Wave energy harvesting based on multilayer beads integrated spherical TENG with switch triggered instant discharging for self-powered hydrogen generation

Effective strategies to gain hydrogen energy from harvesting and conversion from ocean energy attract extensive attention in the new energy source field. Remarkably, triboelectric nanogenerator (TENG) presents potential applications for harvesting large-scale blue energy from the ocean. Herein, we p...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 111; p. 108432
Main Authors Zhang, Wang, He, Wencong, Dai, Shuge, Ma, Fuxue, Lin, Pei, Sun, Junlu, Dong, Lin, Hu, Chenguo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.06.2023
Subjects
Online AccessGet full text
ISSN2211-2855
DOI10.1016/j.nanoen.2023.108432

Cover

Loading…
Abstract Effective strategies to gain hydrogen energy from harvesting and conversion from ocean energy attract extensive attention in the new energy source field. Remarkably, triboelectric nanogenerator (TENG) presents potential applications for harvesting large-scale blue energy from the ocean. Herein, we propose a self-powered hydrogen generation system by multilayer beads integrated spherical TENG with the power management system (PMS). The triggered switch used in the spherical TENG overcomes the limitation of working frequency through instantaneous driving, significantly improving the output performance and greatly expanding its application range. The six-layer beads integrated TENG presents a significant improvement in converting water wave energy into electric energy, and its power density reaches 21.3 W m−3 at 2 Hz. The integrated TENG charges 470 μF capacitor to 5 V in 200 s, and the hydrogen production rate is about 64.5 μL min−1 under the water wave condition, which overcomes the limitation of external power demands for conventional water electrolysis. Compared with the electrochemical cells driven by solar, our integrated system can operate in all weather conditions without an external power source. This work demonstrates the feasibility of the electrochemical conversion of low-frequency water wave energy into green energy. [Display omitted] •An instantaneous discharging TENG with ultrahigh output power is demonstrated by integrating a self-controlled switch.•The ID-TENG presents the excellent capability of harvesting ocean wave energy.•A self-powered water electrolysis system is demonstrated for highly efficient hydrogen production.
AbstractList Effective strategies to gain hydrogen energy from harvesting and conversion from ocean energy attract extensive attention in the new energy source field. Remarkably, triboelectric nanogenerator (TENG) presents potential applications for harvesting large-scale blue energy from the ocean. Herein, we propose a self-powered hydrogen generation system by multilayer beads integrated spherical TENG with the power management system (PMS). The triggered switch used in the spherical TENG overcomes the limitation of working frequency through instantaneous driving, significantly improving the output performance and greatly expanding its application range. The six-layer beads integrated TENG presents a significant improvement in converting water wave energy into electric energy, and its power density reaches 21.3 W m−3 at 2 Hz. The integrated TENG charges 470 μF capacitor to 5 V in 200 s, and the hydrogen production rate is about 64.5 μL min−1 under the water wave condition, which overcomes the limitation of external power demands for conventional water electrolysis. Compared with the electrochemical cells driven by solar, our integrated system can operate in all weather conditions without an external power source. This work demonstrates the feasibility of the electrochemical conversion of low-frequency water wave energy into green energy. [Display omitted] •An instantaneous discharging TENG with ultrahigh output power is demonstrated by integrating a self-controlled switch.•The ID-TENG presents the excellent capability of harvesting ocean wave energy.•A self-powered water electrolysis system is demonstrated for highly efficient hydrogen production.
ArticleNumber 108432
Author Sun, Junlu
Dai, Shuge
Dong, Lin
Ma, Fuxue
Lin, Pei
Hu, Chenguo
Zhang, Wang
He, Wencong
Author_xml – sequence: 1
  givenname: Wang
  surname: Zhang
  fullname: Zhang, Wang
  organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
– sequence: 2
  givenname: Wencong
  orcidid: 0000-0002-5868-8720
  surname: He
  fullname: He, Wencong
  organization: Department of Applied Physics, Chongqing University, Chongqing 400044, China
– sequence: 3
  givenname: Shuge
  orcidid: 0000-0003-0718-2559
  surname: Dai
  fullname: Dai, Shuge
  email: shugedai@zzu.edu.cn
  organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
– sequence: 4
  givenname: Fuxue
  surname: Ma
  fullname: Ma, Fuxue
  organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
– sequence: 5
  givenname: Pei
  orcidid: 0000-0002-3300-5241
  surname: Lin
  fullname: Lin, Pei
  email: linpei@zzu.edu.cn
  organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
– sequence: 6
  givenname: Junlu
  surname: Sun
  fullname: Sun, Junlu
  organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
– sequence: 7
  givenname: Lin
  orcidid: 0000-0002-4126-6812
  surname: Dong
  fullname: Dong, Lin
  organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
– sequence: 8
  givenname: Chenguo
  surname: Hu
  fullname: Hu, Chenguo
  email: hucg@cqu.edu.cn
  organization: Department of Applied Physics, Chongqing University, Chongqing 400044, China
BookMark eNqFUMtOwzAQ9KFIFOgfcPAPpNhOnDgckFBVHlIFlyKOlmtvElepXdmmqJ_C35K2nDjAHnal3Z3Z2blAI-cdIHRNyZQSWt6sp045D27KCMuHlihyNkJjxijNmOD8HE1iXJMhSk4rysbo613tAIOD0O5xp8IOYrKuxSsVwWDv8OajT7ZXewh4BcpEbF2CNqg0jOO2g2C16vFy_vKIP23qcByy7nAKtm0hDEvWxaRcwsZGPRxoD-yNDzhC32Rb_3lc6vYm-BYcbg9SVLLeXaGzRvURJj_1Er09zJezp2zx-vg8u19kOidlyigUQtWsErXIDSeirpgGrUtBuNCEV7AqOCvzgpWm4cBz0RTM6LrKyYoWdcHzS3R74tXBxxigkdqmo4IUlO0lJfLgrVzLk7fy4K08eTuAi1_gbbAbFfb_we5OMBge21kIMmoLToOxAXSSxtu_Cb4BxiOcxQ
CitedBy_id crossref_primary_10_1016_j_jsamd_2023_100637
crossref_primary_10_1016_j_nanoen_2023_108791
crossref_primary_10_1016_j_nanoen_2025_110754
crossref_primary_10_1002_admt_202401796
crossref_primary_10_1016_j_nanoen_2024_110436
crossref_primary_10_1002_ente_202300614
crossref_primary_10_1007_s12274_024_6568_6
crossref_primary_10_1016_j_cej_2025_161806
crossref_primary_10_1088_2631_7990_ad7b04
crossref_primary_10_1021_acsami_3c16415
crossref_primary_10_1039_D4EE05522E
crossref_primary_10_1016_j_sna_2024_115099
crossref_primary_10_1016_j_nanoen_2024_109526
crossref_primary_10_1016_j_jallcom_2025_178710
crossref_primary_10_1016_j_joule_2024_04_013
crossref_primary_10_1016_j_nanoen_2024_109546
crossref_primary_10_1039_D4TA02760D
crossref_primary_10_1016_j_ijhydene_2024_03_338
crossref_primary_10_1088_1361_6528_ad5189
crossref_primary_10_1002_admt_202402212
crossref_primary_10_1016_j_isci_2024_110665
crossref_primary_10_1002_admt_202400531
crossref_primary_10_1002_aenm_202400563
crossref_primary_10_1016_j_cej_2024_156193
crossref_primary_10_1016_j_enconman_2024_118569
crossref_primary_10_1021_acsami_4c08092
crossref_primary_10_1016_j_nanoen_2024_110383
crossref_primary_10_3390_nanoenergyadv4040023
crossref_primary_10_1002_smll_202404872
crossref_primary_10_1002_inf2_12621
crossref_primary_10_1039_D4EE03110E
crossref_primary_10_1039_D3TA04710E
crossref_primary_10_1002_aenm_202400313
crossref_primary_10_1021_acsenergylett_4c00412
crossref_primary_10_1016_j_renene_2024_122228
crossref_primary_10_1039_D4RA01841A
crossref_primary_10_1002_smm2_1304
crossref_primary_10_1007_s11431_024_2745_6
crossref_primary_10_1016_j_cej_2024_148640
crossref_primary_10_1002_adfm_202406188
crossref_primary_10_1016_j_jallcom_2024_176941
crossref_primary_10_1016_j_cej_2024_149753
crossref_primary_10_1002_smll_202304412
Cites_doi 10.1002/aenm.202103143
10.1016/j.nanoen.2021.105890
10.1002/adma.201902793
10.1016/j.joule.2021.04.016
10.1002/aenm.201802892
10.1039/C5EE01532D
10.1002/aenm.202002123
10.3390/en11061424
10.1016/j.nanoen.2019.104272
10.1007/s12274-021-3968-9
10.1002/adma.201404071
10.1039/C9EE03258D
10.1016/j.nanoen.2018.11.071
10.1016/j.nanoen.2019.104378
10.1002/aenm.202203219
10.1016/j.nanoen.2021.106870
10.1002/adfm.202105237
10.1002/adfm.201908252
10.1039/C8NR04276D
10.1002/adfm.201807241
10.1016/j.nanoen.2021.106776
10.1016/j.nanoen.2016.11.037
10.1016/j.nanoen.2019.04.026
10.1063/1.5135734
10.1002/aenm.201904227
10.1021/acsnano.1c05685
10.1039/C9EE03566D
10.1016/j.apenergy.2022.119648
10.1021/acsnano.2c01594
10.1002/aenm.202000064
10.1021/acsnano.1c02790
10.1016/j.nanoen.2020.104642
10.1002/adfm.202111775
10.1021/acsami.7b17239
10.1016/j.nanoen.2019.103871
10.1016/j.nanoen.2018.03.062
10.1016/j.nanoen.2022.106976
10.1016/j.nanoen.2022.107540
10.1016/j.nanoen.2022.107362
10.1021/acsenergylett.1c01092
10.1016/j.nanoen.2022.107669
10.1016/j.nanoen.2019.104117
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2023.108432
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2023_108432
S2211285523002690
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
FDB
FIRID
FNPLU
FYGXN
GBLVA
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
HZ~
RIG
SSH
ID FETCH-LOGICAL-c306t-1e48a9278983d508972cecc68058c057eb45263426df5e538f42dc9730b149453
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 00:57:03 EDT 2025
Thu Apr 24 23:13:19 EDT 2025
Fri Feb 23 02:37:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Triboelectric nanogenerator
Hydrogen energy
Wave energy harvesting
Self-powered water splitting
Instant discharging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-1e48a9278983d508972cecc68058c057eb45263426df5e538f42dc9730b149453
ORCID 0000-0002-4126-6812
0000-0002-5868-8720
0000-0002-3300-5241
0000-0003-0718-2559
ParticipantIDs crossref_citationtrail_10_1016_j_nanoen_2023_108432
crossref_primary_10_1016_j_nanoen_2023_108432
elsevier_sciencedirect_doi_10_1016_j_nanoen_2023_108432
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-15
PublicationDateYYYYMMDD 2023-06-15
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Pan, Guo, Zhang, Zhang, Wu, Wu, Yang, Liao, Wang (bib12) 2019; 9
Wang, Gao, Xu, Wang (bib34) 2020; 30
Leung, Fu, Zhang, Hassan, Jiang, Salama, Wang, He (bib26) 2020; 13
Wei, Zhao, Zhang, Yuan, Wu, Wang, Wang (bib37) 2021; 15
Xi, Pang, Liu, Wang, Li, Zhang, Wang (bib31) 2019; 61
Liang, Jiang, Liu, Feng, Zhang, Wang (bib1) 2020; 13
Xu, Zhao, Wang, Zhang, Li, Pan, Wang (bib17) 2019; 13
Lin, Zhang, Zou, Wu, Guo, Zhang, Yang, Wang (bib36) 2020; 68
Wang, Li, Xie, Xu, Zhou, Cheng, Zhao, Wang (bib44) 2020; 10
Zhang, Yang, Ji, Wu, Li, Yang, Li, Zheng, Xi, Wang (bib10) 2022; 99
Feng, Jiang, Liang, An, Wang (bib33) 2020; 7
Harmon, Bamgboje, Guo, Hu, Wang (bib41) 2020; 71
Feng, Han, Xu, Liang, Jiang, Li, Wang (bib29) 2021; 12
Wang, Xu, Zheng, Chen, Jenkins, Wu, Wang, Zhang, Yang (bib19) 2018; 10
Xu, Pang, Zhang, Jiang, Chen, Luo, Tang, Cao, Wang (bib14) 2017; 31
Tian, Wei, Lai, Li, Wu, Dai (bib25) 2022; 102
Rodrigues, Ramos, Esteves, Correia, Clemente, Gonçalves, Mathias, Gomes, Silva, Duarte, Morais, Rosa-Santos, Taveira-Pinto, Pereira, Ventura (bib30) 2021; 84
Zhang, He, Zhou, Yang, Yuan, Wei, Liu, Lu, Wang, Wang (bib43) 2021; 5
Wang (bib18) 2020; 68
Jiang, Pang, An, Lu, Feng, Liang, Zhong, Wang (bib35) 2020; 10
Liang, Jiang, Liu, Xiao, Xu, Li, Xi, Zhang, Wang (bib9) 2019; 29
Yuan, Wang, Xi, Han, Li, Han, Gao (bib21) 2021; 6
Xu, Yang, Lu, Yang, Li, Wen, Cheng, Wang (bib8) 2021; 15
Wang, Chen, Lin (bib3) 2015; 8
Zhang, Yuan, Zhang, Yang, Liu, He, Wang, Wang (bib4) 2022; 32
Han, Liu, Feng, Jiang, Wang (bib28) 2022; 13
Sun, Shang, Ma, Li, Xue, Xu, Wei, Li, Yalikun, Lai, Yang (bib32) 2022; 100
Li, Jiang, Zhai, Liu, Feng, Chen, Wen, Sun, Zhong (bib39) 2022; 93
Wang, Zhang (bib7) 2018; 11
Tang, Han, Han, Gao, Cao, Wang (bib38) 2015; 27
Wang, Chen, Sun, Liu, Hu, Lian, Liu, Shi, Wang, Mi, Zhou, Lee, Xu (bib42) 2021; 15
Hou, Chen, Li, Huang, Shi, Liu, Sun, Lee (bib23) 2019; 63
Bai, Xu, He, Zhu, Yang, Jiang, Nie, Zhong, Wang (bib6) 2019; 66
Zhang, Xu, Zhang, Wang, Zou, He, Wang, Wang (bib13) 2018; 48
Gao, Xu, Yu, Jing, Cheng, Wang (bib24) 2022; 16
Liang, Jiang, Feng, Lu, An, Wang (bib16) 2020; 10
Xia, Zhu, Zhang, Du, Fu, Xu (bib15) 2019; 56
Yin, Aw, Jiang, Xin, Guo, Tang, Peng, Li (bib20) 2022; 95
Jiang, Zhang, Guo, Chen, Wu, Zhang, Wang (bib2) 2019; 31
Lin, Zhang, Xie, Wu, Yang, Wang (bib5) 2021; 31
Zhu, Xiang, Zeng, Zhu, Cao, Wang, Wang (bib40) 2022; 93
Xiao, Jiang, Zhu, Liang, Xu, Shao, Zhang, Wang, Wang (bib22) 2018; 10
Wang, Gao, Zhu, Wang, Zhu, Zhao, Wang, Cheng (bib27) 2022; 323
Wu, Guo, Ding, Wang, Zhang, Wang (bib11) 2019; 13
Lin (10.1016/j.nanoen.2023.108432_bib5) 2021; 31
Sun (10.1016/j.nanoen.2023.108432_bib32) 2022; 100
Lin (10.1016/j.nanoen.2023.108432_bib36) 2020; 68
Tian (10.1016/j.nanoen.2023.108432_bib25) 2022; 102
Jiang (10.1016/j.nanoen.2023.108432_bib35) 2020; 10
Zhang (10.1016/j.nanoen.2023.108432_bib43) 2021; 5
Wang (10.1016/j.nanoen.2023.108432_bib7) 2018; 11
Gao (10.1016/j.nanoen.2023.108432_bib24) 2022; 16
Han (10.1016/j.nanoen.2023.108432_bib28) 2022; 13
Feng (10.1016/j.nanoen.2023.108432_bib33) 2020; 7
Harmon (10.1016/j.nanoen.2023.108432_bib41) 2020; 71
Rodrigues (10.1016/j.nanoen.2023.108432_bib30) 2021; 84
Xia (10.1016/j.nanoen.2023.108432_bib15) 2019; 56
Wang (10.1016/j.nanoen.2023.108432_bib19) 2018; 10
Yin (10.1016/j.nanoen.2023.108432_bib20) 2022; 95
Wang (10.1016/j.nanoen.2023.108432_bib34) 2020; 30
Xu (10.1016/j.nanoen.2023.108432_bib17) 2019; 13
Wang (10.1016/j.nanoen.2023.108432_bib27) 2022; 323
Zhang (10.1016/j.nanoen.2023.108432_bib10) 2022; 99
Zhang (10.1016/j.nanoen.2023.108432_bib13) 2018; 48
Wei (10.1016/j.nanoen.2023.108432_bib37) 2021; 15
Wang (10.1016/j.nanoen.2023.108432_bib12) 2019; 9
Xi (10.1016/j.nanoen.2023.108432_bib31) 2019; 61
Wu (10.1016/j.nanoen.2023.108432_bib11) 2019; 13
Xu (10.1016/j.nanoen.2023.108432_bib14) 2017; 31
Hou (10.1016/j.nanoen.2023.108432_bib23) 2019; 63
Wang (10.1016/j.nanoen.2023.108432_bib3) 2015; 8
Yuan (10.1016/j.nanoen.2023.108432_bib21) 2021; 6
Zhang (10.1016/j.nanoen.2023.108432_bib4) 2022; 32
Feng (10.1016/j.nanoen.2023.108432_bib29) 2021; 12
Li (10.1016/j.nanoen.2023.108432_bib39) 2022; 93
Liang (10.1016/j.nanoen.2023.108432_bib1) 2020; 13
Leung (10.1016/j.nanoen.2023.108432_bib26) 2020; 13
Xiao (10.1016/j.nanoen.2023.108432_bib22) 2018; 10
Wang (10.1016/j.nanoen.2023.108432_bib44) 2020; 10
Xu (10.1016/j.nanoen.2023.108432_bib8) 2021; 15
Jiang (10.1016/j.nanoen.2023.108432_bib2) 2019; 31
Liang (10.1016/j.nanoen.2023.108432_bib16) 2020; 10
Tang (10.1016/j.nanoen.2023.108432_bib38) 2015; 27
Bai (10.1016/j.nanoen.2023.108432_bib6) 2019; 66
Wang (10.1016/j.nanoen.2023.108432_bib18) 2020; 68
Zhu (10.1016/j.nanoen.2023.108432_bib40) 2022; 93
Liang (10.1016/j.nanoen.2023.108432_bib9) 2019; 29
Wang (10.1016/j.nanoen.2023.108432_bib42) 2021; 15
References_xml – volume: 68
  year: 2020
  ident: bib18
  article-title: On the first principle theory of nanogenerators from Maxwell's equations
  publication-title: Nano Energy
– volume: 6
  start-page: 2809
  year: 2021
  end-page: 2816
  ident: bib21
  article-title: Pan, Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy
  publication-title: ACS Energy Lett.
– volume: 31
  start-page: 2105237
  year: 2021
  ident: bib5
  article-title: Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency
  publication-title: Adv. Funct. Mater.
– volume: 61
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib31
  article-title: Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission
  publication-title: Nano Energy
– volume: 63
  year: 2019
  ident: bib23
  article-title: A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications
  publication-title: Nano Energy
– volume: 95
  year: 2022
  ident: bib20
  article-title: Fish gills inspired parallel-cell triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 27
  start-page: 272
  year: 2015
  end-page: 276
  ident: bib38
  article-title: Self-powered water splitting using flowing kinetic energy
  publication-title: Adv. Mater.
– volume: 16
  start-page: 6781
  year: 2022
  end-page: 6788
  ident: bib24
  article-title: Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy
  publication-title: ACS Nano
– volume: 10
  start-page: 2000064
  year: 2020
  ident: bib35
  article-title: Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting
  publication-title: Adv. Energy Mater.
– volume: 100
  year: 2022
  ident: bib32
  article-title: A tube-shaped solid–liquid-interfaced triboelectric–electromagnetic hybrid nanogenerator for efficient ocean wave energy harvesting
  publication-title: Nano Energy
– volume: 15
  start-page: 3246
  year: 2021
  end-page: 3253
  ident: bib42
  article-title: A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy
  publication-title: Nano Research
– volume: 13
  start-page: 1932
  year: 2019
  end-page: 1939
  ident: bib17
  article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy
  publication-title: ACS Nano
– volume: 68
  year: 2020
  ident: bib36
  article-title: Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability
  publication-title: Nano Energy
– volume: 5
  start-page: 1613
  year: 2021
  end-page: 1623
  ident: bib43
  article-title: Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy
  publication-title: Joule
– volume: 13
  start-page: 2349
  year: 2019
  end-page: 2356
  ident: bib11
  article-title: A hybridized triboelectric-electromagnetic water wave energy harvester based on a magnetic sphere
  publication-title: ACS Nano
– volume: 10
  start-page: 1904227
  year: 2020
  ident: bib44
  article-title: Cylindrical direct-current triboelectric nanogenerator with constant output current
  publication-title: Adv. Energy Mater.
– volume: 99
  year: 2022
  ident: bib10
  article-title: Modeling of liquid-solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 10
  start-page: 14747
  year: 2018
  end-page: 14754
  ident: bib19
  article-title: A spring-assisted hybrid triboelectric-electromagnetic nanogenerator for harvesting low-frequency vibration energy and creating a self-powered security system
  publication-title: Nanoscale
– volume: 102
  year: 2022
  ident: bib25
  article-title: Frequency modulated hybrid nanogenerator for efficient water wave energy harvesting
  publication-title: Nano Energy
– volume: 323
  year: 2022
  ident: bib27
  article-title: Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting
  publication-title: Appl. Energy
– volume: 48
  start-page: 421
  year: 2018
  end-page: 429
  ident: bib13
  article-title: Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect
  publication-title: Nano Energy
– volume: 15
  start-page: 13200
  year: 2021
  end-page: 13208
  ident: bib37
  article-title: All-weather droplet-based triboelectric nanogenerator for wave energy harvesting
  publication-title: ACS Nano
– volume: 30
  start-page: 1908252
  year: 2020
  ident: bib34
  article-title: Nanogenerators with superwetting surfaces for harvesting water/liquid energy
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 277
  year: 2020
  end-page: 285
  ident: bib1
  article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 2002123
  year: 2020
  ident: bib16
  article-title: Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting
  publication-title: Adv. Energy Mater.
– volume: 93
  year: 2022
  ident: bib39
  article-title: A half-wave rectifying triboelectric nanogenerator for self-powered water splitting towards hydrogen production
  publication-title: Nano Energy
– volume: 9
  start-page: 1802892
  year: 2019
  ident: bib12
  article-title: Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 2203219
  year: 2022
  ident: bib28
  article-title: Achieving a large driving force on triboelectric nanogenerator by wave-driven linkage mechanism for harvesting blue energy toward marine environment monitoring
  publication-title: Adv. Energy Mater.
– volume: 84
  year: 2021
  ident: bib30
  article-title: Integrated study of triboelectric nanogenerator for ocean wave energy harvesting: performance assessment in realistic sea conditions
  publication-title: Nano Energy
– volume: 29
  start-page: 1807241
  year: 2019
  ident: bib9
  article-title: Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting
  publication-title: Adv. Funct. Mater.
– volume: 31
  start-page: 351
  year: 2017
  end-page: 358
  ident: bib14
  article-title: Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting
  publication-title: Nano Energy
– volume: 93
  year: 2022
  ident: bib40
  article-title: Continuously harvesting energy from water and wind by pulsed triboelectric nanogenerator for self-powered seawater electrolysis
  publication-title: Nano Energy
– volume: 7
  year: 2020
  ident: bib33
  article-title: Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy
  publication-title: Appl. Phys. Rev.
– volume: 31
  year: 2019
  ident: bib2
  article-title: Signal output of triboelectric nanogenerator at oil-water-solid multiphase interfaces and its application for dual-signal chemical sensing
  publication-title: Adv. Mater.
– volume: 56
  start-page: 400
  year: 2019
  end-page: 410
  ident: bib15
  article-title: Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion
  publication-title: Nano Energy
– volume: 32
  start-page: 2111775
  year: 2022
  ident: bib4
  article-title: High space efficiency hybrid nanogenerators for effective water wave energy harvesting
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 2250
  year: 2015
  end-page: 2282
  ident: bib3
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
  publication-title: Energy Environ. Sci.
– volume: 66
  year: 2019
  ident: bib6
  article-title: High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping
  publication-title: Nano Energy
– volume: 15
  start-page: 16368
  year: 2021
  end-page: 16375
  ident: bib8
  article-title: Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring
  publication-title: ACS Nano
– volume: 10
  start-page: 3616
  year: 2018
  end-page: 3623
  ident: bib22
  article-title: Silicone-based triboelectric nanogenerator for water wave energy harvesting
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 1300
  year: 2020
  end-page: 1308
  ident: bib26
  article-title: Blue energy fuels: converting ocean wave energy to carbon-based liquid fuels via CO
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 2103143
  year: 2021
  ident: bib29
  article-title: Blue energy for green hydrogen fuel: a self‐powered electrochemical conversion system driven by triboelectric nanogenerators
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 1424
  year: 2018
  ident: bib7
  article-title: Design, analysis, and evaluation of a compact electromagnetic energy harvester from water flow for remote sensors
  publication-title: Energies
– volume: 71
  year: 2020
  ident: bib41
  article-title: Self-driven power management system for triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 12
  start-page: 2103143
  year: 2021
  ident: 10.1016/j.nanoen.2023.108432_bib29
  article-title: Blue energy for green hydrogen fuel: a self‐powered electrochemical conversion system driven by triboelectric nanogenerators
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103143
– volume: 84
  year: 2021
  ident: 10.1016/j.nanoen.2023.108432_bib30
  article-title: Integrated study of triboelectric nanogenerator for ocean wave energy harvesting: performance assessment in realistic sea conditions
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105890
– volume: 31
  year: 2019
  ident: 10.1016/j.nanoen.2023.108432_bib2
  article-title: Signal output of triboelectric nanogenerator at oil-water-solid multiphase interfaces and its application for dual-signal chemical sensing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902793
– volume: 5
  start-page: 1613
  year: 2021
  ident: 10.1016/j.nanoen.2023.108432_bib43
  article-title: Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy
  publication-title: Joule
  doi: 10.1016/j.joule.2021.04.016
– volume: 9
  start-page: 1802892
  year: 2019
  ident: 10.1016/j.nanoen.2023.108432_bib12
  article-title: Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802892
– volume: 13
  start-page: 1932
  year: 2019
  ident: 10.1016/j.nanoen.2023.108432_bib17
  article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy
  publication-title: ACS Nano
– volume: 8
  start-page: 2250
  year: 2015
  ident: 10.1016/j.nanoen.2023.108432_bib3
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01532D
– volume: 10
  start-page: 2002123
  year: 2020
  ident: 10.1016/j.nanoen.2023.108432_bib16
  article-title: Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002123
– volume: 11
  start-page: 1424
  year: 2018
  ident: 10.1016/j.nanoen.2023.108432_bib7
  article-title: Design, analysis, and evaluation of a compact electromagnetic energy harvester from water flow for remote sensors
  publication-title: Energies
  doi: 10.3390/en11061424
– volume: 68
  year: 2020
  ident: 10.1016/j.nanoen.2023.108432_bib18
  article-title: On the first principle theory of nanogenerators from Maxwell's equations
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104272
– volume: 15
  start-page: 3246
  year: 2021
  ident: 10.1016/j.nanoen.2023.108432_bib42
  article-title: A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy
  publication-title: Nano Research
  doi: 10.1007/s12274-021-3968-9
– volume: 27
  start-page: 272
  year: 2015
  ident: 10.1016/j.nanoen.2023.108432_bib38
  article-title: Self-powered water splitting using flowing kinetic energy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404071
– volume: 13
  start-page: 277
  year: 2020
  ident: 10.1016/j.nanoen.2023.108432_bib1
  article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03258D
– volume: 56
  start-page: 400
  year: 2019
  ident: 10.1016/j.nanoen.2023.108432_bib15
  article-title: Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.071
– volume: 68
  year: 2020
  ident: 10.1016/j.nanoen.2023.108432_bib36
  article-title: Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104378
– volume: 13
  start-page: 2203219
  year: 2022
  ident: 10.1016/j.nanoen.2023.108432_bib28
  article-title: Achieving a large driving force on triboelectric nanogenerator by wave-driven linkage mechanism for harvesting blue energy toward marine environment monitoring
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203219
– volume: 13
  start-page: 2349
  year: 2019
  ident: 10.1016/j.nanoen.2023.108432_bib11
  article-title: A hybridized triboelectric-electromagnetic water wave energy harvester based on a magnetic sphere
  publication-title: ACS Nano
– volume: 93
  year: 2022
  ident: 10.1016/j.nanoen.2023.108432_bib39
  article-title: A half-wave rectifying triboelectric nanogenerator for self-powered water splitting towards hydrogen production
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106870
– volume: 31
  start-page: 2105237
  year: 2021
  ident: 10.1016/j.nanoen.2023.108432_bib5
  article-title: Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105237
– volume: 30
  start-page: 1908252
  year: 2020
  ident: 10.1016/j.nanoen.2023.108432_bib34
  article-title: Nanogenerators with superwetting surfaces for harvesting water/liquid energy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908252
– volume: 10
  start-page: 14747
  year: 2018
  ident: 10.1016/j.nanoen.2023.108432_bib19
  article-title: A spring-assisted hybrid triboelectric-electromagnetic nanogenerator for harvesting low-frequency vibration energy and creating a self-powered security system
  publication-title: Nanoscale
  doi: 10.1039/C8NR04276D
– volume: 29
  start-page: 1807241
  year: 2019
  ident: 10.1016/j.nanoen.2023.108432_bib9
  article-title: Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807241
– volume: 93
  year: 2022
  ident: 10.1016/j.nanoen.2023.108432_bib40
  article-title: Continuously harvesting energy from water and wind by pulsed triboelectric nanogenerator for self-powered seawater electrolysis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106776
– volume: 31
  start-page: 351
  year: 2017
  ident: 10.1016/j.nanoen.2023.108432_bib14
  article-title: Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.11.037
– volume: 61
  start-page: 1
  year: 2019
  ident: 10.1016/j.nanoen.2023.108432_bib31
  article-title: Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.026
– volume: 7
  year: 2020
  ident: 10.1016/j.nanoen.2023.108432_bib33
  article-title: Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5135734
– volume: 10
  start-page: 1904227
  year: 2020
  ident: 10.1016/j.nanoen.2023.108432_bib44
  article-title: Cylindrical direct-current triboelectric nanogenerator with constant output current
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201904227
– volume: 15
  start-page: 16368
  year: 2021
  ident: 10.1016/j.nanoen.2023.108432_bib8
  article-title: Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05685
– volume: 13
  start-page: 1300
  year: 2020
  ident: 10.1016/j.nanoen.2023.108432_bib26
  article-title: Blue energy fuels: converting ocean wave energy to carbon-based liquid fuels via CO2 reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03566D
– volume: 323
  year: 2022
  ident: 10.1016/j.nanoen.2023.108432_bib27
  article-title: Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119648
– volume: 16
  start-page: 6781
  year: 2022
  ident: 10.1016/j.nanoen.2023.108432_bib24
  article-title: Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c01594
– volume: 10
  start-page: 2000064
  year: 2020
  ident: 10.1016/j.nanoen.2023.108432_bib35
  article-title: Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000064
– volume: 15
  start-page: 13200
  year: 2021
  ident: 10.1016/j.nanoen.2023.108432_bib37
  article-title: All-weather droplet-based triboelectric nanogenerator for wave energy harvesting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02790
– volume: 71
  year: 2020
  ident: 10.1016/j.nanoen.2023.108432_bib41
  article-title: Self-driven power management system for triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104642
– volume: 32
  start-page: 2111775
  year: 2022
  ident: 10.1016/j.nanoen.2023.108432_bib4
  article-title: High space efficiency hybrid nanogenerators for effective water wave energy harvesting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202111775
– volume: 10
  start-page: 3616
  year: 2018
  ident: 10.1016/j.nanoen.2023.108432_bib22
  article-title: Silicone-based triboelectric nanogenerator for water wave energy harvesting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17239
– volume: 63
  year: 2019
  ident: 10.1016/j.nanoen.2023.108432_bib23
  article-title: A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103871
– volume: 48
  start-page: 421
  year: 2018
  ident: 10.1016/j.nanoen.2023.108432_bib13
  article-title: Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.062
– volume: 95
  year: 2022
  ident: 10.1016/j.nanoen.2023.108432_bib20
  article-title: Fish gills inspired parallel-cell triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106976
– volume: 100
  year: 2022
  ident: 10.1016/j.nanoen.2023.108432_bib32
  article-title: A tube-shaped solid–liquid-interfaced triboelectric–electromagnetic hybrid nanogenerator for efficient ocean wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107540
– volume: 99
  year: 2022
  ident: 10.1016/j.nanoen.2023.108432_bib10
  article-title: Modeling of liquid-solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107362
– volume: 6
  start-page: 2809
  year: 2021
  ident: 10.1016/j.nanoen.2023.108432_bib21
  article-title: Pan, Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c01092
– volume: 102
  year: 2022
  ident: 10.1016/j.nanoen.2023.108432_bib25
  article-title: Frequency modulated hybrid nanogenerator for efficient water wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107669
– volume: 66
  year: 2019
  ident: 10.1016/j.nanoen.2023.108432_bib6
  article-title: High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104117
SSID ssj0000651712
Score 2.5515118
Snippet Effective strategies to gain hydrogen energy from harvesting and conversion from ocean energy attract extensive attention in the new energy source field....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108432
SubjectTerms Hydrogen energy
Instant discharging
Self-powered water splitting
Triboelectric nanogenerator
Wave energy harvesting
Title Wave energy harvesting based on multilayer beads integrated spherical TENG with switch triggered instant discharging for self-powered hydrogen generation
URI https://dx.doi.org/10.1016/j.nanoen.2023.108432
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBZL9tIeyvZF092GOfSqJrZkWz4uIdlsS3NpQnMzsiQnKcEOibuwl_6P_tudke2whdKFXgw2M8boE_OQZ75h7GMysolTI81NWFguA62oCKDgiLfRzkWx8F2uX-fxbCk_r6LVGRt3vTBUVtna_same2vdPhm2qzncb7fDbyHmLqGK6FgTE4mU8nYpE-LP__QrOJ2zoIsNEv_Tk-Q5KXQddL7Mq9Rl5YgINRRUbydF-HcP9cjrTC_YizZchOvmi16yM1e-Ys8fkQi-Zr-_6zsHzvfwwUYfPG9GuQbyTxaqEnzN4E5jbA05InqEE0WEhSOxChBOsJjMb4BOZeGIV7OBGvP2NU3yRHkKIWugDl4iVqK3Y6wLR7cr-J7GrKHQ5t4eKtyNsPZE1oT3G7acThbjGW8HLnCDmUPNAyeVTqk3VgmLkVuahAYhjtUoUgYDO5fTQHKBTt0WkUNTWcjQmhSNRI6JlozEW9Yrq9K9Y5ALrQqVBzaJnDRxqnItnA5sEWNIYYq8z0S3yJlp2chpKMYu68rOfmQNNBlBkzXQ9Bk_ae0bNo4n5JMOv-yPXZWhw_in5vv_1rxkz-iOysmC6Ir16sNP9wEDlzof-J05YOfXt19m8weY0_Ay
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7EHtSD-MT6nIPXpU02j82xiFpt7cWK3sJmd9MqJS1tFPwp_ltn8igKouAlh2QnhP2GeWxmvmHsPGyb0Mq24tpNDfccJakIIOWIt1bW-oEoulzvBkH3wbt98p9W2EXdC0NllZXtL216Ya2rO61qN1uz5-fWvYu5iyt9OtbERCLCvL1B7FSo7I3OTa87WB61oJd1wuK_J4lwkqmb6IpKr0xlU0tcqK6gkjtPuD87qS-O52qLbVYRI3TKj9pmKzbbYRtfeAR32cejerNgizY-GKt5QZ2RjYBclIFpBkXZ4ERheA0JgrqAJUuEgQURCxBUMLwcXAMdzMICr3oMOabuIxrmiespisyBmniJW4nejuEuLOwk5TOatIaLxu9mPkWFhFHBZU2Q77GHq8vhRZdXMxe4xuQh5471pIqoPVYKg8FbFLoaUQ5k25caYzub0ExygX7dpL5Fa5l6rtER2okEcy3PF_tsNZtm9oBBIpRMZeKY0LeeDiKZKGGVY9IAowqdJk0m6k2OdUVITnMxJnFdefYSl9DEBE1cQtNkfCk1Kwk5_lgf1vjF3xQrRp_xq-ThvyXP2Fp3eNeP-zeD3hFbpydUXeb4x2w1n7_aE4xj8uS00tNPzqLy4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wave+energy+harvesting+based+on+multilayer+beads+integrated+spherical+TENG+with+switch+triggered+instant+discharging+for+self-powered+hydrogen+generation&rft.jtitle=Nano+energy&rft.au=Zhang%2C+Wang&rft.au=He%2C+Wencong&rft.au=Dai%2C+Shuge&rft.au=Ma%2C+Fuxue&rft.date=2023-06-15&rft.issn=2211-2855&rft.volume=111&rft.spage=108432&rft_id=info:doi/10.1016%2Fj.nanoen.2023.108432&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2023_108432
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon