Authentic facial expression analysis

There is a growing trend toward emotional intelligence in human–computer interaction paradigms. In order to react appropriately to a human, the computer would need to have some perception of the emotional state of the human. We assert that the most informative channel for machine perception of emoti...

Full description

Saved in:
Bibliographic Details
Published inImage and vision computing Vol. 25; no. 12; pp. 1856 - 1863
Main Authors Sebe, N., Lew, M.S., Sun, Y., Cohen, I., Gevers, T., Huang, T.S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 03.12.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is a growing trend toward emotional intelligence in human–computer interaction paradigms. In order to react appropriately to a human, the computer would need to have some perception of the emotional state of the human. We assert that the most informative channel for machine perception of emotions is through facial expressions in video. One current difficulty in evaluating automatic emotion detection is that there are currently no international databases which are based on authentic emotions. The current facial expression databases contain facial expressions which are not naturally linked to the emotional state of the test subject. Our contributions in this work are twofold: first, we create the first authentic facial expression database where the test subjects are showing the natural facial expressions based upon their emotional state. Second, we evaluate the several promising machine learning algorithms for emotion detection which include techniques such as Bayesian networks, SVMs, and decision trees.
AbstractList There is a growing trend toward emotional intelligence in human–computer interaction paradigms. In order to react appropriately to a human, the computer would need to have some perception of the emotional state of the human. We assert that the most informative channel for machine perception of emotions is through facial expressions in video. One current difficulty in evaluating automatic emotion detection is that there are currently no international databases which are based on authentic emotions. The current facial expression databases contain facial expressions which are not naturally linked to the emotional state of the test subject. Our contributions in this work are twofold: first, we create the first authentic facial expression database where the test subjects are showing the natural facial expressions based upon their emotional state. Second, we evaluate the several promising machine learning algorithms for emotion detection which include techniques such as Bayesian networks, SVMs, and decision trees.
Author Cohen, I.
Gevers, T.
Sun, Y.
Sebe, N.
Huang, T.S.
Lew, M.S.
Author_xml – sequence: 1
  givenname: N.
  surname: Sebe
  fullname: Sebe, N.
  email: nicu@science.uva.nl
  organization: Faculty of Science, University of Amsterdam, The Netherlands
– sequence: 2
  givenname: M.S.
  surname: Lew
  fullname: Lew, M.S.
  email: mlew@liacs.nl
  organization: LIACS Media Lab, Leiden University, The Netherlands
– sequence: 3
  givenname: Y.
  surname: Sun
  fullname: Sun, Y.
  email: sunyafei@cs.scu.edu.cn
  organization: School of Computer Science, Sichuan University, China
– sequence: 4
  givenname: I.
  surname: Cohen
  fullname: Cohen, I.
  email: iracohen@hp.com
  organization: HP Labs, 1501 Page mill Road, Palo Alto, CA 94304, USA
– sequence: 5
  givenname: T.
  surname: Gevers
  fullname: Gevers, T.
  email: gevers@science.uva.nl
  organization: Faculty of Science, University of Amsterdam, The Netherlands
– sequence: 6
  givenname: T.S.
  surname: Huang
  fullname: Huang, T.S.
  email: huang@ifp.uiuc.edu
  organization: Beckman Institute, University of Illinois at Urbana-Champaign, USA
BookMark eNqFzzFPwzAQhmELFYm28A8YOrAm3Dlx7DAgVRUFpEosMFuOcxauQlLZpqL_nlRlYoDpbnk_6ZmxST_0xNg1Qo6A1e029x9m72POAUSOPAeOZ2yKSvJMYaEmbAq8Gn8lqgs2i3ELABJkPWU3y8_0Tn3yduGM9aZb0NcuUIx-6BemN90h-njJzp3pIl393Dl7Wz-8rp6yzcvj82q5yWwBVcqQZImNaZCEQ1ejbBU4VE2NZYFOciVdUwMK4E6BsFQKYXiL0vGSZFFgMWfladeGIcZATu_CKAsHjaCPUr3VJ6k-SjVyPUrH7O5XZn0yaRSkYHz3X3x_immE7T0FHa2n3lLrA9mk28H_PfAN3vNysA
CitedBy_id crossref_primary_10_1016_j_patrec_2019_01_008
crossref_primary_10_1049_iet_cvi_2018_5127
crossref_primary_10_1080_02564602_2015_1117403
crossref_primary_10_1108_IJCHM_10_2012_0181
crossref_primary_10_1016_j_jnca_2019_102423
crossref_primary_10_1111_bjet_12126
crossref_primary_10_1016_j_ejor_2011_11_022
crossref_primary_10_1016_j_system_2021_102691
crossref_primary_10_1049_iet_ipr_2018_6647
crossref_primary_10_1016_j_displa_2022_102330
crossref_primary_10_1016_j_imavis_2012_02_007
crossref_primary_10_1049_iet_spr_2018_5087
crossref_primary_10_1016_j_patrec_2019_01_004
crossref_primary_10_1007_s00138_015_0677_y
crossref_primary_10_1007_s00371_018_1482_1
crossref_primary_10_1080_03772063_2017_1329639
crossref_primary_10_1080_1206212X_2017_1395134
crossref_primary_10_1007_s00500_013_1149_9
crossref_primary_10_1109_TAFFC_2018_2875987
crossref_primary_10_1016_j_imavis_2014_04_010
crossref_primary_10_1027_1864_9335_a000106
crossref_primary_10_1145_3463511
crossref_primary_10_1109_TCDS_2020_3041642
crossref_primary_10_3390_s120303747
crossref_primary_10_1007_s12193_011_0057_5
crossref_primary_10_1007_s12369_012_0145_z
crossref_primary_10_1016_j_imavis_2012_01_006
crossref_primary_10_1186_1687_6180_2012_20
crossref_primary_10_4018_IJSE_2020010101
crossref_primary_10_1109_TSMCB_2012_2200675
crossref_primary_10_1016_j_ijhcs_2011_05_003
crossref_primary_10_1016_j_engappai_2023_107708
crossref_primary_10_1007_s10803_018_3756_x
crossref_primary_10_1016_j_imavis_2016_04_009
crossref_primary_10_1109_TAFFC_2015_2498174
crossref_primary_10_1145_3200572
crossref_primary_10_1049_iet_ipr_2018_6235
crossref_primary_10_3389_fpsyg_2018_00202
crossref_primary_10_1109_TSMCC_2011_2118750
crossref_primary_10_1109_TAFFC_2015_2392932
crossref_primary_10_1016_j_sigpro_2012_06_026
crossref_primary_10_1007_s10043_022_00734_3
crossref_primary_10_1007_s11704_016_5204_4
crossref_primary_10_1016_j_patcog_2015_08_013
crossref_primary_10_3758_s13428_022_01914_4
crossref_primary_10_3390_info5020305
crossref_primary_10_1016_j_jocs_2017_02_012
crossref_primary_10_1007_s00500_021_06038_z
crossref_primary_10_1007_s10044_012_0279_5
crossref_primary_10_1108_OIR_04_2016_0121
crossref_primary_10_1109_TSMCB_2012_2193567
crossref_primary_10_1016_j_neucom_2015_06_079
crossref_primary_10_1002_meet_2011_14504801171
crossref_primary_10_1007_s11042_016_4261_x
crossref_primary_10_1007_s11042_021_11270_8
crossref_primary_10_1007_s12008_022_01028_3
crossref_primary_10_1007_s10772_017_9396_2
crossref_primary_10_1109_TAFFC_2018_2874996
crossref_primary_10_1063_5_0160755
crossref_primary_10_1007_s00530_022_00984_w
crossref_primary_10_1007_s11263_008_0185_x
crossref_primary_10_3390_app132112049
crossref_primary_10_1049_iet_ipr_2018_5683
crossref_primary_10_1177_0149206312471393
crossref_primary_10_4018_IJSE_2019010102
crossref_primary_10_1007_s10044_015_0493_z
crossref_primary_10_3390_s130607714
crossref_primary_10_1186_1475_925X_8_16
crossref_primary_10_1007_s11422_014_9658_0
crossref_primary_10_1007_s11760_015_0810_4
crossref_primary_10_1142_S0218001411008762
crossref_primary_10_1016_j_procs_2020_03_355
crossref_primary_10_1016_j_patcog_2008_10_010
crossref_primary_10_1016_j_procs_2020_03_397
crossref_primary_10_1080_02699931_2017_1386622
crossref_primary_10_1016_j_cviu_2013_11_002
crossref_primary_10_1016_j_patrec_2018_04_010
crossref_primary_10_1002_tea_21060
crossref_primary_10_36548_jitdw_2022_1_002
crossref_primary_10_1007_s11042_022_13117_2
crossref_primary_10_1109_TAFFC_2014_2346515
crossref_primary_10_1002_asi_24202
crossref_primary_10_1049_iet_cvi_2018_5281
crossref_primary_10_1145_3534621
crossref_primary_10_1142_S0218001414560126
crossref_primary_10_32604_cmc_2022_019284
crossref_primary_10_1016_j_cviu_2019_06_003
crossref_primary_10_1016_j_engappai_2012_09_002
crossref_primary_10_1039_C4RP00103F
Cites_doi 10.1023/A:1007465528199
10.1016/0020-7373(92)90018-G
10.1007/978-94-017-0295-9
10.1007/BF00116835
10.1109/CVPRW.2003.10057
10.1109/34.895976
10.1007/BF00116251
10.1109/TPAMI.2004.127
10.1109/CVPR.1998.698685
10.1109/AFGR.1998.670949
10.1037/0033-2909.115.2.288
10.1109/AFGR.2002.1004141
10.1023/A:1007515423169
10.1016/S0031-3203(02)00052-3
10.1142/S021821309700027X
10.1007/BF00058655
10.1007/BF00993481
10.1037/0033-2909.115.2.268
10.2190/DUGG-P24E-52WK-6CDG
10.1109/34.799905
10.1613/jair.63
10.1016/S0031-3203(99)00113-2
10.1023/A:1022664626993
ContentType Journal Article
Copyright 2006 Elsevier B.V.
Copyright_xml – notice: 2006 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.imavis.2005.12.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-8138
EndPage 1863
ExternalDocumentID 10_1016_j_imavis_2005_12_021
S0262885606002903
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-1e741bab1e5f1f917d80f18b91431f7287fb901502f805ce455a2d17f24e73313
IEDL.DBID AIKHN
ISSN 0262-8856
IngestDate Tue Jul 01 00:48:13 EDT 2025
Thu Apr 24 22:52:07 EDT 2025
Fri Feb 23 02:23:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Facial expression analysis
Classifiers
Authentic emotions
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-1e741bab1e5f1f917d80f18b91431f7287fb901502f805ce455a2d17f24e73313
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_imavis_2005_12_021
crossref_citationtrail_10_1016_j_imavis_2005_12_021
elsevier_sciencedirect_doi_10_1016_j_imavis_2005_12_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-12-03
PublicationDateYYYYMMDD 2007-12-03
PublicationDate_xml – month: 12
  year: 2007
  text: 2007-12-03
  day: 03
PublicationDecade 2000
PublicationTitle Image and vision computing
PublicationYear 2007
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References F. Bourel, C. Chibelushi, A. Low, Robust facial expression recognition using a state-based model of spatially-localised facial dynamic, in: International Conference on Automatic Face and Gesture Recognition, 2002, pp 113–118.
Ekman, Friesen (bib13) 1978
Kohavi, Sommerfield, Dougherty (bib21) 1997; 6
M. Lyons, A. Akamatsu, M. Kamachi, J. Gyoba, Coding facial expressions with Gabor wavelets, in: IEEE International Conference on Automatic Face and Gesture Recognition, 1998, pp 200–205.
Hertz, Krogh, Palmer (bib18) 1991
Fasel, Luettin (bib14) 2003; 36
Quinlan (bib28) 1993
Izard (bib19) 1994; 115
Oliver, Pentland, Bérard (bib25) 2000; 33
Littlestone (bib22) 1993; 10
Friedman, Geiger, Goldszmidt (bib16) 1997; 29
Ekman (bib12) 1994; 115
Bauer, Kohavi (bib3) 1999; 36
Goleman (bib17) 1995
N. Sebe, M. Lew, Robust Computer Vision – Theory and Applications (Chapter 7), Springer, 2003.
Pantic, Rothkrantz (bib26) 2000; 22
Murthy, Kasif, Salzberg (bib24) 1994; 2
Breiman (bib5) 1996; 24
Clark, Niblett (bib6) 1989; 3
Y. Zhang, Q. Ji, Facial expression understanding in image sequences using dynamic and active visual information fusion, in: ICCV, 2003, pp. 113–118.
Duda, Hart (bib10) 1973
M.S. Bartlett, I. Littlewort, G. Fasel, J.R. Movellan, Real time face detection and expression recognition: development and application to human–computer interaction, in: CVPR Workshop on Computer Vision and Pattern Recognition for Human–Computer Interaction, 2003.
Donato, Bartlett, Hager, Ekman, Sejnowski (bib9) 1999; 21
H. Tao, T.S. Huang, Connected vibrations: a modal analysis approach to non-rigid motion tracking, in: CVPR, 1998, pp. 735–740.
T. Kanade, J. Cohn, Y. Tian, Comprehensive database for facial expression analysis, in: International Conference on Automatic Face and Gesture Recognition, 2000, pp. 46–53.
Cost, Salzberg (bib8) 1993; 10
(bib11) 1982
Cohen, Cozman, Sebe, Cirello, Huang (bib7) 2004; 26
Aha (bib1) 1992; 36
Vapnik (bib32) 1995
Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: International Conference on Machine Learning, 1996, pp. 148–156.
Salovey, Mayer (bib29) 1990; 9
Quinlan (bib27) 1986; 1
Oliver (10.1016/j.imavis.2005.12.021_bib25) 2000; 33
Bauer (10.1016/j.imavis.2005.12.021_bib3) 1999; 36
Breiman (10.1016/j.imavis.2005.12.021_bib5) 1996; 24
10.1016/j.imavis.2005.12.021_bib30
10.1016/j.imavis.2005.12.021_bib33
(10.1016/j.imavis.2005.12.021_bib11) 1982
10.1016/j.imavis.2005.12.021_bib31
Quinlan (10.1016/j.imavis.2005.12.021_bib28) 1993
Cohen (10.1016/j.imavis.2005.12.021_bib7) 2004; 26
Izard (10.1016/j.imavis.2005.12.021_bib19) 1994; 115
Clark (10.1016/j.imavis.2005.12.021_bib6) 1989; 3
Murthy (10.1016/j.imavis.2005.12.021_bib24) 1994; 2
Goleman (10.1016/j.imavis.2005.12.021_bib17) 1995
Salovey (10.1016/j.imavis.2005.12.021_bib29) 1990; 9
Ekman (10.1016/j.imavis.2005.12.021_bib12) 1994; 115
Donato (10.1016/j.imavis.2005.12.021_bib9) 1999; 21
Quinlan (10.1016/j.imavis.2005.12.021_bib27) 1986; 1
Fasel (10.1016/j.imavis.2005.12.021_bib14) 2003; 36
Littlestone (10.1016/j.imavis.2005.12.021_bib22) 1993; 10
Vapnik (10.1016/j.imavis.2005.12.021_bib32) 1995
10.1016/j.imavis.2005.12.021_bib23
10.1016/j.imavis.2005.12.021_bib20
10.1016/j.imavis.2005.12.021_bib4
10.1016/j.imavis.2005.12.021_bib15
Aha (10.1016/j.imavis.2005.12.021_bib1) 1992; 36
Ekman (10.1016/j.imavis.2005.12.021_bib13) 1978
Hertz (10.1016/j.imavis.2005.12.021_bib18) 1991
10.1016/j.imavis.2005.12.021_bib2
Friedman (10.1016/j.imavis.2005.12.021_bib16) 1997; 29
Pantic (10.1016/j.imavis.2005.12.021_bib26) 2000; 22
Kohavi (10.1016/j.imavis.2005.12.021_bib21) 1997; 6
Cost (10.1016/j.imavis.2005.12.021_bib8) 1993; 10
Duda (10.1016/j.imavis.2005.12.021_bib10) 1973
References_xml – volume: 36
  start-page: 105
  year: 1999
  end-page: 142
  ident: bib3
  article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
  publication-title: Machine Learning
– year: 1978
  ident: bib13
  article-title: Facial Action Coding System: Investigator’s Guide
– year: 1995
  ident: bib17
  article-title: Emotional Intelligence
– volume: 115
  start-page: 288
  year: 1994
  end-page: 299
  ident: bib19
  article-title: Innate and universal facial expressions: evidence from developmental and cross-cultural research
  publication-title: Psychological Bulletin
– volume: 29
  start-page: 131
  year: 1997
  end-page: 163
  ident: bib16
  article-title: Bayesian network classifiers
  publication-title: Machine Learning
– year: 1995
  ident: bib32
  article-title: The Nature of Statistical Learning Theory
– reference: Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: International Conference on Machine Learning, 1996, pp. 148–156.
– reference: T. Kanade, J. Cohn, Y. Tian, Comprehensive database for facial expression analysis, in: International Conference on Automatic Face and Gesture Recognition, 2000, pp. 46–53.
– volume: 36
  start-page: 259
  year: 2003
  end-page: 275
  ident: bib14
  article-title: Automatic facial expression analysis: a survey
  publication-title: Pattern Recognition
– volume: 9
  start-page: 185
  year: 1990
  end-page: 211
  ident: bib29
  article-title: Emotional intelligence
  publication-title: Imagination, Cognition, and Personality
– volume: 26
  start-page: 1553
  year: 2004
  end-page: 1567
  ident: bib7
  article-title: Semi-supervised learning of classifiers: theory, algorithms for bayesian network classifiers and applications to human–computer interaction
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 1973
  ident: bib10
  article-title: Pattern Classification and Scene Analysis
– volume: 21
  start-page: 974
  year: 1999
  end-page: 989
  ident: bib9
  article-title: Classifying facial actions
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 2
  start-page: 1
  year: 1994
  end-page: 33
  ident: bib24
  article-title: A system for the induction of oblique decision trees
  publication-title: Journal of Artificial Intelligence Research
– year: 1982
  ident: bib11
  publication-title: Emotion in the Human Face
– reference: M. Lyons, A. Akamatsu, M. Kamachi, J. Gyoba, Coding facial expressions with Gabor wavelets, in: IEEE International Conference on Automatic Face and Gesture Recognition, 1998, pp 200–205.
– volume: 10
  start-page: 57
  year: 1993
  end-page: 78
  ident: bib8
  article-title: A weighted nearest neighbor algorithm for learning with symbolic features
  publication-title: Machine Learning
– volume: 115
  start-page: 268
  year: 1994
  end-page: 287
  ident: bib12
  article-title: Strong evidence for universals in facial expressions: a reply to Russell’s mistaken critique
  publication-title: Psychological Bulletin
– volume: 33
  start-page: 1369
  year: 2000
  end-page: 1382
  ident: bib25
  article-title: LAFTER: a real-time face and lips tracker with facial expression recognition
  publication-title: Pattern Recognition
– reference: Y. Zhang, Q. Ji, Facial expression understanding in image sequences using dynamic and active visual information fusion, in: ICCV, 2003, pp. 113–118.
– volume: 6
  start-page: 537
  year: 1997
  end-page: 566
  ident: bib21
  article-title: Data mining using MLC++: a machine learning library in C++
  publication-title: International Journal on Artificial Intelligence Tools
– reference: F. Bourel, C. Chibelushi, A. Low, Robust facial expression recognition using a state-based model of spatially-localised facial dynamic, in: International Conference on Automatic Face and Gesture Recognition, 2002, pp 113–118.
– volume: 36
  start-page: 267
  year: 1992
  end-page: 287
  ident: bib1
  article-title: Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms
  publication-title: International Journal of Man-Machine Studies
– reference: H. Tao, T.S. Huang, Connected vibrations: a modal analysis approach to non-rigid motion tracking, in: CVPR, 1998, pp. 735–740.
– year: 1993
  ident: bib28
  article-title: C4.5: Programs for Machine Learning
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib5
  article-title: Bagging predictors
  publication-title: Machine Learning
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: bib27
  article-title: Induction of decision trees
  publication-title: Machine Learning
– reference: N. Sebe, M. Lew, Robust Computer Vision – Theory and Applications (Chapter 7), Springer, 2003.
– volume: 10
  start-page: 57
  year: 1993
  end-page: 78
  ident: bib22
  article-title: Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm
  publication-title: Machine Learning
– volume: 22
  start-page: 1424
  year: 2000
  end-page: 1445
  ident: bib26
  article-title: Automatic analysis of facial expressions: the state of the art
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: M.S. Bartlett, I. Littlewort, G. Fasel, J.R. Movellan, Real time face detection and expression recognition: development and application to human–computer interaction, in: CVPR Workshop on Computer Vision and Pattern Recognition for Human–Computer Interaction, 2003.
– volume: 3
  start-page: 261
  year: 1989
  end-page: 283
  ident: bib6
  article-title: The CN2 induction algorithm
  publication-title: Machine Learning
– year: 1991
  ident: bib18
  article-title: Introduction to the Theory of Neural Computation
– volume: 29
  start-page: 131
  issue: 2
  year: 1997
  ident: 10.1016/j.imavis.2005.12.021_bib16
  article-title: Bayesian network classifiers
  publication-title: Machine Learning
  doi: 10.1023/A:1007465528199
– year: 1991
  ident: 10.1016/j.imavis.2005.12.021_bib18
– volume: 36
  start-page: 267
  issue: 1
  year: 1992
  ident: 10.1016/j.imavis.2005.12.021_bib1
  article-title: Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms
  publication-title: International Journal of Man-Machine Studies
  doi: 10.1016/0020-7373(92)90018-G
– ident: 10.1016/j.imavis.2005.12.021_bib30
  doi: 10.1007/978-94-017-0295-9
– volume: 3
  start-page: 261
  issue: 4
  year: 1989
  ident: 10.1016/j.imavis.2005.12.021_bib6
  article-title: The CN2 induction algorithm
  publication-title: Machine Learning
  doi: 10.1007/BF00116835
– ident: 10.1016/j.imavis.2005.12.021_bib2
  doi: 10.1109/CVPRW.2003.10057
– volume: 22
  start-page: 1424
  issue: 12
  year: 2000
  ident: 10.1016/j.imavis.2005.12.021_bib26
  article-title: Automatic analysis of facial expressions: the state of the art
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.895976
– volume: 1
  start-page: 81
  year: 1986
  ident: 10.1016/j.imavis.2005.12.021_bib27
  article-title: Induction of decision trees
  publication-title: Machine Learning
  doi: 10.1007/BF00116251
– volume: 26
  start-page: 1553
  issue: 12
  year: 2004
  ident: 10.1016/j.imavis.2005.12.021_bib7
  article-title: Semi-supervised learning of classifiers: theory, algorithms for bayesian network classifiers and applications to human–computer interaction
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2004.127
– year: 1982
  ident: 10.1016/j.imavis.2005.12.021_bib11
– ident: 10.1016/j.imavis.2005.12.021_bib31
  doi: 10.1109/CVPR.1998.698685
– ident: 10.1016/j.imavis.2005.12.021_bib23
  doi: 10.1109/AFGR.1998.670949
– volume: 115
  start-page: 288
  issue: 2
  year: 1994
  ident: 10.1016/j.imavis.2005.12.021_bib19
  article-title: Innate and universal facial expressions: evidence from developmental and cross-cultural research
  publication-title: Psychological Bulletin
  doi: 10.1037/0033-2909.115.2.288
– ident: 10.1016/j.imavis.2005.12.021_bib33
– ident: 10.1016/j.imavis.2005.12.021_bib4
  doi: 10.1109/AFGR.2002.1004141
– year: 1995
  ident: 10.1016/j.imavis.2005.12.021_bib17
– year: 1973
  ident: 10.1016/j.imavis.2005.12.021_bib10
– year: 1993
  ident: 10.1016/j.imavis.2005.12.021_bib28
– volume: 36
  start-page: 105
  year: 1999
  ident: 10.1016/j.imavis.2005.12.021_bib3
  article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
  publication-title: Machine Learning
  doi: 10.1023/A:1007515423169
– volume: 36
  start-page: 259
  year: 2003
  ident: 10.1016/j.imavis.2005.12.021_bib14
  article-title: Automatic facial expression analysis: a survey
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(02)00052-3
– volume: 6
  start-page: 537
  issue: 4
  year: 1997
  ident: 10.1016/j.imavis.2005.12.021_bib21
  article-title: Data mining using MLC++: a machine learning library in C++
  publication-title: International Journal on Artificial Intelligence Tools
  doi: 10.1142/S021821309700027X
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.imavis.2005.12.021_bib5
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1007/BF00058655
– volume: 10
  start-page: 57
  issue: 1
  year: 1993
  ident: 10.1016/j.imavis.2005.12.021_bib8
  article-title: A weighted nearest neighbor algorithm for learning with symbolic features
  publication-title: Machine Learning
  doi: 10.1007/BF00993481
– volume: 115
  start-page: 268
  issue: 2
  year: 1994
  ident: 10.1016/j.imavis.2005.12.021_bib12
  article-title: Strong evidence for universals in facial expressions: a reply to Russell’s mistaken critique
  publication-title: Psychological Bulletin
  doi: 10.1037/0033-2909.115.2.268
– year: 1978
  ident: 10.1016/j.imavis.2005.12.021_bib13
– volume: 9
  start-page: 185
  issue: 3
  year: 1990
  ident: 10.1016/j.imavis.2005.12.021_bib29
  article-title: Emotional intelligence
  publication-title: Imagination, Cognition, and Personality
  doi: 10.2190/DUGG-P24E-52WK-6CDG
– volume: 21
  start-page: 974
  issue: 10
  year: 1999
  ident: 10.1016/j.imavis.2005.12.021_bib9
  article-title: Classifying facial actions
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.799905
– ident: 10.1016/j.imavis.2005.12.021_bib15
– volume: 2
  start-page: 1
  year: 1994
  ident: 10.1016/j.imavis.2005.12.021_bib24
  article-title: A system for the induction of oblique decision trees
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.63
– ident: 10.1016/j.imavis.2005.12.021_bib20
– year: 1995
  ident: 10.1016/j.imavis.2005.12.021_bib32
– volume: 33
  start-page: 1369
  year: 2000
  ident: 10.1016/j.imavis.2005.12.021_bib25
  article-title: LAFTER: a real-time face and lips tracker with facial expression recognition
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(99)00113-2
– volume: 10
  start-page: 57
  issue: 1
  year: 1993
  ident: 10.1016/j.imavis.2005.12.021_bib22
  article-title: Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm
  publication-title: Machine Learning
  doi: 10.1023/A:1022664626993
SSID ssj0007079
Score 2.3308842
Snippet There is a growing trend toward emotional intelligence in human–computer interaction paradigms. In order to react appropriately to a human, the computer would...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1856
SubjectTerms Authentic emotions
Classifiers
Facial expression analysis
Title Authentic facial expression analysis
URI https://dx.doi.org/10.1016/j.imavis.2005.12.021
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7M7aIHf0zF-WP0sGtck7RLehzDMRV30cFupUkTmGgdOsGTf7svbTomiILX0gflS_Ley9f3vgfQ47nOQ0MN0VpwEjGqiaQmJiK0PIoyoRPrqIG76WAyi27m8bwBo7oXxpVVet9f-fTSW_snfY9mf7lY9O_x9sCkxIhd_lpyip8txpMBbu3W8Pp2Ml07ZCcCV1EtePjRoO6gK8u8Fs-um78iVxwvyOjPEWoj6oz3Ydeni8Gw-qIDaJiiDXs-dQz8wXxrw86GruAh9Bzx5cqAdGAzx4kH5sMXvBZB5mVIjmA2vnoYTYgfh0A05vUrQg1Gf5UphNJSi9esXIaWSpVgykOtwKuPVSWBwawMY22iOM5YToVlkXGTGfkxNIuXwpxAYHPBlUxCrS2NbJgpgSumpHWChIpmrAO8hiDVXivcjax4SuuisMe0As6NsYxTylIErgNkbbWstDL-eF_U6Kbf1jxFd_6r5em_Lc9gu2RnXUEKP4fm6vXdXGBasVJd2Lr8pF2_eb4A9XLLWw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KPagHH1WxPvfQa-wmmzXpUYqlatuLLfQWNtkEKlqLVvDkb3eym_UBouB1SWCZ7Dzy7TffALSS3OSxpZYYIxLCGTVEUpsSEbuE80yYjvPQwHB03p_w62k6rUG36oXxtMoQ-8uYXkTr8KQdrNlezGbtW7w9MCkxYxe_lrzi5wpH9_Xeefb2yfPwEnAl0IKuj8ur_rmC5DV78L38JbTiUUFGf85PX3JObws2QrEYXZTvsw01O2_AZigco-CWzw1Y_6IquAMtD3t5EpCJXOYR8ci-BrrrPMqCCMkuTHqX426fhGEIxGBVvyTUYu7XmUZDOurwkpXL2FGpO1jwUCfw4uN0AV8wJ-PUWJ6mGcupcIxbP5cx2YP6_HFu9yFyuUi07MTGOMpdnGmB56Wl83KEmmasCUllAmWCUrgfWHGvKkrYnSoN54dYpooyhYZrAvnYtSiVMv5YLyrrqm8nrjCY_7rz4N87T2G1Px4O1OBqdHMIawVO66kpyRHUl08v9hgLjKU-KT6gd5ZFzB8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Authentic+facial+expression+analysis&rft.jtitle=Image+and+vision+computing&rft.au=Sebe%2C+N.&rft.au=Lew%2C+M.S.&rft.au=Sun%2C+Y.&rft.au=Cohen%2C+I.&rft.date=2007-12-03&rft.issn=0262-8856&rft.volume=25&rft.issue=12&rft.spage=1856&rft.epage=1863&rft_id=info:doi/10.1016%2Fj.imavis.2005.12.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2005_12_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon