How sulfur-containing additives stabilize Electrode/Electrolyte interface of high voltage Graphite/LiCoO2 battery

An “effective interfacial functional group (EIFG)”, sulfonate (−O-SO2-), was discovered in the electrode/electrolyte interphase (EEI) film of cells containing PS or DTD added electrolytes, which could stabilize the interphase and inhibit the continued decomposition of the electrolyte, thereby improv...

Full description

Saved in:
Bibliographic Details
Published inApplied surface science Vol. 684; p. 161805
Main Authors Wang, Siwu, Guo, Huajun, Li, Xinhai, Wang, Zhixing, Peng, Wenjie, Wang, Jiexi, Duan, Hui, Li, Guangchao, Yan, Guochun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An “effective interfacial functional group (EIFG)”, sulfonate (−O-SO2-), was discovered in the electrode/electrolyte interphase (EEI) film of cells containing PS or DTD added electrolytes, which could stabilize the interphase and inhibit the continued decomposition of the electrolyte, thereby improving the electrochemical performance of 4.48 V graphite/LiCoO2 full cells. [Display omitted] •“Effective Interfacial Functional Group (EIFG)” was discovered in EEI film.•The EIFG-containing species could stabilize the interface.•EIFG does not rely on the original functional groups of additives. Film-forming additives have been studied as one of efficient choices to improve battery performance. However, the relationship among film-forming additives, interphase film and battery performance remain mysterious. A comparative study was conducted on the effects of four sulfur-containing cyclic additives, sulfolane (Sul), 1,2-Ethylene Sulfite (ES), 1,3-Propane sultone (PS), and 1,3,2-Dioxathiolan-2,2-oxide (DTD), on the properties of interphase film. Through time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) detection, an “effective interfacial functional group (EIFG)”, sulfonate (−O−SO2−), was discovered in the electrode/electrolyte interphase (EEI) film of cells containing PS or DTD added electrolytes. It can stabilize the interphase and inhibit the continued decomposition of the electrolyte, thereby improving the electrochemical performance of 4.48 V graphite/LiCoO2 full-cell and 4.55 V Li/LiCoO2 half-cell. The capacity retention of the full-cell after 200 cycles exceeds 87 %, and that of half-cell after 300 cycles is nearly 90 %. Based on differential electrochemical mass spectra (DEMS), XPS detection during formation process and theoretical calculation results, it can be revealed that the similar EIFG-containing components can be obtained through different reaction pathways even with additives containing different functional groups. This provides an important basis for the design of new additives/electrolytes.
AbstractList An “effective interfacial functional group (EIFG)”, sulfonate (−O-SO2-), was discovered in the electrode/electrolyte interphase (EEI) film of cells containing PS or DTD added electrolytes, which could stabilize the interphase and inhibit the continued decomposition of the electrolyte, thereby improving the electrochemical performance of 4.48 V graphite/LiCoO2 full cells. [Display omitted] •“Effective Interfacial Functional Group (EIFG)” was discovered in EEI film.•The EIFG-containing species could stabilize the interface.•EIFG does not rely on the original functional groups of additives. Film-forming additives have been studied as one of efficient choices to improve battery performance. However, the relationship among film-forming additives, interphase film and battery performance remain mysterious. A comparative study was conducted on the effects of four sulfur-containing cyclic additives, sulfolane (Sul), 1,2-Ethylene Sulfite (ES), 1,3-Propane sultone (PS), and 1,3,2-Dioxathiolan-2,2-oxide (DTD), on the properties of interphase film. Through time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) detection, an “effective interfacial functional group (EIFG)”, sulfonate (−O−SO2−), was discovered in the electrode/electrolyte interphase (EEI) film of cells containing PS or DTD added electrolytes. It can stabilize the interphase and inhibit the continued decomposition of the electrolyte, thereby improving the electrochemical performance of 4.48 V graphite/LiCoO2 full-cell and 4.55 V Li/LiCoO2 half-cell. The capacity retention of the full-cell after 200 cycles exceeds 87 %, and that of half-cell after 300 cycles is nearly 90 %. Based on differential electrochemical mass spectra (DEMS), XPS detection during formation process and theoretical calculation results, it can be revealed that the similar EIFG-containing components can be obtained through different reaction pathways even with additives containing different functional groups. This provides an important basis for the design of new additives/electrolytes.
ArticleNumber 161805
Author Peng, Wenjie
Li, Guangchao
Guo, Huajun
Wang, Zhixing
Yan, Guochun
Li, Xinhai
Wang, Siwu
Wang, Jiexi
Duan, Hui
Author_xml – sequence: 1
  givenname: Siwu
  surname: Wang
  fullname: Wang, Siwu
  organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 2
  givenname: Huajun
  surname: Guo
  fullname: Guo, Huajun
  organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 3
  givenname: Xinhai
  surname: Li
  fullname: Li, Xinhai
  organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 4
  givenname: Zhixing
  surname: Wang
  fullname: Wang, Zhixing
  organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 5
  givenname: Wenjie
  surname: Peng
  fullname: Peng, Wenjie
  organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 6
  givenname: Jiexi
  surname: Wang
  fullname: Wang, Jiexi
  organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 7
  givenname: Hui
  surname: Duan
  fullname: Duan, Hui
  organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 8
  givenname: Guangchao
  surname: Li
  fullname: Li, Guangchao
  organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 9
  givenname: Guochun
  surname: Yan
  fullname: Yan, Guochun
  email: happyygc@csu.edu.cn
  organization: School of Metallurgy and Environment, Central South University, Changsha 410083 China
BookMark eNqFkE1rAjEQhnOwULX9Bz3kD-ya7Pf2UChitSB48R6y2YmObDc2iRb76xtZTz20pxmY93lhngkZ9aYHQp44iznjxewQy6M7ORUnLMliXvCK5SMyDqc6ytI0uScT5w6M8aQq0zH5XJkv6k6dPtlImd5L7LHfUdm26PEMjjovG-zwG-iiA-WtaWF227qLB4q9B6ulAmo03eNuT8-m83IHdGnlcY8eZmucm01CG-lD9PJA7rTsHDze5pRs3xbb-Spab5bv89d1pFJW-IjrvISGpTrJmxS4rsq6rJs2Z3mmkoaFvypdlEpnKishz5gO2TSra855LQudTkk21CprnLOgxdHih7QXwZm4mhIHMZgSV1NiMBWw51-YQi89BjVWYvcf_DLAEP46I1jhFEKvoEUbjInW4N8FP2YMjUI
CitedBy_id crossref_primary_10_1002_adfm_202420534
crossref_primary_10_1021_acsami_4c22814
Cites_doi 10.1002/eem2.12207
10.1021/acsnano.3c06879
10.1002/aenm.202000012
10.1038/s41467-022-28959-5
10.1088/0957-4484/26/35/354003
10.1002/aenm.202303794
10.3389/fmats.2020.00263
10.1021/jp4010345
10.1149/2.0651503jes
10.1021/acsami.9b03359
10.1016/j.jpowsour.2021.230962
10.1021/acsaem.3c01109
10.1149/2.0181714jes
10.1021/acsaem.8b00295
10.1021/acsenergylett.4c01898
10.1038/s41560-022-01141-3
10.1149/1.2170462
10.1021/acsami.9b12020
10.1016/j.elecom.2006.11.008
10.1002/adfm.202306868
10.1016/j.nanoen.2020.104889
10.1002/ente.201901277
10.1016/j.ensm.2018.11.015
10.1016/j.ensm.2021.07.005
10.1016/j.materresbull.2020.111008
10.1149/2.0331811jes
10.1016/j.ensm.2022.05.009
10.1002/adma.202306683
10.1021/jp3081996
10.1002/anie.202216312
10.1126/science.aam6014
10.1021/acsenergylett.2c01433
10.1002/aenm.201901431
10.1021/jp509731y
10.1149/1.3268129
10.1002/inf2.12235
10.1149/2.015403jes
10.1039/C7TA05469F
10.1039/D1TA05405H
10.1002/aenm.202203449
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apsusc.2024.161805
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_apsusc_2024_161805
S0169433224025212
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
M24
M38
M41
NDZJH
R2-
RIG
SSH
WUQ
ID FETCH-LOGICAL-c306t-1f57eb03f25b3e1f87979bd5054c2b06188f67cf4c47e540fb0334991119a6f3
IEDL.DBID .~1
ISSN 0169-4332
IngestDate Tue Jul 01 02:19:18 EDT 2025
Thu Apr 24 23:11:25 EDT 2025
Sat Dec 21 15:58:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Film-forming additives
Electrolyte
Electrode/electrolyte interface
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-1f57eb03f25b3e1f87979bd5054c2b06188f67cf4c47e540fb0334991119a6f3
ParticipantIDs crossref_primary_10_1016_j_apsusc_2024_161805
crossref_citationtrail_10_1016_j_apsusc_2024_161805
elsevier_sciencedirect_doi_10_1016_j_apsusc_2024_161805
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied surface science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Quach, Adhitama, Göldner, Das, Demelash, Winter, Karst, Placke, Glorius (b0150) 2023; 6
Yang, Zhao, Qin, Pan, Feng, Li, Wang, Yu, Li (b0035) 2024; 9
Tong, Song, Wan, Feng, Armand, Liu, Zhang, Zhou (b0155) 2021; 3
Zhang, Tsolakidou, Mariyappan, Tarascon, Trabesinger (b0110) 2021; 42
Oh, Kim, Lee, Kim, Shin, Lee, Hong, Lee, Kim (b0030) 2020; 132
von Aspern, Diddens, Kobayash, Börner, Stubbmann-Kazakova, Kozel, Röschenthaler, Smiatek, Winter, Cekic-Laskovic (b0170) 2019; 11
Lin, Yang, Tan, Li, Fu, Liu, Chen, Pan (b0185) 2017; 5
Dato, Edgington, Hung, Sinha, Liu, Lopez, Guo, He, Su (b0005) 2024; 14
Parida, Pahari, Jana (b0070) 2022; 521
Lee, Choi, Choi, Kim, Choi, Yoon, Cho (b0020) 2007; 9
Zhang, Wu, Li, Chen, Lei, Wang (b0145) 2022; 13
Zheng, Li, Zheng, Xing, Xu, Li (b0200) 2022; 5
Zuo, Xu, Li, Su, Liu (b0040) 2006; 9
Qian, Hu, Zou, Deng, Xu, Cao, Kang, Deng, Shi, Xu, Deng (b0090) 2019; 20
Li, Liu, Li, Guo, Li, Zhang (b0025) 2020; 7
Lan, Yang, Meng, Zhang, Hu (b0095) 2023; 13
Guo, Che, Lan, Lan, Li, Xing, Xu, Fan, Yu, Li (b0050) 2019; 11
Hall, Allen, Glazier, Ellis, Ma, Peters, Hill, Dahn (b0055) 2017; 164
Park, Park, Go, Nam, Oh, Han, Lee (b0140) 2022; 50
Jiang, Yang, Li, Zou, Yang, Zhang, Li (b0080) 2023; 33
Jankowski, Lindahl, Weidow, Wieczorek, Johansson (b0165) 2018; 1
Xia, Sinha, Chen, Dahn (b0175) 2014; 161
Lu, Chen (b0205) 2013; 117
Madec, Xia, Petibon, Nelson, Sun, Hill, Dahn (b0045) 2014; 118
Xiang, Wang, Cheng (b0135) 2020; 8
Smith, Burns, Trussler, Dahn (b0105) 2010; 157
Leggesse, Jiang (b0010) 2012; 116
Kim, Hwang, Kim, Park, Cha, Lee, Cho, Kwak, Choi (b0085) 2020; 10
Yan, Reeves, Foix, Li, Cometto, Mariyappan, Salanne, Tarascon (b0065) 2019; 9
Tu, Wu, Geng, Qu, Sun, Lai, Li, Zhang (b0195) 2021; 9
Wang, Liu, Li, Xia, Holoubek, Deng, Yu, Tian, Shan, Ong, Liu, Chen (b0130) 2020; 75
Wu, Li, Zheng, Zhang, Umesh, Zheng, Zheng, Yang (b0015) 2018; 165
Gervillié-Mouravieff, Boussard-Plédel, Huang, Leau, Blanquer, Ben Yahia, Doublet, Boles, Zhang, Adam, Tarascon (b0120) 2022; 7
Li, Li, Pei, Yan, Sun, Wu, Joubert, Chin, Koh, Yu, Perrino, Butz, Chu, Cui (b0115) 2017; 358
Wang, Liang, Wang, Wang, Song, Wang, Wang, Wei, He, Yang (b0125) 2023; 35
Li, Zhang, Lu, Li (b0060) 2023; 62
Borodin, Olguin, Spear, Leiter, Knap (b0190) 2015; 26
Yan, Weng, Fu, Zhang, Chen, Zheng, Zhang, Zhou, Yan, Wang, Tang, Luo, Mao, Zheng, Wang, Qiao, Yang, Sun (b0075) 2022; 7
Kim, Dahn (b0180) 2015; 162
Dachraoui, Pauer, Battaglia, Erni (b0100) 2023; 17
Zheng (10.1016/j.apsusc.2024.161805_b0200) 2022; 5
Leggesse (10.1016/j.apsusc.2024.161805_b0010) 2012; 116
Zhang (10.1016/j.apsusc.2024.161805_b0145) 2022; 13
Borodin (10.1016/j.apsusc.2024.161805_b0190) 2015; 26
Quach (10.1016/j.apsusc.2024.161805_b0150) 2023; 6
Wu (10.1016/j.apsusc.2024.161805_b0015) 2018; 165
Kim (10.1016/j.apsusc.2024.161805_b0085) 2020; 10
Jankowski (10.1016/j.apsusc.2024.161805_b0165) 2018; 1
Xiang (10.1016/j.apsusc.2024.161805_b0135) 2020; 8
Oh (10.1016/j.apsusc.2024.161805_b0030) 2020; 132
Yang (10.1016/j.apsusc.2024.161805_b0035) 2024; 9
Gervillié-Mouravieff (10.1016/j.apsusc.2024.161805_b0120) 2022; 7
Madec (10.1016/j.apsusc.2024.161805_b0045) 2014; 118
Lee (10.1016/j.apsusc.2024.161805_b0020) 2007; 9
Li (10.1016/j.apsusc.2024.161805_b0025) 2020; 7
Lin (10.1016/j.apsusc.2024.161805_b0185) 2017; 5
Zuo (10.1016/j.apsusc.2024.161805_b0040) 2006; 9
Qian (10.1016/j.apsusc.2024.161805_b0090) 2019; 20
Yan (10.1016/j.apsusc.2024.161805_b0075) 2022; 7
Jiang (10.1016/j.apsusc.2024.161805_b0080) 2023; 33
Wang (10.1016/j.apsusc.2024.161805_b0125) 2023; 35
Xia (10.1016/j.apsusc.2024.161805_b0175) 2014; 161
Yan (10.1016/j.apsusc.2024.161805_b0065) 2019; 9
Wang (10.1016/j.apsusc.2024.161805_b0130) 2020; 75
Li (10.1016/j.apsusc.2024.161805_b0060) 2023; 62
Parida (10.1016/j.apsusc.2024.161805_b0070) 2022; 521
Zhang (10.1016/j.apsusc.2024.161805_b0110) 2021; 42
Kim (10.1016/j.apsusc.2024.161805_b0180) 2015; 162
Guo (10.1016/j.apsusc.2024.161805_b0050) 2019; 11
Li (10.1016/j.apsusc.2024.161805_b0115) 2017; 358
Lu (10.1016/j.apsusc.2024.161805_b0205) 2013; 117
Tong (10.1016/j.apsusc.2024.161805_b0155) 2021; 3
Smith (10.1016/j.apsusc.2024.161805_b0105) 2010; 157
Dachraoui (10.1016/j.apsusc.2024.161805_b0100) 2023; 17
Park (10.1016/j.apsusc.2024.161805_b0140) 2022; 50
Hall (10.1016/j.apsusc.2024.161805_b0055) 2017; 164
Lan (10.1016/j.apsusc.2024.161805_b0095) 2023; 13
Dato (10.1016/j.apsusc.2024.161805_b0005) 2024; 14
Tu (10.1016/j.apsusc.2024.161805_b0195) 2021; 9
von Aspern (10.1016/j.apsusc.2024.161805_b0170) 2019; 11
References_xml – volume: 9
  start-page: 18306
  year: 2021
  end-page: 18312
  ident: b0195
  article-title: Oligomerized imide and thioimide organic cathode materials via a H-transfer mechanism for high capacity lithium ion batteries
  publication-title: Journal of Materials Chemistry A
– volume: 116
  start-page: 11025
  year: 2012
  end-page: 11033
  ident: b0010
  article-title: Theoretical Study of the Reductive Decomposition of Ethylene Sulfite: A Film-Forming Electrolyte Additive in Lithium Ion Batteries
  publication-title: The Journal of Physical Chemistry. A
– volume: 132
  year: 2020
  ident: b0030
  article-title: Effects of vinylene carbonate and 1,3-propane sultone on high-rate cycle performance and surface properties of high-nickel layered oxide cathodes
  publication-title: Materials Research Bulletin
– volume: 7
  start-page: 1157
  year: 2022
  end-page: 1169
  ident: b0120
  article-title: Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries
  publication-title: Nature Energy
– volume: 1
  start-page: 2582
  year: 2018
  end-page: 2591
  ident: b0165
  article-title: Impact of Sulfur-Containing Additives on Lithium-Ion Battery Performance: From Computational Predictions to Full-Cell Assessments
  publication-title: Acs Applied Energy Materials
– volume: 9
  start-page: 1901431
  year: 2019
  ident: b0065
  article-title: A New Electrolyte Formulation for Securing High Temperature Cycling and Storage Performances of Na-Ion Batteries
  publication-title: Advanced Energy Materials
– volume: 5
  start-page: 19364
  year: 2017
  end-page: 19370
  ident: b0185
  article-title: Effect of sulfur-containing additives on the formation of a solid-electrolyte interphase evaluated byin situ AFM and ex situ characterizations
  publication-title: Journal of Materials Chemistry A
– volume: 9
  start-page: 801
  year: 2007
  end-page: 806
  ident: b0020
  article-title: SEI layer-forming additives for LiNi
  publication-title: Electrochemistry Communications
– volume: 33
  start-page: 2306868
  year: 2023
  ident: b0080
  article-title: Synergistic Additives Enabling Stable Cycling of Ether Electrolyte in 4.4 V Ni-Rich/Li Metal Batteries
  publication-title: Advanced Functional Materials
– volume: 11
  start-page: 16605
  year: 2019
  end-page: 16618
  ident: b0170
  article-title: Fluorinated Cyclic Phosphorus(III)-Based Electrolyte Additives for High Voltage Application in Lithium-Ion Batteries: Impact of Structure-Reactivity Relationships on CEI Formation and Cell Performance
  publication-title: ACS Applied Materials & Interfaces
– volume: 5
  start-page: 906
  year: 2022
  end-page: 911
  ident: b0200
  article-title: Sulfolane-Graphite Incompatibility and Its Mitigation in Li-ion Batteries
  publication-title: Energy & Environmental Materials
– volume: 35
  start-page: 2306683
  year: 2023
  ident: b0125
  article-title: Can We See SEI Directly by Naked Eyes?
  publication-title: Advanced Materials
– volume: 6
  start-page: 9837
  year: 2023
  end-page: 9850
  ident: b0150
  article-title: Molecular Design of Film-Forming Additives for Lithium-Ion Batteries: Impact of Molecular Substrate Parameters on Cell Performance
  publication-title: Acs Applied Energy Materials
– volume: 118
  start-page: 29608
  year: 2014
  end-page: 29622
  ident: b0045
  article-title: Effect of Sulfate Electrolyte Additives on LiNi
  publication-title: Journal of Physical Chemistry C
– volume: 75
  year: 2020
  ident: b0130
  article-title: A long-lasting dual-function electrolyte additive for stable lithium metal batteries
  publication-title: Nano Energy
– volume: 521
  year: 2022
  ident: b0070
  article-title: Introducing the potency of new boron-based heterocyclic anion receptor additives to regulate the solvation and transport properties of Li-ions in ethylene carbonate electrolyte of Li-Ion battery: An atomistic molecular dynamics study
  publication-title: Journal of Power Sources
– volume: 3
  start-page: 1364
  year: 2021
  end-page: 1392
  ident: b0155
  article-title: Sulfur-containing compounds as electrolyte additives for lithium-ion batteries
  publication-title: InfoMat
– volume: 11
  start-page: 38285
  year: 2019
  end-page: 38293
  ident: b0050
  article-title: Tailoring Low-Temperature Performance of a Lithium-Ion Battery via Rational Designing Interphase on an Anode
  publication-title: ACS Applied Materials & Interfaces
– volume: 358
  start-page: 506
  year: 2017
  end-page: 510
  ident: b0115
  article-title: Atomic structure of sensitive battery materials and Interfaces revealed by cryo-electron microscopy
  publication-title: Science
– volume: 14
  start-page: 2303794
  year: 2024
  ident: b0005
  article-title: Sulfur solutions: advancing high voltage and high energy lithium batteries with organosulfur electrolytes
  publication-title: Advanced Energy Materials
– volume: 161
  start-page: A264
  year: 2014
  end-page: A274
  ident: b0175
  article-title: A Comparative Study of a Family of Sulfate Electrolyte Additives
  publication-title: Journal of the Electrochemical Society
– volume: 9
  start-page: A196
  year: 2006
  end-page: A199
  ident: b0040
  article-title: Electrochemical reduction of 1,3-propane sultone on graphite electrodes and its application in Li-ion batteries
  publication-title: Electrochemical and Solid State Letters
– volume: 62
  start-page: e202216312
  year: 2023
  ident: b0060
  article-title: Low Concentration Sulfolane-Based Electrolyte for High Voltage Lithium Metal Batteries
  publication-title: Angewandte Chemie-International Edition
– volume: 162
  start-page: A437
  year: 2015
  end-page: A447
  ident: b0180
  article-title: The Effect of Some Nitriles as Electrolyte Additives in Li-Ion Batteries
  publication-title: Journal of the Electrochemical Society
– volume: 7
  start-page: 2677
  year: 2022
  end-page: 2684
  ident: b0075
  article-title: Tailoring Electrolyte Dehydrogenation with Trace Additives: Stabilizing the LiCoO
  publication-title: ACS Energy Letters
– volume: 13
  start-page: 1297
  year: 2022
  ident: b0145
  article-title: A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries
  publication-title: Nature Communications
– volume: 9
  start-page: 4475
  year: 2024
  end-page: 4484
  ident: b0035
  article-title: Chemically Active Sulfonate Additive with Transition Metal and Oxygen Dual-Site Deactivation for High-Voltage LiCoO
  publication-title: ACS Energy Letters
– volume: 26
  year: 2015
  ident: b0190
  article-title: Towards high throughput screening of electrochemical stability of battery electrolytes
  publication-title: Nanotechnology
– volume: 157
  start-page: A196
  year: 2010
  end-page: A202
  ident: b0105
  article-title: Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries
  publication-title: Journal of the Electrochemical Society
– volume: 164
  start-page: A3445
  year: 2017
  end-page: A3453
  ident: b0055
  article-title: The Solid-Electrolyte Interphase Formation Reactions of Ethylene Sulfate and Its Synergistic Chemistry with Prop-1-ene-1,3-Sultone in Lithium-Ion Cells
  publication-title: Journal of the Electrochemical Society
– volume: 8
  start-page: 1901277
  year: 2020
  ident: b0135
  article-title: Methyl 2,2-Difluoro-2-(Fluorosulfonyl) Acetate as a Novel Electrolyte Additive for High-Voltage LiCoO
  publication-title: Energy Technology
– volume: 50
  start-page: 75
  year: 2022
  end-page: 85
  ident: b0140
  article-title: Malonatophosphate as an SEI- and CEI-forming additive that outperforms malonatoborate for thermally robust lithium-ion batteries
  publication-title: Energy Storage Materials
– volume: 42
  start-page: 12
  year: 2021
  end-page: 21
  ident: b0110
  article-title: Unraveling gas evolution in sodium batteries by online electrochemical mass spectrometry
  publication-title: Energy Storage Materials
– volume: 10
  start-page: 2000012
  year: 2020
  ident: b0085
  article-title: Cyclic Aminosilane-Based Additive Ensuring Stable Electrode-Electrolyte Interfaces in Li-Ion Batteries
  publication-title: Advanced Energy Materials
– volume: 17
  start-page: 20434
  year: 2023
  end-page: 20444
  ident: b0100
  article-title: Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batteries
  publication-title: ACS Nano
– volume: 165
  start-page: A2792
  year: 2018
  end-page: A2800
  ident: b0015
  article-title: The Roles of Sulfur-Containing Additives and Their Working Mechanism on the Temperature-Dependent Performances of Li-Ion Batteries
  publication-title: Journal of the Electrochemical Society
– volume: 117
  start-page: 3100
  year: 2013
  end-page: 3108
  ident: b0205
  article-title: Bond Order Analysis Based on the Laplacian of Electron Density in Fuzzy Overlap Space
  publication-title: The Journal of Physical Chemistry. A
– volume: 13
  start-page: 2203449
  year: 2023
  ident: b0095
  article-title: A Multifunctional Electrolyte Additive With Solvation Structure Regulation and Electrode/Electrolyte Interface Manipulation Enabling High-Performance Li-Ion Batteries in Wide Temperature Range
  publication-title: Advanced Energy Materials
– volume: 20
  start-page: 208
  year: 2019
  end-page: 215
  ident: b0090
  article-title: How electrolyte additives work in Li-ion batteries
  publication-title: Energy Storage Materials
– volume: 7
  start-page: 263
  year: 2020
  ident: b0025
  article-title: Improving Cyclic Stability of LiMn
  publication-title: Frontiers in Materials
– volume: 5
  start-page: 906
  issue: 3
  year: 2022
  ident: 10.1016/j.apsusc.2024.161805_b0200
  article-title: Sulfolane-Graphite Incompatibility and Its Mitigation in Li-ion Batteries
  publication-title: Energy & Environmental Materials
  doi: 10.1002/eem2.12207
– volume: 17
  start-page: 20434
  issue: 20
  year: 2023
  ident: 10.1016/j.apsusc.2024.161805_b0100
  article-title: Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c06879
– volume: 10
  start-page: 2000012
  issue: 15
  year: 2020
  ident: 10.1016/j.apsusc.2024.161805_b0085
  article-title: Cyclic Aminosilane-Based Additive Ensuring Stable Electrode-Electrolyte Interfaces in Li-Ion Batteries
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202000012
– volume: 13
  start-page: 1297
  issue: 1
  year: 2022
  ident: 10.1016/j.apsusc.2024.161805_b0145
  article-title: A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-28959-5
– volume: 26
  issue: 35
  year: 2015
  ident: 10.1016/j.apsusc.2024.161805_b0190
  article-title: Towards high throughput screening of electrochemical stability of battery electrolytes
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/35/354003
– volume: 14
  start-page: 2303794
  issue: 13
  year: 2024
  ident: 10.1016/j.apsusc.2024.161805_b0005
  article-title: Sulfur solutions: advancing high voltage and high energy lithium batteries with organosulfur electrolytes
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202303794
– volume: 7
  start-page: 263
  year: 2020
  ident: 10.1016/j.apsusc.2024.161805_b0025
  article-title: Improving Cyclic Stability of LiMn2O4/Graphite Battery Under Elevated Temperature by Using 1,3-Propane Sultone as Electrolyte Additive
  publication-title: Frontiers in Materials
  doi: 10.3389/fmats.2020.00263
– volume: 117
  start-page: 3100
  issue: 14
  year: 2013
  ident: 10.1016/j.apsusc.2024.161805_b0205
  article-title: Bond Order Analysis Based on the Laplacian of Electron Density in Fuzzy Overlap Space
  publication-title: The Journal of Physical Chemistry. A
  doi: 10.1021/jp4010345
– volume: 162
  start-page: A437
  issue: 3
  year: 2015
  ident: 10.1016/j.apsusc.2024.161805_b0180
  article-title: The Effect of Some Nitriles as Electrolyte Additives in Li-Ion Batteries
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/2.0651503jes
– volume: 11
  start-page: 16605
  issue: 18
  year: 2019
  ident: 10.1016/j.apsusc.2024.161805_b0170
  article-title: Fluorinated Cyclic Phosphorus(III)-Based Electrolyte Additives for High Voltage Application in Lithium-Ion Batteries: Impact of Structure-Reactivity Relationships on CEI Formation and Cell Performance
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.9b03359
– volume: 521
  year: 2022
  ident: 10.1016/j.apsusc.2024.161805_b0070
  article-title: Introducing the potency of new boron-based heterocyclic anion receptor additives to regulate the solvation and transport properties of Li-ions in ethylene carbonate electrolyte of Li-Ion battery: An atomistic molecular dynamics study
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2021.230962
– volume: 6
  start-page: 9837
  issue: 19
  year: 2023
  ident: 10.1016/j.apsusc.2024.161805_b0150
  article-title: Molecular Design of Film-Forming Additives for Lithium-Ion Batteries: Impact of Molecular Substrate Parameters on Cell Performance
  publication-title: Acs Applied Energy Materials
  doi: 10.1021/acsaem.3c01109
– volume: 164
  start-page: A3445
  issue: 14
  year: 2017
  ident: 10.1016/j.apsusc.2024.161805_b0055
  article-title: The Solid-Electrolyte Interphase Formation Reactions of Ethylene Sulfate and Its Synergistic Chemistry with Prop-1-ene-1,3-Sultone in Lithium-Ion Cells
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/2.0181714jes
– volume: 1
  start-page: 2582
  issue: 6
  year: 2018
  ident: 10.1016/j.apsusc.2024.161805_b0165
  article-title: Impact of Sulfur-Containing Additives on Lithium-Ion Battery Performance: From Computational Predictions to Full-Cell Assessments
  publication-title: Acs Applied Energy Materials
  doi: 10.1021/acsaem.8b00295
– volume: 9
  start-page: 4475
  issue: 9
  year: 2024
  ident: 10.1016/j.apsusc.2024.161805_b0035
  article-title: Chemically Active Sulfonate Additive with Transition Metal and Oxygen Dual-Site Deactivation for High-Voltage LiCoO2
  publication-title: ACS Energy Letters
  doi: 10.1021/acsenergylett.4c01898
– volume: 7
  start-page: 1157
  issue: 12
  year: 2022
  ident: 10.1016/j.apsusc.2024.161805_b0120
  article-title: Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries
  publication-title: Nature Energy
  doi: 10.1038/s41560-022-01141-3
– volume: 9
  start-page: A196
  issue: 4
  year: 2006
  ident: 10.1016/j.apsusc.2024.161805_b0040
  article-title: Electrochemical reduction of 1,3-propane sultone on graphite electrodes and its application in Li-ion batteries
  publication-title: Electrochemical and Solid State Letters
  doi: 10.1149/1.2170462
– volume: 11
  start-page: 38285
  issue: 41
  year: 2019
  ident: 10.1016/j.apsusc.2024.161805_b0050
  article-title: Tailoring Low-Temperature Performance of a Lithium-Ion Battery via Rational Designing Interphase on an Anode
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.9b12020
– volume: 9
  start-page: 801
  issue: 4
  year: 2007
  ident: 10.1016/j.apsusc.2024.161805_b0020
  article-title: SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5 V Li-ion batteries
  publication-title: Electrochemistry Communications
  doi: 10.1016/j.elecom.2006.11.008
– volume: 33
  start-page: 2306868
  issue: 51
  year: 2023
  ident: 10.1016/j.apsusc.2024.161805_b0080
  article-title: Synergistic Additives Enabling Stable Cycling of Ether Electrolyte in 4.4 V Ni-Rich/Li Metal Batteries
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202306868
– volume: 75
  year: 2020
  ident: 10.1016/j.apsusc.2024.161805_b0130
  article-title: A long-lasting dual-function electrolyte additive for stable lithium metal batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104889
– volume: 8
  start-page: 1901277
  issue: 5
  year: 2020
  ident: 10.1016/j.apsusc.2024.161805_b0135
  article-title: Methyl 2,2-Difluoro-2-(Fluorosulfonyl) Acetate as a Novel Electrolyte Additive for High-Voltage LiCoO2/Graphite Pouch Li-Ion Cells
  publication-title: Energy Technology
  doi: 10.1002/ente.201901277
– volume: 20
  start-page: 208
  year: 2019
  ident: 10.1016/j.apsusc.2024.161805_b0090
  article-title: How electrolyte additives work in Li-ion batteries
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2018.11.015
– volume: 42
  start-page: 12
  year: 2021
  ident: 10.1016/j.apsusc.2024.161805_b0110
  article-title: Unraveling gas evolution in sodium batteries by online electrochemical mass spectrometry
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2021.07.005
– volume: 132
  year: 2020
  ident: 10.1016/j.apsusc.2024.161805_b0030
  article-title: Effects of vinylene carbonate and 1,3-propane sultone on high-rate cycle performance and surface properties of high-nickel layered oxide cathodes
  publication-title: Materials Research Bulletin
  doi: 10.1016/j.materresbull.2020.111008
– volume: 165
  start-page: A2792
  issue: 11
  year: 2018
  ident: 10.1016/j.apsusc.2024.161805_b0015
  article-title: The Roles of Sulfur-Containing Additives and Their Working Mechanism on the Temperature-Dependent Performances of Li-Ion Batteries
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/2.0331811jes
– volume: 50
  start-page: 75
  year: 2022
  ident: 10.1016/j.apsusc.2024.161805_b0140
  article-title: Malonatophosphate as an SEI- and CEI-forming additive that outperforms malonatoborate for thermally robust lithium-ion batteries
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2022.05.009
– volume: 35
  start-page: 2306683
  issue: 51
  year: 2023
  ident: 10.1016/j.apsusc.2024.161805_b0125
  article-title: Can We See SEI Directly by Naked Eyes?
  publication-title: Advanced Materials
  doi: 10.1002/adma.202306683
– volume: 116
  start-page: 11025
  issue: 45
  year: 2012
  ident: 10.1016/j.apsusc.2024.161805_b0010
  article-title: Theoretical Study of the Reductive Decomposition of Ethylene Sulfite: A Film-Forming Electrolyte Additive in Lithium Ion Batteries
  publication-title: The Journal of Physical Chemistry. A
  doi: 10.1021/jp3081996
– volume: 62
  start-page: e202216312
  issue: 10
  year: 2023
  ident: 10.1016/j.apsusc.2024.161805_b0060
  article-title: Low Concentration Sulfolane-Based Electrolyte for High Voltage Lithium Metal Batteries
  publication-title: Angewandte Chemie-International Edition
  doi: 10.1002/anie.202216312
– volume: 358
  start-page: 506
  issue: 6362
  year: 2017
  ident: 10.1016/j.apsusc.2024.161805_b0115
  article-title: Atomic structure of sensitive battery materials and Interfaces revealed by cryo-electron microscopy
  publication-title: Science
  doi: 10.1126/science.aam6014
– volume: 7
  start-page: 2677
  issue: 8
  year: 2022
  ident: 10.1016/j.apsusc.2024.161805_b0075
  article-title: Tailoring Electrolyte Dehydrogenation with Trace Additives: Stabilizing the LiCoO2 Cathode beyond 4.6 V
  publication-title: ACS Energy Letters
  doi: 10.1021/acsenergylett.2c01433
– volume: 9
  start-page: 1901431
  issue: 41
  year: 2019
  ident: 10.1016/j.apsusc.2024.161805_b0065
  article-title: A New Electrolyte Formulation for Securing High Temperature Cycling and Storage Performances of Na-Ion Batteries
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201901431
– volume: 118
  start-page: 29608
  issue: 51
  year: 2014
  ident: 10.1016/j.apsusc.2024.161805_b0045
  article-title: Effect of Sulfate Electrolyte Additives on LiNi1/3Mn1/3Co1/3O2/Graphite Pouch Cell Lifetime: Correlation between XPS Surface Studies and Electrochemical Test Results
  publication-title: Journal of Physical Chemistry C
  doi: 10.1021/jp509731y
– volume: 157
  start-page: A196
  issue: 2
  year: 2010
  ident: 10.1016/j.apsusc.2024.161805_b0105
  article-title: Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.3268129
– volume: 3
  start-page: 1364
  issue: 12
  year: 2021
  ident: 10.1016/j.apsusc.2024.161805_b0155
  article-title: Sulfur-containing compounds as electrolyte additives for lithium-ion batteries
  publication-title: InfoMat
  doi: 10.1002/inf2.12235
– volume: 161
  start-page: A264
  issue: 3
  year: 2014
  ident: 10.1016/j.apsusc.2024.161805_b0175
  article-title: A Comparative Study of a Family of Sulfate Electrolyte Additives
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/2.015403jes
– volume: 5
  start-page: 19364
  issue: 36
  year: 2017
  ident: 10.1016/j.apsusc.2024.161805_b0185
  article-title: Effect of sulfur-containing additives on the formation of a solid-electrolyte interphase evaluated byin situ AFM and ex situ characterizations
  publication-title: Journal of Materials Chemistry A
  doi: 10.1039/C7TA05469F
– volume: 9
  start-page: 18306
  issue: 34
  year: 2021
  ident: 10.1016/j.apsusc.2024.161805_b0195
  article-title: Oligomerized imide and thioimide organic cathode materials via a H-transfer mechanism for high capacity lithium ion batteries
  publication-title: Journal of Materials Chemistry A
  doi: 10.1039/D1TA05405H
– volume: 13
  start-page: 2203449
  issue: 16
  year: 2023
  ident: 10.1016/j.apsusc.2024.161805_b0095
  article-title: A Multifunctional Electrolyte Additive With Solvation Structure Regulation and Electrode/Electrolyte Interface Manipulation Enabling High-Performance Li-Ion Batteries in Wide Temperature Range
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202203449
SSID ssj0012873
Score 2.4785607
Snippet An “effective interfacial functional group (EIFG)”, sulfonate (−O-SO2-), was discovered in the electrode/electrolyte interphase (EEI) film of cells containing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 161805
SubjectTerms Electrode/electrolyte interface
Electrolyte
Film-forming additives
Lithium-ion battery
Title How sulfur-containing additives stabilize Electrode/Electrolyte interface of high voltage Graphite/LiCoO2 battery
URI https://dx.doi.org/10.1016/j.apsusc.2024.161805
Volume 684
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF7EXtpD6ZPah-yh15iYrMnuUUSbvuyhFryF7GYXLGKsRoo99Ld3Jg-xUFroLYRZCJPhmxn2m28IufahJOCJgOAVxoMGRbuWgLrZ4ob7TLcDzTnOOz8O_fCF3Y074xrpVbMwSKsssb_A9Bytyzd26U17PpnYz6gjgupbeD-AE6g4wc4CjPLW54bmAfBb3DKDMU4HudX4XM7xiqETXaKQoctaqByPS-x-Sk9bKWdwQPbLWpF2i885JDU9OyJ7WwqCx-QtTN_pcjU1q4WFrPNi3wNFlhDi2JJC8Yf01w9N-8XCm0Tb5dN0nWmKchELEytNU0NRu5gCXmUAMvQGpayhILUfJr30yaUyV-Jcn5DRoD_qhVa5RcFS0A5kVtt0Ai0dz7gd6em24YEIhEyg8mHKlZDOOTd-oAxTLNBQvxmw9aAPAhAUsW-8U1KfpTN9Rqgwji_AOuloyZSUMTRrzDeKxbHDhRM3iFf5LlKlwjguuphGFZXsNSo8HqHHo8LjDWJtTs0LhY0_7IPqt0TfIiWCJPDryfN_n7wguy7u_c25Z5ekni1W-gqKkUw282hrkp3u7X04_AJYkd-n
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB20HtSD-Inf7sFrTJpskt1jKdWotR6s0FvIprtQKU1tU0R_vTP5KAqi4C2EXQiT5c0b9s0bgMsAKYEYSjy80nhYoGjXksibLWFEwHUz1EJQv_NDL4ie-d3AH6xAu-6FIVllhf0lphdoXb2xq2ja09HIfiIfEXLfovsB6kBdhTVyp_IbsNa6vY96y8sELAq80uJbUoOQW3fQFTKvBIvROXkZuvyKzONpjt1PGepL1rnehq2KLrJW-UU7sKInu7D5xURwD16j7I3NF2OzmFkkPC9HPjASChGUzRnyP1LAfmjWKWfeDLVdPY3fc83IMWJmklSzzDCyL2YIWTniDLshN2vkpHZ31M4eXaYKM873fehfd_rtyKoGKVgpVgS51TR-qJXjGddXnm4aEcpQqiGSH566CjO6ECYIU8NTHmqkcAbXelgKIQ7KJDDeATQm2UQfApPGCSSuHvpa8VSpBOs1HpiUJ4kjpJMcgVfHLk4rk3GadTGOazXZS1xGPKaIx2XEj8Ba7pqWJht_rA_r3xJ_Oywx5oFfdx7_e-cFrEf9h27cve3dn8CGS2OACynaKTTy2UKfITfJ1Xl19j4BB0jiWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+sulfur-containing+additives+stabilize+Electrode%2FElectrolyte+interface+of+high+voltage+Graphite%2FLiCoO2+battery&rft.jtitle=Applied+surface+science&rft.au=Wang%2C+Siwu&rft.au=Guo%2C+Huajun&rft.au=Li%2C+Xinhai&rft.au=Wang%2C+Zhixing&rft.date=2025-03-01&rft.issn=0169-4332&rft.volume=684&rft.spage=161805&rft_id=info:doi/10.1016%2Fj.apsusc.2024.161805&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apsusc_2024_161805
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon