-title: Frontiers in Materials – volume: 5 start-page: 906 issue: 3 year: 2022 ident: 10.1016/j.apsusc.2024.161805_b0200 article-title: Sulfolane-Graphite Incompatibility and Its Mitigation in Li-ion Batteries publication-title: Energy & Environmental Materials doi: 10.1002/eem2.12207 – volume: 17 start-page: 20434 issue: 20 year: 2023 ident: 10.1016/j.apsusc.2024.161805_b0100 article-title: Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batteries publication-title: ACS Nano doi: 10.1021/acsnano.3c06879 – volume: 10 start-page: 2000012 issue: 15 year: 2020 ident: 10.1016/j.apsusc.2024.161805_b0085 article-title: Cyclic Aminosilane-Based Additive Ensuring Stable Electrode-Electrolyte Interfaces in Li-Ion Batteries publication-title: Advanced Energy Materials doi: 10.1002/aenm.202000012 – volume: 13 start-page: 1297 issue: 1 year: 2022 ident: 10.1016/j.apsusc.2024.161805_b0145 article-title: A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries publication-title: Nature Communications doi: 10.1038/s41467-022-28959-5 – volume: 26 issue: 35 year: 2015 ident: 10.1016/j.apsusc.2024.161805_b0190 article-title: Towards high throughput screening of electrochemical stability of battery electrolytes publication-title: Nanotechnology doi: 10.1088/0957-4484/26/35/354003 – volume: 14 start-page: 2303794 issue: 13 year: 2024 ident: 10.1016/j.apsusc.2024.161805_b0005 article-title: Sulfur solutions: advancing high voltage and high energy lithium batteries with organosulfur electrolytes publication-title: Advanced Energy Materials doi: 10.1002/aenm.202303794 – volume: 7 start-page: 263 year: 2020 ident: 10.1016/j.apsusc.2024.161805_b0025 article-title: Improving Cyclic Stability of LiMn2O4/Graphite Battery Under Elevated Temperature by Using 1,3-Propane Sultone as Electrolyte Additive publication-title: Frontiers in Materials doi: 10.3389/fmats.2020.00263 – volume: 117 start-page: 3100 issue: 14 year: 2013 ident: 10.1016/j.apsusc.2024.161805_b0205 article-title: Bond Order Analysis Based on the Laplacian of Electron Density in Fuzzy Overlap Space publication-title: The Journal of Physical Chemistry. A doi: 10.1021/jp4010345 – volume: 162 start-page: A437 issue: 3 year: 2015 ident: 10.1016/j.apsusc.2024.161805_b0180 article-title: The Effect of Some Nitriles as Electrolyte Additives in Li-Ion Batteries publication-title: Journal of the Electrochemical Society doi: 10.1149/2.0651503jes – volume: 11 start-page: 16605 issue: 18 year: 2019 ident: 10.1016/j.apsusc.2024.161805_b0170 article-title: Fluorinated Cyclic Phosphorus(III)-Based Electrolyte Additives for High Voltage Application in Lithium-Ion Batteries: Impact of Structure-Reactivity Relationships on CEI Formation and Cell Performance publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b03359 – volume: 521 year: 2022 ident: 10.1016/j.apsusc.2024.161805_b0070 article-title: Introducing the potency of new boron-based heterocyclic anion receptor additives to regulate the solvation and transport properties of Li-ions in ethylene carbonate electrolyte of Li-Ion battery: An atomistic molecular dynamics study publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2021.230962 – volume: 6 start-page: 9837 issue: 19 year: 2023 ident: 10.1016/j.apsusc.2024.161805_b0150 article-title: Molecular Design of Film-Forming Additives for Lithium-Ion Batteries: Impact of Molecular Substrate Parameters on Cell Performance publication-title: Acs Applied Energy Materials doi: 10.1021/acsaem.3c01109 – volume: 164 start-page: A3445 issue: 14 year: 2017 ident: 10.1016/j.apsusc.2024.161805_b0055 article-title: The Solid-Electrolyte Interphase Formation Reactions of Ethylene Sulfate and Its Synergistic Chemistry with Prop-1-ene-1,3-Sultone in Lithium-Ion Cells publication-title: Journal of the Electrochemical Society doi: 10.1149/2.0181714jes – volume: 1 start-page: 2582 issue: 6 year: 2018 ident: 10.1016/j.apsusc.2024.161805_b0165 article-title: Impact of Sulfur-Containing Additives on Lithium-Ion Battery Performance: From Computational Predictions to Full-Cell Assessments publication-title: Acs Applied Energy Materials doi: 10.1021/acsaem.8b00295 – volume: 9 start-page: 4475 issue: 9 year: 2024 ident: 10.1016/j.apsusc.2024.161805_b0035 article-title: Chemically Active Sulfonate Additive with Transition Metal and Oxygen Dual-Site Deactivation for High-Voltage LiCoO2 publication-title: ACS Energy Letters doi: 10.1021/acsenergylett.4c01898 – volume: 7 start-page: 1157 issue: 12 year: 2022 ident: 10.1016/j.apsusc.2024.161805_b0120 article-title: Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries publication-title: Nature Energy doi: 10.1038/s41560-022-01141-3 – volume: 9 start-page: A196 issue: 4 year: 2006 ident: 10.1016/j.apsusc.2024.161805_b0040 article-title: Electrochemical reduction of 1,3-propane sultone on graphite electrodes and its application in Li-ion batteries publication-title: Electrochemical and Solid State Letters doi: 10.1149/1.2170462 – volume: 11 start-page: 38285 issue: 41 year: 2019 ident: 10.1016/j.apsusc.2024.161805_b0050 article-title: Tailoring Low-Temperature Performance of a Lithium-Ion Battery via Rational Designing Interphase on an Anode publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b12020 – volume: 9 start-page: 801 issue: 4 year: 2007 ident: 10.1016/j.apsusc.2024.161805_b0020 article-title: SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5 V Li-ion batteries publication-title: Electrochemistry Communications doi: 10.1016/j.elecom.2006.11.008 – volume: 33 start-page: 2306868 issue: 51 year: 2023 ident: 10.1016/j.apsusc.2024.161805_b0080 article-title: Synergistic Additives Enabling Stable Cycling of Ether Electrolyte in 4.4 V Ni-Rich/Li Metal Batteries publication-title: Advanced Functional Materials doi: 10.1002/adfm.202306868 – volume: 75 year: 2020 ident: 10.1016/j.apsusc.2024.161805_b0130 article-title: A long-lasting dual-function electrolyte additive for stable lithium metal batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104889 – volume: 8 start-page: 1901277 issue: 5 year: 2020 ident: 10.1016/j.apsusc.2024.161805_b0135 article-title: Methyl 2,2-Difluoro-2-(Fluorosulfonyl) Acetate as a Novel Electrolyte Additive for High-Voltage LiCoO2/Graphite Pouch Li-Ion Cells publication-title: Energy Technology doi: 10.1002/ente.201901277 – volume: 20 start-page: 208 year: 2019 ident: 10.1016/j.apsusc.2024.161805_b0090 article-title: How electrolyte additives work in Li-ion batteries publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2018.11.015 – volume: 42 start-page: 12 year: 2021 ident: 10.1016/j.apsusc.2024.161805_b0110 article-title: Unraveling gas evolution in sodium batteries by online electrochemical mass spectrometry publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2021.07.005 – volume: 132 year: 2020 ident: 10.1016/j.apsusc.2024.161805_b0030 article-title: Effects of vinylene carbonate and 1,3-propane sultone on high-rate cycle performance and surface properties of high-nickel layered oxide cathodes publication-title: Materials Research Bulletin doi: 10.1016/j.materresbull.2020.111008 – volume: 165 start-page: A2792 issue: 11 year: 2018 ident: 10.1016/j.apsusc.2024.161805_b0015 article-title: The Roles of Sulfur-Containing Additives and Their Working Mechanism on the Temperature-Dependent Performances of Li-Ion Batteries publication-title: Journal of the Electrochemical Society doi: 10.1149/2.0331811jes – volume: 50 start-page: 75 year: 2022 ident: 10.1016/j.apsusc.2024.161805_b0140 article-title: Malonatophosphate as an SEI- and CEI-forming additive that outperforms malonatoborate for thermally robust lithium-ion batteries publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2022.05.009 – volume: 35 start-page: 2306683 issue: 51 year: 2023 ident: 10.1016/j.apsusc.2024.161805_b0125 article-title: Can We See SEI Directly by Naked Eyes? publication-title: Advanced Materials doi: 10.1002/adma.202306683 – volume: 116 start-page: 11025 issue: 45 year: 2012 ident: 10.1016/j.apsusc.2024.161805_b0010 article-title: Theoretical Study of the Reductive Decomposition of Ethylene Sulfite: A Film-Forming Electrolyte Additive in Lithium Ion Batteries publication-title: The Journal of Physical Chemistry. A doi: 10.1021/jp3081996 – volume: 62 start-page: e202216312 issue: 10 year: 2023 ident: 10.1016/j.apsusc.2024.161805_b0060 article-title: Low Concentration Sulfolane-Based Electrolyte for High Voltage Lithium Metal Batteries publication-title: Angewandte Chemie-International Edition doi: 10.1002/anie.202216312 – volume: 358 start-page: 506 issue: 6362 year: 2017 ident: 10.1016/j.apsusc.2024.161805_b0115 article-title: Atomic structure of sensitive battery materials and Interfaces revealed by cryo-electron microscopy publication-title: Science doi: 10.1126/science.aam6014 – volume: 7 start-page: 2677 issue: 8 year: 2022 ident: 10.1016/j.apsusc.2024.161805_b0075 article-title: Tailoring Electrolyte Dehydrogenation with Trace Additives: Stabilizing the LiCoO2 Cathode beyond 4.6 V publication-title: ACS Energy Letters doi: 10.1021/acsenergylett.2c01433 – volume: 9 start-page: 1901431 issue: 41 year: 2019 ident: 10.1016/j.apsusc.2024.161805_b0065 article-title: A New Electrolyte Formulation for Securing High Temperature Cycling and Storage Performances of Na-Ion Batteries publication-title: Advanced Energy Materials doi: 10.1002/aenm.201901431 – volume: 118 start-page: 29608 issue: 51 year: 2014 ident: 10.1016/j.apsusc.2024.161805_b0045 article-title: Effect of Sulfate Electrolyte Additives on LiNi1/3Mn1/3Co1/3O2/Graphite Pouch Cell Lifetime: Correlation between XPS Surface Studies and Electrochemical Test Results publication-title: Journal of Physical Chemistry C doi: 10.1021/jp509731y – volume: 157 start-page: A196 issue: 2 year: 2010 ident: 10.1016/j.apsusc.2024.161805_b0105 article-title: Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries publication-title: Journal of the Electrochemical Society doi: 10.1149/1.3268129 – volume: 3 start-page: 1364 issue: 12 year: 2021 ident: 10.1016/j.apsusc.2024.161805_b0155 article-title: Sulfur-containing compounds as electrolyte additives for lithium-ion batteries publication-title: InfoMat doi: 10.1002/inf2.12235 – volume: 161 start-page: A264 issue: 3 year: 2014 ident: 10.1016/j.apsusc.2024.161805_b0175 article-title: A Comparative Study of a Family of Sulfate Electrolyte Additives publication-title: Journal of the Electrochemical Society doi: 10.1149/2.015403jes – volume: 5 start-page: 19364 issue: 36 year: 2017 ident: 10.1016/j.apsusc.2024.161805_b0185 article-title: Effect of sulfur-containing additives on the formation of a solid-electrolyte interphase evaluated byin situ AFM and ex situ characterizations publication-title: Journal of Materials Chemistry A doi: 10.1039/C7TA05469F – volume: 9 start-page: 18306 issue: 34 year: 2021 ident: 10.1016/j.apsusc.2024.161805_b0195 article-title: Oligomerized imide and thioimide organic cathode materials via a H-transfer mechanism for high capacity lithium ion batteries publication-title: Journal of Materials Chemistry A doi: 10.1039/D1TA05405H – volume: 13 start-page: 2203449 issue: 16 year: 2023 ident: 10.1016/j.apsusc.2024.161805_b0095 article-title: A Multifunctional Electrolyte Additive With Solvation Structure Regulation and Electrode/Electrolyte Interface Manipulation Enabling High-Performance Li-Ion Batteries in Wide Temperature Range publication-title: Advanced Energy Materials doi: 10.1002/aenm.202203449 |
SSID | ssj0012873 |
Score | 2.4785607 |
Snippet | An “effective interfacial functional group (EIFG)”, sulfonate (−O-SO2-), was discovered in the electrode/electrolyte interphase (EEI) film of cells containing... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 161805 |
SubjectTerms | Electrode/electrolyte interface Electrolyte Film-forming additives Lithium-ion battery |
Title | How sulfur-containing additives stabilize Electrode/Electrolyte interface of high voltage Graphite/LiCoO2 battery |
URI | https://dx.doi.org/10.1016/j.apsusc.2024.161805 |
Volume | 684 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF7EXtpD6ZPah-yh15iYrMnuUUSbvuyhFryF7GYXLGKsRoo99Ld3Jg-xUFroLYRZCJPhmxn2m28IufahJOCJgOAVxoMGRbuWgLrZ4ob7TLcDzTnOOz8O_fCF3Y074xrpVbMwSKsssb_A9Bytyzd26U17PpnYz6gjgupbeD-AE6g4wc4CjPLW54bmAfBb3DKDMU4HudX4XM7xiqETXaKQoctaqByPS-x-Sk9bKWdwQPbLWpF2i885JDU9OyJ7WwqCx-QtTN_pcjU1q4WFrPNi3wNFlhDi2JJC8Yf01w9N-8XCm0Tb5dN0nWmKchELEytNU0NRu5gCXmUAMvQGpayhILUfJr30yaUyV-Jcn5DRoD_qhVa5RcFS0A5kVtt0Ai0dz7gd6em24YEIhEyg8mHKlZDOOTd-oAxTLNBQvxmw9aAPAhAUsW-8U1KfpTN9Rqgwji_AOuloyZSUMTRrzDeKxbHDhRM3iFf5LlKlwjguuphGFZXsNSo8HqHHo8LjDWJtTs0LhY0_7IPqt0TfIiWCJPDryfN_n7wguy7u_c25Z5ekni1W-gqKkUw282hrkp3u7X04_AJYkd-n |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB20HtSD-Inf7sFrTJpskt1jKdWotR6s0FvIprtQKU1tU0R_vTP5KAqi4C2EXQiT5c0b9s0bgMsAKYEYSjy80nhYoGjXksibLWFEwHUz1EJQv_NDL4ie-d3AH6xAu-6FIVllhf0lphdoXb2xq2ja09HIfiIfEXLfovsB6kBdhTVyp_IbsNa6vY96y8sELAq80uJbUoOQW3fQFTKvBIvROXkZuvyKzONpjt1PGepL1rnehq2KLrJW-UU7sKInu7D5xURwD16j7I3NF2OzmFkkPC9HPjASChGUzRnyP1LAfmjWKWfeDLVdPY3fc83IMWJmklSzzDCyL2YIWTniDLshN2vkpHZ31M4eXaYKM873fehfd_rtyKoGKVgpVgS51TR-qJXjGddXnm4aEcpQqiGSH566CjO6ECYIU8NTHmqkcAbXelgKIQ7KJDDeATQm2UQfApPGCSSuHvpa8VSpBOs1HpiUJ4kjpJMcgVfHLk4rk3GadTGOazXZS1xGPKaIx2XEj8Ba7pqWJht_rA_r3xJ_Oywx5oFfdx7_e-cFrEf9h27cve3dn8CGS2OACynaKTTy2UKfITfJ1Xl19j4BB0jiWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+sulfur-containing+additives+stabilize+Electrode%2FElectrolyte+interface+of+high+voltage+Graphite%2FLiCoO2+battery&rft.jtitle=Applied+surface+science&rft.au=Wang%2C+Siwu&rft.au=Guo%2C+Huajun&rft.au=Li%2C+Xinhai&rft.au=Wang%2C+Zhixing&rft.date=2025-03-01&rft.issn=0169-4332&rft.volume=684&rft.spage=161805&rft_id=info:doi/10.1016%2Fj.apsusc.2024.161805&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apsusc_2024_161805 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |