Modification of malachite surfaces with lead ions and its contribution to the sulfidization flotation

[Display omitted] •Lead ions can adsorb onto malachite surfaces and form Pb-O species.•Pb-S species formed on malachite surfaces, and Cu(II) were reduced to Cu(I).•S species increased on malachite surfaces after treatment with lead ions.•Lead ions positively affected the flotation recovery of malach...

Full description

Saved in:
Bibliographic Details
Published inApplied surface science Vol. 550; p. 149350
Main Authors Wang, Han, Wen, Shuming, Han, Guang, Feng, Qicheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2021
Subjects
Online AccessGet full text
ISSN0169-4332
1873-5584
DOI10.1016/j.apsusc.2021.149350

Cover

Abstract [Display omitted] •Lead ions can adsorb onto malachite surfaces and form Pb-O species.•Pb-S species formed on malachite surfaces, and Cu(II) were reduced to Cu(I).•S species increased on malachite surfaces after treatment with lead ions.•Lead ions positively affected the flotation recovery of malachite. Malachite is a common copper-oxide resource, and it is usually enriched by sulfidization flotation. Its floatability and recovery are greatly determined by the surface sulfidization results. In this paper, Pb(NO3)2 is used to pretreat malachite, and the sulfidization mechanism of malachite was studied through microflotation experiments, zeta-potential determination, adsorption tests, XPS and ToF-SIMS. The flotation and adsorption results show that the malachite floatability after pretreatment with Pb ions improved significantly. Compared with Na2S treatment, the maximum recovery increased by 42.6% after treatment with lead ions and Na2S. The zeta potential results showed that lead ions (such as Pb(OH)+) could adsorb on the malachite surface, and the surface active sites of malachite were increased. XPS results indicate that lead ions adsorbed onto the mineral surface through the interaction between Pb species, S species and O species. The formation for new species (such as Pb-S) enhanced the malachite sulfidization. ToF-SIMS was used to visualize the three-dimensional distribution of lead- and sulfur-species adsorbed on the malachite surface. It demonstrated that the sulfidization layer increased after pretreatment with Pb(NO3)2, facilitating the surface hydrophobicity and flotation recovery of malachite.
AbstractList [Display omitted] •Lead ions can adsorb onto malachite surfaces and form Pb-O species.•Pb-S species formed on malachite surfaces, and Cu(II) were reduced to Cu(I).•S species increased on malachite surfaces after treatment with lead ions.•Lead ions positively affected the flotation recovery of malachite. Malachite is a common copper-oxide resource, and it is usually enriched by sulfidization flotation. Its floatability and recovery are greatly determined by the surface sulfidization results. In this paper, Pb(NO3)2 is used to pretreat malachite, and the sulfidization mechanism of malachite was studied through microflotation experiments, zeta-potential determination, adsorption tests, XPS and ToF-SIMS. The flotation and adsorption results show that the malachite floatability after pretreatment with Pb ions improved significantly. Compared with Na2S treatment, the maximum recovery increased by 42.6% after treatment with lead ions and Na2S. The zeta potential results showed that lead ions (such as Pb(OH)+) could adsorb on the malachite surface, and the surface active sites of malachite were increased. XPS results indicate that lead ions adsorbed onto the mineral surface through the interaction between Pb species, S species and O species. The formation for new species (such as Pb-S) enhanced the malachite sulfidization. ToF-SIMS was used to visualize the three-dimensional distribution of lead- and sulfur-species adsorbed on the malachite surface. It demonstrated that the sulfidization layer increased after pretreatment with Pb(NO3)2, facilitating the surface hydrophobicity and flotation recovery of malachite.
ArticleNumber 149350
Author Han, Guang
Feng, Qicheng
Wen, Shuming
Wang, Han
Author_xml – sequence: 1
  givenname: Han
  surname: Wang
  fullname: Wang, Han
– sequence: 2
  givenname: Shuming
  surname: Wen
  fullname: Wen, Shuming
– sequence: 3
  givenname: Guang
  surname: Han
  fullname: Han, Guang
– sequence: 4
  givenname: Qicheng
  surname: Feng
  fullname: Feng, Qicheng
  email: fqcgroup@kust.edu.cn, fqckmust@163.com
BookMark eNqFkM1OwzAQhC1UJNrCG3DwCyTY3iRNOCChij-piAucLcdeq67SuLJdEDw9acOJA5x2pJ1vtDszMul9j4RccpZzxqurTa52cR91LpjgOS8aKNkJmfJ6AVlZ1sWETAdbkxUA4ozMYtwwxsWwnRJ89sZZp1Vyvqfe0q3qlF67hDTug1UaI_1waU07VIYOnkhVP4gUqfZ9Cq7dH8nkaVofmM46477GONv5dFTn5NSqLuLFz5yTt_u71-Vjtnp5eFrerjINrEoZF4VCBi2KRqFoSw7aMKigZqwVCixiAU0rSlQNY3WFAKUBVQFgu2BttYA5uR5zdfAxBrRSu_GCFJTrJGfyUJjcyLEweShMjoUNcPEL3gW3VeHzP-xmxHB47N1hkFE77DUaF1Anabz7O-AbX_SLfQ
CitedBy_id crossref_primary_10_1016_j_colsurfa_2023_132884
crossref_primary_10_1016_j_colsurfa_2022_128945
crossref_primary_10_1016_j_mineng_2021_107256
crossref_primary_10_1016_j_inoche_2023_110990
crossref_primary_10_3390_min14111105
crossref_primary_10_1007_s12613_023_2606_9
crossref_primary_10_1016_j_apsusc_2022_153235
crossref_primary_10_1016_j_apsusc_2022_153358
crossref_primary_10_1016_j_seppur_2021_120109
crossref_primary_10_1016_j_scitotenv_2024_170667
crossref_primary_10_3390_min11030305
crossref_primary_10_1016_j_colsurfa_2023_131469
crossref_primary_10_1016_j_apsusc_2023_157892
crossref_primary_10_1016_j_jhazmat_2021_127993
crossref_primary_10_1016_j_ijmst_2022_06_006
crossref_primary_10_3390_min11111203
crossref_primary_10_1016_j_colsurfa_2021_126713
crossref_primary_10_1016_j_mineng_2022_107864
crossref_primary_10_1016_j_gexplo_2021_106848
crossref_primary_10_1016_j_colsurfa_2024_136018
crossref_primary_10_1016_j_colsurfa_2024_135643
crossref_primary_10_1016_j_molliq_2021_117959
crossref_primary_10_1016_j_apt_2024_104615
crossref_primary_10_1016_j_apsusc_2022_153069
crossref_primary_10_1016_j_jece_2024_114140
crossref_primary_10_1007_s12613_023_2793_4
crossref_primary_10_1016_j_colsurfa_2022_129576
crossref_primary_10_1016_j_apsusc_2024_159404
crossref_primary_10_1016_j_powtec_2022_117676
crossref_primary_10_1016_j_colsurfa_2021_127630
crossref_primary_10_1016_j_mineng_2021_107316
crossref_primary_10_1016_j_apt_2024_104423
crossref_primary_10_1016_j_apt_2024_104426
crossref_primary_10_1016_j_powtec_2023_118805
crossref_primary_10_1016_j_mineng_2022_107880
crossref_primary_10_1007_s11243_023_00538_7
crossref_primary_10_1039_D4BM00380B
crossref_primary_10_3390_min14070692
crossref_primary_10_1016_j_mineng_2023_108290
crossref_primary_10_3390_min12101258
crossref_primary_10_1016_j_apsusc_2023_156660
crossref_primary_10_1016_j_mineng_2021_107229
crossref_primary_10_1016_j_ijmst_2022_09_011
crossref_primary_10_1016_j_mineng_2022_107882
crossref_primary_10_2139_ssrn_5089330
crossref_primary_10_1016_j_ijmst_2022_09_010
crossref_primary_10_1016_j_apsusc_2022_152956
crossref_primary_10_1016_j_colsurfa_2024_134057
crossref_primary_10_1016_j_jiec_2024_03_021
crossref_primary_10_1016_j_seppur_2024_131040
Cites_doi 10.1016/j.mineng.2020.106183
10.1016/S1003-6326(13)62712-0
10.1016/j.seppur.2020.116650
10.1016/j.colsurfa.2018.07.045
10.1016/j.mineng.2018.11.051
10.1016/j.mineng.2008.11.005
10.1016/j.apsusc.2019.143801
10.1016/j.mineng.2019.03.015
10.1016/j.powtec.2020.07.068
10.1016/S0301-7516(03)00003-6
10.1016/j.apt.2017.04.017
10.1016/j.colsurfa.2016.05.028
10.1016/j.apsusc.2020.148795
10.1016/j.apsusc.2017.12.113
10.1016/j.mineng.2020.106420
10.1016/S0892-6875(03)00263-2
10.1016/j.mineng.2019.106132
10.1016/j.mineng.2021.106809
10.1016/j.seppur.2017.01.053
10.1016/j.mineng.2019.105854
10.1016/j.mineng.2020.106373
10.1016/j.seppur.2020.117497
10.1016/j.seppur.2016.04.053
10.1016/j.mineng.2019.105894
10.1016/j.apsusc.2020.147334
10.1016/S1003-6326(18)64926-X
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apsusc.2021.149350
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5584
ExternalDocumentID 10_1016_j_apsusc_2021_149350
S0169433221004268
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
RIG
SEW
SSH
WUQ
ID FETCH-LOGICAL-c306t-124ae03be29ae2b513cd0363800b2a3fee439b25ea90086e335d3a633eb70b673
IEDL.DBID AIKHN
ISSN 0169-4332
IngestDate Thu Apr 24 22:56:17 EDT 2025
Tue Jul 01 01:40:10 EDT 2025
Fri Feb 23 02:46:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Surface modification
Lead ion
Sulfidization flotation
Malachite
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-124ae03be29ae2b513cd0363800b2a3fee439b25ea90086e335d3a633eb70b673
ParticipantIDs crossref_citationtrail_10_1016_j_apsusc_2021_149350
crossref_primary_10_1016_j_apsusc_2021_149350
elsevier_sciencedirect_doi_10_1016_j_apsusc_2021_149350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied surface science
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kyuhyeong, Park, Choi (b0060) 2016; 168
Kongolo, Kipoka, Minanga, k (b0025) 2003; 16
Huai, Qian, Peng (b0125) 2020; 531
Feng, Zhao, Wen (b0085) 2018; 436
Liu, Song, Li (b0070) 2019; 132
Li, Zhu, Zhao (b0020) 2020; 374
Liu, Liu, Wang (b0090) 2019; 142
Zhang, Wen, Feng, Liu (b0120) 2021; 543
Yin, Sun, Hu (b0005) 2017; 171
Yin, Sun, Dong (b0015) 2019; 29
Zhang, Lu, Li (b0035) 2021; 255
Tang, Jiang, Hu (b0055) 2020; 148
Zhang, Wen, Feng, Liu (b0130) 2021; 163
Zhao, Liu, Feng (b0110) 2020; 152
Huang, Liu, Yang (b0135) 2016; 503
Li, Chen, Li (b0075) 2017; 28
Li, Hu, Zeng (b0080) 2013; 23
Wang, X., Liu, W., Jiao, F., et al. 2020. New insights into the mechanism of selective flotation of copper and copper-tin alloy, Separation and Purification Technology 117497.
Liu, Zhu, Song (b0045) 2018; 555
Shen, Liu, Zhang (b0065) 2019; 137
Zhang, Wen, Xian (b0105) 2019; 498
Lee, Archibald, Mclean (b0030) 2009; 22
Li, Rao, Guo (b0040) 2019; 141
Feng, Zhao, Wen, Cao (b0095) 2017; 178
Wang, Wen, Han (b0100) 2020; 146
Liu, Liu, Li (b0050) 2020; 154
Han, Wen, Wang, Feng (b0140) 2020; 240
Boulton, Fornasiero, Ralston (b0115) 2003; 70
Li (10.1016/j.apsusc.2021.149350_b0020) 2020; 374
Liu (10.1016/j.apsusc.2021.149350_b0090) 2019; 142
Huang (10.1016/j.apsusc.2021.149350_b0135) 2016; 503
Boulton (10.1016/j.apsusc.2021.149350_b0115) 2003; 70
Liu (10.1016/j.apsusc.2021.149350_b0050) 2020; 154
Han (10.1016/j.apsusc.2021.149350_b0140) 2020; 240
Shen (10.1016/j.apsusc.2021.149350_b0065) 2019; 137
Kyuhyeong (10.1016/j.apsusc.2021.149350_b0060) 2016; 168
Feng (10.1016/j.apsusc.2021.149350_b0085) 2018; 436
Zhang (10.1016/j.apsusc.2021.149350_b0105) 2019; 498
Yin (10.1016/j.apsusc.2021.149350_b0005) 2017; 171
Li (10.1016/j.apsusc.2021.149350_b0040) 2019; 141
Kongolo (10.1016/j.apsusc.2021.149350_b0025) 2003; 16
Zhao (10.1016/j.apsusc.2021.149350_b0110) 2020; 152
Zhang (10.1016/j.apsusc.2021.149350_b0120) 2021; 543
10.1016/j.apsusc.2021.149350_b0010
Tang (10.1016/j.apsusc.2021.149350_b0055) 2020; 148
Feng (10.1016/j.apsusc.2021.149350_b0095) 2017; 178
Li (10.1016/j.apsusc.2021.149350_b0075) 2017; 28
Zhang (10.1016/j.apsusc.2021.149350_b0035) 2021; 255
Li (10.1016/j.apsusc.2021.149350_b0080) 2013; 23
Yin (10.1016/j.apsusc.2021.149350_b0015) 2019; 29
Zhang (10.1016/j.apsusc.2021.149350_b0130) 2021; 163
Lee (10.1016/j.apsusc.2021.149350_b0030) 2009; 22
Liu (10.1016/j.apsusc.2021.149350_b0070) 2019; 132
Huai (10.1016/j.apsusc.2021.149350_b0125) 2020; 531
Liu (10.1016/j.apsusc.2021.149350_b0045) 2018; 555
Wang (10.1016/j.apsusc.2021.149350_b0100) 2020; 146
References_xml – volume: 168
  start-page: 1
  year: 2016
  end-page: 7
  ident: b0060
  article-title: Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector
  publication-title: Sep. Purif. Technol.
– volume: 141
  year: 2019
  ident: b0040
  article-title: Effects of calcium ions on malachite flotation with octyl hydroxamate
  publication-title: Miner. Eng.
– volume: 146
  year: 2020
  ident: b0100
  article-title: Activation mechanism of lead ions in the flotation of sphalerite depressed with zinc sulfate
  publication-title: Miner. Eng.
– volume: 436
  start-page: 823
  year: 2018
  end-page: 831
  ident: b0085
  article-title: Surface modification of malachite with ethanediamine and its effect on sulfidization flotation
  publication-title: Appl. Surf. Sci.
– volume: 142
  year: 2019
  ident: b0090
  article-title: Novel hydroxy polyamine surfactant N-(2-hydroxyethyl)-N-dodecyl-ethanediamine: Its synthesis and flotation performance study to quartz
  publication-title: Miner. Eng.
– volume: 503
  start-page: 34
  year: 2016
  end-page: 42
  ident: b0135
  article-title: Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2,4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation
  publication-title: Colloids Surf. A. Physicochem. Eng. Asp.
– volume: 154
  year: 2020
  ident: b0050
  article-title: Sulfidization mechanism in malachite flotation: A heterogeneous solid-liquid reaction that yields CuxSy phases grown on malachite
  publication-title: Miner. Eng.
– volume: 28
  start-page: 1877
  year: 2017
  end-page: 1881
  ident: b0075
  article-title: Surface modification of basic copper carbonate by mechanochemical processing with sulfur and ammonium sulfate
  publication-title: Adv. Powder Technol.
– volume: 132
  start-page: 293
  year: 2019
  end-page: 296
  ident: b0070
  article-title: Sulfidization flotation performance of malachite in the presence of calcite
  publication-title: Miner. Eng.
– volume: 543
  year: 2021
  ident: b0120
  article-title: Surface modification of azurite with lead ions and its effects on the adsorption of sulfide ions and xanthate species
  publication-title: Appl. Surf. Sci.
– volume: 498
  year: 2019
  ident: b0105
  article-title: Lead ion modification and its enhancement for xanthate adsorption on smithsonite surface
  publication-title: Appl. Surf.
– volume: 137
  start-page: 43
  year: 2019
  end-page: 52
  ident: b0065
  article-title: Effect of (NH
  publication-title: Miner. Eng.
– volume: 374
  start-page: 522
  year: 2020
  end-page: 526
  ident: b0020
  article-title: A novel decyl-salicyl hydroxamic acid flotation collector: Its synthesis and flotation separation of malachite against quartz
  publication-title: Powder Technol.
– volume: 531
  year: 2020
  ident: b0125
  article-title: Re-evaluating the sulphidisation reaction on malachite surface through electrochemical and Cryo XPS studies
  publication-title: Appl. Surf. Sci.
– volume: 152
  year: 2020
  ident: b0110
  article-title: Enhancement of salicylhydroxamic acid adsorption by Pb(II) modified hemimorphite surfaces and its effect on floatability
  publication-title: Miner. Eng.
– reference: Wang, X., Liu, W., Jiao, F., et al. 2020. New insights into the mechanism of selective flotation of copper and copper-tin alloy, Separation and Purification Technology 117497.
– volume: 240
  year: 2020
  ident: b0140
  article-title: Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite
  publication-title: Sep. Purif. Technol.
– volume: 29
  start-page: 178
  year: 2019
  end-page: 185
  ident: b0015
  article-title: Mechanism and application on sulphidizing flotation of copper oxide with combined collectors
  publication-title: Trans. Nonferrous Metals Soc. China
– volume: 555
  start-page: 679
  year: 2018
  end-page: 684
  ident: b0045
  article-title: Interaction of gangue minerals with malachite and implications for the sulfidization flotation of malachite
  publication-title: Colloids Surf. A
– volume: 255
  year: 2021
  ident: b0035
  article-title: Flotation separation performance of malachite from calcite with new chelating collector and its adsorption mechanism
  publication-title: Sep. Purif. Technol.
– volume: 23
  start-page: 2160
  year: 2013
  end-page: 2165
  ident: b0080
  article-title: Solubility of hemimorphite in ammonium sulfate solution at 25 °C
  publication-title: Trans. Nonferrous Metals Soc. China
– volume: 178
  start-page: 193
  year: 2017
  end-page: 199
  ident: b0095
  article-title: Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector
  publication-title: Sep. Purif. Technol.
– volume: 70
  start-page: 205
  year: 2003
  end-page: 219
  ident: b0115
  article-title: Characterisation of sphalerite and pyrite flotation samples by XPS and ToF-SIMS
  publication-title: Int. J. Miner. Process.
– volume: 22
  start-page: 395
  year: 2009
  end-page: 401
  ident: b0030
  article-title: Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors
  publication-title: Miner. Eng.
– volume: 16
  start-page: 1023
  year: 2003
  end-page: 1026
  ident: b0025
  article-title: Improving the efficiency of oxide copper–cobalt ores flotation by combination of sulphidisers
  publication-title: Miner. Eng.
– volume: 171
  start-page: 1039
  year: 2017
  end-page: 1048
  ident: b0005
  article-title: Evaluation of the possibility of copper recovery from tailings by flotation through bench-scale, commissioning, and industrial tests
  publication-title: J. Cleaner Prod.
– volume: 148
  year: 2020
  ident: b0055
  article-title: Flotability of laurionite and its response to sulfidization flotation
  publication-title: Miner. Eng.
– volume: 163
  year: 2021
  ident: b0130
  article-title: Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector
  publication-title: Miner. Eng.
– volume: 148
  year: 2020
  ident: 10.1016/j.apsusc.2021.149350_b0055
  article-title: Flotability of laurionite and its response to sulfidization flotation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2020.106183
– volume: 23
  start-page: 2160
  issue: 7
  year: 2013
  ident: 10.1016/j.apsusc.2021.149350_b0080
  article-title: Solubility of hemimorphite in ammonium sulfate solution at 25 °C
  publication-title: Trans. Nonferrous Metals Soc. China
  doi: 10.1016/S1003-6326(13)62712-0
– volume: 240
  year: 2020
  ident: 10.1016/j.apsusc.2021.149350_b0140
  article-title: Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.116650
– volume: 555
  start-page: 679
  year: 2018
  ident: 10.1016/j.apsusc.2021.149350_b0045
  article-title: Interaction of gangue minerals with malachite and implications for the sulfidization flotation of malachite
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2018.07.045
– volume: 132
  start-page: 293
  year: 2019
  ident: 10.1016/j.apsusc.2021.149350_b0070
  article-title: Sulfidization flotation performance of malachite in the presence of calcite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.11.051
– volume: 22
  start-page: 395
  issue: 4
  year: 2009
  ident: 10.1016/j.apsusc.2021.149350_b0030
  article-title: Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2008.11.005
– volume: 498
  year: 2019
  ident: 10.1016/j.apsusc.2021.149350_b0105
  article-title: Lead ion modification and its enhancement for xanthate adsorption on smithsonite surface
  publication-title: Appl. Surf.
  doi: 10.1016/j.apsusc.2019.143801
– volume: 137
  start-page: 43
  year: 2019
  ident: 10.1016/j.apsusc.2021.149350_b0065
  article-title: Effect of (NH4)2SO4 on eliminating the depression of excess sulfide ions in the sulfidization flotation of malachite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.03.015
– volume: 255
  year: 2021
  ident: 10.1016/j.apsusc.2021.149350_b0035
  article-title: Flotation separation performance of malachite from calcite with new chelating collector and its adsorption mechanism
  publication-title: Sep. Purif. Technol.
– volume: 374
  start-page: 522
  year: 2020
  ident: 10.1016/j.apsusc.2021.149350_b0020
  article-title: A novel decyl-salicyl hydroxamic acid flotation collector: Its synthesis and flotation separation of malachite against quartz
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.07.068
– volume: 171
  start-page: 1039
  issue: pt.2
  year: 2017
  ident: 10.1016/j.apsusc.2021.149350_b0005
  article-title: Evaluation of the possibility of copper recovery from tailings by flotation through bench-scale, commissioning, and industrial tests
  publication-title: J. Cleaner Prod.
– volume: 70
  start-page: 205
  issue: 1–4
  year: 2003
  ident: 10.1016/j.apsusc.2021.149350_b0115
  article-title: Characterisation of sphalerite and pyrite flotation samples by XPS and ToF-SIMS
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/S0301-7516(03)00003-6
– volume: 28
  start-page: 1877
  issue: 8
  year: 2017
  ident: 10.1016/j.apsusc.2021.149350_b0075
  article-title: Surface modification of basic copper carbonate by mechanochemical processing with sulfur and ammonium sulfate
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2017.04.017
– volume: 503
  start-page: 34
  year: 2016
  ident: 10.1016/j.apsusc.2021.149350_b0135
  article-title: Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2,4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation
  publication-title: Colloids Surf. A. Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2016.05.028
– volume: 543
  year: 2021
  ident: 10.1016/j.apsusc.2021.149350_b0120
  article-title: Surface modification of azurite with lead ions and its effects on the adsorption of sulfide ions and xanthate species
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148795
– volume: 436
  start-page: 823
  year: 2018
  ident: 10.1016/j.apsusc.2021.149350_b0085
  article-title: Surface modification of malachite with ethanediamine and its effect on sulfidization flotation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.12.113
– volume: 154
  year: 2020
  ident: 10.1016/j.apsusc.2021.149350_b0050
  article-title: Sulfidization mechanism in malachite flotation: A heterogeneous solid-liquid reaction that yields CuxSy phases grown on malachite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2020.106420
– volume: 16
  start-page: 1023
  year: 2003
  ident: 10.1016/j.apsusc.2021.149350_b0025
  article-title: Improving the efficiency of oxide copper–cobalt ores flotation by combination of sulphidisers
  publication-title: Miner. Eng.
  doi: 10.1016/S0892-6875(03)00263-2
– volume: 146
  year: 2020
  ident: 10.1016/j.apsusc.2021.149350_b0100
  article-title: Activation mechanism of lead ions in the flotation of sphalerite depressed with zinc sulfate
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.106132
– volume: 163
  year: 2021
  ident: 10.1016/j.apsusc.2021.149350_b0130
  article-title: Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2021.106809
– volume: 178
  start-page: 193
  year: 2017
  ident: 10.1016/j.apsusc.2021.149350_b0095
  article-title: Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.01.053
– volume: 141
  year: 2019
  ident: 10.1016/j.apsusc.2021.149350_b0040
  article-title: Effects of calcium ions on malachite flotation with octyl hydroxamate
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.105854
– volume: 152
  year: 2020
  ident: 10.1016/j.apsusc.2021.149350_b0110
  article-title: Enhancement of salicylhydroxamic acid adsorption by Pb(II) modified hemimorphite surfaces and its effect on floatability
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2020.106373
– ident: 10.1016/j.apsusc.2021.149350_b0010
  doi: 10.1016/j.seppur.2020.117497
– volume: 168
  start-page: 1
  year: 2016
  ident: 10.1016/j.apsusc.2021.149350_b0060
  article-title: Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.04.053
– volume: 142
  year: 2019
  ident: 10.1016/j.apsusc.2021.149350_b0090
  article-title: Novel hydroxy polyamine surfactant N-(2-hydroxyethyl)-N-dodecyl-ethanediamine: Its synthesis and flotation performance study to quartz
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.105894
– volume: 531
  year: 2020
  ident: 10.1016/j.apsusc.2021.149350_b0125
  article-title: Re-evaluating the sulphidisation reaction on malachite surface through electrochemical and Cryo XPS studies
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147334
– volume: 29
  start-page: 178
  year: 2019
  ident: 10.1016/j.apsusc.2021.149350_b0015
  article-title: Mechanism and application on sulphidizing flotation of copper oxide with combined collectors
  publication-title: Trans. Nonferrous Metals Soc. China
  doi: 10.1016/S1003-6326(18)64926-X
SSID ssj0012873
Score 2.5474925
Snippet [Display omitted] •Lead ions can adsorb onto malachite surfaces and form Pb-O species.•Pb-S species formed on malachite surfaces, and Cu(II) were reduced to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 149350
SubjectTerms Lead ion
Malachite
Sulfidization flotation
Surface modification
Title Modification of malachite surfaces with lead ions and its contribution to the sulfidization flotation
URI https://dx.doi.org/10.1016/j.apsusc.2021.149350
Volume 550
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uOhBfGJ9lD14jU13m9exFEtV2osWegu7yS5UYlPa9OpvdybZFAVR8JaETCgzy-x8nW--BbgLSIEEkY8jELY5AyNSR7nCOFGYhIFIjJ9KmkaezvzJfPC08BYNGNWzMESrtLm_yulltrZPetabvfVy2XshHRFS3-L9EgiETWhzEfleC9rDx-fJbN9MQFAgKonviAaEeD1BV9K8JILRLWkZ8j5mjUjQAP5PO9SXXWd8DEe2XGTD6hedQEOvTuHwi4jgGehpnhLfp3Qxyw17l5ksuwNsu9sYolwx-reVZRhORquMyRVeFFtW8tTtgVesyBkWg2iTmWVqpzOZyfKqV38O8_HD62ji2MMTnARRQOHgvi21K5TmkdRceX2RpNS0xQJRcSmM1liKKO5pGRGs0UJ4qZC-wJgFrvIDcQGtVb7Sl8ASzT3jhb7EACKeilTiSpcrLGRcjl9xOyBqh8WJVRanAy6yuKaQvcWVm2Nyc1y5uQPO3mpdKWv88X5QxyL-tkJiTP6_Wl792_IaDuiuoobdQKvY7PQtFiGF6kLz_qPftUvtE9Ht3NM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOAAHxFOMZw5cy7pkfR3RxDRg24VN2q1K2kQaKu20dVd-O3aTTkNCIHGr2riq7Mix68-fCbkPkIEEMh-HQ9rmdDVPHely7URhEgY80X4qsBt5NPYH0-7LzJs1SK_uhUFYpfX9xqdX3treaVttthfzefsNeUSQfYt1qkQg3CG7XY8HiOt7-NzgPMD_mjIzrMb2IFb3z1UgLwGp6AqZDFkHfEbEsf3-p_Np68zpH5FDGyzSR_M9x6Sh8hNysEUheErUqEgR7VMpmBaafohMVLUBulovNQKuKP5rpRkYk-IeoyKHi3JFK5S6HXdFy4JCKAgymZ6ntjeT6qwwlfozMu0_TXoDx45OcBLIAUoHTm2hXC4Vi4Ri0uvwJMWSLYSHkgmulYJARDJPiQiTGsW5l3Lhc7BY4Eo_4OekmRe5uiA0UczTXugLMB9kU5FMXOEyCWGMy-AtbovwWmFxYnnFcbxFFtcAsvfYqDlGNcdGzS3ibKQWhlfjj_VBbYv42_6IwfX_Knn5b8k7sjeYjIbx8Hn8ekX28YkBiV2TZrlcqxsIR0p5W223L6793Z4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modification+of+malachite+surfaces+with+lead+ions+and+its+contribution+to+the+sulfidization+flotation&rft.jtitle=Applied+surface+science&rft.au=Wang%2C+Han&rft.au=Wen%2C+Shuming&rft.au=Han%2C+Guang&rft.au=Feng%2C+Qicheng&rft.date=2021-06-01&rft.issn=0169-4332&rft.volume=550&rft.spage=149350&rft_id=info:doi/10.1016%2Fj.apsusc.2021.149350&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apsusc_2021_149350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon