Wave energy harvesting based on multilayer beads integrated spherical TENG with switch triggered instant discharging for self-powered hydrogen generation
Effective strategies to gain hydrogen energy from harvesting and conversion from ocean energy attract extensive attention in the new energy source field. Remarkably, triboelectric nanogenerator (TENG) presents potential applications for harvesting large-scale blue energy from the ocean. Herein, we p...
Saved in:
Published in | Nano energy Vol. 111; p. 108432 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2211-2855 |
DOI | 10.1016/j.nanoen.2023.108432 |
Cover
Loading…
Abstract | Effective strategies to gain hydrogen energy from harvesting and conversion from ocean energy attract extensive attention in the new energy source field. Remarkably, triboelectric nanogenerator (TENG) presents potential applications for harvesting large-scale blue energy from the ocean. Herein, we propose a self-powered hydrogen generation system by multilayer beads integrated spherical TENG with the power management system (PMS). The triggered switch used in the spherical TENG overcomes the limitation of working frequency through instantaneous driving, significantly improving the output performance and greatly expanding its application range. The six-layer beads integrated TENG presents a significant improvement in converting water wave energy into electric energy, and its power density reaches 21.3 W m−3 at 2 Hz. The integrated TENG charges 470 μF capacitor to 5 V in 200 s, and the hydrogen production rate is about 64.5 μL min−1 under the water wave condition, which overcomes the limitation of external power demands for conventional water electrolysis. Compared with the electrochemical cells driven by solar, our integrated system can operate in all weather conditions without an external power source. This work demonstrates the feasibility of the electrochemical conversion of low-frequency water wave energy into green energy.
[Display omitted]
•An instantaneous discharging TENG with ultrahigh output power is demonstrated by integrating a self-controlled switch.•The ID-TENG presents the excellent capability of harvesting ocean wave energy.•A self-powered water electrolysis system is demonstrated for highly efficient hydrogen production. |
---|---|
AbstractList | Effective strategies to gain hydrogen energy from harvesting and conversion from ocean energy attract extensive attention in the new energy source field. Remarkably, triboelectric nanogenerator (TENG) presents potential applications for harvesting large-scale blue energy from the ocean. Herein, we propose a self-powered hydrogen generation system by multilayer beads integrated spherical TENG with the power management system (PMS). The triggered switch used in the spherical TENG overcomes the limitation of working frequency through instantaneous driving, significantly improving the output performance and greatly expanding its application range. The six-layer beads integrated TENG presents a significant improvement in converting water wave energy into electric energy, and its power density reaches 21.3 W m−3 at 2 Hz. The integrated TENG charges 470 μF capacitor to 5 V in 200 s, and the hydrogen production rate is about 64.5 μL min−1 under the water wave condition, which overcomes the limitation of external power demands for conventional water electrolysis. Compared with the electrochemical cells driven by solar, our integrated system can operate in all weather conditions without an external power source. This work demonstrates the feasibility of the electrochemical conversion of low-frequency water wave energy into green energy.
[Display omitted]
•An instantaneous discharging TENG with ultrahigh output power is demonstrated by integrating a self-controlled switch.•The ID-TENG presents the excellent capability of harvesting ocean wave energy.•A self-powered water electrolysis system is demonstrated for highly efficient hydrogen production. |
ArticleNumber | 108432 |
Author | Sun, Junlu Dai, Shuge Dong, Lin Ma, Fuxue Lin, Pei Hu, Chenguo Zhang, Wang He, Wencong |
Author_xml | – sequence: 1 givenname: Wang surname: Zhang fullname: Zhang, Wang organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China – sequence: 2 givenname: Wencong orcidid: 0000-0002-5868-8720 surname: He fullname: He, Wencong organization: Department of Applied Physics, Chongqing University, Chongqing 400044, China – sequence: 3 givenname: Shuge orcidid: 0000-0003-0718-2559 surname: Dai fullname: Dai, Shuge email: shugedai@zzu.edu.cn organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China – sequence: 4 givenname: Fuxue surname: Ma fullname: Ma, Fuxue organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China – sequence: 5 givenname: Pei orcidid: 0000-0002-3300-5241 surname: Lin fullname: Lin, Pei email: linpei@zzu.edu.cn organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China – sequence: 6 givenname: Junlu surname: Sun fullname: Sun, Junlu organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China – sequence: 7 givenname: Lin orcidid: 0000-0002-4126-6812 surname: Dong fullname: Dong, Lin organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China – sequence: 8 givenname: Chenguo surname: Hu fullname: Hu, Chenguo email: hucg@cqu.edu.cn organization: Department of Applied Physics, Chongqing University, Chongqing 400044, China |
BookMark | eNqFUMtOwzAQ9KFIFOgfcPAPpNhOnDgckFBVHlIFlyKOlmtvElepXdmmqJ_C35K2nDjAHnal3Z3Z2blAI-cdIHRNyZQSWt6sp045D27KCMuHlihyNkJjxijNmOD8HE1iXJMhSk4rysbo613tAIOD0O5xp8IOYrKuxSsVwWDv8OajT7ZXewh4BcpEbF2CNqg0jOO2g2C16vFy_vKIP23qcByy7nAKtm0hDEvWxaRcwsZGPRxoD-yNDzhC32Rb_3lc6vYm-BYcbg9SVLLeXaGzRvURJj_1Er09zJezp2zx-vg8u19kOidlyigUQtWsErXIDSeirpgGrUtBuNCEV7AqOCvzgpWm4cBz0RTM6LrKyYoWdcHzS3R74tXBxxigkdqmo4IUlO0lJfLgrVzLk7fy4K08eTuAi1_gbbAbFfb_we5OMBge21kIMmoLToOxAXSSxtu_Cb4BxiOcxQ |
CitedBy_id | crossref_primary_10_1016_j_jsamd_2023_100637 crossref_primary_10_1016_j_nanoen_2023_108791 crossref_primary_10_1016_j_nanoen_2025_110754 crossref_primary_10_1002_admt_202401796 crossref_primary_10_1016_j_nanoen_2024_110436 crossref_primary_10_1002_ente_202300614 crossref_primary_10_1007_s12274_024_6568_6 crossref_primary_10_1016_j_cej_2025_161806 crossref_primary_10_1088_2631_7990_ad7b04 crossref_primary_10_1021_acsami_3c16415 crossref_primary_10_1039_D4EE05522E crossref_primary_10_1016_j_sna_2024_115099 crossref_primary_10_1016_j_nanoen_2024_109526 crossref_primary_10_1016_j_jallcom_2025_178710 crossref_primary_10_1016_j_joule_2024_04_013 crossref_primary_10_1016_j_nanoen_2024_109546 crossref_primary_10_1039_D4TA02760D crossref_primary_10_1016_j_ijhydene_2024_03_338 crossref_primary_10_1088_1361_6528_ad5189 crossref_primary_10_1002_admt_202402212 crossref_primary_10_1016_j_isci_2024_110665 crossref_primary_10_1002_admt_202400531 crossref_primary_10_1002_aenm_202400563 crossref_primary_10_1016_j_cej_2024_156193 crossref_primary_10_1016_j_enconman_2024_118569 crossref_primary_10_1021_acsami_4c08092 crossref_primary_10_1016_j_nanoen_2024_110383 crossref_primary_10_3390_nanoenergyadv4040023 crossref_primary_10_1002_smll_202404872 crossref_primary_10_1002_inf2_12621 crossref_primary_10_1039_D4EE03110E crossref_primary_10_1039_D3TA04710E crossref_primary_10_1002_aenm_202400313 crossref_primary_10_1021_acsenergylett_4c00412 crossref_primary_10_1016_j_renene_2024_122228 crossref_primary_10_1039_D4RA01841A crossref_primary_10_1002_smm2_1304 crossref_primary_10_1007_s11431_024_2745_6 crossref_primary_10_1016_j_cej_2024_148640 crossref_primary_10_1002_adfm_202406188 crossref_primary_10_1016_j_jallcom_2024_176941 crossref_primary_10_1016_j_cej_2024_149753 crossref_primary_10_1002_smll_202304412 |
Cites_doi | 10.1002/aenm.202103143 10.1016/j.nanoen.2021.105890 10.1002/adma.201902793 10.1016/j.joule.2021.04.016 10.1002/aenm.201802892 10.1039/C5EE01532D 10.1002/aenm.202002123 10.3390/en11061424 10.1016/j.nanoen.2019.104272 10.1007/s12274-021-3968-9 10.1002/adma.201404071 10.1039/C9EE03258D 10.1016/j.nanoen.2018.11.071 10.1016/j.nanoen.2019.104378 10.1002/aenm.202203219 10.1016/j.nanoen.2021.106870 10.1002/adfm.202105237 10.1002/adfm.201908252 10.1039/C8NR04276D 10.1002/adfm.201807241 10.1016/j.nanoen.2021.106776 10.1016/j.nanoen.2016.11.037 10.1016/j.nanoen.2019.04.026 10.1063/1.5135734 10.1002/aenm.201904227 10.1021/acsnano.1c05685 10.1039/C9EE03566D 10.1016/j.apenergy.2022.119648 10.1021/acsnano.2c01594 10.1002/aenm.202000064 10.1021/acsnano.1c02790 10.1016/j.nanoen.2020.104642 10.1002/adfm.202111775 10.1021/acsami.7b17239 10.1016/j.nanoen.2019.103871 10.1016/j.nanoen.2018.03.062 10.1016/j.nanoen.2022.106976 10.1016/j.nanoen.2022.107540 10.1016/j.nanoen.2022.107362 10.1021/acsenergylett.1c01092 10.1016/j.nanoen.2022.107669 10.1016/j.nanoen.2019.104117 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2023.108432 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2023_108432 S2211285523002690 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG FDB FIRID FNPLU FYGXN GBLVA JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EJD HZ~ RIG SSH |
ID | FETCH-LOGICAL-c306t-1e48a9278983d508972cecc68058c057eb45263426df5e538f42dc9730b149453 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 00:57:03 EDT 2025 Thu Apr 24 23:13:19 EDT 2025 Fri Feb 23 02:37:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Triboelectric nanogenerator Hydrogen energy Wave energy harvesting Self-powered water splitting Instant discharging |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-1e48a9278983d508972cecc68058c057eb45263426df5e538f42dc9730b149453 |
ORCID | 0000-0002-4126-6812 0000-0002-5868-8720 0000-0002-3300-5241 0000-0003-0718-2559 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nanoen_2023_108432 crossref_primary_10_1016_j_nanoen_2023_108432 elsevier_sciencedirect_doi_10_1016_j_nanoen_2023_108432 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-15 |
PublicationDateYYYYMMDD | 2023-06-15 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Pan, Guo, Zhang, Zhang, Wu, Wu, Yang, Liao, Wang (bib12) 2019; 9 Wang, Gao, Xu, Wang (bib34) 2020; 30 Leung, Fu, Zhang, Hassan, Jiang, Salama, Wang, He (bib26) 2020; 13 Wei, Zhao, Zhang, Yuan, Wu, Wang, Wang (bib37) 2021; 15 Xi, Pang, Liu, Wang, Li, Zhang, Wang (bib31) 2019; 61 Liang, Jiang, Liu, Feng, Zhang, Wang (bib1) 2020; 13 Xu, Zhao, Wang, Zhang, Li, Pan, Wang (bib17) 2019; 13 Lin, Zhang, Zou, Wu, Guo, Zhang, Yang, Wang (bib36) 2020; 68 Wang, Li, Xie, Xu, Zhou, Cheng, Zhao, Wang (bib44) 2020; 10 Zhang, Yang, Ji, Wu, Li, Yang, Li, Zheng, Xi, Wang (bib10) 2022; 99 Feng, Jiang, Liang, An, Wang (bib33) 2020; 7 Harmon, Bamgboje, Guo, Hu, Wang (bib41) 2020; 71 Feng, Han, Xu, Liang, Jiang, Li, Wang (bib29) 2021; 12 Wang, Xu, Zheng, Chen, Jenkins, Wu, Wang, Zhang, Yang (bib19) 2018; 10 Xu, Pang, Zhang, Jiang, Chen, Luo, Tang, Cao, Wang (bib14) 2017; 31 Tian, Wei, Lai, Li, Wu, Dai (bib25) 2022; 102 Rodrigues, Ramos, Esteves, Correia, Clemente, Gonçalves, Mathias, Gomes, Silva, Duarte, Morais, Rosa-Santos, Taveira-Pinto, Pereira, Ventura (bib30) 2021; 84 Zhang, He, Zhou, Yang, Yuan, Wei, Liu, Lu, Wang, Wang (bib43) 2021; 5 Wang (bib18) 2020; 68 Jiang, Pang, An, Lu, Feng, Liang, Zhong, Wang (bib35) 2020; 10 Liang, Jiang, Liu, Xiao, Xu, Li, Xi, Zhang, Wang (bib9) 2019; 29 Yuan, Wang, Xi, Han, Li, Han, Gao (bib21) 2021; 6 Xu, Yang, Lu, Yang, Li, Wen, Cheng, Wang (bib8) 2021; 15 Wang, Chen, Lin (bib3) 2015; 8 Zhang, Yuan, Zhang, Yang, Liu, He, Wang, Wang (bib4) 2022; 32 Han, Liu, Feng, Jiang, Wang (bib28) 2022; 13 Sun, Shang, Ma, Li, Xue, Xu, Wei, Li, Yalikun, Lai, Yang (bib32) 2022; 100 Li, Jiang, Zhai, Liu, Feng, Chen, Wen, Sun, Zhong (bib39) 2022; 93 Wang, Zhang (bib7) 2018; 11 Tang, Han, Han, Gao, Cao, Wang (bib38) 2015; 27 Wang, Chen, Sun, Liu, Hu, Lian, Liu, Shi, Wang, Mi, Zhou, Lee, Xu (bib42) 2021; 15 Hou, Chen, Li, Huang, Shi, Liu, Sun, Lee (bib23) 2019; 63 Bai, Xu, He, Zhu, Yang, Jiang, Nie, Zhong, Wang (bib6) 2019; 66 Zhang, Xu, Zhang, Wang, Zou, He, Wang, Wang (bib13) 2018; 48 Gao, Xu, Yu, Jing, Cheng, Wang (bib24) 2022; 16 Liang, Jiang, Feng, Lu, An, Wang (bib16) 2020; 10 Xia, Zhu, Zhang, Du, Fu, Xu (bib15) 2019; 56 Yin, Aw, Jiang, Xin, Guo, Tang, Peng, Li (bib20) 2022; 95 Jiang, Zhang, Guo, Chen, Wu, Zhang, Wang (bib2) 2019; 31 Lin, Zhang, Xie, Wu, Yang, Wang (bib5) 2021; 31 Zhu, Xiang, Zeng, Zhu, Cao, Wang, Wang (bib40) 2022; 93 Xiao, Jiang, Zhu, Liang, Xu, Shao, Zhang, Wang, Wang (bib22) 2018; 10 Wang, Gao, Zhu, Wang, Zhu, Zhao, Wang, Cheng (bib27) 2022; 323 Wu, Guo, Ding, Wang, Zhang, Wang (bib11) 2019; 13 Lin (10.1016/j.nanoen.2023.108432_bib5) 2021; 31 Sun (10.1016/j.nanoen.2023.108432_bib32) 2022; 100 Lin (10.1016/j.nanoen.2023.108432_bib36) 2020; 68 Tian (10.1016/j.nanoen.2023.108432_bib25) 2022; 102 Jiang (10.1016/j.nanoen.2023.108432_bib35) 2020; 10 Zhang (10.1016/j.nanoen.2023.108432_bib43) 2021; 5 Wang (10.1016/j.nanoen.2023.108432_bib7) 2018; 11 Gao (10.1016/j.nanoen.2023.108432_bib24) 2022; 16 Han (10.1016/j.nanoen.2023.108432_bib28) 2022; 13 Feng (10.1016/j.nanoen.2023.108432_bib33) 2020; 7 Harmon (10.1016/j.nanoen.2023.108432_bib41) 2020; 71 Rodrigues (10.1016/j.nanoen.2023.108432_bib30) 2021; 84 Xia (10.1016/j.nanoen.2023.108432_bib15) 2019; 56 Wang (10.1016/j.nanoen.2023.108432_bib19) 2018; 10 Yin (10.1016/j.nanoen.2023.108432_bib20) 2022; 95 Wang (10.1016/j.nanoen.2023.108432_bib34) 2020; 30 Xu (10.1016/j.nanoen.2023.108432_bib17) 2019; 13 Wang (10.1016/j.nanoen.2023.108432_bib27) 2022; 323 Zhang (10.1016/j.nanoen.2023.108432_bib10) 2022; 99 Zhang (10.1016/j.nanoen.2023.108432_bib13) 2018; 48 Wei (10.1016/j.nanoen.2023.108432_bib37) 2021; 15 Wang (10.1016/j.nanoen.2023.108432_bib12) 2019; 9 Xi (10.1016/j.nanoen.2023.108432_bib31) 2019; 61 Wu (10.1016/j.nanoen.2023.108432_bib11) 2019; 13 Xu (10.1016/j.nanoen.2023.108432_bib14) 2017; 31 Hou (10.1016/j.nanoen.2023.108432_bib23) 2019; 63 Wang (10.1016/j.nanoen.2023.108432_bib3) 2015; 8 Yuan (10.1016/j.nanoen.2023.108432_bib21) 2021; 6 Zhang (10.1016/j.nanoen.2023.108432_bib4) 2022; 32 Feng (10.1016/j.nanoen.2023.108432_bib29) 2021; 12 Li (10.1016/j.nanoen.2023.108432_bib39) 2022; 93 Liang (10.1016/j.nanoen.2023.108432_bib1) 2020; 13 Leung (10.1016/j.nanoen.2023.108432_bib26) 2020; 13 Xiao (10.1016/j.nanoen.2023.108432_bib22) 2018; 10 Wang (10.1016/j.nanoen.2023.108432_bib44) 2020; 10 Xu (10.1016/j.nanoen.2023.108432_bib8) 2021; 15 Jiang (10.1016/j.nanoen.2023.108432_bib2) 2019; 31 Liang (10.1016/j.nanoen.2023.108432_bib16) 2020; 10 Tang (10.1016/j.nanoen.2023.108432_bib38) 2015; 27 Bai (10.1016/j.nanoen.2023.108432_bib6) 2019; 66 Wang (10.1016/j.nanoen.2023.108432_bib18) 2020; 68 Zhu (10.1016/j.nanoen.2023.108432_bib40) 2022; 93 Liang (10.1016/j.nanoen.2023.108432_bib9) 2019; 29 Wang (10.1016/j.nanoen.2023.108432_bib42) 2021; 15 |
References_xml | – volume: 68 year: 2020 ident: bib18 article-title: On the first principle theory of nanogenerators from Maxwell's equations publication-title: Nano Energy – volume: 6 start-page: 2809 year: 2021 end-page: 2816 ident: bib21 article-title: Pan, Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy publication-title: ACS Energy Lett. – volume: 31 start-page: 2105237 year: 2021 ident: bib5 article-title: Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency publication-title: Adv. Funct. Mater. – volume: 61 start-page: 1 year: 2019 end-page: 9 ident: bib31 article-title: Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission publication-title: Nano Energy – volume: 63 year: 2019 ident: bib23 article-title: A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications publication-title: Nano Energy – volume: 95 year: 2022 ident: bib20 article-title: Fish gills inspired parallel-cell triboelectric nanogenerator publication-title: Nano Energy – volume: 27 start-page: 272 year: 2015 end-page: 276 ident: bib38 article-title: Self-powered water splitting using flowing kinetic energy publication-title: Adv. Mater. – volume: 16 start-page: 6781 year: 2022 end-page: 6788 ident: bib24 article-title: Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy publication-title: ACS Nano – volume: 10 start-page: 2000064 year: 2020 ident: bib35 article-title: Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting publication-title: Adv. Energy Mater. – volume: 100 year: 2022 ident: bib32 article-title: A tube-shaped solid–liquid-interfaced triboelectric–electromagnetic hybrid nanogenerator for efficient ocean wave energy harvesting publication-title: Nano Energy – volume: 15 start-page: 3246 year: 2021 end-page: 3253 ident: bib42 article-title: A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy publication-title: Nano Research – volume: 13 start-page: 1932 year: 2019 end-page: 1939 ident: bib17 article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy publication-title: ACS Nano – volume: 68 year: 2020 ident: bib36 article-title: Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability publication-title: Nano Energy – volume: 5 start-page: 1613 year: 2021 end-page: 1623 ident: bib43 article-title: Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy publication-title: Joule – volume: 13 start-page: 2349 year: 2019 end-page: 2356 ident: bib11 article-title: A hybridized triboelectric-electromagnetic water wave energy harvester based on a magnetic sphere publication-title: ACS Nano – volume: 10 start-page: 1904227 year: 2020 ident: bib44 article-title: Cylindrical direct-current triboelectric nanogenerator with constant output current publication-title: Adv. Energy Mater. – volume: 99 year: 2022 ident: bib10 article-title: Modeling of liquid-solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator publication-title: Nano Energy – volume: 10 start-page: 14747 year: 2018 end-page: 14754 ident: bib19 article-title: A spring-assisted hybrid triboelectric-electromagnetic nanogenerator for harvesting low-frequency vibration energy and creating a self-powered security system publication-title: Nanoscale – volume: 102 year: 2022 ident: bib25 article-title: Frequency modulated hybrid nanogenerator for efficient water wave energy harvesting publication-title: Nano Energy – volume: 323 year: 2022 ident: bib27 article-title: Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting publication-title: Appl. Energy – volume: 48 start-page: 421 year: 2018 end-page: 429 ident: bib13 article-title: Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect publication-title: Nano Energy – volume: 15 start-page: 13200 year: 2021 end-page: 13208 ident: bib37 article-title: All-weather droplet-based triboelectric nanogenerator for wave energy harvesting publication-title: ACS Nano – volume: 30 start-page: 1908252 year: 2020 ident: bib34 article-title: Nanogenerators with superwetting surfaces for harvesting water/liquid energy publication-title: Adv. Funct. Mater. – volume: 13 start-page: 277 year: 2020 end-page: 285 ident: bib1 article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy publication-title: Energy Environ. Sci. – volume: 10 start-page: 2002123 year: 2020 ident: bib16 article-title: Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting publication-title: Adv. Energy Mater. – volume: 93 year: 2022 ident: bib39 article-title: A half-wave rectifying triboelectric nanogenerator for self-powered water splitting towards hydrogen production publication-title: Nano Energy – volume: 9 start-page: 1802892 year: 2019 ident: bib12 article-title: Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting publication-title: Adv. Energy Mater. – volume: 13 start-page: 2203219 year: 2022 ident: bib28 article-title: Achieving a large driving force on triboelectric nanogenerator by wave-driven linkage mechanism for harvesting blue energy toward marine environment monitoring publication-title: Adv. Energy Mater. – volume: 84 year: 2021 ident: bib30 article-title: Integrated study of triboelectric nanogenerator for ocean wave energy harvesting: performance assessment in realistic sea conditions publication-title: Nano Energy – volume: 29 start-page: 1807241 year: 2019 ident: bib9 article-title: Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting publication-title: Adv. Funct. Mater. – volume: 31 start-page: 351 year: 2017 end-page: 358 ident: bib14 article-title: Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting publication-title: Nano Energy – volume: 93 year: 2022 ident: bib40 article-title: Continuously harvesting energy from water and wind by pulsed triboelectric nanogenerator for self-powered seawater electrolysis publication-title: Nano Energy – volume: 7 year: 2020 ident: bib33 article-title: Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy publication-title: Appl. Phys. Rev. – volume: 31 year: 2019 ident: bib2 article-title: Signal output of triboelectric nanogenerator at oil-water-solid multiphase interfaces and its application for dual-signal chemical sensing publication-title: Adv. Mater. – volume: 56 start-page: 400 year: 2019 end-page: 410 ident: bib15 article-title: Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion publication-title: Nano Energy – volume: 32 start-page: 2111775 year: 2022 ident: bib4 article-title: High space efficiency hybrid nanogenerators for effective water wave energy harvesting publication-title: Adv. Funct. Mater. – volume: 8 start-page: 2250 year: 2015 end-page: 2282 ident: bib3 article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors publication-title: Energy Environ. Sci. – volume: 66 year: 2019 ident: bib6 article-title: High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping publication-title: Nano Energy – volume: 15 start-page: 16368 year: 2021 end-page: 16375 ident: bib8 article-title: Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring publication-title: ACS Nano – volume: 10 start-page: 3616 year: 2018 end-page: 3623 ident: bib22 article-title: Silicone-based triboelectric nanogenerator for water wave energy harvesting publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 1300 year: 2020 end-page: 1308 ident: bib26 article-title: Blue energy fuels: converting ocean wave energy to carbon-based liquid fuels via CO publication-title: Energy Environ. Sci. – volume: 12 start-page: 2103143 year: 2021 ident: bib29 article-title: Blue energy for green hydrogen fuel: a self‐powered electrochemical conversion system driven by triboelectric nanogenerators publication-title: Adv. Energy Mater. – volume: 11 start-page: 1424 year: 2018 ident: bib7 article-title: Design, analysis, and evaluation of a compact electromagnetic energy harvester from water flow for remote sensors publication-title: Energies – volume: 71 year: 2020 ident: bib41 article-title: Self-driven power management system for triboelectric nanogenerators publication-title: Nano Energy – volume: 12 start-page: 2103143 year: 2021 ident: 10.1016/j.nanoen.2023.108432_bib29 article-title: Blue energy for green hydrogen fuel: a self‐powered electrochemical conversion system driven by triboelectric nanogenerators publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103143 – volume: 84 year: 2021 ident: 10.1016/j.nanoen.2023.108432_bib30 article-title: Integrated study of triboelectric nanogenerator for ocean wave energy harvesting: performance assessment in realistic sea conditions publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105890 – volume: 31 year: 2019 ident: 10.1016/j.nanoen.2023.108432_bib2 article-title: Signal output of triboelectric nanogenerator at oil-water-solid multiphase interfaces and its application for dual-signal chemical sensing publication-title: Adv. Mater. doi: 10.1002/adma.201902793 – volume: 5 start-page: 1613 year: 2021 ident: 10.1016/j.nanoen.2023.108432_bib43 article-title: Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy publication-title: Joule doi: 10.1016/j.joule.2021.04.016 – volume: 9 start-page: 1802892 year: 2019 ident: 10.1016/j.nanoen.2023.108432_bib12 article-title: Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802892 – volume: 13 start-page: 1932 year: 2019 ident: 10.1016/j.nanoen.2023.108432_bib17 article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy publication-title: ACS Nano – volume: 8 start-page: 2250 year: 2015 ident: 10.1016/j.nanoen.2023.108432_bib3 article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01532D – volume: 10 start-page: 2002123 year: 2020 ident: 10.1016/j.nanoen.2023.108432_bib16 article-title: Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002123 – volume: 11 start-page: 1424 year: 2018 ident: 10.1016/j.nanoen.2023.108432_bib7 article-title: Design, analysis, and evaluation of a compact electromagnetic energy harvester from water flow for remote sensors publication-title: Energies doi: 10.3390/en11061424 – volume: 68 year: 2020 ident: 10.1016/j.nanoen.2023.108432_bib18 article-title: On the first principle theory of nanogenerators from Maxwell's equations publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104272 – volume: 15 start-page: 3246 year: 2021 ident: 10.1016/j.nanoen.2023.108432_bib42 article-title: A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy publication-title: Nano Research doi: 10.1007/s12274-021-3968-9 – volume: 27 start-page: 272 year: 2015 ident: 10.1016/j.nanoen.2023.108432_bib38 article-title: Self-powered water splitting using flowing kinetic energy publication-title: Adv. Mater. doi: 10.1002/adma.201404071 – volume: 13 start-page: 277 year: 2020 ident: 10.1016/j.nanoen.2023.108432_bib1 article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03258D – volume: 56 start-page: 400 year: 2019 ident: 10.1016/j.nanoen.2023.108432_bib15 article-title: Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.071 – volume: 68 year: 2020 ident: 10.1016/j.nanoen.2023.108432_bib36 article-title: Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104378 – volume: 13 start-page: 2203219 year: 2022 ident: 10.1016/j.nanoen.2023.108432_bib28 article-title: Achieving a large driving force on triboelectric nanogenerator by wave-driven linkage mechanism for harvesting blue energy toward marine environment monitoring publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203219 – volume: 13 start-page: 2349 year: 2019 ident: 10.1016/j.nanoen.2023.108432_bib11 article-title: A hybridized triboelectric-electromagnetic water wave energy harvester based on a magnetic sphere publication-title: ACS Nano – volume: 93 year: 2022 ident: 10.1016/j.nanoen.2023.108432_bib39 article-title: A half-wave rectifying triboelectric nanogenerator for self-powered water splitting towards hydrogen production publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106870 – volume: 31 start-page: 2105237 year: 2021 ident: 10.1016/j.nanoen.2023.108432_bib5 article-title: Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105237 – volume: 30 start-page: 1908252 year: 2020 ident: 10.1016/j.nanoen.2023.108432_bib34 article-title: Nanogenerators with superwetting surfaces for harvesting water/liquid energy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908252 – volume: 10 start-page: 14747 year: 2018 ident: 10.1016/j.nanoen.2023.108432_bib19 article-title: A spring-assisted hybrid triboelectric-electromagnetic nanogenerator for harvesting low-frequency vibration energy and creating a self-powered security system publication-title: Nanoscale doi: 10.1039/C8NR04276D – volume: 29 start-page: 1807241 year: 2019 ident: 10.1016/j.nanoen.2023.108432_bib9 article-title: Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807241 – volume: 93 year: 2022 ident: 10.1016/j.nanoen.2023.108432_bib40 article-title: Continuously harvesting energy from water and wind by pulsed triboelectric nanogenerator for self-powered seawater electrolysis publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106776 – volume: 31 start-page: 351 year: 2017 ident: 10.1016/j.nanoen.2023.108432_bib14 article-title: Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.11.037 – volume: 61 start-page: 1 year: 2019 ident: 10.1016/j.nanoen.2023.108432_bib31 article-title: Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.026 – volume: 7 year: 2020 ident: 10.1016/j.nanoen.2023.108432_bib33 article-title: Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy publication-title: Appl. Phys. Rev. doi: 10.1063/1.5135734 – volume: 10 start-page: 1904227 year: 2020 ident: 10.1016/j.nanoen.2023.108432_bib44 article-title: Cylindrical direct-current triboelectric nanogenerator with constant output current publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201904227 – volume: 15 start-page: 16368 year: 2021 ident: 10.1016/j.nanoen.2023.108432_bib8 article-title: Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring publication-title: ACS Nano doi: 10.1021/acsnano.1c05685 – volume: 13 start-page: 1300 year: 2020 ident: 10.1016/j.nanoen.2023.108432_bib26 article-title: Blue energy fuels: converting ocean wave energy to carbon-based liquid fuels via CO2 reduction publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03566D – volume: 323 year: 2022 ident: 10.1016/j.nanoen.2023.108432_bib27 article-title: Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119648 – volume: 16 start-page: 6781 year: 2022 ident: 10.1016/j.nanoen.2023.108432_bib24 article-title: Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy publication-title: ACS Nano doi: 10.1021/acsnano.2c01594 – volume: 10 start-page: 2000064 year: 2020 ident: 10.1016/j.nanoen.2023.108432_bib35 article-title: Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000064 – volume: 15 start-page: 13200 year: 2021 ident: 10.1016/j.nanoen.2023.108432_bib37 article-title: All-weather droplet-based triboelectric nanogenerator for wave energy harvesting publication-title: ACS Nano doi: 10.1021/acsnano.1c02790 – volume: 71 year: 2020 ident: 10.1016/j.nanoen.2023.108432_bib41 article-title: Self-driven power management system for triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104642 – volume: 32 start-page: 2111775 year: 2022 ident: 10.1016/j.nanoen.2023.108432_bib4 article-title: High space efficiency hybrid nanogenerators for effective water wave energy harvesting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111775 – volume: 10 start-page: 3616 year: 2018 ident: 10.1016/j.nanoen.2023.108432_bib22 article-title: Silicone-based triboelectric nanogenerator for water wave energy harvesting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17239 – volume: 63 year: 2019 ident: 10.1016/j.nanoen.2023.108432_bib23 article-title: A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103871 – volume: 48 start-page: 421 year: 2018 ident: 10.1016/j.nanoen.2023.108432_bib13 article-title: Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.062 – volume: 95 year: 2022 ident: 10.1016/j.nanoen.2023.108432_bib20 article-title: Fish gills inspired parallel-cell triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106976 – volume: 100 year: 2022 ident: 10.1016/j.nanoen.2023.108432_bib32 article-title: A tube-shaped solid–liquid-interfaced triboelectric–electromagnetic hybrid nanogenerator for efficient ocean wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107540 – volume: 99 year: 2022 ident: 10.1016/j.nanoen.2023.108432_bib10 article-title: Modeling of liquid-solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107362 – volume: 6 start-page: 2809 year: 2021 ident: 10.1016/j.nanoen.2023.108432_bib21 article-title: Pan, Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c01092 – volume: 102 year: 2022 ident: 10.1016/j.nanoen.2023.108432_bib25 article-title: Frequency modulated hybrid nanogenerator for efficient water wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107669 – volume: 66 year: 2019 ident: 10.1016/j.nanoen.2023.108432_bib6 article-title: High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104117 |
SSID | ssj0000651712 |
Score | 2.5515118 |
Snippet | Effective strategies to gain hydrogen energy from harvesting and conversion from ocean energy attract extensive attention in the new energy source field.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108432 |
SubjectTerms | Hydrogen energy Instant discharging Self-powered water splitting Triboelectric nanogenerator Wave energy harvesting |
Title | Wave energy harvesting based on multilayer beads integrated spherical TENG with switch triggered instant discharging for self-powered hydrogen generation |
URI | https://dx.doi.org/10.1016/j.nanoen.2023.108432 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBZL9tIeyvZF092GOfSqJrZkWz4uIdlsS3NpQnMzsiQnKcEOibuwl_6P_tudke2whdKFXgw2M8boE_OQZ75h7GMysolTI81NWFguA62oCKDgiLfRzkWx8F2uX-fxbCk_r6LVGRt3vTBUVtna_same2vdPhm2qzncb7fDbyHmLqGK6FgTE4mU8nYpE-LP__QrOJ2zoIsNEv_Tk-Q5KXQddL7Mq9Rl5YgINRRUbydF-HcP9cjrTC_YizZchOvmi16yM1e-Ys8fkQi-Zr-_6zsHzvfwwUYfPG9GuQbyTxaqEnzN4E5jbA05InqEE0WEhSOxChBOsJjMb4BOZeGIV7OBGvP2NU3yRHkKIWugDl4iVqK3Y6wLR7cr-J7GrKHQ5t4eKtyNsPZE1oT3G7acThbjGW8HLnCDmUPNAyeVTqk3VgmLkVuahAYhjtUoUgYDO5fTQHKBTt0WkUNTWcjQmhSNRI6JlozEW9Yrq9K9Y5ALrQqVBzaJnDRxqnItnA5sEWNIYYq8z0S3yJlp2chpKMYu68rOfmQNNBlBkzXQ9Bk_ae0bNo4n5JMOv-yPXZWhw_in5vv_1rxkz-iOysmC6Ir16sNP9wEDlzof-J05YOfXt19m8weY0_Ay |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7EHtSD-MT6nIPXpU02j82xiFpt7cWK3sJmd9MqJS1tFPwp_ltn8igKouAlh2QnhP2GeWxmvmHsPGyb0Mq24tpNDfccJakIIOWIt1bW-oEoulzvBkH3wbt98p9W2EXdC0NllZXtL216Ya2rO61qN1uz5-fWvYu5iyt9OtbERCLCvL1B7FSo7I3OTa87WB61oJd1wuK_J4lwkqmb6IpKr0xlU0tcqK6gkjtPuD87qS-O52qLbVYRI3TKj9pmKzbbYRtfeAR32cejerNgizY-GKt5QZ2RjYBclIFpBkXZ4ERheA0JgrqAJUuEgQURCxBUMLwcXAMdzMICr3oMOabuIxrmiespisyBmniJW4nejuEuLOwk5TOatIaLxu9mPkWFhFHBZU2Q77GHq8vhRZdXMxe4xuQh5471pIqoPVYKg8FbFLoaUQ5k25caYzub0ExygX7dpL5Fa5l6rtER2okEcy3PF_tsNZtm9oBBIpRMZeKY0LeeDiKZKGGVY9IAowqdJk0m6k2OdUVITnMxJnFdefYSl9DEBE1cQtNkfCk1Kwk5_lgf1vjF3xQrRp_xq-ThvyXP2Fp3eNeP-zeD3hFbpydUXeb4x2w1n7_aE4xj8uS00tNPzqLy4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wave+energy+harvesting+based+on+multilayer+beads+integrated+spherical+TENG+with+switch+triggered+instant+discharging+for+self-powered+hydrogen+generation&rft.jtitle=Nano+energy&rft.au=Zhang%2C+Wang&rft.au=He%2C+Wencong&rft.au=Dai%2C+Shuge&rft.au=Ma%2C+Fuxue&rft.date=2023-06-15&rft.issn=2211-2855&rft.volume=111&rft.spage=108432&rft_id=info:doi/10.1016%2Fj.nanoen.2023.108432&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2023_108432 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |