An End-to-end Supervised Domain Adaptation Framework for Cross-Domain Change Detection

•A novel supervised domain adaptation framework SDACD for cross-domain change detection.•SDACD unifies image adaptation and feature adaptation in an end-to-end trainable manner.•SDACD can handle cross-domain change detection and consistently improve the performance as an easy-to-plug-in module.•Our...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 132; p. 108960
Main Authors Liu, Jia, Xuan, Wenjie, Gan, Yuhang, Zhan, Yibing, Liu, Juhua, Du, Bo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2022
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2022.108960

Cover

Loading…
Abstract •A novel supervised domain adaptation framework SDACD for cross-domain change detection.•SDACD unifies image adaptation and feature adaptation in an end-to-end trainable manner.•SDACD can handle cross-domain change detection and consistently improve the performance as an easy-to-plug-in module.•Our SNUNet-based framework sets new state-of-the-art performance with an F1-score of 97.34% on CDD dataset and 92.36% on WHU building dataset. Change detection is a crucial but extremely challenging task in remote sensing image analysis, and much progress has been made with the rapid development of deep learning. However, most existing deep learning-based change detection methods try to elaborately design complicated neural networks with powerful feature representations. However, they ignore the universal domain shift induced by time-varying land cover changes, including luminance fluctuations and seasonal changes between pre-event and post-event images, thereby producing suboptimal results. In this paper, we propose an end-to-end supervised domain adaptation framework for cross-domain change detection named SDACD, to effectively alleviate the domain shift between bi-temporal images for better change predictions. Specifically, our SDACD presents collaborative adaptations from both image and feature perspectives with supervised learning. Image adaptation exploits generative adversarial learning with cycle-consistency constraints to perform cross-domain style transformation, which effectively narrows the domain gap in a two-side generation fashion. As for feature adaptation, we extract domain-invariant features to align different feature distributions in the feature space, which could further reduce the domain gap of cross-domain images. To further improve the performance, we combine three types of bi-temporal images for the final change prediction, including the initial input bi-temporal images and two generated bi-temporal images from the pre-event and post-event domains. Extensive experiments and analyses conducted on two benchmarks demonstrate the effectiveness and generalizability of our proposed framework. Notably, our framework pushes several representative baseline models up to new State-Of-The-Art records, achieving 97.34% and 92.36% on the CDD and WHU building datasets, respectively. The source code and models are publicly available at https://github.com/Perfect-You/SDACD.
AbstractList •A novel supervised domain adaptation framework SDACD for cross-domain change detection.•SDACD unifies image adaptation and feature adaptation in an end-to-end trainable manner.•SDACD can handle cross-domain change detection and consistently improve the performance as an easy-to-plug-in module.•Our SNUNet-based framework sets new state-of-the-art performance with an F1-score of 97.34% on CDD dataset and 92.36% on WHU building dataset. Change detection is a crucial but extremely challenging task in remote sensing image analysis, and much progress has been made with the rapid development of deep learning. However, most existing deep learning-based change detection methods try to elaborately design complicated neural networks with powerful feature representations. However, they ignore the universal domain shift induced by time-varying land cover changes, including luminance fluctuations and seasonal changes between pre-event and post-event images, thereby producing suboptimal results. In this paper, we propose an end-to-end supervised domain adaptation framework for cross-domain change detection named SDACD, to effectively alleviate the domain shift between bi-temporal images for better change predictions. Specifically, our SDACD presents collaborative adaptations from both image and feature perspectives with supervised learning. Image adaptation exploits generative adversarial learning with cycle-consistency constraints to perform cross-domain style transformation, which effectively narrows the domain gap in a two-side generation fashion. As for feature adaptation, we extract domain-invariant features to align different feature distributions in the feature space, which could further reduce the domain gap of cross-domain images. To further improve the performance, we combine three types of bi-temporal images for the final change prediction, including the initial input bi-temporal images and two generated bi-temporal images from the pre-event and post-event domains. Extensive experiments and analyses conducted on two benchmarks demonstrate the effectiveness and generalizability of our proposed framework. Notably, our framework pushes several representative baseline models up to new State-Of-The-Art records, achieving 97.34% and 92.36% on the CDD and WHU building datasets, respectively. The source code and models are publicly available at https://github.com/Perfect-You/SDACD.
ArticleNumber 108960
Author Xuan, Wenjie
Liu, Juhua
Gan, Yuhang
Liu, Jia
Du, Bo
Zhan, Yibing
Author_xml – sequence: 1
  givenname: Jia
  surname: Liu
  fullname: Liu, Jia
  organization: Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Wenjie
  surname: Xuan
  fullname: Xuan, Wenjie
  organization: National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Yuhang
  surname: Gan
  fullname: Gan, Yuhang
  organization: National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Yibing
  surname: Zhan
  fullname: Zhan, Yibing
  organization: JD Explore Academy, Beijing, China
– sequence: 5
  givenname: Juhua
  surname: Liu
  fullname: Liu, Juhua
  email: liujuhua@whu.edu.cn
  organization: Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, China
– sequence: 6
  givenname: Bo
  surname: Du
  fullname: Du, Bo
  organization: National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan, China
BookMark eNqFkMtOwzAQRS1UJNrCH7DwD7j4kTgJC6SqD0CqxILH1nKccXFp7cgJRfw9idIVC1iNNHPv1dwzQSMfPCB0zeiMUSZvdrNatyZsZ5xy3q3yQtIzNGZ5JkjKEj5CY0oFI4JTcYEmTbOjlGXdYYze5h6vfEXaQMBX-Pmzhnh0DVR4GQ7aeTyvdN3q1gWP11Ef4CvED2xDxIsYmoacVIt37beAl9CC6bWX6NzqfQNXpzlFr-vVy-KBbJ7uHxfzDTGCypawiie2tBmkJS25lJwJnWbcirzMiwRMAqlNbSKkMIYXWWJpJ0yl0JnNdAFSTNHtkGv6byJYZdzwbRu12ytGVU9I7dRASPWE1ECoMye_zHV0Bx2__7PdDTboih0dRNUYB95A5WLXXlXB_R3wA93qhBw
CitedBy_id crossref_primary_10_1016_j_isprsjprs_2024_09_002
crossref_primary_10_1109_TGRS_2023_3294884
crossref_primary_10_1038_s41598_025_94544_7
crossref_primary_10_1109_JSTARS_2024_3495217
crossref_primary_10_1016_j_patcog_2024_110791
crossref_primary_10_1109_TGRS_2023_3327139
crossref_primary_10_1016_j_jag_2024_103969
crossref_primary_10_3390_rs17020217
crossref_primary_10_1109_JSTARS_2023_3335281
crossref_primary_10_1109_TGRS_2024_3432819
crossref_primary_10_1016_j_patcog_2023_109384
crossref_primary_10_1016_j_patcog_2024_110515
crossref_primary_10_1109_TGRS_2023_3325829
crossref_primary_10_1080_10106049_2024_2329673
crossref_primary_10_1109_JSTARS_2024_3408154
crossref_primary_10_1109_TGRS_2023_3344948
crossref_primary_10_1109_JSTARS_2023_3336929
crossref_primary_10_1109_TGRS_2024_3500073
crossref_primary_10_1109_TGRS_2024_3518568
crossref_primary_10_1016_j_patcog_2024_110466
crossref_primary_10_3390_rs15102645
crossref_primary_10_3390_app13031674
crossref_primary_10_1109_JSTARS_2024_3416183
crossref_primary_10_1109_JSTARS_2024_3503756
crossref_primary_10_1016_j_patcog_2025_111355
crossref_primary_10_1109_LGRS_2024_3431212
crossref_primary_10_1080_15481603_2023_2220525
crossref_primary_10_3390_astronomy3030012
crossref_primary_10_1109_TGRS_2024_3366901
crossref_primary_10_1109_TGRS_2024_3438290
crossref_primary_10_1109_JSTARS_2024_3476131
crossref_primary_10_1016_j_isprsjprs_2023_05_011
crossref_primary_10_1109_TGRS_2023_3348878
crossref_primary_10_1109_TGRS_2023_3275140
crossref_primary_10_1016_j_eswa_2023_122038
crossref_primary_10_1109_TGRS_2024_3480091
crossref_primary_10_1016_j_isprsjprs_2025_02_005
crossref_primary_10_1109_TGRS_2023_3320805
crossref_primary_10_1109_TGRS_2024_3352050
crossref_primary_10_1109_TGRS_2025_3542481
crossref_primary_10_1016_j_neucom_2023_126295
crossref_primary_10_1080_15481603_2024_2380126
crossref_primary_10_3390_rs15164095
Cites_doi 10.1080/01431160801950162
10.3390/rs12101662
10.3390/rs12223815
10.1109/LGRS.2016.2601930
10.1016/j.isprsjprs.2006.09.004
10.1109/JSTARS.2020.3037893
10.1109/TPAMI.2019.2932058
10.1016/j.patcog.2020.107598
10.3390/rs8110888
10.1109/TIP.2020.2989100
10.1109/TIP.2015.2487860
10.1016/j.ins.2010.10.016
10.1016/j.patcog.2022.108717
10.1109/TCYB.2014.2336697
10.3390/rs11111292
10.1016/j.rse.2017.07.009
10.1109/TGRS.2018.2858817
10.1109/TPAMI.2020.2991050
10.1016/j.neunet.2021.10.022
10.1109/LGRS.2011.2109697
10.1109/LGRS.2019.2906279
10.3390/rs10030471
10.1109/TGRS.2018.2863224
10.1109/TII.2018.2884211
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2022.108960
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2022_108960
S003132032200440X
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-1d24fbf7e5b0b266213a572f38b894ec4e5f5f4363cc2974f05b0563a7f7a9e63
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Tue Jul 01 02:36:39 EDT 2025
Thu Apr 24 23:12:26 EDT 2025
Fri Feb 23 02:36:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Supervised Domain Adaptation
Feature Adaptation
Image Adaptation
Change Detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-1d24fbf7e5b0b266213a572f38b894ec4e5f5f4363cc2974f05b0563a7f7a9e63
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2022_108960
crossref_primary_10_1016_j_patcog_2022_108960
elsevier_sciencedirect_doi_10_1016_j_patcog_2022_108960
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kong, Yao, Chen, Sun (bib0039) 2016
Chen, Shi (bib0018) 2020; 12
Saha, Bovolo, Bruzzone (bib0003) 2018
Deng, Wang, Deng, Qi (bib0005) 2008; 29
Tsai, Hung, Schulter, Sohn, Yang, Chandraker (bib0038) 2018
Zhou, Mahfuzur Rahman Siddiquee, Tajbakhsh, Liang (bib0026) 2018
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0040) 2016
Yu, Tao, Wang, Rui (bib0011) 2015; 45
Fang, Pan, Kou (bib0027) 2019; 11
Chen, Dou, Chen, Qin, Heng (bib0037) 2019
Marpu, Gamba, Canty (bib0006) 2011; 8
Daudt, Saux, Boulch (bib0016) 2018
Nemmour, Chibani (bib0010) 2006; 61
Li, Jing, Su, Lu, Zhu, Shen (bib0035) 2021
Wessels, Van den Bergh, Roy, Salmon, Steenkamp, MacAlister, Swanepoel, Jewitt (bib0009) 2016; 8
Lyu, Lu, Mou, Li, Wright, Li, Li, Zhu, Wang, Yu, Gong (bib0001) 2018; 10
Zhu, Park, Isola, Efros (bib0029) 2017
Kou, Fang, Chen, Wang (bib0028) 2020; 12
Gao, Gao, Dong, Wang (bib0002) 2019; 16
Ganin, Lempitsky (bib0032) 2015
Li, Du, Zhu, Ding, Lu, Shen (bib0036) 2021
Zheng, Gong, Liu, Jiang, Zhan, Di, Zhang (bib0020) 2022; 129
William A Malila. 1980. Change vector analysis: an approach for detecting forest changes with Landsat.
Ji, Wei, Lu (bib0022) 2019; 57
Chen, Yuan, Peng, Chen, Huang, Zhu, Liu, Li (bib0019) 2020; 14
Sun, Lei, Li, Sun, Kuang (bib0025) 2021; 109
Li, Chen, Ding, Zhu, Lu, Shen (bib0034) 2021; 43
385.
Hong, Yu, Wan, Tao, Wang (bib0012) 2015; 24
Xuan, Huang, Liu, Du (bib0015) 2022; 145
Song, Xu, Zhang, Du, Zhang, Wang (bib0031) 2020; 29
Wu, Du, Cui, Zhang (bib0007) 2017; 199
Lebedev, Vizilter, Vygolov, Knyaz, Rubis (bib0021) 2018; 42
Zhang, Gong, Zhang, Su, Shi (bib0023) 2016; 13
Fang, Li, Shao, Li (bib0017) 2022; 19
Hong, Yu, Zhang, Jin, Lee (bib0013) 2019; 15
Ghosh, Shekhar Mishra, Ghosh (bib0008) 2011; 181
Yu, Tan, Zhang, Rui, Tao (bib0014) 2022; 44
Mou, Bruzzone, Zhu (bib0024) 2019; 57
Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, Darrell (bib0030) 2018
Tzeng, Hoffman, Saenko, Darrell (bib0033) 2017
Lyu (10.1016/j.patcog.2022.108960_bib0001) 2018; 10
Sun (10.1016/j.patcog.2022.108960_bib0025) 2021; 109
Daudt (10.1016/j.patcog.2022.108960_bib0016) 2018
Chen (10.1016/j.patcog.2022.108960_bib0037) 2019
Chen (10.1016/j.patcog.2022.108960_bib0019) 2020; 14
Ji (10.1016/j.patcog.2022.108960_bib0022) 2019; 57
Gao (10.1016/j.patcog.2022.108960_bib0002) 2019; 16
Hoffman (10.1016/j.patcog.2022.108960_bib0030) 2018
Li (10.1016/j.patcog.2022.108960_bib0034) 2021; 43
Hong (10.1016/j.patcog.2022.108960_bib0013) 2019; 15
Xuan (10.1016/j.patcog.2022.108960_bib0015) 2022; 145
Saha (10.1016/j.patcog.2022.108960_bib0003) 2018
Ganin (10.1016/j.patcog.2022.108960_bib0032) 2015
Fang (10.1016/j.patcog.2022.108960_bib0027) 2019; 11
Zhou (10.1016/j.patcog.2022.108960_bib0026) 2018
Kong (10.1016/j.patcog.2022.108960_bib0039) 2016
Liu (10.1016/j.patcog.2022.108960_bib0040) 2016
10.1016/j.patcog.2022.108960_bib0004
Ghosh (10.1016/j.patcog.2022.108960_bib0008) 2011; 181
Kou (10.1016/j.patcog.2022.108960_bib0028) 2020; 12
Zheng (10.1016/j.patcog.2022.108960_bib0020) 2022; 129
Yu (10.1016/j.patcog.2022.108960_bib0011) 2015; 45
Chen (10.1016/j.patcog.2022.108960_bib0018) 2020; 12
Mou (10.1016/j.patcog.2022.108960_bib0024) 2019; 57
Marpu (10.1016/j.patcog.2022.108960_bib0006) 2011; 8
Song (10.1016/j.patcog.2022.108960_bib0031) 2020; 29
Zhu (10.1016/j.patcog.2022.108960_bib0029) 2017
Nemmour (10.1016/j.patcog.2022.108960_bib0010) 2006; 61
Lebedev (10.1016/j.patcog.2022.108960_bib0021) 2018; 42
Zhang (10.1016/j.patcog.2022.108960_bib0023) 2016; 13
Li (10.1016/j.patcog.2022.108960_bib0036) 2021
Wessels (10.1016/j.patcog.2022.108960_bib0009) 2016; 8
Deng (10.1016/j.patcog.2022.108960_bib0005) 2008; 29
Yu (10.1016/j.patcog.2022.108960_bib0014) 2022; 44
Fang (10.1016/j.patcog.2022.108960_bib0017) 2022; 19
Li (10.1016/j.patcog.2022.108960_bib0035) 2021
Hong (10.1016/j.patcog.2022.108960_bib0012) 2015; 24
Tsai (10.1016/j.patcog.2022.108960_bib0038) 2018
Wu (10.1016/j.patcog.2022.108960_bib0007) 2017; 199
Tzeng (10.1016/j.patcog.2022.108960_bib0033) 2017
References_xml – year: 2021
  ident: bib0035
  article-title: Faster domain adaptation networks
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 14
  start-page: 1194
  year: 2020
  end-page: 1206
  ident: bib0019
  article-title: DASNet: Dual attentive fully convolutional siamese networks for change detection in high-resolution satellite images
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 44
  start-page: 563
  year: 2022
  end-page: 578
  ident: bib0014
  article-title: Hierarchical deep click feature prediction for fine-grained image recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 57
  start-page: 924
  year: 2019
  end-page: 935
  ident: bib0024
  article-title: Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– year: 2021
  ident: bib0036
  article-title: Divergence-agnostic Unsupervised Domain Adaptation by Adversarial Attacks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 109
  year: 2021
  ident: bib0025
  article-title: Nonlocal patch similarity based heterogeneous remote sensing change detection
  publication-title: Pattern Recognition
– start-page: 845
  year: 2016
  end-page: 853
  ident: bib0039
  article-title: Hypernet: Towards accurate region proposal generation and joint object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  ident: bib0017
  article-title: SNUNet-CD: A densely connected siamese network for change detection of VHR images
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 12
  start-page: 1662
  year: 2020
  ident: bib0018
  article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection
  publication-title: Remote Sensing
– volume: 11
  start-page: 1292
  year: 2019
  ident: bib0027
  article-title: Dual learning-based siamese framework for change detection using bi-temporal VHR optical remote sensing images
  publication-title: Remote Sensing
– start-page: 2223
  year: 2017
  end-page: 2232
  ident: bib0029
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 3
  year: 2018
  end-page: 11
  ident: bib0026
  article-title: Unet++: A nested u-net architecture for medical image segmentation
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– reference: . 385.
– volume: 15
  start-page: 3952
  year: 2019
  end-page: 3961
  ident: bib0013
  article-title: Multimodal face-pose estimation with multitask manifold deep learning
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 199
  start-page: 241
  year: 2017
  end-page: 255
  ident: bib0007
  article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion
  publication-title: Remote Sensing of Environment
– volume: 145
  start-page: 248
  year: 2022
  end-page: 259
  ident: bib0015
  article-title: FCL-Net: Towards Accurate Edge Detection via Fine-scale Corrective Learning
  publication-title: Neural Networks
– volume: 8
  start-page: 888
  year: 2016
  ident: bib0009
  article-title: Rapid land cover map updates using change detection and robust random forest classifiers
  publication-title: Remote Sensing
– start-page: 7472
  year: 2018
  end-page: 7481
  ident: bib0038
  article-title: Learning to adapt structured output space for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 12
  start-page: 3815
  year: 2020
  ident: bib0028
  article-title: Progressive domain adaptation for change detection using season-varying remote sensing images
  publication-title: Remote Sensing
– year: 2018
  ident: bib0003
  article-title: Destroyed-buildings detection from VHR SAR images using deep features
  publication-title: Image and Signal Processing for Remote Sensing XXIV
– volume: 129
  year: 2022
  ident: bib0020
  article-title: HFA-Net: High frequency attention siamese network for building change detection in VHR remote sensing images
  publication-title: Pattern Recognition
– volume: 181
  start-page: 699
  year: 2011
  end-page: 715
  ident: bib0008
  article-title: Fuzzy clustering algorithms for unsupervised change detection in remote sensing images
  publication-title: Information Sciences
– start-page: 7167
  year: 2017
  end-page: 7176
  ident: bib0033
  article-title: Adversarial discriminative domain adaptation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 16
  start-page: 1655
  year: 2019
  end-page: 1659
  ident: bib0002
  article-title: Transferred deep learning for sea ice change detection from synthetic-aperture radar images
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 61
  start-page: 125
  year: 2006
  end-page: 133
  ident: bib0010
  article-title: Multiple support vector machines for land cover change detection: An application for mapping urban extensions
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 13
  start-page: 1666
  year: 2016
  end-page: 1670
  ident: bib0023
  article-title: Feature-level change detection using deep representation and feature change analysis for multispectral imagery
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 43
  start-page: 3918
  year: 2021
  end-page: 3930
  ident: bib0034
  article-title: Maximum density divergence for domain adaptation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 24
  start-page: 5659
  year: 2015
  end-page: 5670
  ident: bib0012
  article-title: Multimodal Deep Autoencoder for Human Pose Recovery
  publication-title: IEEE Transactions on Image Processing
– reference: William A Malila. 1980. Change vector analysis: an approach for detecting forest changes with Landsat.
– volume: 10
  start-page: 471
  year: 2018
  ident: bib0001
  article-title: Long-term annual mapping of four cities on different continents by applying a deep information learning method to landsat data
  publication-title: Remote Sensing
– start-page: 4063
  year: 2018
  end-page: 4067
  ident: bib0016
  article-title: Fully convolutional siamese networks for change detection
  publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP)
– start-page: 1180
  year: 2015
  end-page: 1189
  ident: bib0032
  article-title: Unsupervised domain adaptation by backpropagation
  publication-title: PMLR
– volume: 42
  year: 2018
  ident: bib0021
  article-title: CHANGE DETECTION IN REMOTE SENSING IMAGES USING CONDITIONAL ADVERSARIAL NETWORKS
  publication-title: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences
– volume: 45
  start-page: 767
  year: 2015
  end-page: 779
  ident: bib0011
  article-title: Learning to Rank using User Clicks and Visual Features for Image Retrieval
  publication-title: IEEE Transactions on Cybernetics
– volume: 29
  start-page: 4823
  year: 2008
  end-page: 4838
  ident: bib0005
  article-title: PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data
  publication-title: International Journal of Remote Sensing
– volume: 29
  start-page: 6452
  year: 2020
  end-page: 6465
  ident: bib0031
  article-title: Learning from synthetic images via active pseudo-labeling
  publication-title: IEEE Transactions on Image Processing
– start-page: 865
  year: 2019
  end-page: 872
  ident: bib0037
  article-title: Synergistic image and feature adaptation: Towards cross-modality domain adaptation for medical image segmentation
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 8
  start-page: 799
  year: 2011
  end-page: 803
  ident: bib0006
  article-title: Improving change detection results of IR-MAD by eliminating strong changes
  publication-title: IEEE Geoscience and Remote Sensing Letters
– start-page: 1989
  year: 2018
  end-page: 1998
  ident: bib0030
  article-title: Cycada: Cycle-consistent adversarial domain adaptation
  publication-title: International Conference on Machine Learning
– volume: 57
  start-page: 574
  year: 2019
  end-page: 586
  ident: bib0022
  article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– start-page: 21
  year: 2016
  end-page: 37
  ident: bib0040
  article-title: Ssd: Single shot multibox detector
  publication-title: European Conference on Computer Vision
– volume: 29
  start-page: 4823
  issue: 16
  year: 2008
  ident: 10.1016/j.patcog.2022.108960_bib0005
  article-title: PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160801950162
– volume: 12
  start-page: 1662
  issue: 10
  year: 2020
  ident: 10.1016/j.patcog.2022.108960_bib0018
  article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection
  publication-title: Remote Sensing
  doi: 10.3390/rs12101662
– start-page: 4063
  year: 2018
  ident: 10.1016/j.patcog.2022.108960_bib0016
  article-title: Fully convolutional siamese networks for change detection
– start-page: 7472
  year: 2018
  ident: 10.1016/j.patcog.2022.108960_bib0038
  article-title: Learning to adapt structured output space for semantic segmentation
– volume: 12
  start-page: 3815
  issue: 22
  year: 2020
  ident: 10.1016/j.patcog.2022.108960_bib0028
  article-title: Progressive domain adaptation for change detection using season-varying remote sensing images
  publication-title: Remote Sensing
  doi: 10.3390/rs12223815
– volume: 13
  start-page: 1666
  issue: 11
  year: 2016
  ident: 10.1016/j.patcog.2022.108960_bib0023
  article-title: Feature-level change detection using deep representation and feature change analysis for multispectral imagery
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2016.2601930
– volume: 61
  start-page: 125
  issue: 2
  year: 2006
  ident: 10.1016/j.patcog.2022.108960_bib0010
  article-title: Multiple support vector machines for land cover change detection: An application for mapping urban extensions
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2006.09.004
– volume: 14
  start-page: 1194
  year: 2020
  ident: 10.1016/j.patcog.2022.108960_bib0019
  article-title: DASNet: Dual attentive fully convolutional siamese networks for change detection in high-resolution satellite images
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2020.3037893
– start-page: 845
  year: 2016
  ident: 10.1016/j.patcog.2022.108960_bib0039
  article-title: Hypernet: Towards accurate region proposal generation and joint object detection
– volume: 42
  issue: 2
  year: 2018
  ident: 10.1016/j.patcog.2022.108960_bib0021
  article-title: CHANGE DETECTION IN REMOTE SENSING IMAGES USING CONDITIONAL ADVERSARIAL NETWORKS
  publication-title: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences
– start-page: 1180
  year: 2015
  ident: 10.1016/j.patcog.2022.108960_bib0032
  article-title: Unsupervised domain adaptation by backpropagation
– year: 2021
  ident: 10.1016/j.patcog.2022.108960_bib0035
  article-title: Faster domain adaptation networks
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 44
  start-page: 563
  issue: 2
  year: 2022
  ident: 10.1016/j.patcog.2022.108960_bib0014
  article-title: Hierarchical deep click feature prediction for fine-grained image recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2019.2932058
– volume: 109
  year: 2021
  ident: 10.1016/j.patcog.2022.108960_bib0025
  article-title: Nonlocal patch similarity based heterogeneous remote sensing change detection
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107598
– volume: 8
  start-page: 888
  issue: 11
  year: 2016
  ident: 10.1016/j.patcog.2022.108960_bib0009
  article-title: Rapid land cover map updates using change detection and robust random forest classifiers
  publication-title: Remote Sensing
  doi: 10.3390/rs8110888
– volume: 29
  start-page: 6452
  year: 2020
  ident: 10.1016/j.patcog.2022.108960_bib0031
  article-title: Learning from synthetic images via active pseudo-labeling
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2020.2989100
– volume: 24
  start-page: 5659
  issue: 12
  year: 2015
  ident: 10.1016/j.patcog.2022.108960_bib0012
  article-title: Multimodal Deep Autoencoder for Human Pose Recovery
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2015.2487860
– volume: 181
  start-page: 699
  issue: 4
  year: 2011
  ident: 10.1016/j.patcog.2022.108960_bib0008
  article-title: Fuzzy clustering algorithms for unsupervised change detection in remote sensing images
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.10.016
– volume: 129
  year: 2022
  ident: 10.1016/j.patcog.2022.108960_bib0020
  article-title: HFA-Net: High frequency attention siamese network for building change detection in VHR remote sensing images
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2022.108717
– ident: 10.1016/j.patcog.2022.108960_bib0004
– volume: 45
  start-page: 767
  issue: 4
  year: 2015
  ident: 10.1016/j.patcog.2022.108960_bib0011
  article-title: Learning to Rank using User Clicks and Visual Features for Image Retrieval
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2336697
– volume: 11
  start-page: 1292
  issue: 11
  year: 2019
  ident: 10.1016/j.patcog.2022.108960_bib0027
  article-title: Dual learning-based siamese framework for change detection using bi-temporal VHR optical remote sensing images
  publication-title: Remote Sensing
  doi: 10.3390/rs11111292
– volume: 199
  start-page: 241
  year: 2017
  ident: 10.1016/j.patcog.2022.108960_bib0007
  article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2017.07.009
– volume: 57
  start-page: 574
  issue: 1
  year: 2019
  ident: 10.1016/j.patcog.2022.108960_bib0022
  article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2018.2858817
– volume: 43
  start-page: 3918
  issue: 11
  year: 2021
  ident: 10.1016/j.patcog.2022.108960_bib0034
  article-title: Maximum density divergence for domain adaptation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2020.2991050
– year: 2018
  ident: 10.1016/j.patcog.2022.108960_bib0003
  article-title: Destroyed-buildings detection from VHR SAR images using deep features
– start-page: 21
  year: 2016
  ident: 10.1016/j.patcog.2022.108960_bib0040
  article-title: Ssd: Single shot multibox detector
– volume: 19
  start-page: 1
  year: 2022
  ident: 10.1016/j.patcog.2022.108960_bib0017
  article-title: SNUNet-CD: A densely connected siamese network for change detection of VHR images
  publication-title: IEEE Geoscience and Remote Sensing Letters
– start-page: 1989
  year: 2018
  ident: 10.1016/j.patcog.2022.108960_bib0030
  article-title: Cycada: Cycle-consistent adversarial domain adaptation
– volume: 145
  start-page: 248
  year: 2022
  ident: 10.1016/j.patcog.2022.108960_bib0015
  article-title: FCL-Net: Towards Accurate Edge Detection via Fine-scale Corrective Learning
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.10.022
– start-page: 2223
  year: 2017
  ident: 10.1016/j.patcog.2022.108960_bib0029
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
– start-page: 7167
  year: 2017
  ident: 10.1016/j.patcog.2022.108960_bib0033
  article-title: Adversarial discriminative domain adaptation
– volume: 8
  start-page: 799
  issue: 4
  year: 2011
  ident: 10.1016/j.patcog.2022.108960_bib0006
  article-title: Improving change detection results of IR-MAD by eliminating strong changes
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2011.2109697
– year: 2021
  ident: 10.1016/j.patcog.2022.108960_bib0036
  article-title: Divergence-agnostic Unsupervised Domain Adaptation by Adversarial Attacks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 16
  start-page: 1655
  issue: 10
  year: 2019
  ident: 10.1016/j.patcog.2022.108960_bib0002
  article-title: Transferred deep learning for sea ice change detection from synthetic-aperture radar images
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2019.2906279
– volume: 10
  start-page: 471
  issue: 3
  year: 2018
  ident: 10.1016/j.patcog.2022.108960_bib0001
  article-title: Long-term annual mapping of four cities on different continents by applying a deep information learning method to landsat data
  publication-title: Remote Sensing
  doi: 10.3390/rs10030471
– start-page: 3
  year: 2018
  ident: 10.1016/j.patcog.2022.108960_bib0026
  article-title: Unet++: A nested u-net architecture for medical image segmentation
– start-page: 865
  year: 2019
  ident: 10.1016/j.patcog.2022.108960_bib0037
  article-title: Synergistic image and feature adaptation: Towards cross-modality domain adaptation for medical image segmentation
– volume: 57
  start-page: 924
  issue: 2
  year: 2019
  ident: 10.1016/j.patcog.2022.108960_bib0024
  article-title: Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2018.2863224
– volume: 15
  start-page: 3952
  issue: 7
  year: 2019
  ident: 10.1016/j.patcog.2022.108960_bib0013
  article-title: Multimodal face-pose estimation with multitask manifold deep learning
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2018.2884211
SSID ssj0017142
Score 2.6082098
Snippet •A novel supervised domain adaptation framework SDACD for cross-domain change detection.•SDACD unifies image adaptation and feature adaptation in an end-to-end...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108960
SubjectTerms Change Detection
Feature Adaptation
Image Adaptation
Supervised Domain Adaptation
Title An End-to-end Supervised Domain Adaptation Framework for Cross-Domain Change Detection
URI https://dx.doi.org/10.1016/j.patcog.2022.108960
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw5cw7omaZpjtYcGiF1gaLeqSRM0BG0F3ZXfTtKkE0gIJI6tbClync-2-tkG4JIowQKuJYoCohChOUWc5xJlJpYKEcdqKG2heDePZgtys6TLDhi1vTCWVumx32F6g9b-zcBbc1CtVrbH144dDIxHNnuTl7aDnTBL67v62NA87H5vNzEcD5GVbtvnGo5XZeCufDJVYhhash1vBlX-EJ6-hJzpHtjxuSJM3HH2QUcVB2C33cMA_bU8BI9JASdFjuoSqSKH9-vKAsC7yuG4fDWVP0zyrHK_3OG0JWNBk63CkT0E8lKu0QCOVd3Qs4ojsJhOHkYz5PclIGkS_xoN85BooZmiIhAm8IZDnFEWahyLmBMliaKaaoIjLGVo6ggdGEEa4YxplnEV4WPQLcpCnQBIaGZHmxnsMwmXwAGXHBPNAx4rnOUB6wHcmimVfpi43WnxkrassefUGTe1xk2dcXsAbbQqN0zjD3nWfoH0m1OkBu9_1Tz9t-YZ2LZPjrFyDrr121pdmLyjFv3GsfpgK7m-nc0_ATCg1pk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMsDCG_HGA6vVJLaTeKxaqpZCFx7qFsWOjYogjSD8f-zYQSAhkFgTn2RdnO_u5O--A7igSiQB1xLHAVWYsoJhzguJcxNLhUhTFUpbKN7M4vE9vZqzeQcGbS-MpVV67HeY3qC1f9Lz3uxVi4Xt8bWyg4E5kc3c5PkKrFp1KtqF1f5kOp59XiYkIXWi4STE1qDtoGtoXpVBvOWjKRSjyPLteKNV-UOE-hJ1Rluw4dNF1Hc72oaOKndgsx3FgPyfuQsP_RJdlgWul1iVBbp9rywGvKkCDZcvpvhH_SKv3K07GrV8LGQSVjSwm8B-les1QENVNwytcg_uR5d3gzH2IxOwNLl_jcMiolroRDERCBN7o5DkLIk0SUXKqZJUMc00JTGRMjKlhA7MQhaTPNFJzlVM9qFbLkt1AIiy3KqbGfgzOZcgAZecUM0DniqSF0FyCKR1Uya9nrgda_GctcSxp8w5N7POzZxzDwF_WlVOT-OP9Un7BbJv5yIzkP-r5dG_Lc9hbXx3c51dT2bTY1i3bxyB5QS69eu7OjVpSC3O_DH7AJwU2Uo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+End-to-end+Supervised+Domain+Adaptation+Framework+for+Cross-Domain+Change+Detection&rft.jtitle=Pattern+recognition&rft.au=Liu%2C+Jia&rft.au=Xuan%2C+Wenjie&rft.au=Gan%2C+Yuhang&rft.au=Zhan%2C+Yibing&rft.date=2022-12-01&rft.issn=0031-3203&rft.volume=132&rft.spage=108960&rft_id=info:doi/10.1016%2Fj.patcog.2022.108960&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2022_108960
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon