Effective treatment of geometric constraints in derivative-free well placement optimization
A robust workflow for optimizing the placement of multiple deviated wells subject to challenging geometric constraints is presented and applied. The workflow entails the use of population-based global stochastic search algorithms in conjunction with a solution-repair method. The repair procedure, wh...
Saved in:
Published in | Journal of petroleum science & engineering Vol. 215; p. 110635 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A robust workflow for optimizing the placement of multiple deviated wells subject to challenging geometric constraints is presented and applied. The workflow entails the use of population-based global stochastic search algorithms in conjunction with a solution-repair method. The repair procedure, which involves a gradient-based optimization prior to flow simulation, reduces constraint violations via projection of the infeasible solutions onto (or toward) feasible space while minimizing the deviation between the repaired and original solutions. The constraints considered include well length, interwell distance, well-to-boundary distance, and the requirement that wells not cross faults. The repair procedure is implemented with three different core optimization algorithms — particle swarm optimization, iterative Latin hypercube sampling, and differential evolution. Through extensive numerical tests involving the placement of multiple deviated wells, we demonstrate that it is necessary to tune the hyperparameters associated with the core optimizers when these optimizers are used with the repair procedure. In the first example (Egg model), for instance, with differential evolution as the core optimizer, we show that the best-case hyperparameters provide feasible solutions and a 30% improvement in objective function value relative to base-case hyperparameters. The best-case hyperparameters from this example are then used directly in the second example, which involves the placement of seven deviated wells in the Brugge model. For this example, with no additional tuning, we achieve feasibility and a 42% improvement in objective function value relative to base-case hyperparameters, suggesting that the tuned hyperparameters are to some extent transferable between problems.
•Workflow developed for well placement optimization with geometric constraints.•Entails a repair procedure to treat constraints before flow simulation.•Workflow is tested on two 3D examples with multiple challenging nonlinear constraints.•Results show the importance of hyperparameter tuning for optimal performance.•Best cases provide feasible solutions and large NPV improvements over the base cases. |
---|---|
AbstractList | A robust workflow for optimizing the placement of multiple deviated wells subject to challenging geometric constraints is presented and applied. The workflow entails the use of population-based global stochastic search algorithms in conjunction with a solution-repair method. The repair procedure, which involves a gradient-based optimization prior to flow simulation, reduces constraint violations via projection of the infeasible solutions onto (or toward) feasible space while minimizing the deviation between the repaired and original solutions. The constraints considered include well length, interwell distance, well-to-boundary distance, and the requirement that wells not cross faults. The repair procedure is implemented with three different core optimization algorithms — particle swarm optimization, iterative Latin hypercube sampling, and differential evolution. Through extensive numerical tests involving the placement of multiple deviated wells, we demonstrate that it is necessary to tune the hyperparameters associated with the core optimizers when these optimizers are used with the repair procedure. In the first example (Egg model), for instance, with differential evolution as the core optimizer, we show that the best-case hyperparameters provide feasible solutions and a 30% improvement in objective function value relative to base-case hyperparameters. The best-case hyperparameters from this example are then used directly in the second example, which involves the placement of seven deviated wells in the Brugge model. For this example, with no additional tuning, we achieve feasibility and a 42% improvement in objective function value relative to base-case hyperparameters, suggesting that the tuned hyperparameters are to some extent transferable between problems.
•Workflow developed for well placement optimization with geometric constraints.•Entails a repair procedure to treat constraints before flow simulation.•Workflow is tested on two 3D examples with multiple challenging nonlinear constraints.•Results show the importance of hyperparameter tuning for optimal performance.•Best cases provide feasible solutions and large NPV improvements over the base cases. |
ArticleNumber | 110635 |
Author | Zou, Amy Ye, Tianrui Durlofsky, Louis J. Volkov, Oleg |
Author_xml | – sequence: 1 givenname: Amy orcidid: 0000-0003-2593-4232 surname: Zou fullname: Zou, Amy email: amyfzou@stanford.edu organization: Department of Energy Resources Engineering, Stanford University, CA, USA – sequence: 2 givenname: Tianrui surname: Ye fullname: Ye, Tianrui email: yetianrui.syky@sinopec.com organization: Sinopec Petroleum Exploration and Production Research Institute, Beijing, China – sequence: 3 givenname: Oleg orcidid: 0000-0001-8904-0890 surname: Volkov fullname: Volkov, Oleg email: ovolkov@stanford.edu organization: Department of Energy Resources Engineering, Stanford University, CA, USA – sequence: 4 givenname: Louis J. surname: Durlofsky fullname: Durlofsky, Louis J. email: lou@stanford.edu organization: Department of Energy Resources Engineering, Stanford University, CA, USA |
BookMark | eNqFkMtKxDAUhoMoODP6Bi7yAq1Jc2niQpBhvMCAG125CDE9lQxtMqRhRJ_e1rpyoavDgfP9nP9bouMQAyB0QUlJCZWXu3IPOcWurEhVlZQSycQRWlBVs4LXVByjBdEVKTgl4hQth2FHCGGS1Qv0smlbcNkfAOcENvcQMo4tfoPYj5neYRfDkJP1IQ_YB9xA8gc7AUWbAPA7dB3ed9bBjO6z7_3neBDDGTppbTfA-c9coefbzdP6vtg-3j2sb7aFY0TmgjohodKWA6hXPi5CSsWltlrzWmstamoV49Q5zaRyUjWCVlpoq5SSLQG2QnzOdSkOQ4LW7JPvbfowlJhJkNmZWZCZBJlZ0Ihd_cKcz9-PT3W7_-DrGYax2MFDMoPzEBw0Po0-TRP93wFf4q-HUQ |
CitedBy_id | crossref_primary_10_1007_s11004_022_10020_2 crossref_primary_10_2118_212228_PA crossref_primary_10_3390_en16041790 crossref_primary_10_1016_j_jcp_2024_113132 crossref_primary_10_2118_220026_PA crossref_primary_10_1115_1_4055198 crossref_primary_10_1007_s10596_022_10153_7 crossref_primary_10_1016_j_geoen_2024_213059 crossref_primary_10_3390_app14188167 |
Cites_doi | 10.1007/s10596-016-9584-1 10.1016/j.egypro.2013.06.366 10.1115/1.483164 10.1007/s10596-006-9025-7 10.1007/s10596-009-9142-1 10.1023/A:1008202821328 10.1007/s10596-022-10135-9 10.1115/1.4040059 10.2118/105797-PA 10.1016/j.petrol.2017.05.009 10.1007/s10596-020-09952-7 10.1007/s10596-011-9254-2 10.1177/0142331211402900 10.1137/S1052623499350013 10.2118/118808-MS 10.1007/s11721-007-0002-0 10.1007/s10596-012-9328-9 10.1016/j.petrol.2006.12.008 10.2118/112257-MS 10.2118/200581-PA 10.2118/86880-PA 10.1016/S0020-0190(02)00447-7 10.1016/j.petrol.2018.08.033 10.1016/j.cageo.2012.07.018 10.1007/s10596-013-9383-x 10.1007/s11721-009-0034-8 10.1016/j.asoc.2019.03.022 10.1016/j.petrol.2016.10.055 10.1007/s13202-017-0403-6 10.1016/j.petrol.2017.10.083 10.1016/j.petrol.2014.01.009 10.1016/j.petrol.2017.02.011 10.1007/s13202-015-0175-9 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.petrol.2022.110635 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1873-4715 |
ExternalDocumentID | 10_1016_j_petrol_2022_110635 S0920410522005083 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W JARJE KOM LY3 LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SEP SES SEW SPC SPCBC SPD SSE SSR SSZ T5K WH7 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-1c56e29a4ee8b4c565668469a9947999571a8341cc9368c68d512959a8886f0e3 |
IEDL.DBID | .~1 |
ISSN | 0920-4105 |
IngestDate | Tue Jul 01 03:49:18 EDT 2025 Thu Apr 24 23:13:04 EDT 2025 Fri Feb 23 02:39:43 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Population-based search Well placement optimization Geometric constraints Reservoir simulation Hyperparameter tuning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-1c56e29a4ee8b4c565668469a9947999571a8341cc9368c68d512959a8886f0e3 |
ORCID | 0000-0003-2593-4232 0000-0001-8904-0890 |
ParticipantIDs | crossref_primary_10_1016_j_petrol_2022_110635 crossref_citationtrail_10_1016_j_petrol_2022_110635 elsevier_sciencedirect_doi_10_1016_j_petrol_2022_110635 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of petroleum science & engineering |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhou (b46) 2012 Yang, Kim, Choe (b41) 2017; 156 Ye (b42) 2019 Peters, Chen, Leeuwenburgh, Oliver (b29) 2013; 50 Sarma, P., Chen, W.H., 2008. Efficient well placement optimization with gradient-based algorithms and adjoint models. In: Paper SPE-112257-MS. Presented at the Intelligent Energy Conference and Exhibition. Amsterdam, The Netherlands. Clerc (b9) 2006 Martínez, Gonzalo, Muniz, Mukerji (b23) 2011; 34 Onwunalu, Durlofsky (b27) 2010; 14 Price, Storn, Lampinen (b31) 2005 Volkov, Bellout (b40) 2018; 171 Bouzarkouna, Ding, Auger (b4) 2012; 16 de Brito, Durlofsky (b5) 2021; 25 Schneider, Eberly (b36) 2003 Goda, Sato (b13) 2013; 37 Khademi, Karimaghaee (b20) 2016; 6 Hamida, Azizi, Saad (b16) 2017; 149 Chen, Feng, Zhang, Wang, Zhou, Liu (b6) 2018; 8 (b35) 2014 Salehian, Sefat, Muradov (b33) 2021; 24 Jesmani, Bellout, Hanea, Foss (b18) 2016; 20 Clerc (b8) 2006 Isebor, Durlofsky, Echeverria Ciaurri (b17) 2014; 18 Clerc, M., 1999. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3. Zandvliet, Bosgra, Jansen, Van den Hof, Kraaijevanger (b44) 2007; 58 Guyaguler, Horne (b15) 2000; 122 Goda, Sato (b14) 2014; 114 Storn, Price (b38) 1997; 11 Martínez, Gonzalo (b22) 2009; 3 Nwankwor, Nagar, Reid (b26) 2013; 17 Jiang, Luo, Yang (b19) 2007 McKay, Beckman, Conover (b24) 1979; 21 Arouri, Sayyafzadeh (b1) 2022 Michalewicz, Fogel (b25) 2004 Zandvliet, Handels, van Essen, Brouwer, Jansen (b45) 2008; 13 Barros, Chitu, Leeuwenburgh (b3) 2020; 24 Bangerth, Klie, Wheeler, Stoffa, Sen (b2) 2006; 10 Poli, Kennedy, Blackwell (b30) 2007; 1 Redouane, Zeraibi, Amar (b32) 2019; 80 Gill, Murray, Saunders (b12) 2002; 12 Emerick, A.A., Silva, E., Messer, B., Almeida, L.F., Szwarcman, D., Pacheco, M.A.C., Vellasco, M.M.B.R., 2009. Well placement optimization using a genetic algorithm with nonlinear constraints. In: Paper SPE-118808-MS. Presented at the SPE Reservoir Simulation Symposium. The Woodlands, Texas, USA. Engelbrecht (b11) 2007 Park, Yang, Al-Aruri, Fjerstad (b28) 2017; 152 Khan, Awotunde (b21) 2018; 162 Yeten, Durlofsky, Aziz (b43) 2003; 8 Siavashi, Yazdani (b37) 2018; 140 Trelea (b39) 2003; 85 Martínez (10.1016/j.petrol.2022.110635_b23) 2011; 34 Poli (10.1016/j.petrol.2022.110635_b30) 2007; 1 10.1016/j.petrol.2022.110635_b34 Nwankwor (10.1016/j.petrol.2022.110635_b26) 2013; 17 Schneider (10.1016/j.petrol.2022.110635_b36) 2003 10.1016/j.petrol.2022.110635_b10 Zhou (10.1016/j.petrol.2022.110635_b46) 2012 Engelbrecht (10.1016/j.petrol.2022.110635_b11) 2007 Gill (10.1016/j.petrol.2022.110635_b12) 2002; 12 Jiang (10.1016/j.petrol.2022.110635_b19) 2007 Arouri (10.1016/j.petrol.2022.110635_b1) 2022 Clerc (10.1016/j.petrol.2022.110635_b9) 2006 Goda (10.1016/j.petrol.2022.110635_b14) 2014; 114 Onwunalu (10.1016/j.petrol.2022.110635_b27) 2010; 14 Khademi (10.1016/j.petrol.2022.110635_b20) 2016; 6 McKay (10.1016/j.petrol.2022.110635_b24) 1979; 21 Redouane (10.1016/j.petrol.2022.110635_b32) 2019; 80 Yang (10.1016/j.petrol.2022.110635_b41) 2017; 156 Yeten (10.1016/j.petrol.2022.110635_b43) 2003; 8 Michalewicz (10.1016/j.petrol.2022.110635_b25) 2004 Salehian (10.1016/j.petrol.2022.110635_b33) 2021; 24 (10.1016/j.petrol.2022.110635_b35) 2014 Jesmani (10.1016/j.petrol.2022.110635_b18) 2016; 20 Price (10.1016/j.petrol.2022.110635_b31) 2005 Ye (10.1016/j.petrol.2022.110635_b42) 2019 Zandvliet (10.1016/j.petrol.2022.110635_b45) 2008; 13 Peters (10.1016/j.petrol.2022.110635_b29) 2013; 50 Volkov (10.1016/j.petrol.2022.110635_b40) 2018; 171 de Brito (10.1016/j.petrol.2022.110635_b5) 2021; 25 Clerc (10.1016/j.petrol.2022.110635_b8) 2006 Trelea (10.1016/j.petrol.2022.110635_b39) 2003; 85 Bangerth (10.1016/j.petrol.2022.110635_b2) 2006; 10 Martínez (10.1016/j.petrol.2022.110635_b22) 2009; 3 Storn (10.1016/j.petrol.2022.110635_b38) 1997; 11 Hamida (10.1016/j.petrol.2022.110635_b16) 2017; 149 Guyaguler (10.1016/j.petrol.2022.110635_b15) 2000; 122 Goda (10.1016/j.petrol.2022.110635_b13) 2013; 37 Zandvliet (10.1016/j.petrol.2022.110635_b44) 2007; 58 Chen (10.1016/j.petrol.2022.110635_b6) 2018; 8 10.1016/j.petrol.2022.110635_b7 Isebor (10.1016/j.petrol.2022.110635_b17) 2014; 18 Park (10.1016/j.petrol.2022.110635_b28) 2017; 152 Siavashi (10.1016/j.petrol.2022.110635_b37) 2018; 140 Bouzarkouna (10.1016/j.petrol.2022.110635_b4) 2012; 16 Barros (10.1016/j.petrol.2022.110635_b3) 2020; 24 Khan (10.1016/j.petrol.2022.110635_b21) 2018; 162 |
References_xml | – volume: 10 start-page: 303 year: 2006 end-page: 319 ident: b2 article-title: On optimization algorithms for the reservoir oil well placement problem publication-title: Comput. Geosci. – year: 2012 ident: b46 article-title: Parallel General-Purpose Reservoir Simulation with Coupled Reservoir Models and Multisegment Wells – reference: Clerc, M., 1999. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3. – volume: 122 start-page: 64 year: 2000 end-page: 70 ident: b15 article-title: Optimization of well placement publication-title: J. Energy Resour. Technol. – year: 2007 ident: b11 article-title: Computational Intelligence – year: 2019 ident: b42 article-title: Treatment of Geometric Constraints in Well Placement Optimization – volume: 21 start-page: 239 year: 1979 end-page: 245 ident: b24 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 140 year: 2018 ident: b37 article-title: A comparative study of genetic and particle swarm optimization algorithms and their hybrid method in water flooding optimization publication-title: J. Energy Resour. Technol. – volume: 171 start-page: 1052 year: 2018 end-page: 1066 ident: b40 article-title: Gradient-based constrained well placement optimization publication-title: J. Pet. Sci. Eng. – year: 2003 ident: b36 publication-title: Geometric Tools for Computer Graphics – volume: 156 start-page: 41 year: 2017 end-page: 50 ident: b41 article-title: Field development optimization in mature oil reservoirs using a hybrid algorithm publication-title: J. Pet. Sci. Eng. – volume: 1 start-page: 33 year: 2007 end-page: 57 ident: b30 article-title: Particle swarm optimization publication-title: Swarm Intell. – volume: 80 start-page: 177 year: 2019 end-page: 191 ident: b32 article-title: Adaptive surrogate modeling with evolutionary algorithm for well placement optimization in fractured reservoirs publication-title: Appl. Soft Comput. – volume: 3 start-page: 245 year: 2009 end-page: 273 ident: b22 article-title: The PSO family: deduction, stochastic analysis and comparison publication-title: Swarm Intell. – volume: 8 start-page: 200 year: 2003 end-page: 210 ident: b43 article-title: Optimization of nonconventional well type, location, and trajectory publication-title: SPE J. – volume: 16 start-page: 75 year: 2012 end-page: 92 ident: b4 article-title: Well placement optimization with the covariance matrix adaptation evolution strategy and meta-models publication-title: Comput. Geosci. – year: 2004 ident: b25 article-title: How to Solve it: Modern Heuristics – year: 2006 ident: b8 article-title: Particle Swarm Optimization – year: 2014 ident: b35 article-title: Eclipse reference manual – volume: 25 start-page: 1 year: 2021 end-page: 31 ident: b5 article-title: Field development optimization using a sequence of surrogate treatments publication-title: Comput. Geosci. – volume: 17 start-page: 249 year: 2013 end-page: 268 ident: b26 article-title: Hybrid differential evolution and particle swarm optimization for optimal well placement publication-title: Comput. Geosci. – reference: Sarma, P., Chen, W.H., 2008. Efficient well placement optimization with gradient-based algorithms and adjoint models. In: Paper SPE-112257-MS. Presented at the Intelligent Energy Conference and Exhibition. Amsterdam, The Netherlands. – year: 2022 ident: b1 article-title: An adaptive moment estimation framework for well placement optimization publication-title: Comput. Geosci. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b38 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. – volume: 85 start-page: 317 year: 2003 end-page: 325 ident: b39 article-title: The particle swarm optimization algorithm: Convergence analysis and parameter selection publication-title: Inform. Process. Lett. – volume: 18 start-page: 463 year: 2014 end-page: 482 ident: b17 article-title: A derivative-free methodology with local and global search for the constrained joint optimization of well locations and controls publication-title: Comput. Geosci. – year: 2005 ident: b31 article-title: Differential Evolution: A Practical Approach to Global Optimization – volume: 24 start-page: 923 year: 2021 end-page: 939 ident: b33 article-title: A multisolution optimization framework for well placement and control publication-title: SPE Reserv. Eval. Eng. – volume: 58 start-page: 186 year: 2007 end-page: 200 ident: b44 article-title: Bang-bang control and singular arcs in reservoir flooding publication-title: J. Pet. Sci. Eng. – volume: 12 start-page: 979 year: 2002 end-page: 1006 ident: b12 article-title: SNOPT: an SQP algorithm for large-scale constrained optimization publication-title: SIAM J. Optim. – volume: 8 start-page: 1225 year: 2018 end-page: 1233 ident: b6 article-title: Well placement optimization for offshore oilfield based on Theil index and differential evolution algorithm publication-title: J. Pet. Explor. Prod. Technol. – volume: 34 start-page: 705 year: 2011 end-page: 719 ident: b23 article-title: How to design a powerful family of particle swarm optimizers for inverse modelling publication-title: Trans. Inst. Meas. Control – reference: Emerick, A.A., Silva, E., Messer, B., Almeida, L.F., Szwarcman, D., Pacheco, M.A.C., Vellasco, M.M.B.R., 2009. Well placement optimization using a genetic algorithm with nonlinear constraints. In: Paper SPE-118808-MS. Presented at the SPE Reservoir Simulation Symposium. The Woodlands, Texas, USA. – volume: 37 start-page: 4583 year: 2013 end-page: 4590 ident: b13 article-title: Global optimization of injection well placement toward higher safety of CO publication-title: Energy Procedia – volume: 50 start-page: 16 year: 2013 end-page: 24 ident: b29 article-title: Extended Brugge benchmark case for history matching and water flooding optimization publication-title: Comput. Geosci. – volume: 14 start-page: 183 year: 2010 end-page: 198 ident: b27 article-title: Application of a particle swarm optimization algorithm for determining optimum well location and type publication-title: Comput. Geosci. – volume: 152 start-page: 81 year: 2017 end-page: 90 ident: b28 article-title: Improved decision making with new efficient workflows for well placement optimization publication-title: J. Pet. Sci. Eng. – volume: 13 start-page: 392 year: 2008 end-page: 399 ident: b45 article-title: Adjoint-based well-placement optimization under production constraints publication-title: SPE J. – year: 2006 ident: b9 article-title: Stagnation Analysis in Particle Swarm Optimization or What Happens When Nothing Happens – volume: 20 start-page: 1185 year: 2016 end-page: 1209 ident: b18 article-title: Well placement optimization subject to realistic field development constraints publication-title: Comput. Geosci. – volume: 162 start-page: 652 year: 2018 end-page: 665 ident: b21 article-title: Determination of vertical/horizontal well type from generalized field development optimization publication-title: J. Pet. Sci. Eng. – volume: 114 start-page: 61 year: 2014 end-page: 73 ident: b14 article-title: History matching with iterative Latin hypercube samplings and parameterization of reservoir heterogeneity publication-title: J. Pet. Sci. Eng. – year: 2007 ident: b19 article-title: Particle swarm optimization – stochastic trajectory analysis and parameter selection publication-title: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization – volume: 6 start-page: 191 year: 2016 end-page: 200 ident: b20 article-title: Hybrid FDG optimization method and kriging interpolator to optimize well locations publication-title: J. Pet. Explor. Prod. Technol. – volume: 24 start-page: 2095 year: 2020 end-page: 2109 ident: b3 article-title: Ensemble-based well trajectory and drilling schedule optimization—application to the Olympus benchmark model publication-title: Comput. Geosci. – volume: 149 start-page: 383 year: 2017 end-page: 392 ident: b16 article-title: An efficient geometry-based optimization approach for well placement in oil fields publication-title: J. Pet. Sci. Eng. – volume: 20 start-page: 1185 year: 2016 ident: 10.1016/j.petrol.2022.110635_b18 article-title: Well placement optimization subject to realistic field development constraints publication-title: Comput. Geosci. doi: 10.1007/s10596-016-9584-1 – year: 2003 ident: 10.1016/j.petrol.2022.110635_b36 – volume: 37 start-page: 4583 year: 2013 ident: 10.1016/j.petrol.2022.110635_b13 article-title: Global optimization of injection well placement toward higher safety of CO2 geological storage publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.06.366 – volume: 122 start-page: 64 year: 2000 ident: 10.1016/j.petrol.2022.110635_b15 article-title: Optimization of well placement publication-title: J. Energy Resour. Technol. doi: 10.1115/1.483164 – volume: 10 start-page: 303 year: 2006 ident: 10.1016/j.petrol.2022.110635_b2 article-title: On optimization algorithms for the reservoir oil well placement problem publication-title: Comput. Geosci. doi: 10.1007/s10596-006-9025-7 – volume: 14 start-page: 183 year: 2010 ident: 10.1016/j.petrol.2022.110635_b27 article-title: Application of a particle swarm optimization algorithm for determining optimum well location and type publication-title: Comput. Geosci. doi: 10.1007/s10596-009-9142-1 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.petrol.2022.110635_b38 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – year: 2022 ident: 10.1016/j.petrol.2022.110635_b1 article-title: An adaptive moment estimation framework for well placement optimization publication-title: Comput. Geosci. doi: 10.1007/s10596-022-10135-9 – volume: 140 year: 2018 ident: 10.1016/j.petrol.2022.110635_b37 article-title: A comparative study of genetic and particle swarm optimization algorithms and their hybrid method in water flooding optimization publication-title: J. Energy Resour. Technol. doi: 10.1115/1.4040059 – volume: 13 start-page: 392 year: 2008 ident: 10.1016/j.petrol.2022.110635_b45 article-title: Adjoint-based well-placement optimization under production constraints publication-title: SPE J. doi: 10.2118/105797-PA – volume: 21 start-page: 239 year: 1979 ident: 10.1016/j.petrol.2022.110635_b24 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – year: 2007 ident: 10.1016/j.petrol.2022.110635_b19 article-title: Particle swarm optimization – stochastic trajectory analysis and parameter selection – volume: 156 start-page: 41 year: 2017 ident: 10.1016/j.petrol.2022.110635_b41 article-title: Field development optimization in mature oil reservoirs using a hybrid algorithm publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2017.05.009 – volume: 24 start-page: 2095 year: 2020 ident: 10.1016/j.petrol.2022.110635_b3 article-title: Ensemble-based well trajectory and drilling schedule optimization—application to the Olympus benchmark model publication-title: Comput. Geosci. doi: 10.1007/s10596-020-09952-7 – year: 2012 ident: 10.1016/j.petrol.2022.110635_b46 – volume: 16 start-page: 75 year: 2012 ident: 10.1016/j.petrol.2022.110635_b4 article-title: Well placement optimization with the covariance matrix adaptation evolution strategy and meta-models publication-title: Comput. Geosci. doi: 10.1007/s10596-011-9254-2 – volume: 34 start-page: 705 year: 2011 ident: 10.1016/j.petrol.2022.110635_b23 article-title: How to design a powerful family of particle swarm optimizers for inverse modelling publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331211402900 – volume: 12 start-page: 979 year: 2002 ident: 10.1016/j.petrol.2022.110635_b12 article-title: SNOPT: an SQP algorithm for large-scale constrained optimization publication-title: SIAM J. Optim. doi: 10.1137/S1052623499350013 – ident: 10.1016/j.petrol.2022.110635_b10 doi: 10.2118/118808-MS – volume: 1 start-page: 33 year: 2007 ident: 10.1016/j.petrol.2022.110635_b30 article-title: Particle swarm optimization publication-title: Swarm Intell. doi: 10.1007/s11721-007-0002-0 – year: 2006 ident: 10.1016/j.petrol.2022.110635_b9 – volume: 17 start-page: 249 year: 2013 ident: 10.1016/j.petrol.2022.110635_b26 article-title: Hybrid differential evolution and particle swarm optimization for optimal well placement publication-title: Comput. Geosci. doi: 10.1007/s10596-012-9328-9 – volume: 58 start-page: 186 year: 2007 ident: 10.1016/j.petrol.2022.110635_b44 article-title: Bang-bang control and singular arcs in reservoir flooding publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2006.12.008 – ident: 10.1016/j.petrol.2022.110635_b34 doi: 10.2118/112257-MS – volume: 24 start-page: 923 year: 2021 ident: 10.1016/j.petrol.2022.110635_b33 article-title: A multisolution optimization framework for well placement and control publication-title: SPE Reserv. Eval. Eng. doi: 10.2118/200581-PA – volume: 8 start-page: 200 year: 2003 ident: 10.1016/j.petrol.2022.110635_b43 article-title: Optimization of nonconventional well type, location, and trajectory publication-title: SPE J. doi: 10.2118/86880-PA – volume: 85 start-page: 317 year: 2003 ident: 10.1016/j.petrol.2022.110635_b39 article-title: The particle swarm optimization algorithm: Convergence analysis and parameter selection publication-title: Inform. Process. Lett. doi: 10.1016/S0020-0190(02)00447-7 – volume: 171 start-page: 1052 year: 2018 ident: 10.1016/j.petrol.2022.110635_b40 article-title: Gradient-based constrained well placement optimization publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.08.033 – volume: 25 start-page: 1 year: 2021 ident: 10.1016/j.petrol.2022.110635_b5 article-title: Field development optimization using a sequence of surrogate treatments publication-title: Comput. Geosci. – volume: 50 start-page: 16 year: 2013 ident: 10.1016/j.petrol.2022.110635_b29 article-title: Extended Brugge benchmark case for history matching and water flooding optimization publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.07.018 – year: 2007 ident: 10.1016/j.petrol.2022.110635_b11 – volume: 18 start-page: 463 year: 2014 ident: 10.1016/j.petrol.2022.110635_b17 article-title: A derivative-free methodology with local and global search for the constrained joint optimization of well locations and controls publication-title: Comput. Geosci. doi: 10.1007/s10596-013-9383-x – volume: 3 start-page: 245 year: 2009 ident: 10.1016/j.petrol.2022.110635_b22 article-title: The PSO family: deduction, stochastic analysis and comparison publication-title: Swarm Intell. doi: 10.1007/s11721-009-0034-8 – volume: 80 start-page: 177 year: 2019 ident: 10.1016/j.petrol.2022.110635_b32 article-title: Adaptive surrogate modeling with evolutionary algorithm for well placement optimization in fractured reservoirs publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.03.022 – volume: 149 start-page: 383 year: 2017 ident: 10.1016/j.petrol.2022.110635_b16 article-title: An efficient geometry-based optimization approach for well placement in oil fields publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2016.10.055 – year: 2004 ident: 10.1016/j.petrol.2022.110635_b25 – year: 2014 ident: 10.1016/j.petrol.2022.110635_b35 – year: 2019 ident: 10.1016/j.petrol.2022.110635_b42 – volume: 8 start-page: 1225 year: 2018 ident: 10.1016/j.petrol.2022.110635_b6 article-title: Well placement optimization for offshore oilfield based on Theil index and differential evolution algorithm publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-017-0403-6 – year: 2005 ident: 10.1016/j.petrol.2022.110635_b31 – volume: 162 start-page: 652 year: 2018 ident: 10.1016/j.petrol.2022.110635_b21 article-title: Determination of vertical/horizontal well type from generalized field development optimization publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2017.10.083 – volume: 114 start-page: 61 year: 2014 ident: 10.1016/j.petrol.2022.110635_b14 article-title: History matching with iterative Latin hypercube samplings and parameterization of reservoir heterogeneity publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2014.01.009 – year: 2006 ident: 10.1016/j.petrol.2022.110635_b8 – ident: 10.1016/j.petrol.2022.110635_b7 – volume: 152 start-page: 81 year: 2017 ident: 10.1016/j.petrol.2022.110635_b28 article-title: Improved decision making with new efficient workflows for well placement optimization publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2017.02.011 – volume: 6 start-page: 191 year: 2016 ident: 10.1016/j.petrol.2022.110635_b20 article-title: Hybrid FDG optimization method and kriging interpolator to optimize well locations publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-015-0175-9 |
SSID | ssj0003637 |
Score | 2.0707376 |
Snippet | A robust workflow for optimizing the placement of multiple deviated wells subject to challenging geometric constraints is presented and applied. The workflow... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110635 |
SubjectTerms | Geometric constraints Hyperparameter tuning Population-based search Reservoir simulation Well placement optimization |
Title | Effective treatment of geometric constraints in derivative-free well placement optimization |
URI | https://dx.doi.org/10.1016/j.petrol.2022.110635 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DEfQgOhXnj5GD17g1SZvmOIZzKu6ig4GH0qapTFw7ZhW8-Lebl7Rzgih4bMkr7Wt470vyve8hdCbSNMsS5pHYl5xwk9JI7MWUZCa9pTpMAmV1um9HwXDMryf-pIH6dS0M0Cqr2O9iuo3W1Z1O5c3OfDrt3HUl7QJJkcLGiEESUMHOBczy848vmgcLnG6mGUxgdF0-ZzleBpguCjiAoBT48IFt-vZDelpJOYMdtF1hRdxzr7OLGjpvoq0VBcEm2ri0nXnf99CD0yE2wQsvyeO4yPCjLmbQNUthBVAQOkKUL3ia49Q84s3KfpNsoTWGXTxsKVrO1MSSWVWkuY_Gg4v7_pBUnROIMkuAknjKDzSVMdfG3VxZ0GaAhoyl5MJAQl94cWjyl1KSBaEKwhTyvi9jsx4Osq5mB2gtL3J9iHAGgmuCstSXmidhIn0WdzOeCCGpx4RqIVY7LFKVrDh8y3NU88eeIufmCNwcOTe3EFlazZ2sxh_jRf0vom_TIzKR_1fLo39bHqNNuHJsvxO0Vi5e9alBIGXStlOsjdZ7VzfD0SfVMNrS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3MDVEfRKfi_MyDr2H9SNPmcQzndB8vbjDwoaRpKhPXjlkF_71J044JouBr21va23DuSXpyLsCNH8dJErk25h4jmKiShrnNHZyo8hbLIKKi8OkejWl_Sh5m3qwG3WovjJZVlthvML1A6_JIu8xmezmftx8t5lhapOjohRHFJLagod2pvDo0OveD_ngNyC411pnqeqwDqh10hcxLcdNVpv9BOI6WxNOi79sPFWqj6vQOYL-ki6hjnugQajJtwt6GiWATtu-K5ryfR_BkrIgVfqG1fhxlCXqW2UI3zhJIaDaom0Lkb2ieoljd4qNw_sbJSkqkF_JQodIyoQpOFuU-zWOY9m4n3T4umydgoWYBObaFR6XDOJEq40QUvE1xDcYZI75ihZ5v80CVMCGYSwNBg1iXfo9xNSWmiSXdE6inWSpPASXac8133NhjkkRBxDyXWwmJfJ85tuuLFrhVwkJROovrd3kNKwnZS2jSHOo0hybNLcDrqKVx1vjjer_6FuG3ERIq8P818uzfkdew05-MhuHwfjw4h119xoj_LqCer97lpSIkeXRVDrgvYTPdgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+treatment+of+geometric+constraints+in+derivative-free+well+placement+optimization&rft.jtitle=Journal+of+petroleum+science+%26+engineering&rft.au=Zou%2C+Amy&rft.au=Ye%2C+Tianrui&rft.au=Volkov%2C+Oleg&rft.au=Durlofsky%2C+Louis+J.&rft.date=2022-08-01&rft.pub=Elsevier+B.V&rft.issn=0920-4105&rft.eissn=1873-4715&rft.volume=215&rft_id=info:doi/10.1016%2Fj.petrol.2022.110635&rft.externalDocID=S0920410522005083 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4105&client=summon |