Effective treatment of geometric constraints in derivative-free well placement optimization

A robust workflow for optimizing the placement of multiple deviated wells subject to challenging geometric constraints is presented and applied. The workflow entails the use of population-based global stochastic search algorithms in conjunction with a solution-repair method. The repair procedure, wh...

Full description

Saved in:
Bibliographic Details
Published inJournal of petroleum science & engineering Vol. 215; p. 110635
Main Authors Zou, Amy, Ye, Tianrui, Volkov, Oleg, Durlofsky, Louis J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A robust workflow for optimizing the placement of multiple deviated wells subject to challenging geometric constraints is presented and applied. The workflow entails the use of population-based global stochastic search algorithms in conjunction with a solution-repair method. The repair procedure, which involves a gradient-based optimization prior to flow simulation, reduces constraint violations via projection of the infeasible solutions onto (or toward) feasible space while minimizing the deviation between the repaired and original solutions. The constraints considered include well length, interwell distance, well-to-boundary distance, and the requirement that wells not cross faults. The repair procedure is implemented with three different core optimization algorithms — particle swarm optimization, iterative Latin hypercube sampling, and differential evolution. Through extensive numerical tests involving the placement of multiple deviated wells, we demonstrate that it is necessary to tune the hyperparameters associated with the core optimizers when these optimizers are used with the repair procedure. In the first example (Egg model), for instance, with differential evolution as the core optimizer, we show that the best-case hyperparameters provide feasible solutions and a 30% improvement in objective function value relative to base-case hyperparameters. The best-case hyperparameters from this example are then used directly in the second example, which involves the placement of seven deviated wells in the Brugge model. For this example, with no additional tuning, we achieve feasibility and a 42% improvement in objective function value relative to base-case hyperparameters, suggesting that the tuned hyperparameters are to some extent transferable between problems. •Workflow developed for well placement optimization with geometric constraints.•Entails a repair procedure to treat constraints before flow simulation.•Workflow is tested on two 3D examples with multiple challenging nonlinear constraints.•Results show the importance of hyperparameter tuning for optimal performance.•Best cases provide feasible solutions and large NPV improvements over the base cases.
AbstractList A robust workflow for optimizing the placement of multiple deviated wells subject to challenging geometric constraints is presented and applied. The workflow entails the use of population-based global stochastic search algorithms in conjunction with a solution-repair method. The repair procedure, which involves a gradient-based optimization prior to flow simulation, reduces constraint violations via projection of the infeasible solutions onto (or toward) feasible space while minimizing the deviation between the repaired and original solutions. The constraints considered include well length, interwell distance, well-to-boundary distance, and the requirement that wells not cross faults. The repair procedure is implemented with three different core optimization algorithms — particle swarm optimization, iterative Latin hypercube sampling, and differential evolution. Through extensive numerical tests involving the placement of multiple deviated wells, we demonstrate that it is necessary to tune the hyperparameters associated with the core optimizers when these optimizers are used with the repair procedure. In the first example (Egg model), for instance, with differential evolution as the core optimizer, we show that the best-case hyperparameters provide feasible solutions and a 30% improvement in objective function value relative to base-case hyperparameters. The best-case hyperparameters from this example are then used directly in the second example, which involves the placement of seven deviated wells in the Brugge model. For this example, with no additional tuning, we achieve feasibility and a 42% improvement in objective function value relative to base-case hyperparameters, suggesting that the tuned hyperparameters are to some extent transferable between problems. •Workflow developed for well placement optimization with geometric constraints.•Entails a repair procedure to treat constraints before flow simulation.•Workflow is tested on two 3D examples with multiple challenging nonlinear constraints.•Results show the importance of hyperparameter tuning for optimal performance.•Best cases provide feasible solutions and large NPV improvements over the base cases.
ArticleNumber 110635
Author Zou, Amy
Ye, Tianrui
Durlofsky, Louis J.
Volkov, Oleg
Author_xml – sequence: 1
  givenname: Amy
  orcidid: 0000-0003-2593-4232
  surname: Zou
  fullname: Zou, Amy
  email: amyfzou@stanford.edu
  organization: Department of Energy Resources Engineering, Stanford University, CA, USA
– sequence: 2
  givenname: Tianrui
  surname: Ye
  fullname: Ye, Tianrui
  email: yetianrui.syky@sinopec.com
  organization: Sinopec Petroleum Exploration and Production Research Institute, Beijing, China
– sequence: 3
  givenname: Oleg
  orcidid: 0000-0001-8904-0890
  surname: Volkov
  fullname: Volkov, Oleg
  email: ovolkov@stanford.edu
  organization: Department of Energy Resources Engineering, Stanford University, CA, USA
– sequence: 4
  givenname: Louis J.
  surname: Durlofsky
  fullname: Durlofsky, Louis J.
  email: lou@stanford.edu
  organization: Department of Energy Resources Engineering, Stanford University, CA, USA
BookMark eNqFkMtKxDAUhoMoODP6Bi7yAq1Jc2niQpBhvMCAG125CDE9lQxtMqRhRJ_e1rpyoavDgfP9nP9bouMQAyB0QUlJCZWXu3IPOcWurEhVlZQSycQRWlBVs4LXVByjBdEVKTgl4hQth2FHCGGS1Qv0smlbcNkfAOcENvcQMo4tfoPYj5neYRfDkJP1IQ_YB9xA8gc7AUWbAPA7dB3ed9bBjO6z7_3neBDDGTppbTfA-c9coefbzdP6vtg-3j2sb7aFY0TmgjohodKWA6hXPi5CSsWltlrzWmstamoV49Q5zaRyUjWCVlpoq5SSLQG2QnzOdSkOQ4LW7JPvbfowlJhJkNmZWZCZBJlZ0Ihd_cKcz9-PT3W7_-DrGYax2MFDMoPzEBw0Po0-TRP93wFf4q-HUQ
CitedBy_id crossref_primary_10_1007_s11004_022_10020_2
crossref_primary_10_2118_212228_PA
crossref_primary_10_3390_en16041790
crossref_primary_10_1016_j_jcp_2024_113132
crossref_primary_10_2118_220026_PA
crossref_primary_10_1115_1_4055198
crossref_primary_10_1007_s10596_022_10153_7
crossref_primary_10_1016_j_geoen_2024_213059
crossref_primary_10_3390_app14188167
Cites_doi 10.1007/s10596-016-9584-1
10.1016/j.egypro.2013.06.366
10.1115/1.483164
10.1007/s10596-006-9025-7
10.1007/s10596-009-9142-1
10.1023/A:1008202821328
10.1007/s10596-022-10135-9
10.1115/1.4040059
10.2118/105797-PA
10.1016/j.petrol.2017.05.009
10.1007/s10596-020-09952-7
10.1007/s10596-011-9254-2
10.1177/0142331211402900
10.1137/S1052623499350013
10.2118/118808-MS
10.1007/s11721-007-0002-0
10.1007/s10596-012-9328-9
10.1016/j.petrol.2006.12.008
10.2118/112257-MS
10.2118/200581-PA
10.2118/86880-PA
10.1016/S0020-0190(02)00447-7
10.1016/j.petrol.2018.08.033
10.1016/j.cageo.2012.07.018
10.1007/s10596-013-9383-x
10.1007/s11721-009-0034-8
10.1016/j.asoc.2019.03.022
10.1016/j.petrol.2016.10.055
10.1007/s13202-017-0403-6
10.1016/j.petrol.2017.10.083
10.1016/j.petrol.2014.01.009
10.1016/j.petrol.2017.02.011
10.1007/s13202-015-0175-9
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.petrol.2022.110635
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1873-4715
ExternalDocumentID 10_1016_j_petrol_2022_110635
S0920410522005083
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
JARJE
KOM
LY3
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SPD
SSE
SSR
SSZ
T5K
WH7
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-1c56e29a4ee8b4c565668469a9947999571a8341cc9368c68d512959a8886f0e3
IEDL.DBID .~1
ISSN 0920-4105
IngestDate Tue Jul 01 03:49:18 EDT 2025
Thu Apr 24 23:13:04 EDT 2025
Fri Feb 23 02:39:43 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Population-based search
Well placement optimization
Geometric constraints
Reservoir simulation
Hyperparameter tuning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-1c56e29a4ee8b4c565668469a9947999571a8341cc9368c68d512959a8886f0e3
ORCID 0000-0003-2593-4232
0000-0001-8904-0890
ParticipantIDs crossref_primary_10_1016_j_petrol_2022_110635
crossref_citationtrail_10_1016_j_petrol_2022_110635
elsevier_sciencedirect_doi_10_1016_j_petrol_2022_110635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Journal of petroleum science & engineering
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhou (b46) 2012
Yang, Kim, Choe (b41) 2017; 156
Ye (b42) 2019
Peters, Chen, Leeuwenburgh, Oliver (b29) 2013; 50
Sarma, P., Chen, W.H., 2008. Efficient well placement optimization with gradient-based algorithms and adjoint models. In: Paper SPE-112257-MS. Presented at the Intelligent Energy Conference and Exhibition. Amsterdam, The Netherlands.
