An End-to-end Supervised Domain Adaptation Framework for Cross-Domain Change Detection
•A novel supervised domain adaptation framework SDACD for cross-domain change detection.•SDACD unifies image adaptation and feature adaptation in an end-to-end trainable manner.•SDACD can handle cross-domain change detection and consistently improve the performance as an easy-to-plug-in module.•Our...
Saved in:
Published in | Pattern recognition Vol. 132; p. 108960 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2022.108960 |
Cover
Loading…
Abstract | •A novel supervised domain adaptation framework SDACD for cross-domain change detection.•SDACD unifies image adaptation and feature adaptation in an end-to-end trainable manner.•SDACD can handle cross-domain change detection and consistently improve the performance as an easy-to-plug-in module.•Our SNUNet-based framework sets new state-of-the-art performance with an F1-score of 97.34% on CDD dataset and 92.36% on WHU building dataset.
Change detection is a crucial but extremely challenging task in remote sensing image analysis, and much progress has been made with the rapid development of deep learning. However, most existing deep learning-based change detection methods try to elaborately design complicated neural networks with powerful feature representations. However, they ignore the universal domain shift induced by time-varying land cover changes, including luminance fluctuations and seasonal changes between pre-event and post-event images, thereby producing suboptimal results. In this paper, we propose an end-to-end supervised domain adaptation framework for cross-domain change detection named SDACD, to effectively alleviate the domain shift between bi-temporal images for better change predictions. Specifically, our SDACD presents collaborative adaptations from both image and feature perspectives with supervised learning. Image adaptation exploits generative adversarial learning with cycle-consistency constraints to perform cross-domain style transformation, which effectively narrows the domain gap in a two-side generation fashion. As for feature adaptation, we extract domain-invariant features to align different feature distributions in the feature space, which could further reduce the domain gap of cross-domain images. To further improve the performance, we combine three types of bi-temporal images for the final change prediction, including the initial input bi-temporal images and two generated bi-temporal images from the pre-event and post-event domains. Extensive experiments and analyses conducted on two benchmarks demonstrate the effectiveness and generalizability of our proposed framework. Notably, our framework pushes several representative baseline models up to new State-Of-The-Art records, achieving 97.34% and 92.36% on the CDD and WHU building datasets, respectively. The source code and models are publicly available at https://github.com/Perfect-You/SDACD. |
---|---|
AbstractList | •A novel supervised domain adaptation framework SDACD for cross-domain change detection.•SDACD unifies image adaptation and feature adaptation in an end-to-end trainable manner.•SDACD can handle cross-domain change detection and consistently improve the performance as an easy-to-plug-in module.•Our SNUNet-based framework sets new state-of-the-art performance with an F1-score of 97.34% on CDD dataset and 92.36% on WHU building dataset.
Change detection is a crucial but extremely challenging task in remote sensing image analysis, and much progress has been made with the rapid development of deep learning. However, most existing deep learning-based change detection methods try to elaborately design complicated neural networks with powerful feature representations. However, they ignore the universal domain shift induced by time-varying land cover changes, including luminance fluctuations and seasonal changes between pre-event and post-event images, thereby producing suboptimal results. In this paper, we propose an end-to-end supervised domain adaptation framework for cross-domain change detection named SDACD, to effectively alleviate the domain shift between bi-temporal images for better change predictions. Specifically, our SDACD presents collaborative adaptations from both image and feature perspectives with supervised learning. Image adaptation exploits generative adversarial learning with cycle-consistency constraints to perform cross-domain style transformation, which effectively narrows the domain gap in a two-side generation fashion. As for feature adaptation, we extract domain-invariant features to align different feature distributions in the feature space, which could further reduce the domain gap of cross-domain images. To further improve the performance, we combine three types of bi-temporal images for the final change prediction, including the initial input bi-temporal images and two generated bi-temporal images from the pre-event and post-event domains. Extensive experiments and analyses conducted on two benchmarks demonstrate the effectiveness and generalizability of our proposed framework. Notably, our framework pushes several representative baseline models up to new State-Of-The-Art records, achieving 97.34% and 92.36% on the CDD and WHU building datasets, respectively. The source code and models are publicly available at https://github.com/Perfect-You/SDACD. |
ArticleNumber | 108960 |
Author | Xuan, Wenjie Liu, Juhua Gan, Yuhang Liu, Jia Du, Bo Zhan, Yibing |
Author_xml | – sequence: 1 givenname: Jia surname: Liu fullname: Liu, Jia organization: Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, China – sequence: 2 givenname: Wenjie surname: Xuan fullname: Xuan, Wenjie organization: National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan, China – sequence: 3 givenname: Yuhang surname: Gan fullname: Gan, Yuhang organization: National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan, China – sequence: 4 givenname: Yibing surname: Zhan fullname: Zhan, Yibing organization: JD Explore Academy, Beijing, China – sequence: 5 givenname: Juhua surname: Liu fullname: Liu, Juhua email: liujuhua@whu.edu.cn organization: Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, China – sequence: 6 givenname: Bo surname: Du fullname: Du, Bo organization: National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan, China |
BookMark | eNqFkMtOwzAQRS1UJNrCH7DwD7j4kTgJC6SqD0CqxILH1nKccXFp7cgJRfw9idIVC1iNNHPv1dwzQSMfPCB0zeiMUSZvdrNatyZsZ5xy3q3yQtIzNGZ5JkjKEj5CY0oFI4JTcYEmTbOjlGXdYYze5h6vfEXaQMBX-Pmzhnh0DVR4GQ7aeTyvdN3q1gWP11Ef4CvED2xDxIsYmoacVIt37beAl9CC6bWX6NzqfQNXpzlFr-vVy-KBbJ7uHxfzDTGCypawiie2tBmkJS25lJwJnWbcirzMiwRMAqlNbSKkMIYXWWJpJ0yl0JnNdAFSTNHtkGv6byJYZdzwbRu12ytGVU9I7dRASPWE1ECoMye_zHV0Bx2__7PdDTboih0dRNUYB95A5WLXXlXB_R3wA93qhBw |
CitedBy_id | crossref_primary_10_1016_j_isprsjprs_2024_09_002 crossref_primary_10_1109_TGRS_2023_3294884 crossref_primary_10_1038_s41598_025_94544_7 crossref_primary_10_1109_JSTARS_2024_3495217 crossref_primary_10_1016_j_patcog_2024_110791 crossref_primary_10_1109_TGRS_2023_3327139 crossref_primary_10_1016_j_jag_2024_103969 crossref_primary_10_3390_rs17020217 crossref_primary_10_1109_JSTARS_2023_3335281 crossref_primary_10_1109_TGRS_2024_3432819 crossref_primary_10_1016_j_patcog_2023_109384 crossref_primary_10_1016_j_patcog_2024_110515 crossref_primary_10_1109_TGRS_2023_3325829 crossref_primary_10_1080_10106049_2024_2329673 crossref_primary_10_1109_JSTARS_2024_3408154 crossref_primary_10_1109_TGRS_2023_3344948 crossref_primary_10_1109_JSTARS_2023_3336929 crossref_primary_10_1109_TGRS_2024_3500073 crossref_primary_10_1109_TGRS_2024_3518568 crossref_primary_10_1016_j_patcog_2024_110466 crossref_primary_10_3390_rs15102645 crossref_primary_10_3390_app13031674 crossref_primary_10_1109_JSTARS_2024_3416183 crossref_primary_10_1109_JSTARS_2024_3503756 crossref_primary_10_1016_j_patcog_2025_111355 crossref_primary_10_1109_LGRS_2024_3431212 crossref_primary_10_1080_15481603_2023_2220525 crossref_primary_10_3390_astronomy3030012 crossref_primary_10_1109_TGRS_2024_3366901 crossref_primary_10_1109_TGRS_2024_3438290 crossref_primary_10_1109_JSTARS_2024_3476131 crossref_primary_10_1016_j_isprsjprs_2023_05_011 crossref_primary_10_1109_TGRS_2023_3348878 crossref_primary_10_1109_TGRS_2023_3275140 crossref_primary_10_1016_j_eswa_2023_122038 crossref_primary_10_1109_TGRS_2024_3480091 crossref_primary_10_1016_j_isprsjprs_2025_02_005 crossref_primary_10_1109_TGRS_2023_3320805 crossref_primary_10_1109_TGRS_2024_3352050 crossref_primary_10_1109_TGRS_2025_3542481 crossref_primary_10_1016_j_neucom_2023_126295 crossref_primary_10_1080_15481603_2024_2380126 crossref_primary_10_3390_rs15164095 |
Cites_doi | 10.1080/01431160801950162 10.3390/rs12101662 10.3390/rs12223815 10.1109/LGRS.2016.2601930 10.1016/j.isprsjprs.2006.09.004 10.1109/JSTARS.2020.3037893 10.1109/TPAMI.2019.2932058 10.1016/j.patcog.2020.107598 10.3390/rs8110888 10.1109/TIP.2020.2989100 10.1109/TIP.2015.2487860 10.1016/j.ins.2010.10.016 10.1016/j.patcog.2022.108717 10.1109/TCYB.2014.2336697 10.3390/rs11111292 10.1016/j.rse.2017.07.009 10.1109/TGRS.2018.2858817 10.1109/TPAMI.2020.2991050 10.1016/j.neunet.2021.10.022 10.1109/LGRS.2011.2109697 10.1109/LGRS.2019.2906279 10.3390/rs10030471 10.1109/TGRS.2018.2863224 10.1109/TII.2018.2884211 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2022.108960 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2022_108960 S003132032200440X |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-1d24fbf7e5b0b266213a572f38b894ec4e5f5f4363cc2974f05b0563a7f7a9e63 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Tue Jul 01 02:36:39 EDT 2025 Thu Apr 24 23:12:26 EDT 2025 Fri Feb 23 02:36:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Supervised Domain Adaptation Feature Adaptation Image Adaptation Change Detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-1d24fbf7e5b0b266213a572f38b894ec4e5f5f4363cc2974f05b0563a7f7a9e63 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2022_108960 crossref_primary_10_1016_j_patcog_2022_108960 elsevier_sciencedirect_doi_10_1016_j_patcog_2022_108960 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kong, Yao, Chen, Sun (bib0039) 2016 Chen, Shi (bib0018) 2020; 12 Saha, Bovolo, Bruzzone (bib0003) 2018 Deng, Wang, Deng, Qi (bib0005) 2008; 29 Tsai, Hung, Schulter, Sohn, Yang, Chandraker (bib0038) 2018 Zhou, Mahfuzur Rahman Siddiquee, Tajbakhsh, Liang (bib0026) 2018 Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0040) 2016 Yu, Tao, Wang, Rui (bib0011) 2015; 45 Fang, Pan, Kou (bib0027) 2019; 11 Chen, Dou, Chen, Qin, Heng (bib0037) 2019 Marpu, Gamba, Canty (bib0006) 2011; 8 Daudt, Saux, Boulch (bib0016) 2018 Nemmour, Chibani (bib0010) 2006; 61 Li, Jing, Su, Lu, Zhu, Shen (bib0035) 2021 Wessels, Van den Bergh, Roy, Salmon, Steenkamp, MacAlister, Swanepoel, Jewitt (bib0009) 2016; 8 Lyu, Lu, Mou, Li, Wright, Li, Li, Zhu, Wang, Yu, Gong (bib0001) 2018; 10 Zhu, Park, Isola, Efros (bib0029) 2017 Kou, Fang, Chen, Wang (bib0028) 2020; 12 Gao, Gao, Dong, Wang (bib0002) 2019; 16 Ganin, Lempitsky (bib0032) 2015 Li, Du, Zhu, Ding, Lu, Shen (bib0036) 2021 Zheng, Gong, Liu, Jiang, Zhan, Di, Zhang (bib0020) 2022; 129 William A Malila. 1980. Change vector analysis: an approach for detecting forest changes with Landsat. Ji, Wei, Lu (bib0022) 2019; 57 Chen, Yuan, Peng, Chen, Huang, Zhu, Liu, Li (bib0019) 2020; 14 Sun, Lei, Li, Sun, Kuang (bib0025) 2021; 109 Li, Chen, Ding, Zhu, Lu, Shen (bib0034) 2021; 43 385. Hong, Yu, Wan, Tao, Wang (bib0012) 2015; 24 Xuan, Huang, Liu, Du (bib0015) 2022; 145 Song, Xu, Zhang, Du, Zhang, Wang (bib0031) 2020; 29 Wu, Du, Cui, Zhang (bib0007) 2017; 199 Lebedev, Vizilter, Vygolov, Knyaz, Rubis (bib0021) 2018; 42 Zhang, Gong, Zhang, Su, Shi (bib0023) 2016; 13 Fang, Li, Shao, Li (bib0017) 2022; 19 Hong, Yu, Zhang, Jin, Lee (bib0013) 2019; 15 Ghosh, Shekhar Mishra, Ghosh (bib0008) 2011; 181 Yu, Tan, Zhang, Rui, Tao (bib0014) 2022; 44 Mou, Bruzzone, Zhu (bib0024) 2019; 57 Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, Darrell (bib0030) 2018 Tzeng, Hoffman, Saenko, Darrell (bib0033) 2017 Lyu (10.1016/j.patcog.2022.108960_bib0001) 2018; 10 Sun (10.1016/j.patcog.2022.108960_bib0025) 2021; 109 Daudt (10.1016/j.patcog.2022.108960_bib0016) 2018 Chen (10.1016/j.patcog.2022.108960_bib0037) 2019 Chen (10.1016/j.patcog.2022.108960_bib0019) 2020; 14 Ji (10.1016/j.patcog.2022.108960_bib0022) 2019; 57 Gao (10.1016/j.patcog.2022.108960_bib0002) 2019; 16 Hoffman (10.1016/j.patcog.2022.108960_bib0030) 2018 Li (10.1016/j.patcog.2022.108960_bib0034) 2021; 43 Hong (10.1016/j.patcog.2022.108960_bib0013) 2019; 15 Xuan (10.1016/j.patcog.2022.108960_bib0015) 2022; 145 Saha (10.1016/j.patcog.2022.108960_bib0003) 2018 Ganin (10.1016/j.patcog.2022.108960_bib0032) 2015 Fang (10.1016/j.patcog.2022.108960_bib0027) 2019; 11 Zhou (10.1016/j.patcog.2022.108960_bib0026) 2018 Kong (10.1016/j.patcog.2022.108960_bib0039) 2016 Liu (10.1016/j.patcog.2022.108960_bib0040) 2016 10.1016/j.patcog.2022.108960_bib0004 Ghosh (10.1016/j.patcog.2022.108960_bib0008) 2011; 181 Kou (10.1016/j.patcog.2022.108960_bib0028) 2020; 12 Zheng (10.1016/j.patcog.2022.108960_bib0020) 2022; 129 Yu (10.1016/j.patcog.2022.108960_bib0011) 2015; 45 Chen (10.1016/j.patcog.2022.108960_bib0018) 2020; 12 Mou (10.1016/j.patcog.2022.108960_bib0024) 2019; 57 Marpu (10.1016/j.patcog.2022.108960_bib0006) 2011; 8 Song (10.1016/j.patcog.2022.108960_bib0031) 2020; 29 Zhu (10.1016/j.patcog.2022.108960_bib0029) 2017 Nemmour (10.1016/j.patcog.2022.108960_bib0010) 2006; 61 Lebedev (10.1016/j.patcog.2022.108960_bib0021) 2018; 42 Zhang (10.1016/j.patcog.2022.108960_bib0023) 2016; 13 Li (10.1016/j.patcog.2022.108960_bib0036) 2021 Wessels (10.1016/j.patcog.2022.108960_bib0009) 2016; 8 Deng (10.1016/j.patcog.2022.108960_bib0005) 2008; 29 Yu (10.1016/j.patcog.2022.108960_bib0014) 2022; 44 Fang (10.1016/j.patcog.2022.108960_bib0017) 2022; 19 Li (10.1016/j.patcog.2022.108960_bib0035) 2021 Hong (10.1016/j.patcog.2022.108960_bib0012) 2015; 24 Tsai (10.1016/j.patcog.2022.108960_bib0038) 2018 Wu (10.1016/j.patcog.2022.108960_bib0007) 2017; 199 Tzeng (10.1016/j.patcog.2022.108960_bib0033) 2017 |
References_xml | – year: 2021 ident: bib0035 article-title: Faster domain adaptation networks publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 14 start-page: 1194 year: 2020 end-page: 1206 ident: bib0019 article-title: DASNet: Dual attentive fully convolutional siamese networks for change detection in high-resolution satellite images publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 44 start-page: 563 year: 2022 end-page: 578 ident: bib0014 article-title: Hierarchical deep click feature prediction for fine-grained image recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 57 start-page: 924 year: 2019 end-page: 935 ident: bib0024 article-title: Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery publication-title: IEEE Transactions on Geoscience and Remote Sensing – year: 2021 ident: bib0036 article-title: Divergence-agnostic Unsupervised Domain Adaptation by Adversarial Attacks publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 109 year: 2021 ident: bib0025 article-title: Nonlocal patch similarity based heterogeneous remote sensing change detection publication-title: Pattern Recognition – start-page: 845 year: 2016 end-page: 853 ident: bib0039 article-title: Hypernet: Towards accurate region proposal generation and joint object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 19 start-page: 1 year: 2022 end-page: 5 ident: bib0017 article-title: SNUNet-CD: A densely connected siamese network for change detection of VHR images publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 12 start-page: 1662 year: 2020 ident: bib0018 article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection publication-title: Remote Sensing – volume: 11 start-page: 1292 year: 2019 ident: bib0027 article-title: Dual learning-based siamese framework for change detection using bi-temporal VHR optical remote sensing images publication-title: Remote Sensing – start-page: 2223 year: 2017 end-page: 2232 ident: bib0029 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 3 year: 2018 end-page: 11 ident: bib0026 article-title: Unet++: A nested u-net architecture for medical image segmentation publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – reference: . 385. – volume: 15 start-page: 3952 year: 2019 end-page: 3961 ident: bib0013 article-title: Multimodal face-pose estimation with multitask manifold deep learning publication-title: IEEE Transactions on Industrial Informatics – volume: 199 start-page: 241 year: 2017 end-page: 255 ident: bib0007 article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion publication-title: Remote Sensing of Environment – volume: 145 start-page: 248 year: 2022 end-page: 259 ident: bib0015 article-title: FCL-Net: Towards Accurate Edge Detection via Fine-scale Corrective Learning publication-title: Neural Networks – volume: 8 start-page: 888 year: 2016 ident: bib0009 article-title: Rapid land cover map updates using change detection and robust random forest classifiers publication-title: Remote Sensing – start-page: 7472 year: 2018 end-page: 7481 ident: bib0038 article-title: Learning to adapt structured output space for semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 12 start-page: 3815 year: 2020 ident: bib0028 article-title: Progressive domain adaptation for change detection using season-varying remote sensing images publication-title: Remote Sensing – year: 2018 ident: bib0003 article-title: Destroyed-buildings detection from VHR SAR images using deep features publication-title: Image and Signal Processing for Remote Sensing XXIV – volume: 129 year: 2022 ident: bib0020 article-title: HFA-Net: High frequency attention siamese network for building change detection in VHR remote sensing images publication-title: Pattern Recognition – volume: 181 start-page: 699 year: 2011 end-page: 715 ident: bib0008 article-title: Fuzzy clustering algorithms for unsupervised change detection in remote sensing images publication-title: Information Sciences – start-page: 7167 year: 2017 end-page: 7176 ident: bib0033 article-title: Adversarial discriminative domain adaptation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 16 start-page: 1655 year: 2019 end-page: 1659 ident: bib0002 article-title: Transferred deep learning for sea ice change detection from synthetic-aperture radar images publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 61 start-page: 125 year: 2006 end-page: 133 ident: bib0010 article-title: Multiple support vector machines for land cover change detection: An application for mapping urban extensions publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 13 start-page: 1666 year: 2016 end-page: 1670 ident: bib0023 article-title: Feature-level change detection using deep representation and feature change analysis for multispectral imagery publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 43 start-page: 3918 year: 2021 end-page: 3930 ident: bib0034 article-title: Maximum density divergence for domain adaptation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 24 start-page: 5659 year: 2015 end-page: 5670 ident: bib0012 article-title: Multimodal Deep Autoencoder for Human Pose Recovery publication-title: IEEE Transactions on Image Processing – reference: William A Malila. 1980. Change vector analysis: an approach for detecting forest changes with Landsat. – volume: 10 start-page: 471 year: 2018 ident: bib0001 article-title: Long-term annual mapping of four cities on different continents by applying a deep information learning method to landsat data publication-title: Remote Sensing – start-page: 4063 year: 2018 end-page: 4067 ident: bib0016 article-title: Fully convolutional siamese networks for change detection publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP) – start-page: 1180 year: 2015 end-page: 1189 ident: bib0032 article-title: Unsupervised domain adaptation by backpropagation publication-title: PMLR – volume: 42 year: 2018 ident: bib0021 article-title: CHANGE DETECTION IN REMOTE SENSING IMAGES USING CONDITIONAL ADVERSARIAL NETWORKS publication-title: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences – volume: 45 start-page: 767 year: 2015 end-page: 779 ident: bib0011 article-title: Learning to Rank using User Clicks and Visual Features for Image Retrieval publication-title: IEEE Transactions on Cybernetics – volume: 29 start-page: 4823 year: 2008 end-page: 4838 ident: bib0005 article-title: PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data publication-title: International Journal of Remote Sensing – volume: 29 start-page: 6452 year: 2020 end-page: 6465 ident: bib0031 article-title: Learning from synthetic images via active pseudo-labeling publication-title: IEEE Transactions on Image Processing – start-page: 865 year: 2019 end-page: 872 ident: bib0037 article-title: Synergistic image and feature adaptation: Towards cross-modality domain adaptation for medical image segmentation publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 8 start-page: 799 year: 2011 end-page: 803 ident: bib0006 article-title: Improving change detection results of IR-MAD by eliminating strong changes publication-title: IEEE Geoscience and Remote Sensing Letters – start-page: 1989 year: 2018 end-page: 1998 ident: bib0030 article-title: Cycada: Cycle-consistent adversarial domain adaptation publication-title: International Conference on Machine Learning – volume: 57 start-page: 574 year: 2019 end-page: 586 ident: bib0022 article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set publication-title: IEEE Transactions on Geoscience and Remote Sensing – start-page: 21 year: 2016 end-page: 37 ident: bib0040 article-title: Ssd: Single shot multibox detector publication-title: European Conference on Computer Vision – volume: 29 start-page: 4823 issue: 16 year: 2008 ident: 10.1016/j.patcog.2022.108960_bib0005 article-title: PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data publication-title: International Journal of Remote Sensing doi: 10.1080/01431160801950162 – volume: 12 start-page: 1662 issue: 10 year: 2020 ident: 10.1016/j.patcog.2022.108960_bib0018 article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection publication-title: Remote Sensing doi: 10.3390/rs12101662 – start-page: 4063 year: 2018 ident: 10.1016/j.patcog.2022.108960_bib0016 article-title: Fully convolutional siamese networks for change detection – start-page: 7472 year: 2018 ident: 10.1016/j.patcog.2022.108960_bib0038 article-title: Learning to adapt structured output space for semantic segmentation – volume: 12 start-page: 3815 issue: 22 year: 2020 ident: 10.1016/j.patcog.2022.108960_bib0028 article-title: Progressive domain adaptation for change detection using season-varying remote sensing images publication-title: Remote Sensing doi: 10.3390/rs12223815 – volume: 13 start-page: 1666 issue: 11 year: 2016 ident: 10.1016/j.patcog.2022.108960_bib0023 article-title: Feature-level change detection using deep representation and feature change analysis for multispectral imagery publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2016.2601930 – volume: 61 start-page: 125 issue: 2 year: 2006 ident: 10.1016/j.patcog.2022.108960_bib0010 article-title: Multiple support vector machines for land cover change detection: An application for mapping urban extensions publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2006.09.004 – volume: 14 start-page: 1194 year: 2020 ident: 10.1016/j.patcog.2022.108960_bib0019 article-title: DASNet: Dual attentive fully convolutional siamese networks for change detection in high-resolution satellite images publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2020.3037893 – start-page: 845 year: 2016 ident: 10.1016/j.patcog.2022.108960_bib0039 article-title: Hypernet: Towards accurate region proposal generation and joint object detection – volume: 42 issue: 2 year: 2018 ident: 10.1016/j.patcog.2022.108960_bib0021 article-title: CHANGE DETECTION IN REMOTE SENSING IMAGES USING CONDITIONAL ADVERSARIAL NETWORKS publication-title: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences – start-page: 1180 year: 2015 ident: 10.1016/j.patcog.2022.108960_bib0032 article-title: Unsupervised domain adaptation by backpropagation – year: 2021 ident: 10.1016/j.patcog.2022.108960_bib0035 article-title: Faster domain adaptation networks publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 44 start-page: 563 issue: 2 year: 2022 ident: 10.1016/j.patcog.2022.108960_bib0014 article-title: Hierarchical deep click feature prediction for fine-grained image recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2019.2932058 – volume: 109 year: 2021 ident: 10.1016/j.patcog.2022.108960_bib0025 article-title: Nonlocal patch similarity based heterogeneous remote sensing change detection publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107598 – volume: 8 start-page: 888 issue: 11 year: 2016 ident: 10.1016/j.patcog.2022.108960_bib0009 article-title: Rapid land cover map updates using change detection and robust random forest classifiers publication-title: Remote Sensing doi: 10.3390/rs8110888 – volume: 29 start-page: 6452 year: 2020 ident: 10.1016/j.patcog.2022.108960_bib0031 article-title: Learning from synthetic images via active pseudo-labeling publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2020.2989100 – volume: 24 start-page: 5659 issue: 12 year: 2015 ident: 10.1016/j.patcog.2022.108960_bib0012 article-title: Multimodal Deep Autoencoder for Human Pose Recovery publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2015.2487860 – volume: 181 start-page: 699 issue: 4 year: 2011 ident: 10.1016/j.patcog.2022.108960_bib0008 article-title: Fuzzy clustering algorithms for unsupervised change detection in remote sensing images publication-title: Information Sciences doi: 10.1016/j.ins.2010.10.016 – volume: 129 year: 2022 ident: 10.1016/j.patcog.2022.108960_bib0020 article-title: HFA-Net: High frequency attention siamese network for building change detection in VHR remote sensing images publication-title: Pattern Recognition doi: 10.1016/j.patcog.2022.108717 – ident: 10.1016/j.patcog.2022.108960_bib0004 – volume: 45 start-page: 767 issue: 4 year: 2015 ident: 10.1016/j.patcog.2022.108960_bib0011 article-title: Learning to Rank using User Clicks and Visual Features for Image Retrieval publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2336697 – volume: 11 start-page: 1292 issue: 11 year: 2019 ident: 10.1016/j.patcog.2022.108960_bib0027 article-title: Dual learning-based siamese framework for change detection using bi-temporal VHR optical remote sensing images publication-title: Remote Sensing doi: 10.3390/rs11111292 – volume: 199 start-page: 241 year: 2017 ident: 10.1016/j.patcog.2022.108960_bib0007 article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2017.07.009 – volume: 57 start-page: 574 issue: 1 year: 2019 ident: 10.1016/j.patcog.2022.108960_bib0022 article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2018.2858817 – volume: 43 start-page: 3918 issue: 11 year: 2021 ident: 10.1016/j.patcog.2022.108960_bib0034 article-title: Maximum density divergence for domain adaptation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2020.2991050 – year: 2018 ident: 10.1016/j.patcog.2022.108960_bib0003 article-title: Destroyed-buildings detection from VHR SAR images using deep features – start-page: 21 year: 2016 ident: 10.1016/j.patcog.2022.108960_bib0040 article-title: Ssd: Single shot multibox detector – volume: 19 start-page: 1 year: 2022 ident: 10.1016/j.patcog.2022.108960_bib0017 article-title: SNUNet-CD: A densely connected siamese network for change detection of VHR images publication-title: IEEE Geoscience and Remote Sensing Letters – start-page: 1989 year: 2018 ident: 10.1016/j.patcog.2022.108960_bib0030 article-title: Cycada: Cycle-consistent adversarial domain adaptation – volume: 145 start-page: 248 year: 2022 ident: 10.1016/j.patcog.2022.108960_bib0015 article-title: FCL-Net: Towards Accurate Edge Detection via Fine-scale Corrective Learning publication-title: Neural Networks doi: 10.1016/j.neunet.2021.10.022 – start-page: 2223 year: 2017 ident: 10.1016/j.patcog.2022.108960_bib0029 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks – start-page: 7167 year: 2017 ident: 10.1016/j.patcog.2022.108960_bib0033 article-title: Adversarial discriminative domain adaptation – volume: 8 start-page: 799 issue: 4 year: 2011 ident: 10.1016/j.patcog.2022.108960_bib0006 article-title: Improving change detection results of IR-MAD by eliminating strong changes publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2011.2109697 – year: 2021 ident: 10.1016/j.patcog.2022.108960_bib0036 article-title: Divergence-agnostic Unsupervised Domain Adaptation by Adversarial Attacks publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 16 start-page: 1655 issue: 10 year: 2019 ident: 10.1016/j.patcog.2022.108960_bib0002 article-title: Transferred deep learning for sea ice change detection from synthetic-aperture radar images publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2019.2906279 – volume: 10 start-page: 471 issue: 3 year: 2018 ident: 10.1016/j.patcog.2022.108960_bib0001 article-title: Long-term annual mapping of four cities on different continents by applying a deep information learning method to landsat data publication-title: Remote Sensing doi: 10.3390/rs10030471 – start-page: 3 year: 2018 ident: 10.1016/j.patcog.2022.108960_bib0026 article-title: Unet++: A nested u-net architecture for medical image segmentation – start-page: 865 year: 2019 ident: 10.1016/j.patcog.2022.108960_bib0037 article-title: Synergistic image and feature adaptation: Towards cross-modality domain adaptation for medical image segmentation – volume: 57 start-page: 924 issue: 2 year: 2019 ident: 10.1016/j.patcog.2022.108960_bib0024 article-title: Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2018.2863224 – volume: 15 start-page: 3952 issue: 7 year: 2019 ident: 10.1016/j.patcog.2022.108960_bib0013 article-title: Multimodal face-pose estimation with multitask manifold deep learning publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2018.2884211 |
SSID | ssj0017142 |
Score | 2.6082098 |
Snippet | •A novel supervised domain adaptation framework SDACD for cross-domain change detection.•SDACD unifies image adaptation and feature adaptation in an end-to-end... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108960 |
SubjectTerms | Change Detection Feature Adaptation Image Adaptation Supervised Domain Adaptation |
Title | An End-to-end Supervised Domain Adaptation Framework for Cross-Domain Change Detection |
URI | https://dx.doi.org/10.1016/j.patcog.2022.108960 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw5cw7omaZpjtYcGiF1gaLeqSRM0BG0F3ZXfTtKkE0gIJI6tbClync-2-tkG4JIowQKuJYoCohChOUWc5xJlJpYKEcdqKG2heDePZgtys6TLDhi1vTCWVumx32F6g9b-zcBbc1CtVrbH144dDIxHNnuTl7aDnTBL67v62NA87H5vNzEcD5GVbtvnGo5XZeCufDJVYhhash1vBlX-EJ6-hJzpHtjxuSJM3HH2QUcVB2C33cMA_bU8BI9JASdFjuoSqSKH9-vKAsC7yuG4fDWVP0zyrHK_3OG0JWNBk63CkT0E8lKu0QCOVd3Qs4ojsJhOHkYz5PclIGkS_xoN85BooZmiIhAm8IZDnFEWahyLmBMliaKaaoIjLGVo6ggdGEEa4YxplnEV4WPQLcpCnQBIaGZHmxnsMwmXwAGXHBPNAx4rnOUB6wHcmimVfpi43WnxkrassefUGTe1xk2dcXsAbbQqN0zjD3nWfoH0m1OkBu9_1Tz9t-YZ2LZPjrFyDrr121pdmLyjFv3GsfpgK7m-nc0_ATCg1pk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMsDCG_HGA6vVJLaTeKxaqpZCFx7qFsWOjYogjSD8f-zYQSAhkFgTn2RdnO_u5O--A7igSiQB1xLHAVWYsoJhzguJcxNLhUhTFUpbKN7M4vE9vZqzeQcGbS-MpVV67HeY3qC1f9Lz3uxVi4Xt8bWyg4E5kc3c5PkKrFp1KtqF1f5kOp59XiYkIXWi4STE1qDtoGtoXpVBvOWjKRSjyPLteKNV-UOE-hJ1Rluw4dNF1Hc72oaOKndgsx3FgPyfuQsP_RJdlgWul1iVBbp9rywGvKkCDZcvpvhH_SKv3K07GrV8LGQSVjSwm8B-les1QENVNwytcg_uR5d3gzH2IxOwNLl_jcMiolroRDERCBN7o5DkLIk0SUXKqZJUMc00JTGRMjKlhA7MQhaTPNFJzlVM9qFbLkt1AIiy3KqbGfgzOZcgAZecUM0DniqSF0FyCKR1Uya9nrgda_GctcSxp8w5N7POzZxzDwF_WlVOT-OP9Un7BbJv5yIzkP-r5dG_Lc9hbXx3c51dT2bTY1i3bxyB5QS69eu7OjVpSC3O_DH7AJwU2Uo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+End-to-end+Supervised+Domain+Adaptation+Framework+for+Cross-Domain+Change+Detection&rft.jtitle=Pattern+recognition&rft.au=Liu%2C+Jia&rft.au=Xuan%2C+Wenjie&rft.au=Gan%2C+Yuhang&rft.au=Zhan%2C+Yibing&rft.date=2022-12-01&rft.issn=0031-3203&rft.volume=132&rft.spage=108960&rft_id=info:doi/10.1016%2Fj.patcog.2022.108960&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2022_108960 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |