Output feedback stabilization for 1-D unstable wave equations with boundary control matched disturbance and van der Pol nonlinear boundary

In this paper we study the output feedback stabilization of a plant described by a one-dimensional wave equation with a van der Pol type nonlinear boundary condition, an unknown internal nonlinear uncertainty and an external disturbance acting at the control end (boundary). The simultaneous occurren...

Full description

Saved in:
Bibliographic Details
Published inIFAC Journal of Systems and Control Vol. 12; p. 100085
Main Authors Ghaderi, Najmeh, Keyanpour, Mohammad
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2020
Subjects
Online AccessGet full text
ISSN2468-6018
2468-6018
DOI10.1016/j.ifacsc.2020.100085

Cover

Loading…
Abstract In this paper we study the output feedback stabilization of a plant described by a one-dimensional wave equation with a van der Pol type nonlinear boundary condition, an unknown internal nonlinear uncertainty and an external disturbance acting at the control end (boundary). The simultaneous occurrence of nonlinear internal uncertainty, external disturbance, and van der Pol type nonlinear boundary term in the plant leads to the system is more complicated. First, we show that the open-loop system is well-posed and we design an infinite-dimensional estimator to estimate the disturbance. It is shown that the disturbance estimator can successfully estimate the total disturbance, in the sense that the estimation error signal is in L2(0,∞). Using the estimated disturbance, we propose an asymptotic state observer, and then we design an observer-based output feedback stabilizing controller. The closed-loop system is shown to be asymptotically stable. Finally, a numerical simulation is carried out to illustrate the theoretical results and effectiveness of the proposed control law.
AbstractList In this paper we study the output feedback stabilization of a plant described by a one-dimensional wave equation with a van der Pol type nonlinear boundary condition, an unknown internal nonlinear uncertainty and an external disturbance acting at the control end (boundary). The simultaneous occurrence of nonlinear internal uncertainty, external disturbance, and van der Pol type nonlinear boundary term in the plant leads to the system is more complicated. First, we show that the open-loop system is well-posed and we design an infinite-dimensional estimator to estimate the disturbance. It is shown that the disturbance estimator can successfully estimate the total disturbance, in the sense that the estimation error signal is in L2(0,∞). Using the estimated disturbance, we propose an asymptotic state observer, and then we design an observer-based output feedback stabilizing controller. The closed-loop system is shown to be asymptotically stable. Finally, a numerical simulation is carried out to illustrate the theoretical results and effectiveness of the proposed control law.
ArticleNumber 100085
Author Ghaderi, Najmeh
Keyanpour, Mohammad
Author_xml – sequence: 1
  givenname: Najmeh
  surname: Ghaderi
  fullname: Ghaderi, Najmeh
  email: najmeh_ghaderi@webmail.guilan.ac.ir, najmeh_ghaderi@yahoo.com
  organization: Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
– sequence: 2
  givenname: Mohammad
  orcidid: 0000-0002-6499-2489
  surname: Keyanpour
  fullname: Keyanpour, Mohammad
  email: kianpour@guilan.ac.ir, m.keyanpour@gmail.com
  organization: Faculty of Mathematical Sciences, and Center of Excellence for Mathematical Modeling, Optimization and Combinatorial Computing (MMOCC), University of Guilan, Rasht, Iran
BookMark eNqFkN1OwyAYhonRxDl3Bx5wA52lpd3qgYmZv8mSeaDHhMJHxuxgAt2il-BVS1djjAd6BHn5ni-8zwk6NNYAQmckHZOUlOersVZceDHO0qyL0nRaHKBBRstpUqZkevjjfoxG3q_iSFaVlGbVAH0s2rBpA1YAsubiBfvAa93odx60NVhZh0lyjVvT5Q3gHd8Chtd2_-zxToclrm1rJHdvWFgTnG3wmgexBIml9qF1NTcCMDcSb7nBEhx-jDOxRaMNcPeNn6IjxRsPo69ziJ5vb55m98l8cfcwu5onIk_LkJCSFFIVuaCTaiKoUkWlVC1IBXLC1ZTWsUaeZXkuK8WzMgZVLiUhtCKS57XIh-ii3yuc9d6BYkKHfZ_guG4YSVknlq1YL5Z1YlkvNsL0F7xxeh1__x922WMQi201OOaFhuhFagciMGn13ws-Ae1Pmgk
CitedBy_id crossref_primary_10_1177_01423312211032545
crossref_primary_10_1093_imamci_dnad027
Cites_doi 10.1016/j.ejcon.2017.10.006
10.1109/TAC.2015.2491718
10.1109/TAC.2014.2335374
10.1137/130921362
10.1137/17M1133531
10.1109/TAC.2013.2239003
10.1109/TAC.2018.2874746
10.1016/j.automatica.2015.04.008
10.1142/S0218127498000280
10.1109/ICSEE.2016.7806144
10.1109/TAC.2014.2326491
10.1109/TAC.2006.890385
10.1137/15M1045296
10.1080/00207179.2011.584197
10.1016/S0022-247X(03)00562-6
10.1109/9.895561
10.1142/S0218127498000292
10.1016/S0005-1098(03)00192-4
10.1090/S0002-9947-98-02022-4
10.1016/j.automatica.2017.04.025
10.1109/TIE.2008.2011621
10.1137/0327028
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ifacsc.2020.100085
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2468-6018
ExternalDocumentID 10_1016_j_ifacsc_2020_100085
S2468601820300080
GroupedDBID AACTN
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAXUO
AAYFN
ABBOA
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AFKWA
AFTJW
AGUBO
AHJVU
AIALX
AIEXJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
ROL
SPC
SPCBC
SST
SSV
SSZ
T5K
~G-
0R~
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-1615df53c4797c4ff59ffbc19ed7af84bbac32233d9fa2684b93dd11491da3bc3
IEDL.DBID AIKHN
ISSN 2468-6018
IngestDate Thu Apr 24 23:02:16 EDT 2025
Tue Jul 01 04:00:58 EDT 2025
Fri Feb 23 02:47:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Disturbance rejection
Van der Pol boundary condition
State observer
93D15
35L05
Unstable wave equation
93C20
Disturbance estimator
93B52
Observer-based output feedback control
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-1615df53c4797c4ff59ffbc19ed7af84bbac32233d9fa2684b93dd11491da3bc3
ORCID 0000-0002-6499-2489
ParticipantIDs crossref_citationtrail_10_1016_j_ifacsc_2020_100085
crossref_primary_10_1016_j_ifacsc_2020_100085
elsevier_sciencedirect_doi_10_1016_j_ifacsc_2020_100085
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle IFAC Journal of Systems and Control
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Jin (b13) 2015; 60
Chen, Hsu, Zhou (b4) 1998; 8
Weiss (b25) 1989; 2
Rebarber, Weiss (b23) 2003; 39
Chen, Hsu, Zhou (b2) 1998; 350
Deutscher (b5) 2015; 57
Paunonen, Pohjolainen (b20) 2014; 52
Zhou, Weiss (b29) 2018; 56
Toulouse, France.
Zhou, Guo (b26) 2018; 39
Huang (b16) 2003; 288
Feng (b8) 2016; 54
Pazy (b21) 1983
Tucsnak, Weiss (b24) 2009
Guo, Guo (b12) 2013; 58
Deutscher (b6) 2016; 61
Pisano, Orlov (b22) 2017; 81
Han (b15) 2009; 56
Etter (b7) 2003
Krstic, Smyshlyaev (b17) 2008
Zhou, H. C., & Weiss, G. (2017). Output feedback exponential stabilization of a nonlinear 1-D wave equation with boundary input. In
Chen, Hsu, Zhou (b3) 1998; 8
Ge, Zhang, He (b11) 2011; 84
Natarajan, Gilliam, Weiss (b19) 2014; 59
Bymes, Lauko, Gilliam, Shubov (b1) 2000; 45
Zhou, H. C., & Weiss, G. (2016). The regulation problem for the one-dimensional schrodinger equation via the backstepping approach. In
Feng, Guo (b9) 2016
Eilat, Israel.
Guo, Xu (b14) 2007; 52
Feng, Guo (b10) 2016
Liu, Wang (b18) 2019
Deutscher (10.1016/j.ifacsc.2020.100085_b6) 2016; 61
10.1016/j.ifacsc.2020.100085_b28
Feng (10.1016/j.ifacsc.2020.100085_b8) 2016; 54
Guo (10.1016/j.ifacsc.2020.100085_b12) 2013; 58
Pisano (10.1016/j.ifacsc.2020.100085_b22) 2017; 81
Zhou (10.1016/j.ifacsc.2020.100085_b26) 2018; 39
10.1016/j.ifacsc.2020.100085_b27
Tucsnak (10.1016/j.ifacsc.2020.100085_b24) 2009
Feng (10.1016/j.ifacsc.2020.100085_b10) 2016
Zhou (10.1016/j.ifacsc.2020.100085_b29) 2018; 56
Guo (10.1016/j.ifacsc.2020.100085_b14) 2007; 52
Chen (10.1016/j.ifacsc.2020.100085_b3) 1998; 8
Weiss (10.1016/j.ifacsc.2020.100085_b25) 1989; 2
Deutscher (10.1016/j.ifacsc.2020.100085_b5) 2015; 57
Huang (10.1016/j.ifacsc.2020.100085_b16) 2003; 288
Feng (10.1016/j.ifacsc.2020.100085_b9) 2016
Guo (10.1016/j.ifacsc.2020.100085_b13) 2015; 60
Etter (10.1016/j.ifacsc.2020.100085_b7) 2003
Bymes (10.1016/j.ifacsc.2020.100085_b1) 2000; 45
Krstic (10.1016/j.ifacsc.2020.100085_b17) 2008
Chen (10.1016/j.ifacsc.2020.100085_b4) 1998; 8
Rebarber (10.1016/j.ifacsc.2020.100085_b23) 2003; 39
Paunonen (10.1016/j.ifacsc.2020.100085_b20) 2014; 52
Chen (10.1016/j.ifacsc.2020.100085_b2) 1998; 350
Pazy (10.1016/j.ifacsc.2020.100085_b21) 1983
Liu (10.1016/j.ifacsc.2020.100085_b18) 2019
Ge (10.1016/j.ifacsc.2020.100085_b11) 2011; 84
Natarajan (10.1016/j.ifacsc.2020.100085_b19) 2014; 59
Han (10.1016/j.ifacsc.2020.100085_b15) 2009; 56
References_xml – volume: 52
  start-page: 371
  year: 2007
  end-page: 377
  ident: b14
  article-title: The stabilization of a one-dimensional wave equation by boundary feedback with non collocated observation
  publication-title: IEEE Transactions on Automatic Control
– volume: 56
  start-page: 900
  year: 2009
  end-page: 906
  ident: b15
  article-title: From PID to active disturbance rejection control
  publication-title: IEEE Transactions on Industrial Electronics
– year: 1983
  ident: b21
  article-title: Semigroups of linear operators and applications to partial differential equations
– volume: 45
  start-page: 2236
  year: 2000
  end-page: 2252
  ident: b1
  article-title: Output regulation for linear distributed parameter systems
  publication-title: IEEE Transactions on Automatic Control
– start-page: 1
  year: 2016
  end-page: 8
  ident: b10
  article-title: Observer design and exponential stabilization for wave equation in energy space by boundary displacement measurement only
  publication-title: IEEE Transactions on Automatic Control
– volume: 60
  start-page: 824
  year: 2015
  end-page: 830
  ident: b13
  article-title: Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance
  publication-title: IEEE Transactions on Automatic Control
– volume: 57
  start-page: 56
  year: 2015
  end-page: 64
  ident: b5
  article-title: A backstepping approach to the output regulation of boundary controlled parabolic PDEs
  publication-title: Automatica
– volume: 59
  start-page: 2708
  year: 2014
  end-page: 2723
  ident: b19
  article-title: The state feedback regulator problem for regular linear systems
  publication-title: IEEE Transactions on Automatic Control
– reference: . Toulouse, France.
– volume: 56
  start-page: 4098
  year: 2018
  end-page: 4129
  ident: b29
  article-title: Output feedback exponential stabilization for one-dimensional unstable wave equations with boundary control matched disturbance
  publication-title: SIAM Journal on Control and Optimization
– volume: 8
  start-page: 423
  year: 1998
  end-page: 445
  ident: b3
  article-title: Chaotic vibrations of the one dimensional wave equation due to a self-excitation boundary condition, Part II: Energy injection, period doubling and homoclinic orbits
  publication-title: International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
– year: 2009
  ident: b24
  article-title: Observation and control for operator semigroups
– volume: 2
  start-page: 527
  year: 1989
  end-page: 545
  ident: b25
  article-title: Admissibility of unbounded control operators
  publication-title: SIAM Journal on Control and Optimization
– volume: 8
  start-page: 447
  year: 1998
  end-page: 470
  ident: b4
  article-title: Chaotic vibrations of the one-dimensional wave equation due to a self-excitation boundary condition, Part III: Natural hysteresis memory effects
  publication-title: International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
– volume: 288
  start-page: 78
  year: 2003
  end-page: 96
  ident: b16
  article-title: A new characterization of nonisotropic chaotic vibrations of the one-dimensional linear wave equation with a van der Pol boundary condition
  publication-title: Journal of Mathematical Analysis and Applications
– volume: 58
  start-page: 1631
  year: 2013
  end-page: 1643
  ident: b12
  article-title: Parameter estimation and non-collocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance
  publication-title: IEEE Transactions on Automatic Control
– volume: 54
  start-page: 2436
  year: 2016
  end-page: 2449
  ident: b8
  article-title: Stabilization of one-dimensional wave equation with van der pol type boundary condition
  publication-title: SIAM Journal on Control and Optimization
– year: 2008
  ident: b17
  article-title: Boundary control of PDEs: A course on backstepping designs
– volume: 61
  start-page: 2288
  year: 2016
  end-page: 2294
  ident: b6
  article-title: Backstepping design of robust output feedback regulators for boundary controlled parabolic PDEs
  publication-title: IEEE Transactions on Automatic Control
– year: 2003
  ident: b7
  article-title: Underwater acoustic modeling and simulation
– reference: Zhou, H. C., & Weiss, G. (2016). The regulation problem for the one-dimensional schrodinger equation via the backstepping approach. In
– year: 2019
  ident: b18
  article-title: Stabilization of one-dimensional wave equation with nonlinear boundary condition subject to boundary control matched disturbance
  publication-title: IEEE Transactions on Automatic Control
– volume: 39
  start-page: 1555
  year: 2003
  end-page: 1569
  ident: b23
  article-title: Internal model based tracking and disturbance rejection for stable well-posed systems
  publication-title: Automatica
– reference: . Eilat, Israel.
– volume: 350
  start-page: 4265
  year: 1998
  end-page: 4311
  ident: b2
  article-title: Chaotic vibrations of the one dimensional wave equation due to a self-excitation boundary condition. Part I: Controlled hysteresis
  publication-title: Transactions of the American Mathematical Society
– volume: 39
  start-page: 39
  year: 2018
  end-page: 52
  ident: b26
  article-title: Performance output tracking for one-dimensional wave equation subject to unmatched general disturbance and non-collocated control
  publication-title: European Journal of Control
– volume: 52
  start-page: 3967
  year: 2014
  end-page: 4000
  ident: b20
  article-title: The internal model principle for systems with unbounded control and observation
  publication-title: SIAM Journal on Control and Optimization
– volume: 81
  start-page: 447
  year: 2017
  end-page: 454
  ident: b22
  article-title: On the ISS properties of a class of parabolic DPS’ with discontinuous control using sampled-in-space sensing and actuation
  publication-title: Automatica
– reference: Zhou, H. C., & Weiss, G. (2017). Output feedback exponential stabilization of a nonlinear 1-D wave equation with boundary input. In
– start-page: 1
  year: 2016
  end-page: 13
  ident: b9
  article-title: A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance
  publication-title: IEEE Transactions on Automatic Control
– volume: 84
  start-page: 947
  year: 2011
  end-page: 960
  ident: b11
  article-title: Vibration control of an Euler-Bernoulli beam under unknown spatiotemporally varying disturbance
  publication-title: International Journal of Control
– volume: 39
  start-page: 39
  year: 2018
  ident: 10.1016/j.ifacsc.2020.100085_b26
  article-title: Performance output tracking for one-dimensional wave equation subject to unmatched general disturbance and non-collocated control
  publication-title: European Journal of Control
  doi: 10.1016/j.ejcon.2017.10.006
– volume: 61
  start-page: 2288
  year: 2016
  ident: 10.1016/j.ifacsc.2020.100085_b6
  article-title: Backstepping design of robust output feedback regulators for boundary controlled parabolic PDEs
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2015.2491718
– ident: 10.1016/j.ifacsc.2020.100085_b27
– year: 2003
  ident: 10.1016/j.ifacsc.2020.100085_b7
– start-page: 1
  year: 2016
  ident: 10.1016/j.ifacsc.2020.100085_b9
  article-title: A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance
  publication-title: IEEE Transactions on Automatic Control
– volume: 60
  start-page: 824
  year: 2015
  ident: 10.1016/j.ifacsc.2020.100085_b13
  article-title: Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2014.2335374
– volume: 52
  start-page: 3967
  year: 2014
  ident: 10.1016/j.ifacsc.2020.100085_b20
  article-title: The internal model principle for systems with unbounded control and observation
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/130921362
– volume: 56
  start-page: 4098
  issue: 6
  year: 2018
  ident: 10.1016/j.ifacsc.2020.100085_b29
  article-title: Output feedback exponential stabilization for one-dimensional unstable wave equations with boundary control matched disturbance
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/17M1133531
– volume: 58
  start-page: 1631
  year: 2013
  ident: 10.1016/j.ifacsc.2020.100085_b12
  article-title: Parameter estimation and non-collocated adaptive stabilization for a wave equation subject to general boundary harmonic disturbance
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2013.2239003
– year: 2019
  ident: 10.1016/j.ifacsc.2020.100085_b18
  article-title: Stabilization of one-dimensional wave equation with nonlinear boundary condition subject to boundary control matched disturbance
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2018.2874746
– volume: 57
  start-page: 56
  year: 2015
  ident: 10.1016/j.ifacsc.2020.100085_b5
  article-title: A backstepping approach to the output regulation of boundary controlled parabolic PDEs
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.04.008
– volume: 8
  start-page: 423
  year: 1998
  ident: 10.1016/j.ifacsc.2020.100085_b3
  article-title: Chaotic vibrations of the one dimensional wave equation due to a self-excitation boundary condition, Part II: Energy injection, period doubling and homoclinic orbits
  publication-title: International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
  doi: 10.1142/S0218127498000280
– ident: 10.1016/j.ifacsc.2020.100085_b28
  doi: 10.1109/ICSEE.2016.7806144
– volume: 59
  start-page: 2708
  year: 2014
  ident: 10.1016/j.ifacsc.2020.100085_b19
  article-title: The state feedback regulator problem for regular linear systems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2014.2326491
– volume: 52
  start-page: 371
  year: 2007
  ident: 10.1016/j.ifacsc.2020.100085_b14
  article-title: The stabilization of a one-dimensional wave equation by boundary feedback with non collocated observation
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2006.890385
– year: 2009
  ident: 10.1016/j.ifacsc.2020.100085_b24
– start-page: 1
  year: 2016
  ident: 10.1016/j.ifacsc.2020.100085_b10
  article-title: Observer design and exponential stabilization for wave equation in energy space by boundary displacement measurement only
  publication-title: IEEE Transactions on Automatic Control
– volume: 54
  start-page: 2436
  year: 2016
  ident: 10.1016/j.ifacsc.2020.100085_b8
  article-title: Stabilization of one-dimensional wave equation with van der pol type boundary condition
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/15M1045296
– volume: 84
  start-page: 947
  year: 2011
  ident: 10.1016/j.ifacsc.2020.100085_b11
  article-title: Vibration control of an Euler-Bernoulli beam under unknown spatiotemporally varying disturbance
  publication-title: International Journal of Control
  doi: 10.1080/00207179.2011.584197
– volume: 288
  start-page: 78
  year: 2003
  ident: 10.1016/j.ifacsc.2020.100085_b16
  article-title: A new characterization of nonisotropic chaotic vibrations of the one-dimensional linear wave equation with a van der Pol boundary condition
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/S0022-247X(03)00562-6
– volume: 45
  start-page: 2236
  year: 2000
  ident: 10.1016/j.ifacsc.2020.100085_b1
  article-title: Output regulation for linear distributed parameter systems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.895561
– year: 2008
  ident: 10.1016/j.ifacsc.2020.100085_b17
– volume: 8
  start-page: 447
  year: 1998
  ident: 10.1016/j.ifacsc.2020.100085_b4
  article-title: Chaotic vibrations of the one-dimensional wave equation due to a self-excitation boundary condition, Part III: Natural hysteresis memory effects
  publication-title: International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
  doi: 10.1142/S0218127498000292
– volume: 39
  start-page: 1555
  year: 2003
  ident: 10.1016/j.ifacsc.2020.100085_b23
  article-title: Internal model based tracking and disturbance rejection for stable well-posed systems
  publication-title: Automatica
  doi: 10.1016/S0005-1098(03)00192-4
– volume: 350
  start-page: 4265
  year: 1998
  ident: 10.1016/j.ifacsc.2020.100085_b2
  article-title: Chaotic vibrations of the one dimensional wave equation due to a self-excitation boundary condition. Part I: Controlled hysteresis
  publication-title: Transactions of the American Mathematical Society
  doi: 10.1090/S0002-9947-98-02022-4
– year: 1983
  ident: 10.1016/j.ifacsc.2020.100085_b21
– volume: 81
  start-page: 447
  year: 2017
  ident: 10.1016/j.ifacsc.2020.100085_b22
  article-title: On the ISS properties of a class of parabolic DPS’ with discontinuous control using sampled-in-space sensing and actuation
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.04.025
– volume: 56
  start-page: 900
  year: 2009
  ident: 10.1016/j.ifacsc.2020.100085_b15
  article-title: From PID to active disturbance rejection control
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2008.2011621
– volume: 2
  start-page: 527
  year: 1989
  ident: 10.1016/j.ifacsc.2020.100085_b25
  article-title: Admissibility of unbounded control operators
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/0327028
SSID ssj0002964429
Score 2.1380973
Snippet In this paper we study the output feedback stabilization of a plant described by a one-dimensional wave equation with a van der Pol type nonlinear boundary...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100085
SubjectTerms Disturbance estimator
Disturbance rejection
Observer-based output feedback control
State observer
Unstable wave equation
Van der Pol boundary condition
Title Output feedback stabilization for 1-D unstable wave equations with boundary control matched disturbance and van der Pol nonlinear boundary
URI https://dx.doi.org/10.1016/j.ifacsc.2020.100085
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66e_Eiiopv5uA1bHeTbpujrC7rW9QFbyVPWJVlra3iX_BXO2naRUEUPLZkaJhMM98k38wQcpBaoyOdWDTeWFNuGadSS0EVOh_LEs5l7BOcLy77ozE_vY_vF8igyYXxtMp67w97erVb1286tTY7s8mkc9vj_RTDCXRhrAI-i6TdY6KPEVj78ORsdDk_avE3i7zqV-ZFqJdpkugqptfESf3iyxn2KtJA5Psq_-Skvjie4QpZrhEjHIZJrZIFO10jH1dlMSsLcOh8lNSPgCDP01xDUiUgEoUuPYLSgz_1ZOFNvlqwz6Gu9wv401dQVUel_B1qujogeMUlNGBw6ctceXsAOTWAYBuMzeEax0xDaQ2Zz8XXyXh4fDcY0bqtAtUYHxTUYzzjYqZ5IhLNnYuFc0p3hTWJdClXOG38zRkzwklfDEYJZgzGTaJrJFOabZAWfsxuEtC6x61TiUi54JFMpWA8iWRkBHcaodMWYY0eM13XHPetL56yhlz2kAXtZ177WdD-FqFzqVmoufHH-KRZouyb7WToFn6V3P635A5Z8k-BNLZLWkVe2j2EJ4XaR_Mb3Jxf79dm-AmkFefH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEF1ROLSXigpQAy2dA9dVnOwae48IigIkAakg5WbtpxRAUTB2EX-hv5oZrx0VqSoSV9sjr2bHO2_Xb94wdpB7ZxObeQze1HLpheTaasUNJh8vMil1SgXOk-nh6Eaez9LZGjvuamGIVtmu_XFNb1br9kq_9WZ_OZ_3fw3lYY7bCUxhogE-H9gGqVNhsG8cnV2MpqujFvqzKJt-ZWTCyaYromuYXvOg7SPJGQ4b0kBCfZX_laT-Sjynm-xzixjhKA7qC1vziy3257KulnUFAZOP0fYOEOQRzTUWVQIiURjwE6gJ_Jl7D0_6twf_EHW9H4FOX8E0HZXKZ2jp6oDgFafQgcOpr0tD8QB64QDBNjhfwhU-s4jSGrpcmW-zm9Of18cj3rZV4Bb3BxUnjOdCKqzMVGZlCKkKwdiB8i7TIZcGh42fuRBOBU1iMEYJ53DfpAZOC2PFDlvHl_mvDKwdSh9MpnKpZKJzrYTMEp04JYNF6NRjovNjYVvNcWp9cV905LLbInq_IO8X0fs9xldWy6i58cbzWTdFxavYKTAt_Ndy992WP9jH0fVkXIzPphd77BPdiQSyb2y9Kmv_HaFKZfbbUHwBTW_pGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Output+feedback+stabilization+for+1-D+unstable+wave+equations+with+boundary+control+matched+disturbance+and+van+der+Pol+nonlinear+boundary&rft.jtitle=IFAC+Journal+of+Systems+and+Control&rft.au=Ghaderi%2C+Najmeh&rft.au=Keyanpour%2C+Mohammad&rft.date=2020-06-01&rft.issn=2468-6018&rft.eissn=2468-6018&rft.volume=12&rft.spage=100085&rft_id=info:doi/10.1016%2Fj.ifacsc.2020.100085&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ifacsc_2020_100085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-6018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-6018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-6018&client=summon