Clerc (b9) 2006
Martínez, Gonzalo, Muniz, Mukerji (b23) 2011; 34
Onwunalu, Durlofsky (b27) 2010; 14
Price, Storn, Lampinen (b31) 2005
Volkov, Bellout (b40) 2018; 171
Bouzarkouna, Ding, Auger (b4) 2012; 16
de Brito, Durlofsky (b5) 2021; 25
Schneider, Eberly (b36) 2003
Goda, Sato (b13) 2013; 37
Khademi, Karimaghaee (b20) 2016; 6
Hamida, Azizi, Saad (b16) 2017; 149
Chen, Feng, Zhang, Wang, Zhou, Liu (b6) 2018; 8
(b35) 2014
Salehian, Sefat, Muradov (b33) 2021; 24
Jesmani, Bellout, Hanea, Foss (b18) 2016; 20
Clerc (b8) 2006
Isebor, Durlofsky, Echeverria Ciaurri (b17) 2014; 18
Clerc, M., 1999. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3.
Zandvliet, Bosgra, Jansen, Van den Hof, Kraaijevanger (b44) 2007; 58
Guyaguler, Horne (b15) 2000; 122
Goda, Sato (b14) 2014; 114
Storn, Price (b38) 1997; 11
Martínez, Gonzalo (b22) 2009; 3
Nwankwor, Nagar, Reid (b26) 2013; 17
Jiang, Luo, Yang (b19) 2007
McKay, Beckman, Conover (b24) 1979; 21
Arouri, Sayyafzadeh (b1) 2022
Michalewicz, Fogel (b25) 2004
Zandvliet, Handels, van Essen, Brouwer, Jansen (b45) 2008; 13
Barros, Chitu, Leeuwenburgh (b3) 2020; 24
Bangerth, Klie, Wheeler, Stoffa, Sen (b2) 2006; 10
Poli, Kennedy, Blackwell (b30) 2007; 1
Redouane, Zeraibi, Amar (b32) 2019; 80
Gill, Murray, Saunders (b12) 2002; 12
Emerick, A.A., Silva, E., Messer, B., Almeida, L.F., Szwarcman, D., Pacheco, M.A.C., Vellasco, M.M.B.R., 2009. Well placement optimization using a genetic algorithm with nonlinear constraints. In: Paper SPE-118808-MS. Presented at the SPE Reservoir Simulation Symposium. The Woodlands, Texas, USA.
Engelbrecht (b11) 2007
Park, Yang, Al-Aruri, Fjerstad (b28) 2017; 152
Khan, Awotunde (b21) 2018; 162
Yeten, Durlofsky, Aziz (b43) 2003; 8
Siavashi, Yazdani (b37) 2018; 140
Trelea (b39) 2003; 85
Martínez (10.1016/j.petrol.2022.110635_b23) 2011; 34
Poli (10.1016/j.petrol.2022.110635_b30) 2007; 1
10.1016/j.petrol.2022.110635_b34
Nwankwor (10.1016/j.petrol.2022.110635_b26) 2013; 17
Schneider (10.1016/j.petrol.2022.110635_b36) 2003
10.1016/j.petrol.2022.110635_b10
Zhou (10.1016/j.petrol.2022.110635_b46) 2012
Engelbrecht (10.1016/j.petrol.2022.110635_b11) 2007
Gill (10.1016/j.petrol.2022.110635_b12) 2002; 12
Jiang (10.1016/j.petrol.2022.110635_b19) 2007
Arouri (10.1016/j.petrol.2022.110635_b1) 2022
Clerc (10.1016/j.petrol.2022.110635_b9) 2006
Goda (10.1016/j.petrol.2022.110635_b14) 2014; 114
Onwunalu (10.1016/j.petrol.2022.110635_b27) 2010; 14
Khademi (10.1016/j.petrol.2022.110635_b20) 2016; 6
McKay (10.1016/j.petrol.2022.110635_b24) 1979; 21
Redouane (10.1016/j.petrol.2022.110635_b32) 2019; 80
Yang (10.1016/j.petrol.2022.110635_b41) 2017; 156
Yeten (10.1016/j.petrol.2022.110635_b43) 2003; 8
Michalewicz (10.1016/j.petrol.2022.110635_b25) 2004
Salehian (10.1016/j.petrol.2022.110635_b33) 2021; 24
(10.1016/j.petrol.2022.110635_b35) 2014
Jesmani (10.1016/j.petrol.2022.110635_b18) 2016; 20
Price (10.1016/j.petrol.2022.110635_b31) 2005
Ye (10.1016/j.petrol.2022.110635_b42) 2019
Zandvliet (10.1016/j.petrol.2022.110635_b45) 2008; 13
Peters (10.1016/j.petrol.2022.110635_b29) 2013; 50
Volkov (10.1016/j.petrol.2022.110635_b40) 2018; 171
de Brito (10.1016/j.petrol.2022.110635_b5) 2021; 25
Clerc (10.1016/j.petrol.2022.110635_b8) 2006
Trelea (10.1016/j.petrol.2022.110635_b39) 2003; 85
Bangerth (10.1016/j.petrol.2022.110635_b2) 2006; 10
Martínez (10.1016/j.petrol.2022.110635_b22) 2009; 3
Storn (10.1016/j.petrol.2022.110635_b38) 1997; 11
Hamida (10.1016/j.petrol.2022.110635_b16) 2017; 149
Guyaguler (10.1016/j.petrol.2022.110635_b15) 2000; 122
Goda (10.1016/j.petrol.2022.110635_b13) 2013; 37
Zandvliet (10.1016/j.petrol.2022.110635_b44) 2007; 58
Chen (10.1016/j.petrol.2022.110635_b6) 2018; 8
10.1016/j.petrol.2022.110635_b7
Isebor (10.1016/j.petrol.2022.110635_b17) 2014; 18
Park (10.1016/j.petrol.2022.110635_b28) 2017; 152
Siavashi (10.1016/j.petrol.2022.110635_b37) 2018; 140
Bouzarkouna (10.1016/j.petrol.2022.110635_b4) 2012; 16
Barros (10.1016/j.petrol.2022.110635_b3) 2020; 24
Khan (10.1016/j.petrol.2022.110635_b21) 2018; 162
References_xml – volume: 10
  start-page: 303
  year: 2006
  end-page: 319
  ident: b2
  article-title: On optimization algorithms for the reservoir oil well placement problem
  publication-title: Comput. Geosci.
– year: 2012
  ident: b46
  article-title: Parallel General-Purpose Reservoir Simulation with Coupled Reservoir Models and Multisegment Wells
– reference: Clerc, M., 1999. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3.
– volume: 122
  start-page: 64
  year: 2000
  end-page: 70
  ident: b15
  article-title: Optimization of well placement
  publication-title: J. Energy Resour. Technol.
– year: 2007
  ident: b11
  article-title: Computational Intelligence
– year: 2019
  ident: b42
  article-title: Treatment of Geometric Constraints in Well Placement Optimization
– volume: 21
  start-page: 239
  year: 1979
  end-page: 245
  ident: b24
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– volume: 140
  year: 2018
  ident: b37
  article-title: A comparative study of genetic and particle swarm optimization algorithms and their hybrid method in water flooding optimization
  publication-title: J. Energy Resour. Technol.
– volume: 171
  start-page: 1052
  year: 2018
  end-page: 1066
  ident: b40
  article-title: Gradient-based constrained well placement optimization
  publication-title: J. Pet. Sci. Eng.
– year: 2003
  ident: b36
  publication-title: Geometric Tools for Computer Graphics
– volume: 156
  start-page: 41
  year: 2017
  end-page: 50
  ident: b41
  article-title: Field development optimization in mature oil reservoirs using a hybrid algorithm
  publication-title: J. Pet. Sci. Eng.
– volume: 1
  start-page: 33
  year: 2007
  end-page: 57
  ident: b30
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
– volume: 80
  start-page: 177
  year: 2019
  end-page: 191
  ident: b32
  article-title: Adaptive surrogate modeling with evolutionary algorithm for well placement optimization in fractured reservoirs
  publication-title: Appl. Soft Comput.
– volume: 3
  start-page: 245
  year: 2009
  end-page: 273
  ident: b22
  article-title: The PSO family: deduction, stochastic analysis and comparison
  publication-title: Swarm Intell.
– volume: 8
  start-page: 200
  year: 2003
  end-page: 210
  ident: b43
  article-title: Optimization of nonconventional well type, location, and trajectory
  publication-title: SPE J.
– volume: 16
  start-page: 75
  year: 2012
  end-page: 92
  ident: b4
  article-title: Well placement optimization with the covariance matrix adaptation evolution strategy and meta-models
  publication-title: Comput. Geosci.
– year: 2004
  ident: b25
  article-title: How to Solve it: Modern Heuristics
– year: 2006
  ident: b8
  article-title: Particle Swarm Optimization
– year: 2014
  ident: b35
  article-title: Eclipse reference manual
– volume: 25
  start-page: 1
  year: 2021
  end-page: 31
  ident: b5
  article-title: Field development optimization using a sequence of surrogate treatments
  publication-title: Comput. Geosci.
– volume: 17
  start-page: 249
  year: 2013
  end-page: 268
  ident: b26
  article-title: Hybrid differential evolution and particle swarm optimization for optimal well placement
  publication-title: Comput. Geosci.
– reference: Sarma, P., Chen, W.H., 2008. Efficient well placement optimization with gradient-based algorithms and adjoint models. In: Paper SPE-112257-MS. Presented at the Intelligent Energy Conference and Exhibition. Amsterdam, The Netherlands.
– year: 2022
  ident: b1
  article-title: An adaptive moment estimation framework for well placement optimization
  publication-title: Comput. Geosci.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b38
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 85
  start-page: 317
  year: 2003
  end-page: 325
  ident: b39
  article-title: The particle swarm optimization algorithm: Convergence analysis and parameter selection
  publication-title: Inform. Process. Lett.
– volume: 18
  start-page: 463
  year: 2014
  end-page: 482
  ident: b17
  article-title: A derivative-free methodology with local and global search for the constrained joint optimization of well locations and controls
  publication-title: Comput. Geosci.
– year: 2005
  ident: b31
  article-title: Differential Evolution: A Practical Approach to Global Optimization
– volume: 24
  start-page: 923
  year: 2021
  end-page: 939
  ident: b33
  article-title: A multisolution optimization framework for well placement and control
  publication-title: SPE Reserv. Eval. Eng.
– volume: 58
  start-page: 186
  year: 2007
  end-page: 200
  ident: b44
  article-title: Bang-bang control and singular arcs in reservoir flooding
  publication-title: J. Pet. Sci. Eng.
– volume: 12
  start-page: 979
  year: 2002
  end-page: 1006
  ident: b12
  article-title: SNOPT: an SQP algorithm for large-scale constrained optimization
  publication-title: SIAM J. Optim.
– volume: 8
  start-page: 1225
  year: 2018
  end-page: 1233
  ident: b6
  article-title: Well placement optimization for offshore oilfield based on Theil index and differential evolution algorithm
  publication-title: J. Pet. Explor. Prod. Technol.
– volume: 34
  start-page: 705
  year: 2011
  end-page: 719
  ident: b23
  article-title: How to design a powerful family of particle swarm optimizers for inverse modelling
  publication-title: Trans. Inst. Meas. Control
– reference: Emerick, A.A., Silva, E., Messer, B., Almeida, L.F., Szwarcman, D., Pacheco, M.A.C., Vellasco, M.M.B.R., 2009. Well placement optimization using a genetic algorithm with nonlinear constraints. In: Paper SPE-118808-MS. Presented at the SPE Reservoir Simulation Symposium. The Woodlands, Texas, USA.
– volume: 37
  start-page: 4583
  year: 2013
  end-page: 4590
  ident: b13
  article-title: Global optimization of injection well placement toward higher safety of CO
  publication-title: Energy Procedia
– volume: 50
  start-page: 16
  year: 2013
  end-page: 24
  ident: b29
  article-title: Extended Brugge benchmark case for history matching and water flooding optimization
  publication-title: Comput. Geosci.
– volume: 14
  start-page: 183
  year: 2010
  end-page: 198
  ident: b27
  article-title: Application of a particle swarm optimization algorithm for determining optimum well location and type
  publication-title: Comput. Geosci.
– volume: 152
  start-page: 81
  year: 2017
  end-page: 90
  ident: b28
  article-title: Improved decision making with new efficient workflows for well placement optimization
  publication-title: J. Pet. Sci. Eng.
– volume: 13
  start-page: 392
  year: 2008
  end-page: 399
  ident: b45
  article-title: Adjoint-based well-placement optimization under production constraints
  publication-title: SPE J.
– year: 2006
  ident: b9
  article-title: Stagnation Analysis in Particle Swarm Optimization or What Happens When Nothing Happens
– volume: 20
  start-page: 1185
  year: 2016
  end-page: 1209
  ident: b18
  article-title: Well placement optimization subject to realistic field development constraints
  publication-title: Comput. Geosci.
– volume: 162
  start-page: 652
  year: 2018
  end-page: 665
  ident: b21
  article-title: Determination of vertical/horizontal well type from generalized field development optimization
  publication-title: J. Pet. Sci. Eng.
– volume: 114
  start-page: 61
  year: 2014
  end-page: 73
  ident: b14
  article-title: History matching with iterative Latin hypercube samplings and parameterization of reservoir heterogeneity
  publication-title: J. Pet. Sci. Eng.
– year: 2007
  ident: b19
  article-title: Particle swarm optimization – stochastic trajectory analysis and parameter selection
  publication-title: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization
– volume: 6
  start-page: 191
  year: 2016
  end-page: 200
  ident: b20
  article-title: Hybrid FDG optimization method and kriging interpolator to optimize well locations
  publication-title: J. Pet. Explor. Prod. Technol.
– volume: 24
  start-page: 2095
  year: 2020
  end-page: 2109
  ident: b3
  article-title: Ensemble-based well trajectory and drilling schedule optimization—application to the Olympus benchmark model
  publication-title: Comput. Geosci.
– volume: 149
  start-page: 383
  year: 2017
  end-page: 392
  ident: b16
  article-title: An efficient geometry-based optimization approach for well placement in oil fields
  publication-title: J. Pet. Sci. Eng.
– volume: 20
  start-page: 1185
  year: 2016
  ident: 10.1016/j.petrol.2022.110635_b18
  article-title: Well placement optimization subject to realistic field development constraints
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-016-9584-1
– year: 2003
  ident: 10.1016/j.petrol.2022.110635_b36
– volume: 37
  start-page: 4583
  year: 2013
  ident: 10.1016/j.petrol.2022.110635_b13
  article-title: Global optimization of injection well placement toward higher safety of CO2 geological storage
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.06.366
– volume: 122
  start-page: 64
  year: 2000
  ident: 10.1016/j.petrol.2022.110635_b15
  article-title: Optimization of well placement
  publication-title: J. Energy Resour. Technol.
  doi: 10.1115/1.483164
– volume: 10
  start-page: 303
  year: 2006
  ident: 10.1016/j.petrol.2022.110635_b2
  article-title: On optimization algorithms for the reservoir oil well placement problem
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-006-9025-7
– volume: 14
  start-page: 183
  year: 2010
  ident: 10.1016/j.petrol.2022.110635_b27
  article-title: Application of a particle swarm optimization algorithm for determining optimum well location and type
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-009-9142-1
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.petrol.2022.110635_b38
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– year: 2022
  ident: 10.1016/j.petrol.2022.110635_b1
  article-title: An adaptive moment estimation framework for well placement optimization
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-022-10135-9
– volume: 140
  year: 2018
  ident: 10.1016/j.petrol.2022.110635_b37
  article-title: A comparative study of genetic and particle swarm optimization algorithms and their hybrid method in water flooding optimization
  publication-title: J. Energy Resour. Technol.
  doi: 10.1115/1.4040059
– volume: 13
  start-page: 392
  year: 2008
  ident: 10.1016/j.petrol.2022.110635_b45
  article-title: Adjoint-based well-placement optimization under production constraints
  publication-title: SPE J.
  doi: 10.2118/105797-PA
– volume: 21
  start-page: 239
  year: 1979
  ident: 10.1016/j.petrol.2022.110635_b24
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– year: 2007
  ident: 10.1016/j.petrol.2022.110635_b19
  article-title: Particle swarm optimization – stochastic trajectory analysis and parameter selection
– volume: 156
  start-page: 41
  year: 2017
  ident: 10.1016/j.petrol.2022.110635_b41
  article-title: Field development optimization in mature oil reservoirs using a hybrid algorithm
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2017.05.009
– volume: 24
  start-page: 2095
  year: 2020
  ident: 10.1016/j.petrol.2022.110635_b3
  article-title: Ensemble-based well trajectory and drilling schedule optimization—application to the Olympus benchmark model
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-020-09952-7
– year: 2012
  ident: 10.1016/j.petrol.2022.110635_b46
– volume: 16
  start-page: 75
  year: 2012
  ident: 10.1016/j.petrol.2022.110635_b4
  article-title: Well placement optimization with the covariance matrix adaptation evolution strategy and meta-models
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-011-9254-2
– volume: 34
  start-page: 705
  year: 2011
  ident: 10.1016/j.petrol.2022.110635_b23
  article-title: How to design a powerful family of particle swarm optimizers for inverse modelling
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331211402900
– volume: 12
  start-page: 979
  year: 2002
  ident: 10.1016/j.petrol.2022.110635_b12
  article-title: SNOPT: an SQP algorithm for large-scale constrained optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499350013
– ident: 10.1016/j.petrol.2022.110635_b10
  doi: 10.2118/118808-MS
– volume: 1
  start-page: 33
  year: 2007
  ident: 10.1016/j.petrol.2022.110635_b30
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– year: 2006
  ident: 10.1016/j.petrol.2022.110635_b9
– volume: 17
  start-page: 249
  year: 2013
  ident: 10.1016/j.petrol.2022.110635_b26
  article-title: Hybrid differential evolution and particle swarm optimization for optimal well placement
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-012-9328-9
– volume: 58
  start-page: 186
  year: 2007
  ident: 10.1016/j.petrol.2022.110635_b44
  article-title: Bang-bang control and singular arcs in reservoir flooding
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2006.12.008
– ident: 10.1016/j.petrol.2022.110635_b34
  doi: 10.2118/112257-MS
– volume: 24
  start-page: 923
  year: 2021
  ident: 10.1016/j.petrol.2022.110635_b33
  article-title: A multisolution optimization framework for well placement and control
  publication-title: SPE Reserv. Eval. Eng.
  doi: 10.2118/200581-PA
– volume: 8
  start-page: 200
  year: 2003
  ident: 10.1016/j.petrol.2022.110635_b43
  article-title: Optimization of nonconventional well type, location, and trajectory
  publication-title: SPE J.
  doi: 10.2118/86880-PA
– volume: 85
  start-page: 317
  year: 2003
  ident: 10.1016/j.petrol.2022.110635_b39
  article-title: The particle swarm optimization algorithm: Convergence analysis and parameter selection
  publication-title: Inform. Process. Lett.
  doi: 10.1016/S0020-0190(02)00447-7
– volume: 171
  start-page: 1052
  year: 2018
  ident: 10.1016/j.petrol.2022.110635_b40
  article-title: Gradient-based constrained well placement optimization
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.08.033
– volume: 25
  start-page: 1
  year: 2021
  ident: 10.1016/j.petrol.2022.110635_b5
  article-title: Field development optimization using a sequence of surrogate treatments
  publication-title: Comput. Geosci.
– volume: 50
  start-page: 16
  year: 2013
  ident: 10.1016/j.petrol.2022.110635_b29
  article-title: Extended Brugge benchmark case for history matching and water flooding optimization
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.07.018
– year: 2007
  ident: 10.1016/j.petrol.2022.110635_b11
– volume: 18
  start-page: 463
  year: 2014
  ident: 10.1016/j.petrol.2022.110635_b17
  article-title: A derivative-free methodology with local and global search for the constrained joint optimization of well locations and controls
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-013-9383-x
– volume: 3
  start-page: 245
  year: 2009
  ident: 10.1016/j.petrol.2022.110635_b22
  article-title: The PSO family: deduction, stochastic analysis and comparison
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-009-0034-8
– volume: 80
  start-page: 177
  year: 2019
  ident: 10.1016/j.petrol.2022.110635_b32
  article-title: Adaptive surrogate modeling with evolutionary algorithm for well placement optimization in fractured reservoirs
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.022
– volume: 149
  start-page: 383
  year: 2017
  ident: 10.1016/j.petrol.2022.110635_b16
  article-title: An efficient geometry-based optimization approach for well placement in oil fields
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2016.10.055
– year: 2004
  ident: 10.1016/j.petrol.2022.110635_b25
– year: 2014
  ident: 10.1016/j.petrol.2022.110635_b35
– year: 2019
  ident: 10.1016/j.petrol.2022.110635_b42
– volume: 8
  start-page: 1225
  year: 2018
  ident: 10.1016/j.petrol.2022.110635_b6
  article-title: Well placement optimization for offshore oilfield based on Theil index and differential evolution algorithm
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-017-0403-6
– year: 2005
  ident: 10.1016/j.petrol.2022.110635_b31
– volume: 162
  start-page: 652
  year: 2018
  ident: 10.1016/j.petrol.2022.110635_b21
  article-title: Determination of vertical/horizontal well type from generalized field development optimization
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2017.10.083
– volume: 114
  start-page: 61
  year: 2014
  ident: 10.1016/j.petrol.2022.110635_b14
  article-title: History matching with iterative Latin hypercube samplings and parameterization of reservoir heterogeneity
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2014.01.009
– year: 2006
  ident: 10.1016/j.petrol.2022.110635_b8
– ident: 10.1016/j.petrol.2022.110635_b7
– volume: 152
  start-page: 81
  year: 2017
  ident: 10.1016/j.petrol.2022.110635_b28
  article-title: Improved decision making with new efficient workflows for well placement optimization
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2017.02.011
– volume: 6
  start-page: 191
  year: 2016
  ident: 10.1016/j.petrol.2022.110635_b20
  article-title: Hybrid FDG optimization method and kriging interpolator to optimize well locations
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-015-0175-9
SSID ssj0003637
Score 2.0707376
Snippet A robust workflow for optimizing the placement of multiple deviated wells subject to challenging geometric constraints is presented and applied. The workflow...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110635
SubjectTerms Geometric constraints
Hyperparameter tuning
Population-based search
Reservoir simulation
Well placement optimization
Title Effective treatment of geometric constraints in derivative-free well placement optimization
URI https://dx.doi.org/10.1016/j.petrol.2022.110635
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DEfQgOhXnj5GD17g1SZvmOIZzKu6ig4GH0qapTFw7ZhW8-Lebl7Rzgih4bMkr7Wt470vyve8hdCbSNMsS5pHYl5xwk9JI7MWUZCa9pTpMAmV1um9HwXDMryf-pIH6dS0M0Cqr2O9iuo3W1Z1O5c3OfDrt3HUl7QJJkcLGiEESUMHOBczy848vmgcLnG6mGUxgdF0-ZzleBpguCjiAoBT48IFt-vZDelpJOYMdtF1hRdxzr7OLGjpvoq0VBcEm2ri0nXnf99CD0yE2wQsvyeO4yPCjLmbQNUthBVAQOkKUL3ia49Q84s3KfpNsoTWGXTxsKVrO1MSSWVWkuY_Gg4v7_pBUnROIMkuAknjKDzSVMdfG3VxZ0GaAhoyl5MJAQl94cWjyl1KSBaEKwhTyvi9jsx4Osq5mB2gtL3J9iHAGgmuCstSXmidhIn0WdzOeCCGpx4RqIVY7LFKVrDh8y3NU88eeIufmCNwcOTe3EFlazZ2sxh_jRf0vom_TIzKR_1fLo39bHqNNuHJsvxO0Vi5e9alBIGXStlOsjdZ7VzfD0SfVMNrS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3MDVEfRKfi_MyDr2H9SNPmcQzndB8vbjDwoaRpKhPXjlkF_71J044JouBr21va23DuSXpyLsCNH8dJErk25h4jmKiShrnNHZyo8hbLIKKi8OkejWl_Sh5m3qwG3WovjJZVlthvML1A6_JIu8xmezmftx8t5lhapOjohRHFJLagod2pvDo0OveD_ngNyC411pnqeqwDqh10hcxLcdNVpv9BOI6WxNOi79sPFWqj6vQOYL-ki6hjnugQajJtwt6GiWATtu-K5ryfR_BkrIgVfqG1fhxlCXqW2UI3zhJIaDaom0Lkb2ieoljd4qNw_sbJSkqkF_JQodIyoQpOFuU-zWOY9m4n3T4umydgoWYBObaFR6XDOJEq40QUvE1xDcYZI75ihZ5v80CVMCGYSwNBg1iXfo9xNSWmiSXdE6inWSpPASXac8133NhjkkRBxDyXWwmJfJ85tuuLFrhVwkJROovrd3kNKwnZS2jSHOo0hybNLcDrqKVx1vjjer_6FuG3ERIq8P818uzfkdew05-MhuHwfjw4h119xoj_LqCer97lpSIkeXRVDrgvYTPdgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+treatment+of+geometric+constraints+in+derivative-free+well+placement+optimization&rft.jtitle=Journal+of+petroleum+science+%26+engineering&rft.au=Zou%2C+Amy&rft.au=Ye%2C+Tianrui&rft.au=Volkov%2C+Oleg&rft.au=Durlofsky%2C+Louis+J.&rft.date=2022-08-01&rft.pub=Elsevier+B.V&rft.issn=0920-4105&rft.eissn=1873-4715&rft.volume=215&rft_id=info:doi/10.1016%2Fj.petrol.2022.110635&rft.externalDocID=S0920410522005083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4105&client=summon