Authentic facial expression analysis
There is a growing trend toward emotional intelligence in human–computer interaction paradigms. In order to react appropriately to a human, the computer would need to have some perception of the emotional state of the human. We assert that the most informative channel for machine perception of emoti...
Saved in:
Published in | Image and vision computing Vol. 25; no. 12; pp. 1856 - 1863 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
03.12.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is a growing trend toward emotional intelligence in human–computer interaction paradigms. In order to react appropriately to a human, the computer would need to have some perception of the emotional state of the human. We assert that the most informative channel for machine perception of emotions is through facial expressions in video. One current difficulty in evaluating automatic emotion detection is that there are currently no international databases which are based on authentic emotions. The current facial expression databases contain facial expressions which are not naturally linked to the emotional state of the test subject. Our contributions in this work are twofold: first, we create the first authentic facial expression database where the test subjects are showing the natural facial expressions based upon their emotional state. Second, we evaluate the several promising machine learning algorithms for emotion detection which include techniques such as Bayesian networks, SVMs, and decision trees. |
---|---|
AbstractList | There is a growing trend toward emotional intelligence in human–computer interaction paradigms. In order to react appropriately to a human, the computer would need to have some perception of the emotional state of the human. We assert that the most informative channel for machine perception of emotions is through facial expressions in video. One current difficulty in evaluating automatic emotion detection is that there are currently no international databases which are based on authentic emotions. The current facial expression databases contain facial expressions which are not naturally linked to the emotional state of the test subject. Our contributions in this work are twofold: first, we create the first authentic facial expression database where the test subjects are showing the natural facial expressions based upon their emotional state. Second, we evaluate the several promising machine learning algorithms for emotion detection which include techniques such as Bayesian networks, SVMs, and decision trees. |
Author | Cohen, I. Gevers, T. Sun, Y. Sebe, N. Huang, T.S. Lew, M.S. |
Author_xml | – sequence: 1 givenname: N. surname: Sebe fullname: Sebe, N. email: nicu@science.uva.nl organization: Faculty of Science, University of Amsterdam, The Netherlands – sequence: 2 givenname: M.S. surname: Lew fullname: Lew, M.S. email: mlew@liacs.nl organization: LIACS Media Lab, Leiden University, The Netherlands – sequence: 3 givenname: Y. surname: Sun fullname: Sun, Y. email: sunyafei@cs.scu.edu.cn organization: School of Computer Science, Sichuan University, China – sequence: 4 givenname: I. surname: Cohen fullname: Cohen, I. email: iracohen@hp.com organization: HP Labs, 1501 Page mill Road, Palo Alto, CA 94304, USA – sequence: 5 givenname: T. surname: Gevers fullname: Gevers, T. email: gevers@science.uva.nl organization: Faculty of Science, University of Amsterdam, The Netherlands – sequence: 6 givenname: T.S. surname: Huang fullname: Huang, T.S. email: huang@ifp.uiuc.edu organization: Beckman Institute, University of Illinois at Urbana-Champaign, USA |
BookMark | eNqFzzFPwzAQhmELFYm28A8YOrAm3Dlx7DAgVRUFpEosMFuOcxauQlLZpqL_nlRlYoDpbnk_6ZmxST_0xNg1Qo6A1e029x9m72POAUSOPAeOZ2yKSvJMYaEmbAq8Gn8lqgs2i3ELABJkPWU3y8_0Tn3yduGM9aZb0NcuUIx-6BemN90h-njJzp3pIl393Dl7Wz-8rp6yzcvj82q5yWwBVcqQZImNaZCEQ1ejbBU4VE2NZYFOciVdUwMK4E6BsFQKYXiL0vGSZFFgMWfladeGIcZATu_CKAsHjaCPUr3VJ6k-SjVyPUrH7O5XZn0yaRSkYHz3X3x_immE7T0FHa2n3lLrA9mk28H_PfAN3vNysA |
CitedBy_id | crossref_primary_10_1016_j_patrec_2019_01_008 crossref_primary_10_1049_iet_cvi_2018_5127 crossref_primary_10_1080_02564602_2015_1117403 crossref_primary_10_1108_IJCHM_10_2012_0181 crossref_primary_10_1016_j_jnca_2019_102423 crossref_primary_10_1111_bjet_12126 crossref_primary_10_1016_j_ejor_2011_11_022 crossref_primary_10_1016_j_system_2021_102691 crossref_primary_10_1049_iet_ipr_2018_6647 crossref_primary_10_1016_j_displa_2022_102330 crossref_primary_10_1016_j_imavis_2012_02_007 crossref_primary_10_1049_iet_spr_2018_5087 crossref_primary_10_1016_j_patrec_2019_01_004 crossref_primary_10_1007_s00138_015_0677_y crossref_primary_10_1007_s00371_018_1482_1 crossref_primary_10_1080_03772063_2017_1329639 crossref_primary_10_1080_1206212X_2017_1395134 crossref_primary_10_1007_s00500_013_1149_9 crossref_primary_10_1109_TAFFC_2018_2875987 crossref_primary_10_1016_j_imavis_2014_04_010 crossref_primary_10_1027_1864_9335_a000106 crossref_primary_10_1145_3463511 crossref_primary_10_1109_TCDS_2020_3041642 crossref_primary_10_3390_s120303747 crossref_primary_10_1007_s12193_011_0057_5 crossref_primary_10_1007_s12369_012_0145_z crossref_primary_10_1016_j_imavis_2012_01_006 crossref_primary_10_1186_1687_6180_2012_20 crossref_primary_10_4018_IJSE_2020010101 crossref_primary_10_1109_TSMCB_2012_2200675 crossref_primary_10_1016_j_ijhcs_2011_05_003 crossref_primary_10_1016_j_engappai_2023_107708 crossref_primary_10_1007_s10803_018_3756_x crossref_primary_10_1016_j_imavis_2016_04_009 crossref_primary_10_1109_TAFFC_2015_2498174 crossref_primary_10_1145_3200572 crossref_primary_10_1049_iet_ipr_2018_6235 crossref_primary_10_3389_fpsyg_2018_00202 crossref_primary_10_1109_TSMCC_2011_2118750 crossref_primary_10_1109_TAFFC_2015_2392932 crossref_primary_10_1016_j_sigpro_2012_06_026 crossref_primary_10_1007_s10043_022_00734_3 crossref_primary_10_1007_s11704_016_5204_4 crossref_primary_10_1016_j_patcog_2015_08_013 crossref_primary_10_3758_s13428_022_01914_4 crossref_primary_10_3390_info5020305 crossref_primary_10_1016_j_jocs_2017_02_012 crossref_primary_10_1007_s00500_021_06038_z crossref_primary_10_1007_s10044_012_0279_5 crossref_primary_10_1108_OIR_04_2016_0121 crossref_primary_10_1109_TSMCB_2012_2193567 crossref_primary_10_1016_j_neucom_2015_06_079 crossref_primary_10_1002_meet_2011_14504801171 crossref_primary_10_1007_s11042_016_4261_x crossref_primary_10_1007_s11042_021_11270_8 crossref_primary_10_1007_s12008_022_01028_3 crossref_primary_10_1007_s10772_017_9396_2 crossref_primary_10_1109_TAFFC_2018_2874996 crossref_primary_10_1063_5_0160755 crossref_primary_10_1007_s00530_022_00984_w crossref_primary_10_1007_s11263_008_0185_x crossref_primary_10_3390_app132112049 crossref_primary_10_1049_iet_ipr_2018_5683 crossref_primary_10_1177_0149206312471393 crossref_primary_10_4018_IJSE_2019010102 crossref_primary_10_1007_s10044_015_0493_z crossref_primary_10_3390_s130607714 crossref_primary_10_1186_1475_925X_8_16 crossref_primary_10_1007_s11422_014_9658_0 crossref_primary_10_1007_s11760_015_0810_4 crossref_primary_10_1142_S0218001411008762 crossref_primary_10_1016_j_procs_2020_03_355 crossref_primary_10_1016_j_patcog_2008_10_010 crossref_primary_10_1016_j_procs_2020_03_397 crossref_primary_10_1080_02699931_2017_1386622 crossref_primary_10_1016_j_cviu_2013_11_002 crossref_primary_10_1016_j_patrec_2018_04_010 crossref_primary_10_1002_tea_21060 crossref_primary_10_36548_jitdw_2022_1_002 crossref_primary_10_1007_s11042_022_13117_2 crossref_primary_10_1109_TAFFC_2014_2346515 crossref_primary_10_1002_asi_24202 crossref_primary_10_1049_iet_cvi_2018_5281 crossref_primary_10_1145_3534621 crossref_primary_10_1142_S0218001414560126 crossref_primary_10_32604_cmc_2022_019284 crossref_primary_10_1016_j_cviu_2019_06_003 crossref_primary_10_1016_j_engappai_2012_09_002 crossref_primary_10_1039_C4RP00103F |
Cites_doi | 10.1023/A:1007465528199 10.1016/0020-7373(92)90018-G 10.1007/978-94-017-0295-9 10.1007/BF00116835 10.1109/CVPRW.2003.10057 10.1109/34.895976 10.1007/BF00116251 10.1109/TPAMI.2004.127 10.1109/CVPR.1998.698685 10.1109/AFGR.1998.670949 10.1037/0033-2909.115.2.288 10.1109/AFGR.2002.1004141 10.1023/A:1007515423169 10.1016/S0031-3203(02)00052-3 10.1142/S021821309700027X 10.1007/BF00058655 10.1007/BF00993481 10.1037/0033-2909.115.2.268 10.2190/DUGG-P24E-52WK-6CDG 10.1109/34.799905 10.1613/jair.63 10.1016/S0031-3203(99)00113-2 10.1023/A:1022664626993 |
ContentType | Journal Article |
Copyright | 2006 Elsevier B.V. |
Copyright_xml | – notice: 2006 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.imavis.2005.12.021 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1872-8138 |
EndPage | 1863 |
ExternalDocumentID | 10_1016_j_imavis_2005_12_021 S0262885606002903 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABOCM ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS UNMZH VOH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-1e741bab1e5f1f917d80f18b91431f7287fb901502f805ce455a2d17f24e73313 |
IEDL.DBID | AIKHN |
ISSN | 0262-8856 |
IngestDate | Tue Jul 01 00:48:13 EDT 2025 Thu Apr 24 22:52:07 EDT 2025 Fri Feb 23 02:23:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Facial expression analysis Classifiers Authentic emotions |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-1e741bab1e5f1f917d80f18b91431f7287fb901502f805ce455a2d17f24e73313 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_imavis_2005_12_021 crossref_citationtrail_10_1016_j_imavis_2005_12_021 elsevier_sciencedirect_doi_10_1016_j_imavis_2005_12_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-12-03 |
PublicationDateYYYYMMDD | 2007-12-03 |
PublicationDate_xml | – month: 12 year: 2007 text: 2007-12-03 day: 03 |
PublicationDecade | 2000 |
PublicationTitle | Image and vision computing |
PublicationYear | 2007 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | F. Bourel, C. Chibelushi, A. Low, Robust facial expression recognition using a state-based model of spatially-localised facial dynamic, in: International Conference on Automatic Face and Gesture Recognition, 2002, pp 113–118. Ekman, Friesen (bib13) 1978 Kohavi, Sommerfield, Dougherty (bib21) 1997; 6 M. Lyons, A. Akamatsu, M. Kamachi, J. Gyoba, Coding facial expressions with Gabor wavelets, in: IEEE International Conference on Automatic Face and Gesture Recognition, 1998, pp 200–205. Hertz, Krogh, Palmer (bib18) 1991 Fasel, Luettin (bib14) 2003; 36 Quinlan (bib28) 1993 Izard (bib19) 1994; 115 Oliver, Pentland, Bérard (bib25) 2000; 33 Littlestone (bib22) 1993; 10 Friedman, Geiger, Goldszmidt (bib16) 1997; 29 Ekman (bib12) 1994; 115 Bauer, Kohavi (bib3) 1999; 36 Goleman (bib17) 1995 N. Sebe, M. Lew, Robust Computer Vision – Theory and Applications (Chapter 7), Springer, 2003. Pantic, Rothkrantz (bib26) 2000; 22 Murthy, Kasif, Salzberg (bib24) 1994; 2 Breiman (bib5) 1996; 24 Clark, Niblett (bib6) 1989; 3 Y. Zhang, Q. Ji, Facial expression understanding in image sequences using dynamic and active visual information fusion, in: ICCV, 2003, pp. 113–118. Duda, Hart (bib10) 1973 M.S. Bartlett, I. Littlewort, G. Fasel, J.R. Movellan, Real time face detection and expression recognition: development and application to human–computer interaction, in: CVPR Workshop on Computer Vision and Pattern Recognition for Human–Computer Interaction, 2003. Donato, Bartlett, Hager, Ekman, Sejnowski (bib9) 1999; 21 H. Tao, T.S. Huang, Connected vibrations: a modal analysis approach to non-rigid motion tracking, in: CVPR, 1998, pp. 735–740. T. Kanade, J. Cohn, Y. Tian, Comprehensive database for facial expression analysis, in: International Conference on Automatic Face and Gesture Recognition, 2000, pp. 46–53. Cost, Salzberg (bib8) 1993; 10 (bib11) 1982 Cohen, Cozman, Sebe, Cirello, Huang (bib7) 2004; 26 Aha (bib1) 1992; 36 Vapnik (bib32) 1995 Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: International Conference on Machine Learning, 1996, pp. 148–156. Salovey, Mayer (bib29) 1990; 9 Quinlan (bib27) 1986; 1 Oliver (10.1016/j.imavis.2005.12.021_bib25) 2000; 33 Bauer (10.1016/j.imavis.2005.12.021_bib3) 1999; 36 Breiman (10.1016/j.imavis.2005.12.021_bib5) 1996; 24 10.1016/j.imavis.2005.12.021_bib30 10.1016/j.imavis.2005.12.021_bib33 (10.1016/j.imavis.2005.12.021_bib11) 1982 10.1016/j.imavis.2005.12.021_bib31 Quinlan (10.1016/j.imavis.2005.12.021_bib28) 1993 Cohen (10.1016/j.imavis.2005.12.021_bib7) 2004; 26 Izard (10.1016/j.imavis.2005.12.021_bib19) 1994; 115 Clark (10.1016/j.imavis.2005.12.021_bib6) 1989; 3 Murthy (10.1016/j.imavis.2005.12.021_bib24) 1994; 2 Goleman (10.1016/j.imavis.2005.12.021_bib17) 1995 Salovey (10.1016/j.imavis.2005.12.021_bib29) 1990; 9 Ekman (10.1016/j.imavis.2005.12.021_bib12) 1994; 115 Donato (10.1016/j.imavis.2005.12.021_bib9) 1999; 21 Quinlan (10.1016/j.imavis.2005.12.021_bib27) 1986; 1 Fasel (10.1016/j.imavis.2005.12.021_bib14) 2003; 36 Littlestone (10.1016/j.imavis.2005.12.021_bib22) 1993; 10 Vapnik (10.1016/j.imavis.2005.12.021_bib32) 1995 10.1016/j.imavis.2005.12.021_bib23 10.1016/j.imavis.2005.12.021_bib20 10.1016/j.imavis.2005.12.021_bib4 10.1016/j.imavis.2005.12.021_bib15 Aha (10.1016/j.imavis.2005.12.021_bib1) 1992; 36 Ekman (10.1016/j.imavis.2005.12.021_bib13) 1978 Hertz (10.1016/j.imavis.2005.12.021_bib18) 1991 10.1016/j.imavis.2005.12.021_bib2 Friedman (10.1016/j.imavis.2005.12.021_bib16) 1997; 29 Pantic (10.1016/j.imavis.2005.12.021_bib26) 2000; 22 Kohavi (10.1016/j.imavis.2005.12.021_bib21) 1997; 6 Cost (10.1016/j.imavis.2005.12.021_bib8) 1993; 10 Duda (10.1016/j.imavis.2005.12.021_bib10) 1973 |
References_xml | – volume: 36 start-page: 105 year: 1999 end-page: 142 ident: bib3 article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants publication-title: Machine Learning – year: 1978 ident: bib13 article-title: Facial Action Coding System: Investigator’s Guide – year: 1995 ident: bib17 article-title: Emotional Intelligence – volume: 115 start-page: 288 year: 1994 end-page: 299 ident: bib19 article-title: Innate and universal facial expressions: evidence from developmental and cross-cultural research publication-title: Psychological Bulletin – volume: 29 start-page: 131 year: 1997 end-page: 163 ident: bib16 article-title: Bayesian network classifiers publication-title: Machine Learning – year: 1995 ident: bib32 article-title: The Nature of Statistical Learning Theory – reference: Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: International Conference on Machine Learning, 1996, pp. 148–156. – reference: T. Kanade, J. Cohn, Y. Tian, Comprehensive database for facial expression analysis, in: International Conference on Automatic Face and Gesture Recognition, 2000, pp. 46–53. – volume: 36 start-page: 259 year: 2003 end-page: 275 ident: bib14 article-title: Automatic facial expression analysis: a survey publication-title: Pattern Recognition – volume: 9 start-page: 185 year: 1990 end-page: 211 ident: bib29 article-title: Emotional intelligence publication-title: Imagination, Cognition, and Personality – volume: 26 start-page: 1553 year: 2004 end-page: 1567 ident: bib7 article-title: Semi-supervised learning of classifiers: theory, algorithms for bayesian network classifiers and applications to human–computer interaction publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 1973 ident: bib10 article-title: Pattern Classification and Scene Analysis – volume: 21 start-page: 974 year: 1999 end-page: 989 ident: bib9 article-title: Classifying facial actions publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 2 start-page: 1 year: 1994 end-page: 33 ident: bib24 article-title: A system for the induction of oblique decision trees publication-title: Journal of Artificial Intelligence Research – year: 1982 ident: bib11 publication-title: Emotion in the Human Face – reference: M. Lyons, A. Akamatsu, M. Kamachi, J. Gyoba, Coding facial expressions with Gabor wavelets, in: IEEE International Conference on Automatic Face and Gesture Recognition, 1998, pp 200–205. – volume: 10 start-page: 57 year: 1993 end-page: 78 ident: bib8 article-title: A weighted nearest neighbor algorithm for learning with symbolic features publication-title: Machine Learning – volume: 115 start-page: 268 year: 1994 end-page: 287 ident: bib12 article-title: Strong evidence for universals in facial expressions: a reply to Russell’s mistaken critique publication-title: Psychological Bulletin – volume: 33 start-page: 1369 year: 2000 end-page: 1382 ident: bib25 article-title: LAFTER: a real-time face and lips tracker with facial expression recognition publication-title: Pattern Recognition – reference: Y. Zhang, Q. Ji, Facial expression understanding in image sequences using dynamic and active visual information fusion, in: ICCV, 2003, pp. 113–118. – volume: 6 start-page: 537 year: 1997 end-page: 566 ident: bib21 article-title: Data mining using MLC++: a machine learning library in C++ publication-title: International Journal on Artificial Intelligence Tools – reference: F. Bourel, C. Chibelushi, A. Low, Robust facial expression recognition using a state-based model of spatially-localised facial dynamic, in: International Conference on Automatic Face and Gesture Recognition, 2002, pp 113–118. – volume: 36 start-page: 267 year: 1992 end-page: 287 ident: bib1 article-title: Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms publication-title: International Journal of Man-Machine Studies – reference: H. Tao, T.S. Huang, Connected vibrations: a modal analysis approach to non-rigid motion tracking, in: CVPR, 1998, pp. 735–740. – year: 1993 ident: bib28 article-title: C4.5: Programs for Machine Learning – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib5 article-title: Bagging predictors publication-title: Machine Learning – volume: 1 start-page: 81 year: 1986 end-page: 106 ident: bib27 article-title: Induction of decision trees publication-title: Machine Learning – reference: N. Sebe, M. Lew, Robust Computer Vision – Theory and Applications (Chapter 7), Springer, 2003. – volume: 10 start-page: 57 year: 1993 end-page: 78 ident: bib22 article-title: Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm publication-title: Machine Learning – volume: 22 start-page: 1424 year: 2000 end-page: 1445 ident: bib26 article-title: Automatic analysis of facial expressions: the state of the art publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: M.S. Bartlett, I. Littlewort, G. Fasel, J.R. Movellan, Real time face detection and expression recognition: development and application to human–computer interaction, in: CVPR Workshop on Computer Vision and Pattern Recognition for Human–Computer Interaction, 2003. – volume: 3 start-page: 261 year: 1989 end-page: 283 ident: bib6 article-title: The CN2 induction algorithm publication-title: Machine Learning – year: 1991 ident: bib18 article-title: Introduction to the Theory of Neural Computation – volume: 29 start-page: 131 issue: 2 year: 1997 ident: 10.1016/j.imavis.2005.12.021_bib16 article-title: Bayesian network classifiers publication-title: Machine Learning doi: 10.1023/A:1007465528199 – year: 1991 ident: 10.1016/j.imavis.2005.12.021_bib18 – volume: 36 start-page: 267 issue: 1 year: 1992 ident: 10.1016/j.imavis.2005.12.021_bib1 article-title: Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms publication-title: International Journal of Man-Machine Studies doi: 10.1016/0020-7373(92)90018-G – ident: 10.1016/j.imavis.2005.12.021_bib30 doi: 10.1007/978-94-017-0295-9 – volume: 3 start-page: 261 issue: 4 year: 1989 ident: 10.1016/j.imavis.2005.12.021_bib6 article-title: The CN2 induction algorithm publication-title: Machine Learning doi: 10.1007/BF00116835 – ident: 10.1016/j.imavis.2005.12.021_bib2 doi: 10.1109/CVPRW.2003.10057 – volume: 22 start-page: 1424 issue: 12 year: 2000 ident: 10.1016/j.imavis.2005.12.021_bib26 article-title: Automatic analysis of facial expressions: the state of the art publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.895976 – volume: 1 start-page: 81 year: 1986 ident: 10.1016/j.imavis.2005.12.021_bib27 article-title: Induction of decision trees publication-title: Machine Learning doi: 10.1007/BF00116251 – volume: 26 start-page: 1553 issue: 12 year: 2004 ident: 10.1016/j.imavis.2005.12.021_bib7 article-title: Semi-supervised learning of classifiers: theory, algorithms for bayesian network classifiers and applications to human–computer interaction publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2004.127 – year: 1982 ident: 10.1016/j.imavis.2005.12.021_bib11 – ident: 10.1016/j.imavis.2005.12.021_bib31 doi: 10.1109/CVPR.1998.698685 – ident: 10.1016/j.imavis.2005.12.021_bib23 doi: 10.1109/AFGR.1998.670949 – volume: 115 start-page: 288 issue: 2 year: 1994 ident: 10.1016/j.imavis.2005.12.021_bib19 article-title: Innate and universal facial expressions: evidence from developmental and cross-cultural research publication-title: Psychological Bulletin doi: 10.1037/0033-2909.115.2.288 – ident: 10.1016/j.imavis.2005.12.021_bib33 – ident: 10.1016/j.imavis.2005.12.021_bib4 doi: 10.1109/AFGR.2002.1004141 – year: 1995 ident: 10.1016/j.imavis.2005.12.021_bib17 – year: 1973 ident: 10.1016/j.imavis.2005.12.021_bib10 – year: 1993 ident: 10.1016/j.imavis.2005.12.021_bib28 – volume: 36 start-page: 105 year: 1999 ident: 10.1016/j.imavis.2005.12.021_bib3 article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants publication-title: Machine Learning doi: 10.1023/A:1007515423169 – volume: 36 start-page: 259 year: 2003 ident: 10.1016/j.imavis.2005.12.021_bib14 article-title: Automatic facial expression analysis: a survey publication-title: Pattern Recognition doi: 10.1016/S0031-3203(02)00052-3 – volume: 6 start-page: 537 issue: 4 year: 1997 ident: 10.1016/j.imavis.2005.12.021_bib21 article-title: Data mining using MLC++: a machine learning library in C++ publication-title: International Journal on Artificial Intelligence Tools doi: 10.1142/S021821309700027X – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.imavis.2005.12.021_bib5 article-title: Bagging predictors publication-title: Machine Learning doi: 10.1007/BF00058655 – volume: 10 start-page: 57 issue: 1 year: 1993 ident: 10.1016/j.imavis.2005.12.021_bib8 article-title: A weighted nearest neighbor algorithm for learning with symbolic features publication-title: Machine Learning doi: 10.1007/BF00993481 – volume: 115 start-page: 268 issue: 2 year: 1994 ident: 10.1016/j.imavis.2005.12.021_bib12 article-title: Strong evidence for universals in facial expressions: a reply to Russell’s mistaken critique publication-title: Psychological Bulletin doi: 10.1037/0033-2909.115.2.268 – year: 1978 ident: 10.1016/j.imavis.2005.12.021_bib13 – volume: 9 start-page: 185 issue: 3 year: 1990 ident: 10.1016/j.imavis.2005.12.021_bib29 article-title: Emotional intelligence publication-title: Imagination, Cognition, and Personality doi: 10.2190/DUGG-P24E-52WK-6CDG – volume: 21 start-page: 974 issue: 10 year: 1999 ident: 10.1016/j.imavis.2005.12.021_bib9 article-title: Classifying facial actions publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.799905 – ident: 10.1016/j.imavis.2005.12.021_bib15 – volume: 2 start-page: 1 year: 1994 ident: 10.1016/j.imavis.2005.12.021_bib24 article-title: A system for the induction of oblique decision trees publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.63 – ident: 10.1016/j.imavis.2005.12.021_bib20 – year: 1995 ident: 10.1016/j.imavis.2005.12.021_bib32 – volume: 33 start-page: 1369 year: 2000 ident: 10.1016/j.imavis.2005.12.021_bib25 article-title: LAFTER: a real-time face and lips tracker with facial expression recognition publication-title: Pattern Recognition doi: 10.1016/S0031-3203(99)00113-2 – volume: 10 start-page: 57 issue: 1 year: 1993 ident: 10.1016/j.imavis.2005.12.021_bib22 article-title: Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm publication-title: Machine Learning doi: 10.1023/A:1022664626993 |
SSID | ssj0007079 |
Score | 2.3308842 |
Snippet | There is a growing trend toward emotional intelligence in human–computer interaction paradigms. In order to react appropriately to a human, the computer would... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1856 |
SubjectTerms | Authentic emotions Classifiers Facial expression analysis |
Title | Authentic facial expression analysis |
URI | https://dx.doi.org/10.1016/j.imavis.2005.12.021 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7M7aIHf0zF-WP0sGtck7RLehzDMRV30cFupUkTmGgdOsGTf7svbTomiILX0gflS_Ley9f3vgfQ47nOQ0MN0VpwEjGqiaQmJiK0PIoyoRPrqIG76WAyi27m8bwBo7oXxpVVet9f-fTSW_snfY9mf7lY9O_x9sCkxIhd_lpyip8txpMBbu3W8Pp2Ml07ZCcCV1EtePjRoO6gK8u8Fs-um78iVxwvyOjPEWoj6oz3Ydeni8Gw-qIDaJiiDXs-dQz8wXxrw86GruAh9Bzx5cqAdGAzx4kH5sMXvBZB5mVIjmA2vnoYTYgfh0A05vUrQg1Gf5UphNJSi9esXIaWSpVgykOtwKuPVSWBwawMY22iOM5YToVlkXGTGfkxNIuXwpxAYHPBlUxCrS2NbJgpgSumpHWChIpmrAO8hiDVXivcjax4SuuisMe0As6NsYxTylIErgNkbbWstDL-eF_U6Kbf1jxFd_6r5em_Lc9gu2RnXUEKP4fm6vXdXGBasVJd2Lr8pF2_eb4A9XLLWw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KPagHH1WxPvfQa-wmmzXpUYqlatuLLfQWNtkEKlqLVvDkb3eym_UBouB1SWCZ7Dzy7TffALSS3OSxpZYYIxLCGTVEUpsSEbuE80yYjvPQwHB03p_w62k6rUG36oXxtMoQ-8uYXkTr8KQdrNlezGbtW7w9MCkxYxe_lrzi5wpH9_Xeefb2yfPwEnAl0IKuj8ur_rmC5DV78L38JbTiUUFGf85PX3JObws2QrEYXZTvsw01O2_AZigco-CWzw1Y_6IquAMtD3t5EpCJXOYR8ci-BrrrPMqCCMkuTHqX426fhGEIxGBVvyTUYu7XmUZDOurwkpXL2FGpO1jwUCfw4uN0AV8wJ-PUWJ6mGcupcIxbP5cx2YP6_HFu9yFyuUi07MTGOMpdnGmB56Wl83KEmmasCUllAmWCUrgfWHGvKkrYnSoN54dYpooyhYZrAvnYtSiVMv5YLyrrqm8nrjCY_7rz4N87T2G1Px4O1OBqdHMIawVO66kpyRHUl08v9hgLjKU-KT6gd5ZFzB8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Authentic+facial+expression+analysis&rft.jtitle=Image+and+vision+computing&rft.au=Sebe%2C+N.&rft.au=Lew%2C+M.S.&rft.au=Sun%2C+Y.&rft.au=Cohen%2C+I.&rft.date=2007-12-03&rft.issn=0262-8856&rft.volume=25&rft.issue=12&rft.spage=1856&rft.epage=1863&rft_id=info:doi/10.1016%2Fj.imavis.2005.12.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2005_12_021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon |