Auto-weighted multi-view clustering via deep matrix decomposition
•Anovel deep multi-view learning model is proposed by uncovering the hierarchical semantics of the input data in a layer-wise way.•The instances from the same class but from different views are forced to be closer layer by layer in the low-dimensional space, which is beneficial for the subsequent le...
Saved in:
Published in | Pattern recognition Vol. 97; p. 107015 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2019.107015 |
Cover
Loading…
Abstract | •Anovel deep multi-view learning model is proposed by uncovering the hierarchical semantics of the input data in a layer-wise way.•The instances from the same class but from different views are forced to be closer layer by layer in the low-dimensional space, which is beneficial for the subsequent learning task.•To automatically determine the weights of different views, we introduce the auto-weighting scheme into the deep multi-view clustering algorithm.•To solve the optimization problem of our model, an efficient iterative updating algorithm is proposed with a theoretical guarantee of its convergence.
Real data are often collected from multiple channels or comprised of different representations (i.e., views). Multi-view learning provides an elegant way to analyze the multi-view data for low-dimensional representation. In recent years, several multi-view learning methods have been designed and successfully applied in various tasks. However, existing multi-view learning methods usually work in a single layer formulation. Since the mapping between the obtained representation and the original data contains rather complex hierarchical information with implicit lower-level hidden attributes, it is desirable to fully explore the hidden structures hierarchically. In this paper, a novel deep multi-view clustering model is proposed by uncovering the hierarchical semantics of the input data in a layer-wise way. By utilizing a novel collaborative deep matrix decomposition framework, the hidden representations are learned with respect to different attributes. The proposed model is able to collaboratively learn the hierarchical semantics obtained by each layer. The instances from the same class are forced to be closer layer by layer in the low-dimensional space, which is beneficial for the subsequent clustering task. Furthermore, an idea weight is automatically assigned to each view without introducing extra hyperparameter as previous methods do. To solve the optimization problem of our model, an efficient iterative updating algorithm is proposed and its convergence is also guaranteed theoretically. Our empirical study on multi-view clustering task shows encouraging results of our model in comparison to the state-of-the-art algorithms. |
---|---|
AbstractList | •Anovel deep multi-view learning model is proposed by uncovering the hierarchical semantics of the input data in a layer-wise way.•The instances from the same class but from different views are forced to be closer layer by layer in the low-dimensional space, which is beneficial for the subsequent learning task.•To automatically determine the weights of different views, we introduce the auto-weighting scheme into the deep multi-view clustering algorithm.•To solve the optimization problem of our model, an efficient iterative updating algorithm is proposed with a theoretical guarantee of its convergence.
Real data are often collected from multiple channels or comprised of different representations (i.e., views). Multi-view learning provides an elegant way to analyze the multi-view data for low-dimensional representation. In recent years, several multi-view learning methods have been designed and successfully applied in various tasks. However, existing multi-view learning methods usually work in a single layer formulation. Since the mapping between the obtained representation and the original data contains rather complex hierarchical information with implicit lower-level hidden attributes, it is desirable to fully explore the hidden structures hierarchically. In this paper, a novel deep multi-view clustering model is proposed by uncovering the hierarchical semantics of the input data in a layer-wise way. By utilizing a novel collaborative deep matrix decomposition framework, the hidden representations are learned with respect to different attributes. The proposed model is able to collaboratively learn the hierarchical semantics obtained by each layer. The instances from the same class are forced to be closer layer by layer in the low-dimensional space, which is beneficial for the subsequent clustering task. Furthermore, an idea weight is automatically assigned to each view without introducing extra hyperparameter as previous methods do. To solve the optimization problem of our model, an efficient iterative updating algorithm is proposed and its convergence is also guaranteed theoretically. Our empirical study on multi-view clustering task shows encouraging results of our model in comparison to the state-of-the-art algorithms. |
ArticleNumber | 107015 |
Author | Kang, Zhao Huang, Shudong Xu, Zenglin |
Author_xml | – sequence: 1 givenname: Shudong orcidid: 0000-0001-6848-5460 surname: Huang fullname: Huang, Shudong – sequence: 2 givenname: Zhao orcidid: 0000-0003-4103-0954 surname: Kang fullname: Kang, Zhao – sequence: 3 givenname: Zenglin orcidid: 0000-0001-5550-6461 surname: Xu fullname: Xu, Zenglin email: zlxu@uestc.edu.cn |
BookMark | eNqFkM9OwzAMhyM0JDbgDTj0BTKcpE07DkjTxD9pEhc4R2nijUxtUyXZBm9Pp3LiACdbtr6f7G9GJp3vkJAbBnMGTN7u5r1Oxm_nHNhiGJXAijMyZVUpaMFyPiFTAMGo4CAuyCzGHQArh8WULJf75OkR3fYjoc3afZMcPTg8ZqbZx4TBddvs4HRmEfus1Sm4z6E3vu19dMn57oqcb3QT8fqnXpL3x4e31TNdvz69rJZragTIRBmaRc14XsraSlPxwiDWxhYIAhc2F5aDzKthWPAqz60EWZXAZS05NzXWG3FJ8jHXBB9jwI3qg2t1-FIM1EmD2qlRgzppUKOGAbv7hRmX9OnwFLRr_oPvRxiHxwYrQUXjsDNoXUCTlPXu74Bv0Y9-SQ |
CitedBy_id | crossref_primary_10_1016_j_knosys_2020_105582 crossref_primary_10_1109_TSIPN_2024_3511262 crossref_primary_10_1016_j_ins_2023_119366 crossref_primary_10_1109_TMM_2024_3397038 crossref_primary_10_1007_s11063_022_11127_7 crossref_primary_10_1142_S0218213023500616 crossref_primary_10_1016_j_patcog_2022_108610 crossref_primary_10_3390_app13158791 crossref_primary_10_1007_s13042_023_01969_5 crossref_primary_10_1016_j_engappai_2024_107857 crossref_primary_10_1016_j_knosys_2021_107244 crossref_primary_10_1016_j_ins_2023_01_071 crossref_primary_10_1109_TNNLS_2020_3026686 crossref_primary_10_1016_j_neucom_2023_126521 crossref_primary_10_1016_j_knosys_2022_110145 crossref_primary_10_1155_2021_5526479 crossref_primary_10_1016_j_neunet_2023_01_037 crossref_primary_10_1109_TNNLS_2021_3104846 crossref_primary_10_1016_j_knosys_2021_107016 crossref_primary_10_1016_j_ins_2021_11_075 crossref_primary_10_1109_TCYB_2021_3053057 crossref_primary_10_1016_j_patrec_2020_07_031 crossref_primary_10_1007_s13042_021_01421_6 crossref_primary_10_1109_TAI_2021_3116546 crossref_primary_10_1016_j_engappai_2024_109508 crossref_primary_10_1016_j_ins_2021_02_027 crossref_primary_10_1109_ACCESS_2022_3199354 crossref_primary_10_1109_TR_2024_3393415 crossref_primary_10_1016_j_neucom_2020_04_120 crossref_primary_10_1016_j_eswa_2022_116637 crossref_primary_10_1016_j_patcog_2021_107996 crossref_primary_10_1109_TNNLS_2022_3145048 crossref_primary_10_1007_s12559_024_10392_z crossref_primary_10_1016_j_eswa_2024_124961 crossref_primary_10_1002_int_22655 crossref_primary_10_1016_j_inffus_2023_101884 crossref_primary_10_1109_TBDATA_2024_3433525 crossref_primary_10_1109_TMM_2020_3025666 crossref_primary_10_1109_TBDATA_2024_3371357 crossref_primary_10_1016_j_eswa_2022_119458 crossref_primary_10_7717_peerj_cs_922 crossref_primary_10_1016_j_ins_2022_12_063 crossref_primary_10_1007_s00521_023_08915_0 crossref_primary_10_26599_BDMA_2023_9020004 crossref_primary_10_1016_j_knosys_2024_112424 crossref_primary_10_1016_j_neunet_2024_106197 crossref_primary_10_1109_JAS_2022_105980 crossref_primary_10_1016_j_patcog_2020_107627 crossref_primary_10_1016_j_patcog_2020_107628 crossref_primary_10_1016_j_knosys_2023_111330 crossref_primary_10_1016_j_patcog_2023_109632 crossref_primary_10_1109_TIP_2024_3354106 crossref_primary_10_1109_TNNLS_2020_2979532 crossref_primary_10_1016_j_knosys_2021_106745 crossref_primary_10_1016_j_eswa_2021_114783 crossref_primary_10_1016_j_eswa_2021_115991 crossref_primary_10_1109_TGRS_2024_3365711 crossref_primary_10_1016_j_inffus_2021_12_001 crossref_primary_10_1016_j_neucom_2025_129568 crossref_primary_10_1016_j_eswa_2022_118911 crossref_primary_10_1016_j_asoc_2025_112844 crossref_primary_10_1016_j_neucom_2020_12_094 crossref_primary_10_1016_j_neucom_2024_128054 crossref_primary_10_1007_s00034_021_01833_3 crossref_primary_10_1016_j_asoc_2023_110903 crossref_primary_10_1016_j_patcog_2022_108809 crossref_primary_10_1016_j_ins_2023_03_119 crossref_primary_10_1109_TKDE_2022_3178145 crossref_primary_10_1007_s10462_023_10616_y crossref_primary_10_1016_j_ins_2021_03_040 crossref_primary_10_1016_j_neunet_2024_106295 crossref_primary_10_1109_ACCESS_2022_3221150 crossref_primary_10_1007_s13042_024_02280_7 crossref_primary_10_1016_j_knosys_2022_108250 crossref_primary_10_1016_j_eswa_2022_119031 crossref_primary_10_1016_j_patcog_2022_108772 crossref_primary_10_1016_j_patcog_2022_109102 crossref_primary_10_1007_s00371_024_03661_3 crossref_primary_10_1109_TCSS_2022_3173367 crossref_primary_10_1016_j_patcog_2022_108815 crossref_primary_10_1109_TBDATA_2022_3163584 crossref_primary_10_1109_TKDE_2020_3025759 crossref_primary_10_1016_j_neunet_2023_07_022 crossref_primary_10_1016_j_neunet_2019_10_010 crossref_primary_10_1109_TMM_2022_3157997 crossref_primary_10_1016_j_patcog_2022_108817 crossref_primary_10_1007_s11280_020_00796_w crossref_primary_10_1016_j_dsp_2024_104879 crossref_primary_10_1109_TNNLS_2021_3121246 crossref_primary_10_1016_j_knosys_2022_109694 crossref_primary_10_1109_TNNLS_2023_3304626 crossref_primary_10_3390_electronics12214467 crossref_primary_10_1016_j_ins_2022_07_177 crossref_primary_10_1016_j_patcog_2022_108787 crossref_primary_10_12677_pm_2025_153078 crossref_primary_10_1109_TIP_2022_3176223 crossref_primary_10_3390_math11030652 crossref_primary_10_1016_j_eswa_2024_125386 crossref_primary_10_1016_j_ins_2023_119426 crossref_primary_10_1007_s10489_022_04385_4 crossref_primary_10_1016_j_neucom_2023_03_004 crossref_primary_10_1016_j_patcog_2022_109083 crossref_primary_10_1109_TSIPN_2022_3169633 crossref_primary_10_1016_j_patcog_2024_110716 crossref_primary_10_1109_TETCI_2022_3221491 crossref_primary_10_1109_TKDE_2022_3199587 crossref_primary_10_1016_j_cosrev_2021_100423 crossref_primary_10_1016_j_knosys_2019_105102 crossref_primary_10_1155_2023_7217818 crossref_primary_10_1016_j_knosys_2021_106807 crossref_primary_10_1016_j_patcog_2020_107307 crossref_primary_10_1016_j_ins_2022_07_089 crossref_primary_10_1109_TNSE_2023_3244624 crossref_primary_10_1109_TNNLS_2024_3381223 crossref_primary_10_1007_s10462_022_10332_z crossref_primary_10_1016_j_ins_2022_01_017 crossref_primary_10_1016_j_ipm_2021_102546 crossref_primary_10_1007_s10489_022_04166_z crossref_primary_10_1016_j_inffus_2025_103012 crossref_primary_10_1016_j_comnet_2021_108564 crossref_primary_10_1016_j_knosys_2023_110425 crossref_primary_10_3389_fphy_2020_618224 crossref_primary_10_1016_j_neunet_2023_02_016 crossref_primary_10_1016_j_patcog_2020_107676 crossref_primary_10_1016_j_sigpro_2023_109341 crossref_primary_10_1007_s10489_022_03735_6 crossref_primary_10_1016_j_neunet_2024_106563 crossref_primary_10_1016_j_patcog_2023_109836 crossref_primary_10_1016_j_patcog_2024_111010 crossref_primary_10_1007_s41019_021_00159_z crossref_primary_10_1016_j_ins_2022_07_119 |
Cites_doi | 10.1023/B:VISI.0000029664.99615.94 10.1016/j.patcog.2014.12.016 10.1007/s10618-017-0543-9 10.1016/j.knosys.2018.05.017 10.1016/j.neucom.2018.05.072 10.1016/j.patcog.2018.11.007 10.1002/cpa.20303 10.1109/TPAMI.2002.1017623 10.1016/j.knosys.2018.10.003 10.1016/j.patcog.2017.03.003 10.1613/jair.4190 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2019.107015 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2019_107015 S0031320319303188 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-1ec9b12476bd6c825ceebcd5e03e9d43d20648cee52844d60687026b622cbebf3 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Tue Jul 01 02:36:30 EDT 2025 Thu Apr 24 22:56:44 EDT 2025 Fri Feb 23 02:25:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Optimization algorithm Deep matrix decomposition Clustering Multi-view learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-1ec9b12476bd6c825ceebcd5e03e9d43d20648cee52844d60687026b622cbebf3 |
ORCID | 0000-0001-5550-6461 0000-0001-6848-5460 0000-0003-4103-0954 |
ParticipantIDs | crossref_primary_10_1016_j_patcog_2019_107015 crossref_citationtrail_10_1016_j_patcog_2019_107015 elsevier_sciencedirect_doi_10_1016_j_patcog_2019_107015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Arora, Livescu, Bilmes (bib0031) 2015 Wang, Kong, Fu, Li, Zhang (bib0036) 2015 Ding, Fu (bib0014) 2014 Lowe, Lowe (bib0003) 2004; 60 Tzortzis, Likas (bib0035) 2012 Li, Zhu, Zhang, Blake, Zhang, Shum (bib0018) 2002 Cai, Nie, Huang (bib0033) 2013 Hou, Chen, Tao, Zhou, Liu, Zheng (bib0008) 2017; 68 Kumar, Daumé (bib0011) 2011 Chaudhuri, Kakade, Livescu, Sridharan (bib0016) 2009 Ding, Li, Peng, Park (bib0025) 2006 Dalal, Triggs (bib0002) 2005 Andrew, Arora, Bilmes, Livescu (bib0030) 2013 Kong, Ding, Huang (bib0027) 2011 Bisson, Grimal (bib0039) 2012 Huang, Xu, Wang (bib0023) 2017 Trigeorgis, Bousmalis, Zafeiriou, Schuller (bib0026) 2014 Nie, Huang, Cai, Ding (bib0034) 2010 Huang, Ren, Xu (bib0004) 2018; 311 Lee, Seung (bib0021) 2001 Daubechies, DeVore, Fornasier, Güntürk (bib0028) 2010; 63 Zhang, Fu, Hu, Cao, Xie, Tao, Xu (bib0017) 2018 Zhang, Cheng, Xu, Lu, Ma (bib0019) 2009 Huang, Zhao, Ren, Li, Xu (bib0022) 2019; 164 Nie, Li, Li (bib0029) 2016 Zhao, Ding, Fu (bib0032) 2017 Ojala, Pietik, Inen, Topi (bib0001) 2002; 24 Huang, Kang, Tsang, Xu (bib0009) 2019; 88 Kumar, Rai, Daume (bib0010) 2012 Li, Yang, Zhang (bib0007) 2018 Zhang, Zhang, Zhang, Tao, Huang, Du (bib0013) 2015; 48 Greene, Cunningham (bib0038) 2006 Zhan, Chang, Guan, Chen, Ma, Yang (bib0037) 2018 Dhillon, Foster, Ungar (bib0020) 2011 Yang, Gao (bib0015) 2014; 49 Huang, Wang, Li, Li, Xu (bib0024) 2018; 32 Huang, Kang, Xu (bib0005) 2018; 158 Liu, Wang, Gao, Han (bib0012) 2013 Kang, Guo, Huang, Wang, Chen, Su, Xu (bib0006) 2019 Kumar (10.1016/j.patcog.2019.107015_bib0010) 2012 Yang (10.1016/j.patcog.2019.107015_bib0015) 2014; 49 Daubechies (10.1016/j.patcog.2019.107015_bib0028) 2010; 63 Cai (10.1016/j.patcog.2019.107015_bib0033) 2013 Dalal (10.1016/j.patcog.2019.107015_bib0002) 2005 Tzortzis (10.1016/j.patcog.2019.107015_bib0035) 2012 Hou (10.1016/j.patcog.2019.107015_bib0008) 2017; 68 Li (10.1016/j.patcog.2019.107015_bib0007) 2018 Wang (10.1016/j.patcog.2019.107015_bib0031) 2015 Ding (10.1016/j.patcog.2019.107015_bib0025) 2006 Wang (10.1016/j.patcog.2019.107015_bib0036) 2015 Huang (10.1016/j.patcog.2019.107015_bib0024) 2018; 32 Ojala (10.1016/j.patcog.2019.107015_bib0001) 2002; 24 Kang (10.1016/j.patcog.2019.107015_bib0006) 2019 Lee (10.1016/j.patcog.2019.107015_bib0021) 2001 Liu (10.1016/j.patcog.2019.107015_bib0012) 2013 Zhan (10.1016/j.patcog.2019.107015_bib0037) 2018 Chaudhuri (10.1016/j.patcog.2019.107015_bib0016) 2009 Huang (10.1016/j.patcog.2019.107015_bib0009) 2019; 88 Huang (10.1016/j.patcog.2019.107015_bib0004) 2018; 311 Nie (10.1016/j.patcog.2019.107015_bib0034) 2010 Zhang (10.1016/j.patcog.2019.107015_bib0019) 2009 Kumar (10.1016/j.patcog.2019.107015_bib0011) 2011 Huang (10.1016/j.patcog.2019.107015_bib0022) 2019; 164 Greene (10.1016/j.patcog.2019.107015_bib0038) 2006 Bisson (10.1016/j.patcog.2019.107015_bib0039) 2012 Li (10.1016/j.patcog.2019.107015_bib0018) 2002 Huang (10.1016/j.patcog.2019.107015_bib0005) 2018; 158 Dhillon (10.1016/j.patcog.2019.107015_bib0020) 2011 Zhang (10.1016/j.patcog.2019.107015_bib0013) 2015; 48 Ding (10.1016/j.patcog.2019.107015_bib0014) 2014 Trigeorgis (10.1016/j.patcog.2019.107015_bib0026) 2014 Nie (10.1016/j.patcog.2019.107015_bib0029) 2016 Lowe (10.1016/j.patcog.2019.107015_bib0003) 2004; 60 Zhang (10.1016/j.patcog.2019.107015_bib0017) 2018 Huang (10.1016/j.patcog.2019.107015_bib0023) 2017 Zhao (10.1016/j.patcog.2019.107015_bib0032) 2017 Kong (10.1016/j.patcog.2019.107015_bib0027) 2011 Andrew (10.1016/j.patcog.2019.107015_bib0030) 2013 |
References_xml | – volume: 32 start-page: 483 year: 2018 end-page: 503 ident: bib0024 article-title: Robust graph regularized nonnegative matrix factorization for clustering publication-title: Data Min. Knowl. Discov. – volume: 48 start-page: 3102 year: 2015 end-page: 3112 ident: bib0013 article-title: Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding publication-title: Pattern Recognit. – start-page: 110 year: 2014 end-page: 119 ident: bib0014 article-title: Low-rank common subspace for multi-view learning publication-title: Proceedings of the IEEE International Conference on Data Mining – start-page: 67 year: 2002 end-page: 81 ident: bib0018 article-title: Statistical learning of multi-view face detection publication-title: Proceedings of the European Conference on Computer Vision – volume: 164 start-page: 29 year: 2019 end-page: 37 ident: bib0022 article-title: Self-paced and soft-weighted nonnegative matrix factorization for data representation publication-title: Knowl.-Based Syst. – volume: 63 start-page: 1 year: 2010 end-page: 38 ident: bib0028 article-title: Iteratively reweighted least squares minimization for sparse recovery publication-title: Commun. Pure. Appl. Math. – start-page: 1813 year: 2010 end-page: 1821 ident: bib0034 article-title: Efficient and robust feature selection via joint ℓ publication-title: Advances in Neural Information Processing Systems – start-page: 184 year: 2012 end-page: 193 ident: bib0039 article-title: An architecture to efficiently learn co-similarities from multi-view datasets publication-title: Proceedings of the International Conference on Neural Information Processing – start-page: 2701 year: 2019 end-page: 2707 ident: bib0006 article-title: Multiple partitions aligned clustering publication-title: Proceedings of the 28th International Joint Conference on Artificial Intelligence – start-page: 129 year: 2009 end-page: 136 ident: bib0016 article-title: Multi-view clustering via canonical correlation analysis publication-title: Proceedings of the 26th Annual International Conference on Machine Learning – start-page: 1 year: 2018 end-page: 14 ident: bib0017 article-title: Generalized latent multi-view subspace clustering publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – volume: 68 start-page: 66 year: 2017 end-page: 81 ident: bib0008 article-title: Multi-layer multi-view topic model for classifying advertising video publication-title: Pattern Recognit. – volume: 60 start-page: 91 year: 2004 end-page: 110 ident: bib0003 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vision – volume: 311 start-page: 197 year: 2018 end-page: 208 ident: bib0004 article-title: Robust multi-view data clustering with multi-view capped-norm k-means publication-title: Neurocomputing – volume: 49 start-page: 501 year: 2014 end-page: 525 ident: bib0015 article-title: Information-theoretic multi-view domain adaptation: a theoretical and empirical study publication-title: J. Artif. Intell. Res. – start-page: 1692 year: 2014 end-page: 1700 ident: bib0026 article-title: A deep semi-nmf model for learning hidden representations publication-title: Proceedings of the International Conference on Machine Learning – start-page: 2598 year: 2013 end-page: 2604 ident: bib0033 article-title: Multi-view k-means clustering on big data publication-title: Proceedings of the International Joint Conference on Artificial Intelligence – start-page: 2921 year: 2017 end-page: 2927 ident: bib0032 article-title: Multi-view clustering via deep matrix factorization publication-title: Proceedings of AAAI Conference on Artificial Intelligence – start-page: 1083 year: 2015 end-page: 1092 ident: bib0031 article-title: On deep multi-view representation learning publication-title: Proceedings of the International Conference on Machine Learning – start-page: 1 year: 2018 end-page: 9 ident: bib0037 article-title: Adaptive structure discovery for multimedia analysis using multiple features publication-title: IEEE Trans. Cybern. – start-page: 252 year: 2013 end-page: 260 ident: bib0012 article-title: Multi-view clustering via joint nonnegative matrix factorization publication-title: Proceedings of the 2013 SIAM International Conference on Data Mining – start-page: 1413 year: 2012 end-page: 1421 ident: bib0010 article-title: Co-regularized multi-view spectral clustering publication-title: Advances in Neural Information Processing Systems – start-page: 199 year: 2011 end-page: 207 ident: bib0020 article-title: Multi-view learning of word embeddings via CCA publication-title: Advances in Neural Information Processing Systems – start-page: 1 year: 2018 end-page: 20 ident: bib0007 article-title: A survey of multi-view representation learning publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 393 year: 2011 end-page: 400 ident: bib0011 article-title: A co-training approach for multi-view spectral clustering publication-title: Proceedings of the 28th International Conference on Machine Learning – start-page: 675 year: 2012 end-page: 684 ident: bib0035 article-title: Kernel-based weighted multi-view clustering publication-title: Proceedings of the 12th IEEE International Conference on Data Mining – start-page: 556 year: 2001 end-page: 562 ident: bib0021 article-title: Algorithms for non-negative matrix factorization publication-title: Advances in Neural Information Processing Systems – start-page: 673 year: 2011 end-page: 682 ident: bib0027 article-title: Robust nonnegative matrix factorization using l21-norm publication-title: Proceedings of the 20th ACM International Conference on Information and Knowledge Management – volume: 88 start-page: 174 year: 2019 end-page: 184 ident: bib0009 article-title: Auto-weighted multi-view clustering via kernelized graph learning publication-title: Pattern Recognit. – start-page: 886 year: 2005 end-page: 893 ident: bib0002 article-title: Histograms of oriented gradients for human detection publication-title: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 24 start-page: 971 year: 2002 end-page: 987 ident: bib0001 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – start-page: 1247 year: 2013 end-page: 1255 ident: bib0030 article-title: Deep canonical correlation analysis publication-title: Proceedings of the International Conference on Machine Learning – volume: 158 start-page: 1 year: 2018 end-page: 8 ident: bib0005 article-title: Self-weighted multi-view clustering with soft capped norm publication-title: Knowl.-Based Syst. – start-page: 1881 year: 2016 end-page: 1887 ident: bib0029 article-title: Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification publication-title: Proceedings of the International Joint Conference on Artificial Intelligence – year: 2017 ident: bib0023 article-title: Nonnegative matrix factorization with adaptive neighbors publication-title: Proceedings of the International Joint Conference on Neural Networks – start-page: 126 year: 2006 end-page: 135 ident: bib0025 article-title: Orthogonal nonnegative matrix t-factorizations for clustering publication-title: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 3500 year: 2015 end-page: 3504 ident: bib0036 article-title: Feature extraction via multi-view non-negative matrix factorization with local graph regularization publication-title: Proceedings of the IEEE International Conference on Image Processing – start-page: 258 year: 2009 end-page: 261 ident: bib0019 article-title: Multi-view multi-label active learning for image classification publication-title: Proceedings of the IEEE International Conference on Multimedia and Expo – start-page: 377 year: 2006 end-page: 384 ident: bib0038 article-title: Practical solutions to the problem of diagonal dominance in kernel document clustering publication-title: Proceedings of the 23rd International Conference on Machine Learning – start-page: 1881 year: 2016 ident: 10.1016/j.patcog.2019.107015_bib0029 article-title: Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification – start-page: 377 year: 2006 ident: 10.1016/j.patcog.2019.107015_bib0038 article-title: Practical solutions to the problem of diagonal dominance in kernel document clustering – start-page: 67 year: 2002 ident: 10.1016/j.patcog.2019.107015_bib0018 article-title: Statistical learning of multi-view face detection – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 10.1016/j.patcog.2019.107015_bib0003 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vision doi: 10.1023/B:VISI.0000029664.99615.94 – start-page: 129 year: 2009 ident: 10.1016/j.patcog.2019.107015_bib0016 article-title: Multi-view clustering via canonical correlation analysis – start-page: 110 year: 2014 ident: 10.1016/j.patcog.2019.107015_bib0014 article-title: Low-rank common subspace for multi-view learning – volume: 48 start-page: 3102 issue: 10 year: 2015 ident: 10.1016/j.patcog.2019.107015_bib0013 article-title: Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.12.016 – start-page: 556 year: 2001 ident: 10.1016/j.patcog.2019.107015_bib0021 article-title: Algorithms for non-negative matrix factorization – start-page: 673 year: 2011 ident: 10.1016/j.patcog.2019.107015_bib0027 article-title: Robust nonnegative matrix factorization using l21-norm – volume: 32 start-page: 483 issue: 2 year: 2018 ident: 10.1016/j.patcog.2019.107015_bib0024 article-title: Robust graph regularized nonnegative matrix factorization for clustering publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-017-0543-9 – volume: 158 start-page: 1 year: 2018 ident: 10.1016/j.patcog.2019.107015_bib0005 article-title: Self-weighted multi-view clustering with soft capped norm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.05.017 – start-page: 1 year: 2018 ident: 10.1016/j.patcog.2019.107015_bib0017 article-title: Generalized latent multi-view subspace clustering publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – volume: 311 start-page: 197 year: 2018 ident: 10.1016/j.patcog.2019.107015_bib0004 article-title: Robust multi-view data clustering with multi-view capped-norm k-means publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.072 – start-page: 393 year: 2011 ident: 10.1016/j.patcog.2019.107015_bib0011 article-title: A co-training approach for multi-view spectral clustering – start-page: 184 year: 2012 ident: 10.1016/j.patcog.2019.107015_bib0039 article-title: An architecture to efficiently learn co-similarities from multi-view datasets – start-page: 2921 year: 2017 ident: 10.1016/j.patcog.2019.107015_bib0032 article-title: Multi-view clustering via deep matrix factorization – volume: 88 start-page: 174 year: 2019 ident: 10.1016/j.patcog.2019.107015_bib0009 article-title: Auto-weighted multi-view clustering via kernelized graph learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.11.007 – start-page: 252 year: 2013 ident: 10.1016/j.patcog.2019.107015_bib0012 article-title: Multi-view clustering via joint nonnegative matrix factorization – start-page: 675 year: 2012 ident: 10.1016/j.patcog.2019.107015_bib0035 article-title: Kernel-based weighted multi-view clustering – volume: 63 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.patcog.2019.107015_bib0028 article-title: Iteratively reweighted least squares minimization for sparse recovery publication-title: Commun. Pure. Appl. Math. doi: 10.1002/cpa.20303 – start-page: 2701 year: 2019 ident: 10.1016/j.patcog.2019.107015_bib0006 article-title: Multiple partitions aligned clustering – start-page: 199 year: 2011 ident: 10.1016/j.patcog.2019.107015_bib0020 article-title: Multi-view learning of word embeddings via CCA – start-page: 886 year: 2005 ident: 10.1016/j.patcog.2019.107015_bib0002 article-title: Histograms of oriented gradients for human detection – volume: 24 start-page: 971 issue: 7 year: 2002 ident: 10.1016/j.patcog.2019.107015_bib0001 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach.Intell. doi: 10.1109/TPAMI.2002.1017623 – year: 2017 ident: 10.1016/j.patcog.2019.107015_bib0023 article-title: Nonnegative matrix factorization with adaptive neighbors – start-page: 1692 year: 2014 ident: 10.1016/j.patcog.2019.107015_bib0026 article-title: A deep semi-nmf model for learning hidden representations – start-page: 2598 year: 2013 ident: 10.1016/j.patcog.2019.107015_bib0033 article-title: Multi-view k-means clustering on big data – start-page: 126 year: 2006 ident: 10.1016/j.patcog.2019.107015_bib0025 article-title: Orthogonal nonnegative matrix t-factorizations for clustering – start-page: 1247 year: 2013 ident: 10.1016/j.patcog.2019.107015_bib0030 article-title: Deep canonical correlation analysis – start-page: 1813 year: 2010 ident: 10.1016/j.patcog.2019.107015_bib0034 article-title: Efficient and robust feature selection via joint ℓ2,1-norms minimization – start-page: 1413 year: 2012 ident: 10.1016/j.patcog.2019.107015_bib0010 article-title: Co-regularized multi-view spectral clustering – volume: 164 start-page: 29 year: 2019 ident: 10.1016/j.patcog.2019.107015_bib0022 article-title: Self-paced and soft-weighted nonnegative matrix factorization for data representation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.10.003 – start-page: 3500 year: 2015 ident: 10.1016/j.patcog.2019.107015_bib0036 article-title: Feature extraction via multi-view non-negative matrix factorization with local graph regularization – start-page: 1 year: 2018 ident: 10.1016/j.patcog.2019.107015_bib0037 article-title: Adaptive structure discovery for multimedia analysis using multiple features publication-title: IEEE Trans. Cybern. – start-page: 1 year: 2018 ident: 10.1016/j.patcog.2019.107015_bib0007 article-title: A survey of multi-view representation learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: 68 start-page: 66 year: 2017 ident: 10.1016/j.patcog.2019.107015_bib0008 article-title: Multi-layer multi-view topic model for classifying advertising video publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.03.003 – volume: 49 start-page: 501 year: 2014 ident: 10.1016/j.patcog.2019.107015_bib0015 article-title: Information-theoretic multi-view domain adaptation: a theoretical and empirical study publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.4190 – start-page: 1083 year: 2015 ident: 10.1016/j.patcog.2019.107015_bib0031 article-title: On deep multi-view representation learning – start-page: 258 year: 2009 ident: 10.1016/j.patcog.2019.107015_bib0019 article-title: Multi-view multi-label active learning for image classification |
SSID | ssj0017142 |
Score | 2.63188 |
Snippet | •Anovel deep multi-view learning model is proposed by uncovering the hierarchical semantics of the input data in a layer-wise way.•The instances from the same... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107015 |
SubjectTerms | Clustering Deep matrix decomposition Multi-view learning Optimization algorithm |
Title | Auto-weighted multi-view clustering via deep matrix decomposition |
URI | https://dx.doi.org/10.1016/j.patcog.2019.107015 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvXjxLdZH2YPXtUk22TTHUCxVsScLvYXso1KpbZBUPfnbnUk2RUEUvIUlA-HL7szs8M03AJd97XsmMJL7Jo95GFrNExkHPPGUzNEdhrYij9-P5WgS3k6jaQsGTS8M0Sqd7699euWt3UrPodkr5nPq8SXZQerCEbQzqeGX1OtwT199bGgeNN-7VgwXPqe3m_a5iuNVoLtbPRLBK8Gl2KPhuD-Fpy8hZ7gHOy5XZGn9OfvQsssD2G3mMDB3LA8hTdflir9VRU5rWMUR5FTyZ3qxJiEEDE_sdZ4zY23BnkmU_x2fiU3uKFtHMBlePwxG3I1G4Bpz_JL7VicKQ3MslZEab3kY65Q2kfWETUwoTICpRh8XI8Lb4C0Fz2UglQwCrayaiWNoL1dLewIMIdJCUO1BJqGKZrma9aVGk1CTkE_UAdEgkmmnG07jKxZZQxB7ymocM8Ixq3HsAN9YFbVuxh_vxw3Y2bf_n6Fr_9Xy9N-WZ7Ad0O25KqicQ7t8WdsLTDFK1a32UBe20pu70fgTk9zP8g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9CLb7E-c_C6NI_NpjmWYmnt49RCb0v3UanUtkiq_nxnko0oiIK3sGQgfOzOzE6--QbgrqkD34RGsMDMEsa51SwVSchSX4kZukNuc_L4cCS6E_4wjacVaJe9MESrdL6_8Om5t3YrDYdmY7NYUI8vyQ5SF05EO7O5AzVSp-JVqLV6_e7o82dCEvBCNDwKGBmUHXQ5zWuDHm_9SByvFJcSn-bj_hShvkSdziHsu3TRaxVfdAQVuzqGg3IUg-dO5gm0Wttszd7yOqc1Xk4TZFT19_RyS1oIGKG818XMM9ZuvGfS5X_HZyKUO9bWKUw69-N2l7npCExjmp-xwOpUYXROhDJC40UPw53SJrZ-ZFPDIxNittHExZggN3hRwaMZCiXCUCur5tEZVFfrlT0HDyHSUUTlB5FyFc9nat4UGk24Ji2fuA5RiYjUTjqcJlgsZckRe5IFjpJwlAWOdWCfVptCOuOP95MSbPltC0j07r9aXvzb8hZ2u-PhQA56o_4l7IV0mc7rK1dQzV629hozjkzduB31AcVy0qM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-weighted+multi-view+clustering+via+deep+matrix+decomposition&rft.jtitle=Pattern+recognition&rft.au=Huang%2C+Shudong&rft.au=Kang%2C+Zhao&rft.au=Xu%2C+Zenglin&rft.date=2020-01-01&rft.issn=0031-3203&rft.volume=97&rft.spage=107015&rft_id=info:doi/10.1016%2Fj.patcog.2019.107015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2019_107015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |