Auto-weighted multi-view clustering via deep matrix decomposition

•Anovel deep multi-view learning model is proposed by uncovering the hierarchical semantics of the input data in a layer-wise way.•The instances from the same class but from different views are forced to be closer layer by layer in the low-dimensional space, which is beneficial for the subsequent le...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 97; p. 107015
Main Authors Huang, Shudong, Kang, Zhao, Xu, Zenglin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2020
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2019.107015

Cover

Loading…
Abstract •Anovel deep multi-view learning model is proposed by uncovering the hierarchical semantics of the input data in a layer-wise way.•The instances from the same class but from different views are forced to be closer layer by layer in the low-dimensional space, which is beneficial for the subsequent learning task.•To automatically determine the weights of different views, we introduce the auto-weighting scheme into the deep multi-view clustering algorithm.•To solve the optimization problem of our model, an efficient iterative updating algorithm is proposed with a theoretical guarantee of its convergence. Real data are often collected from multiple channels or comprised of different representations (i.e., views). Multi-view learning provides an elegant way to analyze the multi-view data for low-dimensional representation. In recent years, several multi-view learning methods have been designed and successfully applied in various tasks. However, existing multi-view learning methods usually work in a single layer formulation. Since the mapping between the obtained representation and the original data contains rather complex hierarchical information with implicit lower-level hidden attributes, it is desirable to fully explore the hidden structures hierarchically. In this paper, a novel deep multi-view clustering model is proposed by uncovering the hierarchical semantics of the input data in a layer-wise way. By utilizing a novel collaborative deep matrix decomposition framework, the hidden representations are learned with respect to different attributes. The proposed model is able to collaboratively learn the hierarchical semantics obtained by each layer. The instances from the same class are forced to be closer layer by layer in the low-dimensional space, which is beneficial for the subsequent clustering task. Furthermore, an idea weight is automatically assigned to each view without introducing extra hyperparameter as previous methods do. To solve the optimization problem of our model, an efficient iterative updating algorithm is proposed and its convergence is also guaranteed theoretically. Our empirical study on multi-view clustering task shows encouraging results of our model in comparison to the state-of-the-art algorithms.
AbstractList •Anovel deep multi-view learning model is proposed by uncovering the hierarchical semantics of the input data in a layer-wise way.•The instances from the same class but from different views are forced to be closer layer by layer in the low-dimensional space, which is beneficial for the subsequent learning task.•To automatically determine the weights of different views, we introduce the auto-weighting scheme into the deep multi-view clustering algorithm.•To solve the optimization problem of our model, an efficient iterative updating algorithm is proposed with a theoretical guarantee of its convergence. Real data are often collected from multiple channels or comprised of different representations (i.e., views). Multi-view learning provides an elegant way to analyze the multi-view data for low-dimensional representation. In recent years, several multi-view learning methods have been designed and successfully applied in various tasks. However, existing multi-view learning methods usually work in a single layer formulation. Since the mapping between the obtained representation and the original data contains rather complex hierarchical information with implicit lower-level hidden attributes, it is desirable to fully explore the hidden structures hierarchically. In this paper, a novel deep multi-view clustering model is proposed by uncovering the hierarchical semantics of the input data in a layer-wise way. By utilizing a novel collaborative deep matrix decomposition framework, the hidden representations are learned with respect to different attributes. The proposed model is able to collaboratively learn the hierarchical semantics obtained by each layer. The instances from the same class are forced to be closer layer by layer in the low-dimensional space, which is beneficial for the subsequent clustering task. Furthermore, an idea weight is automatically assigned to each view without introducing extra hyperparameter as previous methods do. To solve the optimization problem of our model, an efficient iterative updating algorithm is proposed and its convergence is also guaranteed theoretically. Our empirical study on multi-view clustering task shows encouraging results of our model in comparison to the state-of-the-art algorithms.
ArticleNumber 107015
Author Kang, Zhao
Huang, Shudong
Xu, Zenglin
Author_xml – sequence: 1
  givenname: Shudong
  orcidid: 0000-0001-6848-5460
  surname: Huang
  fullname: Huang, Shudong
– sequence: 2
  givenname: Zhao
  orcidid: 0000-0003-4103-0954
  surname: Kang
  fullname: Kang, Zhao
– sequence: 3
  givenname: Zenglin
  orcidid: 0000-0001-5550-6461
  surname: Xu
  fullname: Xu, Zenglin
  email: zlxu@uestc.edu.cn
BookMark eNqFkM9OwzAMhyM0JDbgDTj0BTKcpE07DkjTxD9pEhc4R2nijUxtUyXZBm9Pp3LiACdbtr6f7G9GJp3vkJAbBnMGTN7u5r1Oxm_nHNhiGJXAijMyZVUpaMFyPiFTAMGo4CAuyCzGHQArh8WULJf75OkR3fYjoc3afZMcPTg8ZqbZx4TBddvs4HRmEfus1Sm4z6E3vu19dMn57oqcb3QT8fqnXpL3x4e31TNdvz69rJZragTIRBmaRc14XsraSlPxwiDWxhYIAhc2F5aDzKthWPAqz60EWZXAZS05NzXWG3FJ8jHXBB9jwI3qg2t1-FIM1EmD2qlRgzppUKOGAbv7hRmX9OnwFLRr_oPvRxiHxwYrQUXjsDNoXUCTlPXu74Bv0Y9-SQ
CitedBy_id crossref_primary_10_1016_j_knosys_2020_105582
crossref_primary_10_1109_TSIPN_2024_3511262
crossref_primary_10_1016_j_ins_2023_119366
crossref_primary_10_1109_TMM_2024_3397038
crossref_primary_10_1007_s11063_022_11127_7
crossref_primary_10_1142_S0218213023500616
crossref_primary_10_1016_j_patcog_2022_108610
crossref_primary_10_3390_app13158791
crossref_primary_10_1007_s13042_023_01969_5
crossref_primary_10_1016_j_engappai_2024_107857
crossref_primary_10_1016_j_knosys_2021_107244
crossref_primary_10_1016_j_ins_2023_01_071
crossref_primary_10_1109_TNNLS_2020_3026686
crossref_primary_10_1016_j_neucom_2023_126521
crossref_primary_10_1016_j_knosys_2022_110145
crossref_primary_10_1155_2021_5526479
crossref_primary_10_1016_j_neunet_2023_01_037
crossref_primary_10_1109_TNNLS_2021_3104846
crossref_primary_10_1016_j_knosys_2021_107016
crossref_primary_10_1016_j_ins_2021_11_075
crossref_primary_10_1109_TCYB_2021_3053057
crossref_primary_10_1016_j_patrec_2020_07_031
crossref_primary_10_1007_s13042_021_01421_6
crossref_primary_10_1109_TAI_2021_3116546
crossref_primary_10_1016_j_engappai_2024_109508
crossref_primary_10_1016_j_ins_2021_02_027
crossref_primary_10_1109_ACCESS_2022_3199354
crossref_primary_10_1109_TR_2024_3393415
crossref_primary_10_1016_j_neucom_2020_04_120
crossref_primary_10_1016_j_eswa_2022_116637
crossref_primary_10_1016_j_patcog_2021_107996
crossref_primary_10_1109_TNNLS_2022_3145048
crossref_primary_10_1007_s12559_024_10392_z
crossref_primary_10_1016_j_eswa_2024_124961
crossref_primary_10_1002_int_22655
crossref_primary_10_1016_j_inffus_2023_101884
crossref_primary_10_1109_TBDATA_2024_3433525
crossref_primary_10_1109_TMM_2020_3025666
crossref_primary_10_1109_TBDATA_2024_3371357
crossref_primary_10_1016_j_eswa_2022_119458
crossref_primary_10_7717_peerj_cs_922
crossref_primary_10_1016_j_ins_2022_12_063
crossref_primary_10_1007_s00521_023_08915_0
crossref_primary_10_26599_BDMA_2023_9020004
crossref_primary_10_1016_j_knosys_2024_112424
crossref_primary_10_1016_j_neunet_2024_106197
crossref_primary_10_1109_JAS_2022_105980
crossref_primary_10_1016_j_patcog_2020_107627
crossref_primary_10_1016_j_patcog_2020_107628
crossref_primary_10_1016_j_knosys_2023_111330
crossref_primary_10_1016_j_patcog_2023_109632
crossref_primary_10_1109_TIP_2024_3354106
crossref_primary_10_1109_TNNLS_2020_2979532
crossref_primary_10_1016_j_knosys_2021_106745
crossref_primary_10_1016_j_eswa_2021_114783
crossref_primary_10_1016_j_eswa_2021_115991
crossref_primary_10_1109_TGRS_2024_3365711
crossref_primary_10_1016_j_inffus_2021_12_001
crossref_primary_10_1016_j_neucom_2025_129568
crossref_primary_10_1016_j_eswa_2022_118911
crossref_primary_10_1016_j_asoc_2025_112844
crossref_primary_10_1016_j_neucom_2020_12_094
crossref_primary_10_1016_j_neucom_2024_128054
crossref_primary_10_1007_s00034_021_01833_3
crossref_primary_10_1016_j_asoc_2023_110903
crossref_primary_10_1016_j_patcog_2022_108809
crossref_primary_10_1016_j_ins_2023_03_119
crossref_primary_10_1109_TKDE_2022_3178145
crossref_primary_10_1007_s10462_023_10616_y
crossref_primary_10_1016_j_ins_2021_03_040
crossref_primary_10_1016_j_neunet_2024_106295
crossref_primary_10_1109_ACCESS_2022_3221150
crossref_primary_10_1007_s13042_024_02280_7
crossref_primary_10_1016_j_knosys_2022_108250
crossref_primary_10_1016_j_eswa_2022_119031
crossref_primary_10_1016_j_patcog_2022_108772
crossref_primary_10_1016_j_patcog_2022_109102
crossref_primary_10_1007_s00371_024_03661_3
crossref_primary_10_1109_TCSS_2022_3173367
crossref_primary_10_1016_j_patcog_2022_108815
crossref_primary_10_1109_TBDATA_2022_3163584
crossref_primary_10_1109_TKDE_2020_3025759
crossref_primary_10_1016_j_neunet_2023_07_022
crossref_primary_10_1016_j_neunet_2019_10_010
crossref_primary_10_1109_TMM_2022_3157997
crossref_primary_10_1016_j_patcog_2022_108817
crossref_primary_10_1007_s11280_020_00796_w
crossref_primary_10_1016_j_dsp_2024_104879
crossref_primary_10_1109_TNNLS_2021_3121246
crossref_primary_10_1016_j_knosys_2022_109694
crossref_primary_10_1109_TNNLS_2023_3304626
crossref_primary_10_3390_electronics12214467
crossref_primary_10_1016_j_ins_2022_07_177
crossref_primary_10_1016_j_patcog_2022_108787
crossref_primary_10_12677_pm_2025_153078
crossref_primary_10_1109_TIP_2022_3176223
crossref_primary_10_3390_math11030652
crossref_primary_10_1016_j_eswa_2024_125386
crossref_primary_10_1016_j_ins_2023_119426
crossref_primary_10_1007_s10489_022_04385_4
crossref_primary_10_1016_j_neucom_2023_03_004
crossref_primary_10_1016_j_patcog_2022_109083
crossref_primary_10_1109_TSIPN_2022_3169633
crossref_primary_10_1016_j_patcog_2024_110716
crossref_primary_10_1109_TETCI_2022_3221491
crossref_primary_10_1109_TKDE_2022_3199587
crossref_primary_10_1016_j_cosrev_2021_100423
crossref_primary_10_1016_j_knosys_2019_105102
crossref_primary_10_1155_2023_7217818
crossref_primary_10_1016_j_knosys_2021_106807
crossref_primary_10_1016_j_patcog_2020_107307
crossref_primary_10_1016_j_ins_2022_07_089
crossref_primary_10_1109_TNSE_2023_3244624
crossref_primary_10_1109_TNNLS_2024_3381223
crossref_primary_10_1007_s10462_022_10332_z
crossref_primary_10_1016_j_ins_2022_01_017
crossref_primary_10_1016_j_ipm_2021_102546
crossref_primary_10_1007_s10489_022_04166_z
crossref_primary_10_1016_j_inffus_2025_103012
crossref_primary_10_1016_j_comnet_2021_108564
crossref_primary_10_1016_j_knosys_2023_110425
crossref_primary_10_3389_fphy_2020_618224
crossref_primary_10_1016_j_neunet_2023_02_016
crossref_primary_10_1016_j_patcog_2020_107676
crossref_primary_10_1016_j_sigpro_2023_109341
crossref_primary_10_1007_s10489_022_03735_6
crossref_primary_10_1016_j_neunet_2024_106563
crossref_primary_10_1016_j_patcog_2023_109836
crossref_primary_10_1016_j_patcog_2024_111010
crossref_primary_10_1007_s41019_021_00159_z
crossref_primary_10_1016_j_ins_2022_07_119
Cites_doi 10.1023/B:VISI.0000029664.99615.94
10.1016/j.patcog.2014.12.016
10.1007/s10618-017-0543-9
10.1016/j.knosys.2018.05.017
10.1016/j.neucom.2018.05.072
10.1016/j.patcog.2018.11.007
10.1002/cpa.20303
10.1109/TPAMI.2002.1017623
10.1016/j.knosys.2018.10.003
10.1016/j.patcog.2017.03.003
10.1613/jair.4190
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2019.107015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2019_107015
S0031320319303188
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-1ec9b12476bd6c825ceebcd5e03e9d43d20648cee52844d60687026b622cbebf3
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Tue Jul 01 02:36:30 EDT 2025
Thu Apr 24 22:56:44 EDT 2025
Fri Feb 23 02:25:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Optimization algorithm
Deep matrix decomposition
Clustering
Multi-view learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-1ec9b12476bd6c825ceebcd5e03e9d43d20648cee52844d60687026b622cbebf3
ORCID 0000-0001-5550-6461
0000-0001-6848-5460
0000-0003-4103-0954
ParticipantIDs crossref_primary_10_1016_j_patcog_2019_107015
crossref_citationtrail_10_1016_j_patcog_2019_107015
elsevier_sciencedirect_doi_10_1016_j_patcog_2019_107015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Arora, Livescu, Bilmes (bib0031) 2015
Wang, Kong, Fu, Li, Zhang (bib0036) 2015
Ding, Fu (bib0014) 2014
Lowe, Lowe (bib0003) 2004; 60
Tzortzis, Likas (bib0035) 2012
Li, Zhu, Zhang, Blake, Zhang, Shum (bib0018) 2002
Cai, Nie, Huang (bib0033) 2013
Hou, Chen, Tao, Zhou, Liu, Zheng (bib0008) 2017; 68
Kumar, Daumé (bib0011) 2011
Chaudhuri, Kakade, Livescu, Sridharan (bib0016) 2009
Ding, Li, Peng, Park (bib0025) 2006
Dalal, Triggs (bib0002) 2005
Andrew, Arora, Bilmes, Livescu (bib0030) 2013
Kong, Ding, Huang (bib0027) 2011
Bisson, Grimal (bib0039) 2012
Huang, Xu, Wang (bib0023) 2017
Trigeorgis, Bousmalis, Zafeiriou, Schuller (bib0026) 2014
Nie, Huang, Cai, Ding (bib0034) 2010
Huang, Ren, Xu (bib0004) 2018; 311
Lee, Seung (bib0021) 2001
Daubechies, DeVore, Fornasier, Güntürk (bib0028) 2010; 63
Zhang, Fu, Hu, Cao, Xie, Tao, Xu (bib0017) 2018
Zhang, Cheng, Xu, Lu, Ma (bib0019) 2009
Huang, Zhao, Ren, Li, Xu (bib0022) 2019; 164
Nie, Li, Li (bib0029) 2016
Zhao, Ding, Fu (bib0032) 2017
Ojala, Pietik, Inen, Topi (bib0001) 2002; 24
Huang, Kang, Tsang, Xu (bib0009) 2019; 88
Kumar, Rai, Daume (bib0010) 2012
Li, Yang, Zhang (bib0007) 2018
Zhang, Zhang, Zhang, Tao, Huang, Du (bib0013) 2015; 48
Greene, Cunningham (bib0038) 2006
Zhan, Chang, Guan, Chen, Ma, Yang (bib0037) 2018
Dhillon, Foster, Ungar (bib0020) 2011
Yang, Gao (bib0015) 2014; 49
Huang, Wang, Li, Li, Xu (bib0024) 2018; 32
Huang, Kang, Xu (bib0005) 2018; 158
Liu, Wang, Gao, Han (bib0012) 2013
Kang, Guo, Huang, Wang, Chen, Su, Xu (bib0006) 2019
Kumar (10.1016/j.patcog.2019.107015_bib0010) 2012
Yang (10.1016/j.patcog.2019.107015_bib0015) 2014; 49
Daubechies (10.1016/j.patcog.2019.107015_bib0028) 2010; 63
Cai (10.1016/j.patcog.2019.107015_bib0033) 2013
Dalal (10.1016/j.patcog.2019.107015_bib0002) 2005
Tzortzis (10.1016/j.patcog.2019.107015_bib0035) 2012
Hou (10.1016/j.patcog.2019.107015_bib0008) 2017; 68
Li (10.1016/j.patcog.2019.107015_bib0007) 2018
Wang (10.1016/j.patcog.2019.107015_bib0031) 2015
Ding (10.1016/j.patcog.2019.107015_bib0025) 2006
Wang (10.1016/j.patcog.2019.107015_bib0036) 2015
Huang (10.1016/j.patcog.2019.107015_bib0024) 2018; 32
Ojala (10.1016/j.patcog.2019.107015_bib0001) 2002; 24
Kang (10.1016/j.patcog.2019.107015_bib0006) 2019
Lee (10.1016/j.patcog.2019.107015_bib0021) 2001
Liu (10.1016/j.patcog.2019.107015_bib0012) 2013
Zhan (10.1016/j.patcog.2019.107015_bib0037) 2018
Chaudhuri (10.1016/j.patcog.2019.107015_bib0016) 2009
Huang (10.1016/j.patcog.2019.107015_bib0009) 2019; 88
Huang (10.1016/j.patcog.2019.107015_bib0004) 2018; 311
Nie (10.1016/j.patcog.2019.107015_bib0034) 2010
Zhang (10.1016/j.patcog.2019.107015_bib0019) 2009
Kumar (10.1016/j.patcog.2019.107015_bib0011) 2011
Huang (10.1016/j.patcog.2019.107015_bib0022) 2019; 164
Greene (10.1016/j.patcog.2019.107015_bib0038) 2006
Bisson (10.1016/j.patcog.2019.107015_bib0039) 2012
Li (10.1016/j.patcog.2019.107015_bib0018) 2002
Huang (10.1016/j.patcog.2019.107015_bib0005) 2018; 158
Dhillon (10.1016/j.patcog.2019.107015_bib0020) 2011
Zhang (10.1016/j.patcog.2019.107015_bib0013) 2015; 48
Ding (10.1016/j.patcog.2019.107015_bib0014) 2014
Trigeorgis (10.1016/j.patcog.2019.107015_bib0026) 2014
Nie (10.1016/j.patcog.2019.107015_bib0029) 2016
Lowe (10.1016/j.patcog.2019.107015_bib0003) 2004; 60
Zhang (10.1016/j.patcog.2019.107015_bib0017) 2018
Huang (10.1016/j.patcog.2019.107015_bib0023) 2017
Zhao (10.1016/j.patcog.2019.107015_bib0032) 2017
Kong (10.1016/j.patcog.2019.107015_bib0027) 2011
Andrew (10.1016/j.patcog.2019.107015_bib0030) 2013
References_xml – volume: 32
  start-page: 483
  year: 2018
  end-page: 503
  ident: bib0024
  article-title: Robust graph regularized nonnegative matrix factorization for clustering
  publication-title: Data Min. Knowl. Discov.
– volume: 48
  start-page: 3102
  year: 2015
  end-page: 3112
  ident: bib0013
  article-title: Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding
  publication-title: Pattern Recognit.
– start-page: 110
  year: 2014
  end-page: 119
  ident: bib0014
  article-title: Low-rank common subspace for multi-view learning
  publication-title: Proceedings of the IEEE International Conference on Data Mining
– start-page: 67
  year: 2002
  end-page: 81
  ident: bib0018
  article-title: Statistical learning of multi-view face detection
  publication-title: Proceedings of the European Conference on Computer Vision
– volume: 164
  start-page: 29
  year: 2019
  end-page: 37
  ident: bib0022
  article-title: Self-paced and soft-weighted nonnegative matrix factorization for data representation
  publication-title: Knowl.-Based Syst.
– volume: 63
  start-page: 1
  year: 2010
  end-page: 38
  ident: bib0028
  article-title: Iteratively reweighted least squares minimization for sparse recovery
  publication-title: Commun. Pure. Appl. Math.
– start-page: 1813
  year: 2010
  end-page: 1821
  ident: bib0034
  article-title: Efficient and robust feature selection via joint ℓ
  publication-title: Advances in Neural Information Processing Systems
– start-page: 184
  year: 2012
  end-page: 193
  ident: bib0039
  article-title: An architecture to efficiently learn co-similarities from multi-view datasets
  publication-title: Proceedings of the International Conference on Neural Information Processing
– start-page: 2701
  year: 2019
  end-page: 2707
  ident: bib0006
  article-title: Multiple partitions aligned clustering
  publication-title: Proceedings of the 28th International Joint Conference on Artificial Intelligence
– start-page: 129
  year: 2009
  end-page: 136
  ident: bib0016
  article-title: Multi-view clustering via canonical correlation analysis
  publication-title: Proceedings of the 26th Annual International Conference on Machine Learning
– start-page: 1
  year: 2018
  end-page: 14
  ident: bib0017
  article-title: Generalized latent multi-view subspace clustering
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– volume: 68
  start-page: 66
  year: 2017
  end-page: 81
  ident: bib0008
  article-title: Multi-layer multi-view topic model for classifying advertising video
  publication-title: Pattern Recognit.
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  ident: bib0003
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vision
– volume: 311
  start-page: 197
  year: 2018
  end-page: 208
  ident: bib0004
  article-title: Robust multi-view data clustering with multi-view capped-norm k-means
  publication-title: Neurocomputing
– volume: 49
  start-page: 501
  year: 2014
  end-page: 525
  ident: bib0015
  article-title: Information-theoretic multi-view domain adaptation: a theoretical and empirical study
  publication-title: J. Artif. Intell. Res.
– start-page: 1692
  year: 2014
  end-page: 1700
  ident: bib0026
  article-title: A deep semi-nmf model for learning hidden representations
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 2598
  year: 2013
  end-page: 2604
  ident: bib0033
  article-title: Multi-view k-means clustering on big data
  publication-title: Proceedings of the International Joint Conference on Artificial Intelligence
– start-page: 2921
  year: 2017
  end-page: 2927
  ident: bib0032
  article-title: Multi-view clustering via deep matrix factorization
  publication-title: Proceedings of AAAI Conference on Artificial Intelligence
– start-page: 1083
  year: 2015
  end-page: 1092
  ident: bib0031
  article-title: On deep multi-view representation learning
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 1
  year: 2018
  end-page: 9
  ident: bib0037
  article-title: Adaptive structure discovery for multimedia analysis using multiple features
  publication-title: IEEE Trans. Cybern.
– start-page: 252
  year: 2013
  end-page: 260
  ident: bib0012
  article-title: Multi-view clustering via joint nonnegative matrix factorization
  publication-title: Proceedings of the 2013 SIAM International Conference on Data Mining
– start-page: 1413
  year: 2012
  end-page: 1421
  ident: bib0010
  article-title: Co-regularized multi-view spectral clustering
  publication-title: Advances in Neural Information Processing Systems
– start-page: 199
  year: 2011
  end-page: 207
  ident: bib0020
  article-title: Multi-view learning of word embeddings via CCA
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1
  year: 2018
  end-page: 20
  ident: bib0007
  article-title: A survey of multi-view representation learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 393
  year: 2011
  end-page: 400
  ident: bib0011
  article-title: A co-training approach for multi-view spectral clustering
  publication-title: Proceedings of the 28th International Conference on Machine Learning
– start-page: 675
  year: 2012
  end-page: 684
  ident: bib0035
  article-title: Kernel-based weighted multi-view clustering
  publication-title: Proceedings of the 12th IEEE International Conference on Data Mining
– start-page: 556
  year: 2001
  end-page: 562
  ident: bib0021
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Advances in Neural Information Processing Systems
– start-page: 673
  year: 2011
  end-page: 682
  ident: bib0027
  article-title: Robust nonnegative matrix factorization using l21-norm
  publication-title: Proceedings of the 20th ACM International Conference on Information and Knowledge Management
– volume: 88
  start-page: 174
  year: 2019
  end-page: 184
  ident: bib0009
  article-title: Auto-weighted multi-view clustering via kernelized graph learning
  publication-title: Pattern Recognit.
– start-page: 886
  year: 2005
  end-page: 893
  ident: bib0002
  article-title: Histograms of oriented gradients for human detection
  publication-title: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 24
  start-page: 971
  year: 2002
  end-page: 987
  ident: bib0001
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– start-page: 1247
  year: 2013
  end-page: 1255
  ident: bib0030
  article-title: Deep canonical correlation analysis
  publication-title: Proceedings of the International Conference on Machine Learning
– volume: 158
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib0005
  article-title: Self-weighted multi-view clustering with soft capped norm
  publication-title: Knowl.-Based Syst.
– start-page: 1881
  year: 2016
  end-page: 1887
  ident: bib0029
  article-title: Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification
  publication-title: Proceedings of the International Joint Conference on Artificial Intelligence
– year: 2017
  ident: bib0023
  article-title: Nonnegative matrix factorization with adaptive neighbors
  publication-title: Proceedings of the International Joint Conference on Neural Networks
– start-page: 126
  year: 2006
  end-page: 135
  ident: bib0025
  article-title: Orthogonal nonnegative matrix t-factorizations for clustering
  publication-title: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 3500
  year: 2015
  end-page: 3504
  ident: bib0036
  article-title: Feature extraction via multi-view non-negative matrix factorization with local graph regularization
  publication-title: Proceedings of the IEEE International Conference on Image Processing
– start-page: 258
  year: 2009
  end-page: 261
  ident: bib0019
  article-title: Multi-view multi-label active learning for image classification
  publication-title: Proceedings of the IEEE International Conference on Multimedia and Expo
– start-page: 377
  year: 2006
  end-page: 384
  ident: bib0038
  article-title: Practical solutions to the problem of diagonal dominance in kernel document clustering
  publication-title: Proceedings of the 23rd International Conference on Machine Learning
– start-page: 1881
  year: 2016
  ident: 10.1016/j.patcog.2019.107015_bib0029
  article-title: Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification
– start-page: 377
  year: 2006
  ident: 10.1016/j.patcog.2019.107015_bib0038
  article-title: Practical solutions to the problem of diagonal dominance in kernel document clustering
– start-page: 67
  year: 2002
  ident: 10.1016/j.patcog.2019.107015_bib0018
  article-title: Statistical learning of multi-view face detection
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 10.1016/j.patcog.2019.107015_bib0003
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vision
  doi: 10.1023/B:VISI.0000029664.99615.94
– start-page: 129
  year: 2009
  ident: 10.1016/j.patcog.2019.107015_bib0016
  article-title: Multi-view clustering via canonical correlation analysis
– start-page: 110
  year: 2014
  ident: 10.1016/j.patcog.2019.107015_bib0014
  article-title: Low-rank common subspace for multi-view learning
– volume: 48
  start-page: 3102
  issue: 10
  year: 2015
  ident: 10.1016/j.patcog.2019.107015_bib0013
  article-title: Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.12.016
– start-page: 556
  year: 2001
  ident: 10.1016/j.patcog.2019.107015_bib0021
  article-title: Algorithms for non-negative matrix factorization
– start-page: 673
  year: 2011
  ident: 10.1016/j.patcog.2019.107015_bib0027
  article-title: Robust nonnegative matrix factorization using l21-norm
– volume: 32
  start-page: 483
  issue: 2
  year: 2018
  ident: 10.1016/j.patcog.2019.107015_bib0024
  article-title: Robust graph regularized nonnegative matrix factorization for clustering
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-017-0543-9
– volume: 158
  start-page: 1
  year: 2018
  ident: 10.1016/j.patcog.2019.107015_bib0005
  article-title: Self-weighted multi-view clustering with soft capped norm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.05.017
– start-page: 1
  year: 2018
  ident: 10.1016/j.patcog.2019.107015_bib0017
  article-title: Generalized latent multi-view subspace clustering
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– volume: 311
  start-page: 197
  year: 2018
  ident: 10.1016/j.patcog.2019.107015_bib0004
  article-title: Robust multi-view data clustering with multi-view capped-norm k-means
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.072
– start-page: 393
  year: 2011
  ident: 10.1016/j.patcog.2019.107015_bib0011
  article-title: A co-training approach for multi-view spectral clustering
– start-page: 184
  year: 2012
  ident: 10.1016/j.patcog.2019.107015_bib0039
  article-title: An architecture to efficiently learn co-similarities from multi-view datasets
– start-page: 2921
  year: 2017
  ident: 10.1016/j.patcog.2019.107015_bib0032
  article-title: Multi-view clustering via deep matrix factorization
– volume: 88
  start-page: 174
  year: 2019
  ident: 10.1016/j.patcog.2019.107015_bib0009
  article-title: Auto-weighted multi-view clustering via kernelized graph learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.11.007
– start-page: 252
  year: 2013
  ident: 10.1016/j.patcog.2019.107015_bib0012
  article-title: Multi-view clustering via joint nonnegative matrix factorization
– start-page: 675
  year: 2012
  ident: 10.1016/j.patcog.2019.107015_bib0035
  article-title: Kernel-based weighted multi-view clustering
– volume: 63
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.patcog.2019.107015_bib0028
  article-title: Iteratively reweighted least squares minimization for sparse recovery
  publication-title: Commun. Pure. Appl. Math.
  doi: 10.1002/cpa.20303
– start-page: 2701
  year: 2019
  ident: 10.1016/j.patcog.2019.107015_bib0006
  article-title: Multiple partitions aligned clustering
– start-page: 199
  year: 2011
  ident: 10.1016/j.patcog.2019.107015_bib0020
  article-title: Multi-view learning of word embeddings via CCA
– start-page: 886
  year: 2005
  ident: 10.1016/j.patcog.2019.107015_bib0002
  article-title: Histograms of oriented gradients for human detection
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  ident: 10.1016/j.patcog.2019.107015_bib0001
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2002.1017623
– year: 2017
  ident: 10.1016/j.patcog.2019.107015_bib0023
  article-title: Nonnegative matrix factorization with adaptive neighbors
– start-page: 1692
  year: 2014
  ident: 10.1016/j.patcog.2019.107015_bib0026
  article-title: A deep semi-nmf model for learning hidden representations
– start-page: 2598
  year: 2013
  ident: 10.1016/j.patcog.2019.107015_bib0033
  article-title: Multi-view k-means clustering on big data
– start-page: 126
  year: 2006
  ident: 10.1016/j.patcog.2019.107015_bib0025
  article-title: Orthogonal nonnegative matrix t-factorizations for clustering
– start-page: 1247
  year: 2013
  ident: 10.1016/j.patcog.2019.107015_bib0030
  article-title: Deep canonical correlation analysis
– start-page: 1813
  year: 2010
  ident: 10.1016/j.patcog.2019.107015_bib0034
  article-title: Efficient and robust feature selection via joint ℓ2,1-norms minimization
– start-page: 1413
  year: 2012
  ident: 10.1016/j.patcog.2019.107015_bib0010
  article-title: Co-regularized multi-view spectral clustering
– volume: 164
  start-page: 29
  year: 2019
  ident: 10.1016/j.patcog.2019.107015_bib0022
  article-title: Self-paced and soft-weighted nonnegative matrix factorization for data representation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.10.003
– start-page: 3500
  year: 2015
  ident: 10.1016/j.patcog.2019.107015_bib0036
  article-title: Feature extraction via multi-view non-negative matrix factorization with local graph regularization
– start-page: 1
  year: 2018
  ident: 10.1016/j.patcog.2019.107015_bib0037
  article-title: Adaptive structure discovery for multimedia analysis using multiple features
  publication-title: IEEE Trans. Cybern.
– start-page: 1
  year: 2018
  ident: 10.1016/j.patcog.2019.107015_bib0007
  article-title: A survey of multi-view representation learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 68
  start-page: 66
  year: 2017
  ident: 10.1016/j.patcog.2019.107015_bib0008
  article-title: Multi-layer multi-view topic model for classifying advertising video
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.03.003
– volume: 49
  start-page: 501
  year: 2014
  ident: 10.1016/j.patcog.2019.107015_bib0015
  article-title: Information-theoretic multi-view domain adaptation: a theoretical and empirical study
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.4190
– start-page: 1083
  year: 2015
  ident: 10.1016/j.patcog.2019.107015_bib0031
  article-title: On deep multi-view representation learning
– start-page: 258
  year: 2009
  ident: 10.1016/j.patcog.2019.107015_bib0019
  article-title: Multi-view multi-label active learning for image classification
SSID ssj0017142
Score 2.63188
Snippet •Anovel deep multi-view learning model is proposed by uncovering the hierarchical semantics of the input data in a layer-wise way.•The instances from the same...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107015
SubjectTerms Clustering
Deep matrix decomposition
Multi-view learning
Optimization algorithm
Title Auto-weighted multi-view clustering via deep matrix decomposition
URI https://dx.doi.org/10.1016/j.patcog.2019.107015
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvXjxLdZH2YPXtUk22TTHUCxVsScLvYXso1KpbZBUPfnbnUk2RUEUvIUlA-HL7szs8M03AJd97XsmMJL7Jo95GFrNExkHPPGUzNEdhrYij9-P5WgS3k6jaQsGTS8M0Sqd7699euWt3UrPodkr5nPq8SXZQerCEbQzqeGX1OtwT199bGgeNN-7VgwXPqe3m_a5iuNVoLtbPRLBK8Gl2KPhuD-Fpy8hZ7gHOy5XZGn9OfvQsssD2G3mMDB3LA8hTdflir9VRU5rWMUR5FTyZ3qxJiEEDE_sdZ4zY23BnkmU_x2fiU3uKFtHMBlePwxG3I1G4Bpz_JL7VicKQ3MslZEab3kY65Q2kfWETUwoTICpRh8XI8Lb4C0Fz2UglQwCrayaiWNoL1dLewIMIdJCUO1BJqGKZrma9aVGk1CTkE_UAdEgkmmnG07jKxZZQxB7ymocM8Ixq3HsAN9YFbVuxh_vxw3Y2bf_n6Fr_9Xy9N-WZ7Ad0O25KqicQ7t8WdsLTDFK1a32UBe20pu70fgTk9zP8g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9CLb7E-c_C6NI_NpjmWYmnt49RCb0v3UanUtkiq_nxnko0oiIK3sGQgfOzOzE6--QbgrqkD34RGsMDMEsa51SwVSchSX4kZukNuc_L4cCS6E_4wjacVaJe9MESrdL6_8Om5t3YrDYdmY7NYUI8vyQ5SF05EO7O5AzVSp-JVqLV6_e7o82dCEvBCNDwKGBmUHXQ5zWuDHm_9SByvFJcSn-bj_hShvkSdziHsu3TRaxVfdAQVuzqGg3IUg-dO5gm0Wttszd7yOqc1Xk4TZFT19_RyS1oIGKG818XMM9ZuvGfS5X_HZyKUO9bWKUw69-N2l7npCExjmp-xwOpUYXROhDJC40UPw53SJrZ-ZFPDIxNittHExZggN3hRwaMZCiXCUCur5tEZVFfrlT0HDyHSUUTlB5FyFc9nat4UGk24Ji2fuA5RiYjUTjqcJlgsZckRe5IFjpJwlAWOdWCfVptCOuOP95MSbPltC0j07r9aXvzb8hZ2u-PhQA56o_4l7IV0mc7rK1dQzV629hozjkzduB31AcVy0qM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-weighted+multi-view+clustering+via+deep+matrix+decomposition&rft.jtitle=Pattern+recognition&rft.au=Huang%2C+Shudong&rft.au=Kang%2C+Zhao&rft.au=Xu%2C+Zenglin&rft.date=2020-01-01&rft.issn=0031-3203&rft.volume=97&rft.spage=107015&rft_id=info:doi/10.1016%2Fj.patcog.2019.107015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2019_107015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon