An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks
Internet of Medical Things (IoMT), an application of Internet of Things (IoT), is addressing countless limitation of traditional health-care systems such as quality of patient care, healthcare costs, shortage of medical staff and inadequate medical supplies in an efficient manner. With the use of th...
Saved in:
Published in | Computer communications Vol. 166; pp. 110 - 124 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Internet of Medical Things (IoMT), an application of Internet of Things (IoT), is addressing countless limitation of traditional health-care systems such as quality of patient care, healthcare costs, shortage of medical staff and inadequate medical supplies in an efficient manner. With the use of the IoMT systems, there are unparalleled benefits that are enhancing the quality and efficiency of treatments and thereby are improving patients health. However, the 2018 Ransomware cyber-attack on Indiana hospital system exposed the critical fault-lines among IoMT environment. The gravity and frequency of cyber-attacks are expanding at an alarming rate. Motivated from aforementioned challenges, we propose an ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks. The ensemble design, combines Decision Tree, Naive Bayes, and Random Forest as first-level individual learners. In the next level, the classification results are used by XGBoost for identifying normal and attack instances. Second, for dynamic and heterogeneous networks such as IoMT, fog, and cloud, we present a deployment architecture for the proposed framework as, Software as a Service (SaaS) in fog side and Infrastructure as a Service (IaaS) in cloud side. Further, most of the existing work is evaluated using KDD CUP99 or NSL-KDD dataset. These datasets lack modern IoMT-based attacks. Therefore, the proposed model uses a realistic dataset namely, ToN-IoT which is collected from a heterogeneous and large-scale IoT network. The experimental result shows that the proposed framework can achieve detection rate of 99.98%, accuracy of 96.35%, and can reduce false alarm rate up to 5.59%. |
---|---|
AbstractList | Internet of Medical Things (IoMT), an application of Internet of Things (IoT), is addressing countless limitation of traditional health-care systems such as quality of patient care, healthcare costs, shortage of medical staff and inadequate medical supplies in an efficient manner. With the use of the IoMT systems, there are unparalleled benefits that are enhancing the quality and efficiency of treatments and thereby are improving patients health. However, the 2018 Ransomware cyber-attack on Indiana hospital system exposed the critical fault-lines among IoMT environment. The gravity and frequency of cyber-attacks are expanding at an alarming rate. Motivated from aforementioned challenges, we propose an ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks. The ensemble design, combines Decision Tree, Naive Bayes, and Random Forest as first-level individual learners. In the next level, the classification results are used by XGBoost for identifying normal and attack instances. Second, for dynamic and heterogeneous networks such as IoMT, fog, and cloud, we present a deployment architecture for the proposed framework as, Software as a Service (SaaS) in fog side and Infrastructure as a Service (IaaS) in cloud side. Further, most of the existing work is evaluated using KDD CUP99 or NSL-KDD dataset. These datasets lack modern IoMT-based attacks. Therefore, the proposed model uses a realistic dataset namely, ToN-IoT which is collected from a heterogeneous and large-scale IoT network. The experimental result shows that the proposed framework can achieve detection rate of 99.98%, accuracy of 96.35%, and can reduce false alarm rate up to 5.59%. |
Author | Kumar, Prabhat Tripathi, Rakesh Gupta, Govind P. |
Author_xml | – sequence: 1 givenname: Prabhat surname: Kumar fullname: Kumar, Prabhat email: pkumar.phd2019.it@nitrr.ac.in – sequence: 2 givenname: Govind P. orcidid: 0000-0002-0456-1572 surname: Gupta fullname: Gupta, Govind P. email: gpgupta.it@nitrr.ac.in – sequence: 3 givenname: Rakesh surname: Tripathi fullname: Tripathi, Rakesh email: rtripathi.it@nitrr.ac.in |
BookMark | eNqFkM9KAzEQh4Mo2FbfwENeIDXZ7CapB6EU_xQqXip4C9lktqbdTSS7rfTt3aWePCgMDMzw_Zj5xug8xAAI3TA6ZZSJ2-3UxqavaUazfpRNKeVnaMSU5ERS_n6ORpTllHAh8ks0btstpTSXko-QnwcMoYWmrAHXYFLwYYNNcLiKG2LruHfYJPvhO7DdPgFxyR8gYHssIRHTdcbusINh62PAVTINfMW06_GEl_FljQN0w6C9QheVqVu4_ukT9Pb4sF48k9Xr03IxXxHLqegIY0We8Ty31lCgWUUdyEIKIwpuZ6LMi1K4TIHKlFKCM1VZZeVMSsMq5grm-ATdnXJtim2boNLWd2a4rkvG15pRPUjTW32SpgdpmmW6l9bD-S_4M_nGpON_2P0Jg_6xg4ekW-shWHA-9Wa0i_7vgG_kh4xC |
CitedBy_id | crossref_primary_10_3390_electronics10111257 crossref_primary_10_1109_TII_2022_3161631 crossref_primary_10_3390_ai5020037 crossref_primary_10_2478_jaiscr_2023_0017 crossref_primary_10_1109_ACCESS_2023_3346320 crossref_primary_10_3390_electronics12122612 crossref_primary_10_1016_j_jpdc_2024_104934 crossref_primary_10_1109_ACCESS_2023_3294479 crossref_primary_10_1109_TII_2022_3231424 crossref_primary_10_1142_S0219649222500423 crossref_primary_10_3390_s22176436 crossref_primary_10_1016_j_comcom_2021_11_021 crossref_primary_10_1109_JBHI_2024_3352013 crossref_primary_10_3390_s21248289 crossref_primary_10_1007_s11042_023_18013_x crossref_primary_10_1109_ACCESS_2022_3172304 crossref_primary_10_1109_JIOT_2021_3122021 crossref_primary_10_1109_TNSM_2022_3193748 crossref_primary_10_1109_ACCESS_2022_3225038 crossref_primary_10_1016_j_bspc_2024_107034 crossref_primary_10_1016_j_dajour_2023_100233 crossref_primary_10_1002_ett_4594 crossref_primary_10_1109_ACCESS_2023_3323573 crossref_primary_10_1007_s11227_022_04568_3 crossref_primary_10_3390_electronics13061053 crossref_primary_10_1016_j_cose_2024_104288 crossref_primary_10_1007_s11042_023_17300_x crossref_primary_10_1109_ACCESS_2024_3357749 crossref_primary_10_3233_JIFS_234441 crossref_primary_10_3390_s22228646 crossref_primary_10_1016_j_iot_2023_100887 crossref_primary_10_1049_ise2_12091 crossref_primary_10_1016_j_asej_2023_102211 crossref_primary_10_3390_computers12120262 crossref_primary_10_1016_j_vlsi_2024_102159 crossref_primary_10_1007_s10462_024_11101_w crossref_primary_10_1007_s10586_024_04768_x crossref_primary_10_1109_JIOT_2022_3230694 crossref_primary_10_3390_electronics11152314 crossref_primary_10_3390_fi14040102 crossref_primary_10_3390_su141912828 crossref_primary_10_1016_j_dajour_2022_100142 crossref_primary_10_3390_app12041990 crossref_primary_10_1016_j_compeleceng_2022_108043 crossref_primary_10_3390_math9192522 crossref_primary_10_1016_j_comnet_2023_109662 crossref_primary_10_3390_designs7060139 crossref_primary_10_1109_IOTM_001_2300021 crossref_primary_10_1109_JIOT_2024_3452421 crossref_primary_10_1016_j_procs_2024_04_235 crossref_primary_10_3390_fi15100332 crossref_primary_10_1109_ACCESS_2024_3480011 crossref_primary_10_1109_TITS_2021_3122368 crossref_primary_10_4018_IJSSCI_291713 crossref_primary_10_1007_s10586_024_04404_8 crossref_primary_10_1002_spy2_454 crossref_primary_10_1016_j_pmcj_2023_101750 crossref_primary_10_1007_s11227_022_04453_z crossref_primary_10_1515_jisys_2023_0220 crossref_primary_10_1007_s10115_024_02149_9 crossref_primary_10_1109_ACCESS_2022_3159235 crossref_primary_10_1007_s10665_023_10309_z crossref_primary_10_3390_rs15143611 crossref_primary_10_1016_j_seta_2022_102852 crossref_primary_10_1016_j_compeleceng_2022_108158 crossref_primary_10_1007_s12046_024_02622_9 crossref_primary_10_1016_j_asoc_2023_110227 crossref_primary_10_1155_2022_1620500 crossref_primary_10_1002_spe_3319 crossref_primary_10_3390_jsan12010003 crossref_primary_10_1109_ACCESS_2023_3270225 crossref_primary_10_4018_IJSWIS_297035 crossref_primary_10_1080_19393555_2024_2362813 crossref_primary_10_1109_TGCN_2022_3165692 crossref_primary_10_1109_JAS_2021_1004087 crossref_primary_10_1109_JIOT_2023_3323771 crossref_primary_10_1109_TCSS_2022_3170375 crossref_primary_10_1016_j_adhoc_2024_103694 crossref_primary_10_1016_j_iot_2024_101420 crossref_primary_10_1016_j_eswa_2023_121758 crossref_primary_10_1016_j_comcom_2024_02_023 crossref_primary_10_1016_j_engappai_2024_109203 crossref_primary_10_1016_j_inffus_2023_102029 crossref_primary_10_1016_j_future_2024_06_023 crossref_primary_10_1155_2022_9023904 crossref_primary_10_1145_3539608 crossref_primary_10_1007_s00500_025_10521_2 crossref_primary_10_7717_peerj_cs_2041 crossref_primary_10_1016_j_rineng_2024_102659 crossref_primary_10_1016_j_future_2024_107636 crossref_primary_10_1080_03772063_2022_2098187 crossref_primary_10_1016_j_jpdc_2022_12_009 crossref_primary_10_1109_TVT_2023_3342127 crossref_primary_10_3390_app132011145 crossref_primary_10_1007_s13369_024_09680_5 crossref_primary_10_1016_j_jisa_2025_103970 crossref_primary_10_3390_s24061782 crossref_primary_10_1007_s13198_023_02119_4 crossref_primary_10_1016_j_compeleceng_2024_109949 crossref_primary_10_1142_S0219649223500661 crossref_primary_10_1016_j_cose_2022_102861 crossref_primary_10_1016_j_sysarc_2023_102831 crossref_primary_10_3390_app13179588 crossref_primary_10_1016_j_bbe_2022_11_005 crossref_primary_10_1016_j_icte_2023_03_006 crossref_primary_10_3390_s24175712 crossref_primary_10_32604_cmes_2024_056308 crossref_primary_10_1109_ACCESS_2025_3538331 crossref_primary_10_3390_s23229247 crossref_primary_10_1142_S0219265921410280 crossref_primary_10_1108_IJPCC_10_2021_0259 crossref_primary_10_1007_s42235_024_00575_7 crossref_primary_10_1016_j_eswa_2023_121618 crossref_primary_10_1007_s12652_022_04449_w crossref_primary_10_1109_ACCESS_2024_3359033 crossref_primary_10_1038_s41598_024_80581_1 crossref_primary_10_1007_s10586_022_03686_0 crossref_primary_10_1016_j_bbe_2022_05_008 crossref_primary_10_1038_s41598_024_84691_8 crossref_primary_10_1002_ett_5008 crossref_primary_10_3390_math9233012 crossref_primary_10_1016_j_ijcip_2023_100658 crossref_primary_10_3390_s23125568 crossref_primary_10_1016_j_knosys_2023_110941 crossref_primary_10_1142_S0218126624502396 crossref_primary_10_1109_JIOT_2024_3387294 crossref_primary_10_1142_S1469026824500330 crossref_primary_10_1007_s11277_022_09726_7 crossref_primary_10_32604_cmc_2022_029283 crossref_primary_10_1109_ACCESS_2025_3547572 crossref_primary_10_15388_23_INFOR525 crossref_primary_10_1142_S0219649224500795 crossref_primary_10_32604_cmc_2023_033153 crossref_primary_10_3390_app12094664 crossref_primary_10_1007_s11280_024_01285_0 crossref_primary_10_1016_j_comnet_2022_109154 crossref_primary_10_1109_TITS_2021_3102581 crossref_primary_10_1109_ACCESS_2023_3281655 crossref_primary_10_1109_TGCN_2024_3403901 |
Cites_doi | 10.1109/ACCESS.2020.2998452 10.1016/j.future.2019.12.028 10.1002/ett.3710 10.1109/JIOT.2020.3002255 10.1109/MCE.2019.2923929 10.1016/j.comcom.2019.12.030 10.1007/s11227-018-2572-6 10.1007/s10489-018-01408-x 10.1016/j.comnet.2019.02.019 10.1186/s13677-018-0123-6 10.1016/j.procs.2018.01.136 10.1145/3231535.3231538 10.1002/9781119488330.ch15 10.1109/MIC.2017.37 10.1016/j.iot.2019.100123 10.1016/j.procs.2018.05.020 10.1109/ACCESS.2020.2968537 10.1038/s41587-019-0045-y 10.1016/j.compbiomed.2019.103375 10.1016/j.comcom.2018.03.008 10.1016/j.cose.2020.101863 10.1155/2018/5978636 10.1016/j.jnca.2016.09.002 10.1109/JIOT.2019.2963288 10.21105/joss.00638 10.1109/ACCESS.2019.2930962 10.1016/j.comcom.2020.05.048 10.1109/MCC.2014.53 10.1016/j.future.2018.07.049 10.1109/TFUZZ.2017.2719619 10.1002/cpe.3166 10.1002/ett.4112 10.1016/j.comnet.2019.01.023 10.1016/j.knosys.2019.105124 10.1016/j.comcom.2020.02.008 10.1016/j.comnet.2018.07.020 10.1109/MNET.001.1900105 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.comcom.2020.12.003 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-703X |
EndPage | 124 |
ExternalDocumentID | 10_1016_j_comcom_2020_12_003 S0140366420320090 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K WH7 ZMT ~G- 07C 29F AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD F0J FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH TAE UHS VH1 VOH WUQ XPP ZY4 |
ID | FETCH-LOGICAL-c306t-11542344cca0e02f0de7576a653c96b45b6d28e828886318fc8c7977a1f1d51d3 |
IEDL.DBID | .~1 |
ISSN | 0140-3664 |
IngestDate | Thu Apr 24 23:10:02 EDT 2025 Tue Jul 01 02:43:06 EDT 2025 Fri Feb 23 02:48:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fog computing Cyber-attacks Intrusion detection system (IDS) Ensemble learning Internet of Medical Things (IoMT) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-11542344cca0e02f0de7576a653c96b45b6d28e828886318fc8c7977a1f1d51d3 |
ORCID | 0000-0002-0456-1572 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1016_j_comcom_2020_12_003 crossref_primary_10_1016_j_comcom_2020_12_003 elsevier_sciencedirect_doi_10_1016_j_comcom_2020_12_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-15 |
PublicationDateYYYYMMDD | 2021-01-15 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Computer communications |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | da Costa, Papa, Lisboa, Munoz, de Albuquerque (b12) 2019; 151 Djenna, Saïdouni (b40) 2018 NATELORD (b18) 2017 Dr. Rajashekhar Karjagi, Manish Jindal (b6) 2019 Al-Shaher, Hameed, Ţăpuş (b41) 2017 Kaur, Sharma, Mittal (b43) 2018; 132 Remeseiro, Bolon-Canedo (b52) 2019 Newaz, Sikder, Rahman, Uluagac (b38) 2019 Sharma, Singh, Park (b31) 2018; 122 Moustafa (b36) 2019 Menon, Jacob, Joseph, Almagrabi (b26) 2020; 7 Kim, Campbell, de Ávila, Wang (b8) 2019; 37 Garrett Hill (b17) 2018 Yang, Jan, Menon, Shynu, Aimal, Alshehri (b7) 2020; 8 Liaw, Wiener (b50) 2002; 2 Tan, Nagar, He, Nanda, Liu, Wang, Hu (b59) 2014; 1 Sharafaldin, Lashkari, Ghorbani (b57) 2018 Luke Irwin (b16) 2018 Choudhuri, Chatterjee, Garg (b9) 2019 Hartmann, Hashmi, Imran (b24) 2019 Al-Turjman, Nawaz, Ulusar (b19) 2020; 150 Hawedi, Talhi, Boucheneb (b60) 2018; 74 He, Qiao, Gao, Zheng, Chan, Li, Guizani (b39) 2019; 33 Balandina, Balandin, Koucheryavy, Mouromtsev (b4) 2015 Yaacoub, Noura, Noura, Salman, Yaacoub, Couturier, Chehab (b15) 2020; 105 . Laber, Shedden, Yang (b69) 2016 Salman, Elhajj, Chehab, Kayssi (b28) 2018; 143 Halder, Ghosal, Conti (b1) 2019; 154 Hatzivasilis, Soultatos, Ioannidis, Verikoukis, Demetriou, Tsatsoulis (b13) 2019 Colaco, Kumar, Tamang, Biju (b51) 2019 Banerjee, Chattopadhyay, Pal, Garain (b54) 2018; 15 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b63) 2011; 12 Alsubaei, Abuhussein, Shandilya, Shiva (b20) 2019; 8 Oracle Corporation (b58) 2018 Raschka (b64) 2018; 3 Shafiq, Tian, Bashir, Du, Guizani (b67) 2020 Begli, Derakhshan, Karimipour (b37) 2019 Priyadarshini, Panda, Mishra (b14) 2019 Mutlag, Ghani, Arunkumar, Mohammed, Mohd (b25) 2019; 90 Singh, Jeong, Park (b23) 2016; 75 Li, Gao, Li, Fan (b56) 2014 Çavuşoğlu (b48) 2019; 49 Yi, Qin, Li (b30) 2015 Zhou, Han, Lu, Fu (b33) 2020 Shafiq, Tian, Bashir, Du, Guizani (b34) 2020; 94 Marwan, Kartit, Ouahmane (b42) 2018; 127 Aldweesh, Derhab, Emam (b55) 2020; 189 Bao, Rong, Angelov, Chen, Wong (b53) 2017; 26 Ma, Qu, Zhao (b68) 2013 Singh, Sharma, Moon, Park (b3) 2017 Zhu, Wu, Koo, Tsang, Liu, Chi, Tsang (b5) 2019; 8 Azeez, Bada, Misra, Adewumi, Van der Vyver, Ahuja (b32) 2020 Alrawais, Alhothaily, Hu, Cheng (b22) 2017; 21 Cisco (b27) 2015 Elizabeth Engler Modic (b10) 2019 Algarni (b29) 2019; 7 Dr Nour Moustafa (b65) 2019 Sun, Cai, Li, Liu, Fang, Wang (b46) 2018; 2018 Le Bris, El Asri (b47) 2016 P. Kumar, R. Kumar, G.P. Gupta, R. Tripathi, A distributed framework for detecting DDoS attacks in smart contract-based blockchain-IoT systems by leveraging fog computing, Trans. Emerg. Telecommun. Technol., e4112 Alrashdi, Alqazzaz, Alharthi, Aloufi, Zohdy, Ming (b44) 2019 Iwendi, Khan, Anajemba, Bashir, Noor (b49) 2020; 8 Bierzynski, Escobar, Eberl (b35) 2017 Probst, Alata, Kaâniche, Nicomette (b61) 2015 Li, Li, Liu (b62) 2015; 27 Elrawy, Awad, Hamed (b2) 2018; 7 Gupta, Tanwar, Tyagi, Kumar (b11) 2020; 153 Alsubaei, Abuhussein, Shiva (b21) 2017 R.M., Maddikunta, M., Koppu, Gadekallu, Chowdhary, Alazab (b45) 2020; 160 Kim (10.1016/j.comcom.2020.12.003_b8) 2019; 37 Choudhuri (10.1016/j.comcom.2020.12.003_b9) 2019 Azeez (10.1016/j.comcom.2020.12.003_b32) 2020 Shafiq (10.1016/j.comcom.2020.12.003_b67) 2020 Alrashdi (10.1016/j.comcom.2020.12.003_b44) 2019 Iwendi (10.1016/j.comcom.2020.12.003_b49) 2020; 8 Oracle Corporation (10.1016/j.comcom.2020.12.003_b58) 2018 Tan (10.1016/j.comcom.2020.12.003_b59) 2014; 1 Elizabeth Engler Modic (10.1016/j.comcom.2020.12.003_b10) 2019 Dr. Rajashekhar Karjagi (10.1016/j.comcom.2020.12.003_b6) 2019 Halder (10.1016/j.comcom.2020.12.003_b1) 2019; 154 Garrett Hill (10.1016/j.comcom.2020.12.003_b17) 2018 Remeseiro (10.1016/j.comcom.2020.12.003_b52) 2019 Moustafa (10.1016/j.comcom.2020.12.003_b36) 2019 Mutlag (10.1016/j.comcom.2020.12.003_b25) 2019; 90 Bao (10.1016/j.comcom.2020.12.003_b53) 2017; 26 Gupta (10.1016/j.comcom.2020.12.003_b11) 2020; 153 Liaw (10.1016/j.comcom.2020.12.003_b50) 2002; 2 10.1016/j.comcom.2020.12.003_b66 Newaz (10.1016/j.comcom.2020.12.003_b38) 2019 Li (10.1016/j.comcom.2020.12.003_b56) 2014 da Costa (10.1016/j.comcom.2020.12.003_b12) 2019; 151 Pedregosa (10.1016/j.comcom.2020.12.003_b63) 2011; 12 Li (10.1016/j.comcom.2020.12.003_b62) 2015; 27 NATELORD (10.1016/j.comcom.2020.12.003_b18) 2017 Yang (10.1016/j.comcom.2020.12.003_b7) 2020; 8 Sharafaldin (10.1016/j.comcom.2020.12.003_b57) 2018 Sun (10.1016/j.comcom.2020.12.003_b46) 2018; 2018 Dr Nour Moustafa (10.1016/j.comcom.2020.12.003_b65) 2019 Yaacoub (10.1016/j.comcom.2020.12.003_b15) 2020; 105 Probst (10.1016/j.comcom.2020.12.003_b61) 2015 Djenna (10.1016/j.comcom.2020.12.003_b40) 2018 Kaur (10.1016/j.comcom.2020.12.003_b43) 2018; 132 Aldweesh (10.1016/j.comcom.2020.12.003_b55) 2020; 189 Ma (10.1016/j.comcom.2020.12.003_b68) 2013 Al-Turjman (10.1016/j.comcom.2020.12.003_b19) 2020; 150 Laber (10.1016/j.comcom.2020.12.003_b69) 2016 Shafiq (10.1016/j.comcom.2020.12.003_b34) 2020; 94 Sharma (10.1016/j.comcom.2020.12.003_b31) 2018; 122 Bierzynski (10.1016/j.comcom.2020.12.003_b35) 2017 Begli (10.1016/j.comcom.2020.12.003_b37) 2019 Cisco (10.1016/j.comcom.2020.12.003_b27) 2015 Colaco (10.1016/j.comcom.2020.12.003_b51) 2019 Banerjee (10.1016/j.comcom.2020.12.003_b54) 2018; 15 Algarni (10.1016/j.comcom.2020.12.003_b29) 2019; 7 R.M. (10.1016/j.comcom.2020.12.003_b45) 2020; 160 Alrawais (10.1016/j.comcom.2020.12.003_b22) 2017; 21 Menon (10.1016/j.comcom.2020.12.003_b26) 2020; 7 Hartmann (10.1016/j.comcom.2020.12.003_b24) 2019 Zhu (10.1016/j.comcom.2020.12.003_b5) 2019; 8 Elrawy (10.1016/j.comcom.2020.12.003_b2) 2018; 7 He (10.1016/j.comcom.2020.12.003_b39) 2019; 33 Balandina (10.1016/j.comcom.2020.12.003_b4) 2015 Çavuşoğlu (10.1016/j.comcom.2020.12.003_b48) 2019; 49 Raschka (10.1016/j.comcom.2020.12.003_b64) 2018; 3 Luke Irwin (10.1016/j.comcom.2020.12.003_b16) 2018 Salman (10.1016/j.comcom.2020.12.003_b28) 2018; 143 Al-Shaher (10.1016/j.comcom.2020.12.003_b41) 2017 Alsubaei (10.1016/j.comcom.2020.12.003_b20) 2019; 8 Marwan (10.1016/j.comcom.2020.12.003_b42) 2018; 127 Yi (10.1016/j.comcom.2020.12.003_b30) 2015 Hawedi (10.1016/j.comcom.2020.12.003_b60) 2018; 74 Zhou (10.1016/j.comcom.2020.12.003_b33) 2020 Le Bris (10.1016/j.comcom.2020.12.003_b47) 2016 Singh (10.1016/j.comcom.2020.12.003_b23) 2016; 75 Hatzivasilis (10.1016/j.comcom.2020.12.003_b13) 2019 Singh (10.1016/j.comcom.2020.12.003_b3) 2017 Priyadarshini (10.1016/j.comcom.2020.12.003_b14) 2019 Alsubaei (10.1016/j.comcom.2020.12.003_b21) 2017 |
References_xml | – start-page: 1 year: 2018 end-page: 4 ident: b40 article-title: Cyber attacks classification in IoT-based-healthcare infrastructure publication-title: 2018 2nd Cyber Security in Networking Conference, CSNet – volume: 74 start-page: 5199 year: 2018 end-page: 5230 ident: b60 article-title: Multi-tenant intrusion detection system for public cloud (MTIDS) publication-title: J. Supercomput. – volume: 7 start-page: 5874 year: 2020 end-page: 5881 ident: b26 article-title: SDN-Powered humanoid with edge computing for assisting paralyzed patients publication-title: IEEE Internet Things J. – start-page: 490 year: 2013 end-page: 494 ident: b68 article-title: Estimator with forgetting factor of correntropy and recursive algorithm for traffic network prediction publication-title: 2013 25th Chinese Control and Decision Conference, CCDC – year: 2019 ident: b6 article-title: What can iot do for healthcare? – volume: 7 start-page: 21 year: 2018 ident: b2 article-title: Intrusion detection systems for IoT-based smart environments: a survey publication-title: J. Cloud Comput. – start-page: 62 year: 2017 end-page: 67 ident: b35 article-title: Cloud, fog and edge: Cooperation for the future? publication-title: 2017 Second International Conference on Fog and Mobile Edge Computing, FMEC – year: 2018 ident: b16 article-title: Indiana hospital pays $55,000 after ransomware attack – volume: 94 year: 2020 ident: b34 article-title: IoT Malicious traffic identification using wrapper-based feature selection mechanisms publication-title: Comput. Secur. – start-page: 511 year: 2014 end-page: 538 ident: b56 article-title: Ensemble learning publication-title: Data Classification – volume: 7 start-page: 101879 year: 2019 end-page: 101894 ident: b29 article-title: A survey and classification of security and privacy research in smart healthcare systems publication-title: IEEE Access – volume: 127 start-page: 388 year: 2018 end-page: 397 ident: b42 article-title: Security enhancement in healthcare cloud using machine learning publication-title: Procedia Comput. Sci. – volume: 8 year: 2019 ident: b20 article-title: IoMT-SAF: Internet of medical things security assessment framework publication-title: Internet Things – start-page: 457 year: 2019 end-page: 464 ident: b13 article-title: Review of security and privacy for the Internet of Medical Things (IoMT) publication-title: 2019 15th International Conference on Distributed Computing in Sensor Systems, DCOSS – year: 2015 ident: b27 article-title: Fog computing and the internet of things: Extend the cloud to where the things are – year: 2018 ident: b17 article-title: Indiana hospital pays $55,000 after ransomware attack – start-page: 112 year: 2017 end-page: 120 ident: b21 article-title: Security and privacy in the internet of medical things: taxonomy and risk assessment publication-title: 2017 IEEE 42nd Conference on Local Computer Networks Workshops, LCN Workshops – start-page: 49 year: 2015 end-page: 60 ident: b61 article-title: Automated evaluation of network intrusion detection systems in iaas clouds publication-title: 2015 11th European Dependable Computing Conference, EDCC – volume: 154 start-page: 28 year: 2019 end-page: 46 ident: b1 article-title: Efficient physical intrusion detection in Internet of Things: A Node deployment approach publication-title: Comput. Netw. – year: 2019 ident: b52 article-title: A review of feature selection methods in medical applications publication-title: Comput. Biol. Med. – start-page: 189 year: 2016 end-page: 209 ident: b69 article-title: An imputation method for estimating the learning curve in classification problems publication-title: Statistical Analysis for High-Dimensional Data – start-page: 37 year: 2015 end-page: 44 ident: b4 article-title: IoT Use cases in healthcare and tourism publication-title: 2015 IEEE 17th Conference on Business Informatics, vol. 2 – volume: 37 start-page: 389 year: 2019 end-page: 406 ident: b8 article-title: Wearable biosensors for healthcare monitoring publication-title: Nature Biotechnol. – volume: 33 start-page: 64 year: 2019 end-page: 69 ident: b39 article-title: Intrusion detection based on stacked autoencoder for connected healthcare systems publication-title: IEEE Netw. – volume: 1 start-page: 27 year: 2014 end-page: 33 ident: b59 article-title: Enhancing big data security with collaborative intrusion detection publication-title: IEEE Cloud Comput. – start-page: 131 year: 2019 end-page: 160 ident: b9 article-title: Internet of things in healthcare: A brief overview publication-title: Internet of Things in Biomedical Engineering – start-page: 389 year: 2019 end-page: 396 ident: b38 article-title: Healthguard: A machine learning-based security framework for smart healthcare systems publication-title: 2019 Sixth International Conference on Social Networks Analysis, Management and Security, SNAMS – volume: 27 start-page: 1861 year: 2015 end-page: 1885 ident: b62 article-title: CloudMon: a resource-efficient IaaS cloud monitoring system based on networked intrusion detection system virtual appliances publication-title: Concurr. Comput.: Pract. Exper. – year: 2019 ident: b65 article-title: TON_IoT Datasets for cybersecurity applications based artificial intelligence – start-page: 133 year: 2019 end-page: 153 ident: b51 article-title: A review on feature selection algorithms publication-title: Emerging Research in Computing, Information, Communication and Applications – volume: 122 start-page: 1 year: 2018 end-page: 8 ident: b31 article-title: OpCloudSec: OPen cloud software defined wireless network security for the Internet of Things publication-title: Comput. Commun. – year: 2019 ident: b36 article-title: ToN_IoT Datasets – start-page: 1 year: 2017 end-page: 18 ident: b3 article-title: Advanced lightweight encryption algorithms for IoT devices: survey, challenges and solutions publication-title: J. Ambient Intell. Humanized Comput. – volume: 2018 year: 2018 ident: b46 article-title: Security and privacy in the medical internet of things: a review publication-title: Secur. Commun. Netw. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: b50 article-title: Classification and regression by randomForest publication-title: R News – start-page: 685 year: 2015 end-page: 695 ident: b30 article-title: Security and privacy issues of fog computing: A survey publication-title: International Conference on Wireless Algorithms, Systems, and Applications – volume: 49 start-page: 2735 year: 2019 end-page: 2761 ident: b48 article-title: A new hybrid approach for intrusion detection using machine learning methods publication-title: Appl. Intell. – start-page: 120 year: 2019 end-page: 124 ident: b37 article-title: A layered intrusion detection system for critical infrastructure using machine learning publication-title: 2019 IEEE 7th International Conference on Smart Energy Grid Engineering, SEGE – volume: 90 start-page: 62 year: 2019 end-page: 78 ident: b25 article-title: Enabling technologies for fog computing in healthcare IoT systems publication-title: Future Gener. Comput. Syst. – volume: 143 start-page: 221 year: 2018 end-page: 246 ident: b28 article-title: IoT Survey: An SDN and fog computing perspective publication-title: Comput. Netw. – volume: 132 start-page: 1049 year: 2018 end-page: 1059 ident: b43 article-title: Big data and machine learning based secure healthcare framework publication-title: Proc. Comput. Sci. – start-page: 231 year: 2019 end-page: 243 ident: b14 article-title: Security in healthcare applications based on fog and cloud computing publication-title: Cyber Secur. Parallel Distributed Comput. – volume: 105 start-page: 581 year: 2020 end-page: 606 ident: b15 article-title: Securing internet of medical things systems: Limitations, issues and recommendations publication-title: Future Gener. Comput. Syst. – volume: 150 start-page: 644 year: 2020 end-page: 660 ident: b19 article-title: Intelligence in the Internet of Medical Things era: A systematic review of current and future trends publication-title: Comput. Commun. – volume: 15 start-page: 24 year: 2018 end-page: 30 ident: b54 article-title: Automation of feature engineering for iot analytics publication-title: ACM SIGBED Rev. – volume: 21 start-page: 34 year: 2017 end-page: 42 ident: b22 article-title: Fog computing for the internet of things: Security and privacy issues publication-title: IEEE Internet Comput. – year: 2018 ident: b58 article-title: MySQL Cluster CGE – volume: 189 year: 2020 ident: b55 article-title: Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues publication-title: Knowl.-Based Syst. – year: 2019 ident: b24 article-title: Edge computing in smart health care systems: Review, challenges, and research directions publication-title: Trans. Emerg. Telecommun. Technol. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b63 article-title: Scikit-learn: Machine learning in python publication-title: J. Mach. Learn. Res. – start-page: 12 year: 2016 ident: b47 article-title: State of cybersecurity & cyber threats in healthcare organizations publication-title: ESSEC Business School – volume: 26 start-page: 1324 year: 2017 end-page: 1338 ident: b53 article-title: Correntropy-based evolving fuzzy neural system publication-title: IEEE Trans. Fuzzy Syst. – volume: 8 start-page: 101464 year: 2020 end-page: 101475 ident: b7 article-title: A centralized cluster-based hierarchical approach for green communication in a smart healthcare system publication-title: IEEE Access – start-page: 1 year: 2020 end-page: 14 ident: b33 article-title: Intrusion detection system for IoT heterogeneous perceptual network publication-title: Mob. Netw. Appl. – start-page: 685 year: 2020 end-page: 696 ident: b32 article-title: Intrusion detection and prevention systems: An updated review publication-title: Data Management, Analytics and Innovation – year: 2017 ident: b18 article-title: IoMT: A Smart, connected infrastructure – start-page: 0421 year: 2017 end-page: 0426 ident: b41 article-title: Protect healthcare system based on intelligent techniques publication-title: 2017 4th International Conference on Control, Decision and Information Technologies, CoDIT – volume: 75 start-page: 200 year: 2016 end-page: 222 ident: b23 article-title: A survey on cloud computing security: Issues, threats, and solutions publication-title: J. Netw. Comput. Appl. – start-page: 0515 year: 2019 end-page: 0522 ident: b44 article-title: FBAD: Fog-based attack detection for IoT healthcare in smart cities publication-title: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, UEMCON – reference: . – volume: 8 start-page: 28462 year: 2020 end-page: 28474 ident: b49 article-title: Realizing an efficient iomt-assisted patient diet recommendation system through machine learning model publication-title: IEEE Access – volume: 151 start-page: 147 year: 2019 end-page: 157 ident: b12 article-title: Internet of things: A survey on machine learning-based intrusion detection approaches publication-title: Comput. Netw. – reference: P. Kumar, R. Kumar, G.P. Gupta, R. Tripathi, A distributed framework for detecting DDoS attacks in smart contract-based blockchain-IoT systems by leveraging fog computing, Trans. Emerg. Telecommun. Technol., e4112, – start-page: 108 year: 2018 end-page: 116 ident: b57 article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization publication-title: ICISSP – volume: 8 start-page: 26 year: 2019 end-page: 30 ident: b5 article-title: Smart healthcare in the era of internet-of-things publication-title: IEEE Consumer Electron. Mag. – volume: 160 start-page: 139 year: 2020 end-page: 149 ident: b45 article-title: An effective feature engineering for DNN using hybrid PCA-gwo for intrusion detection in IoMT architecture publication-title: Comput. Commun. – start-page: 1 year: 2020 ident: b67 article-title: Corrauc: a malicious bot-IoT traffic detection method in IoT network using machine learning techniques publication-title: IEEE Internet Things J. – volume: 153 start-page: 406 year: 2020 end-page: 440 ident: b11 article-title: Machine learning models for secure data analytics: A taxonomy and threat model publication-title: Comput. Commun. – year: 2019 ident: b10 article-title: IoMT: A Smart, connected infrastructure – volume: 3 year: 2018 ident: b64 article-title: MLxtend: PRoviding machine learning and data science utilities and extensions to python’s scientific computing stack publication-title: J. Open Source Softw. – volume: 8 start-page: 101464 year: 2020 ident: 10.1016/j.comcom.2020.12.003_b7 article-title: A centralized cluster-based hierarchical approach for green communication in a smart healthcare system publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2998452 – volume: 105 start-page: 581 year: 2020 ident: 10.1016/j.comcom.2020.12.003_b15 article-title: Securing internet of medical things systems: Limitations, issues and recommendations publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.12.028 – year: 2019 ident: 10.1016/j.comcom.2020.12.003_b24 article-title: Edge computing in smart health care systems: Review, challenges, and research directions publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.3710 – start-page: 1 year: 2020 ident: 10.1016/j.comcom.2020.12.003_b67 article-title: Corrauc: a malicious bot-IoT traffic detection method in IoT network using machine learning techniques publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3002255 – volume: 8 start-page: 26 issue: 5 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b5 article-title: Smart healthcare in the era of internet-of-things publication-title: IEEE Consumer Electron. Mag. doi: 10.1109/MCE.2019.2923929 – start-page: 0515 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b44 article-title: FBAD: Fog-based attack detection for IoT healthcare in smart cities – volume: 150 start-page: 644 year: 2020 ident: 10.1016/j.comcom.2020.12.003_b19 article-title: Intelligence in the Internet of Medical Things era: A systematic review of current and future trends publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.12.030 – start-page: 389 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b38 article-title: Healthguard: A machine learning-based security framework for smart healthcare systems – start-page: 189 year: 2016 ident: 10.1016/j.comcom.2020.12.003_b69 article-title: An imputation method for estimating the learning curve in classification problems – volume: 74 start-page: 5199 issue: 10 year: 2018 ident: 10.1016/j.comcom.2020.12.003_b60 article-title: Multi-tenant intrusion detection system for public cloud (MTIDS) publication-title: J. Supercomput. doi: 10.1007/s11227-018-2572-6 – volume: 49 start-page: 2735 issue: 7 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b48 article-title: A new hybrid approach for intrusion detection using machine learning methods publication-title: Appl. Intell. doi: 10.1007/s10489-018-01408-x – volume: 154 start-page: 28 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b1 article-title: Efficient physical intrusion detection in Internet of Things: A Node deployment approach publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.02.019 – volume: 7 start-page: 21 issue: 1 year: 2018 ident: 10.1016/j.comcom.2020.12.003_b2 article-title: Intrusion detection systems for IoT-based smart environments: a survey publication-title: J. Cloud Comput. doi: 10.1186/s13677-018-0123-6 – volume: 127 start-page: 388 year: 2018 ident: 10.1016/j.comcom.2020.12.003_b42 article-title: Security enhancement in healthcare cloud using machine learning publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.01.136 – year: 2018 ident: 10.1016/j.comcom.2020.12.003_b58 – volume: 15 start-page: 24 issue: 2 year: 2018 ident: 10.1016/j.comcom.2020.12.003_b54 article-title: Automation of feature engineering for iot analytics publication-title: ACM SIGBED Rev. doi: 10.1145/3231535.3231538 – start-page: 231 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b14 article-title: Security in healthcare applications based on fog and cloud computing publication-title: Cyber Secur. Parallel Distributed Comput. doi: 10.1002/9781119488330.ch15 – year: 2018 ident: 10.1016/j.comcom.2020.12.003_b16 – volume: 21 start-page: 34 issue: 2 year: 2017 ident: 10.1016/j.comcom.2020.12.003_b22 article-title: Fog computing for the internet of things: Security and privacy issues publication-title: IEEE Internet Comput. doi: 10.1109/MIC.2017.37 – start-page: 133 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b51 article-title: A review on feature selection algorithms – start-page: 685 year: 2015 ident: 10.1016/j.comcom.2020.12.003_b30 article-title: Security and privacy issues of fog computing: A survey – start-page: 1 year: 2020 ident: 10.1016/j.comcom.2020.12.003_b33 article-title: Intrusion detection system for IoT heterogeneous perceptual network publication-title: Mob. Netw. Appl. – volume: 8 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b20 article-title: IoMT-SAF: Internet of medical things security assessment framework publication-title: Internet Things doi: 10.1016/j.iot.2019.100123 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.comcom.2020.12.003_b50 article-title: Classification and regression by randomForest publication-title: R News – start-page: 511 year: 2014 ident: 10.1016/j.comcom.2020.12.003_b56 article-title: Ensemble learning – start-page: 0421 year: 2017 ident: 10.1016/j.comcom.2020.12.003_b41 article-title: Protect healthcare system based on intelligent techniques – volume: 132 start-page: 1049 year: 2018 ident: 10.1016/j.comcom.2020.12.003_b43 article-title: Big data and machine learning based secure healthcare framework publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2018.05.020 – volume: 8 start-page: 28462 year: 2020 ident: 10.1016/j.comcom.2020.12.003_b49 article-title: Realizing an efficient iomt-assisted patient diet recommendation system through machine learning model publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968537 – start-page: 108 year: 2018 ident: 10.1016/j.comcom.2020.12.003_b57 article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization – start-page: 120 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b37 article-title: A layered intrusion detection system for critical infrastructure using machine learning – volume: 37 start-page: 389 issue: 4 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b8 article-title: Wearable biosensors for healthcare monitoring publication-title: Nature Biotechnol. doi: 10.1038/s41587-019-0045-y – year: 2019 ident: 10.1016/j.comcom.2020.12.003_b36 – year: 2019 ident: 10.1016/j.comcom.2020.12.003_b52 article-title: A review of feature selection methods in medical applications publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103375 – start-page: 1 year: 2018 ident: 10.1016/j.comcom.2020.12.003_b40 article-title: Cyber attacks classification in IoT-based-healthcare infrastructure – year: 2018 ident: 10.1016/j.comcom.2020.12.003_b17 – volume: 122 start-page: 1 year: 2018 ident: 10.1016/j.comcom.2020.12.003_b31 article-title: OpCloudSec: OPen cloud software defined wireless network security for the Internet of Things publication-title: Comput. Commun. doi: 10.1016/j.comcom.2018.03.008 – volume: 94 year: 2020 ident: 10.1016/j.comcom.2020.12.003_b34 article-title: IoT Malicious traffic identification using wrapper-based feature selection mechanisms publication-title: Comput. Secur. doi: 10.1016/j.cose.2020.101863 – volume: 2018 year: 2018 ident: 10.1016/j.comcom.2020.12.003_b46 article-title: Security and privacy in the medical internet of things: a review publication-title: Secur. Commun. Netw. doi: 10.1155/2018/5978636 – start-page: 685 year: 2020 ident: 10.1016/j.comcom.2020.12.003_b32 article-title: Intrusion detection and prevention systems: An updated review – year: 2019 ident: 10.1016/j.comcom.2020.12.003_b65 – volume: 75 start-page: 200 year: 2016 ident: 10.1016/j.comcom.2020.12.003_b23 article-title: A survey on cloud computing security: Issues, threats, and solutions publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2016.09.002 – start-page: 49 year: 2015 ident: 10.1016/j.comcom.2020.12.003_b61 article-title: Automated evaluation of network intrusion detection systems in iaas clouds – start-page: 457 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b13 article-title: Review of security and privacy for the Internet of Medical Things (IoMT) – start-page: 490 year: 2013 ident: 10.1016/j.comcom.2020.12.003_b68 article-title: Estimator with forgetting factor of correntropy and recursive algorithm for traffic network prediction – volume: 7 start-page: 5874 issue: 7 year: 2020 ident: 10.1016/j.comcom.2020.12.003_b26 article-title: SDN-Powered humanoid with edge computing for assisting paralyzed patients publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2963288 – year: 2017 ident: 10.1016/j.comcom.2020.12.003_b18 – year: 2019 ident: 10.1016/j.comcom.2020.12.003_b6 – volume: 3 issue: 24 year: 2018 ident: 10.1016/j.comcom.2020.12.003_b64 article-title: MLxtend: PRoviding machine learning and data science utilities and extensions to python’s scientific computing stack publication-title: J. Open Source Softw. doi: 10.21105/joss.00638 – volume: 7 start-page: 101879 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b29 article-title: A survey and classification of security and privacy research in smart healthcare systems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2930962 – volume: 160 start-page: 139 year: 2020 ident: 10.1016/j.comcom.2020.12.003_b45 article-title: An effective feature engineering for DNN using hybrid PCA-gwo for intrusion detection in IoMT architecture publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.05.048 – start-page: 112 year: 2017 ident: 10.1016/j.comcom.2020.12.003_b21 article-title: Security and privacy in the internet of medical things: taxonomy and risk assessment – volume: 1 start-page: 27 issue: 3 year: 2014 ident: 10.1016/j.comcom.2020.12.003_b59 article-title: Enhancing big data security with collaborative intrusion detection publication-title: IEEE Cloud Comput. doi: 10.1109/MCC.2014.53 – start-page: 62 year: 2017 ident: 10.1016/j.comcom.2020.12.003_b35 article-title: Cloud, fog and edge: Cooperation for the future? – volume: 90 start-page: 62 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b25 article-title: Enabling technologies for fog computing in healthcare IoT systems publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.07.049 – start-page: 131 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b9 article-title: Internet of things in healthcare: A brief overview – volume: 26 start-page: 1324 issue: 3 year: 2017 ident: 10.1016/j.comcom.2020.12.003_b53 article-title: Correntropy-based evolving fuzzy neural system publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2017.2719619 – volume: 27 start-page: 1861 issue: 8 year: 2015 ident: 10.1016/j.comcom.2020.12.003_b62 article-title: CloudMon: a resource-efficient IaaS cloud monitoring system based on networked intrusion detection system virtual appliances publication-title: Concurr. Comput.: Pract. Exper. doi: 10.1002/cpe.3166 – ident: 10.1016/j.comcom.2020.12.003_b66 doi: 10.1002/ett.4112 – start-page: 37 year: 2015 ident: 10.1016/j.comcom.2020.12.003_b4 article-title: IoT Use cases in healthcare and tourism – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.comcom.2020.12.003_b63 article-title: Scikit-learn: Machine learning in python publication-title: J. Mach. Learn. Res. – volume: 151 start-page: 147 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b12 article-title: Internet of things: A survey on machine learning-based intrusion detection approaches publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.01.023 – start-page: 1 year: 2017 ident: 10.1016/j.comcom.2020.12.003_b3 article-title: Advanced lightweight encryption algorithms for IoT devices: survey, challenges and solutions publication-title: J. Ambient Intell. Humanized Comput. – year: 2019 ident: 10.1016/j.comcom.2020.12.003_b10 – volume: 189 year: 2020 ident: 10.1016/j.comcom.2020.12.003_b55 article-title: Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105124 – volume: 153 start-page: 406 year: 2020 ident: 10.1016/j.comcom.2020.12.003_b11 article-title: Machine learning models for secure data analytics: A taxonomy and threat model publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.02.008 – start-page: 12 year: 2016 ident: 10.1016/j.comcom.2020.12.003_b47 article-title: State of cybersecurity & cyber threats in healthcare organizations publication-title: ESSEC Business School – year: 2015 ident: 10.1016/j.comcom.2020.12.003_b27 – volume: 143 start-page: 221 year: 2018 ident: 10.1016/j.comcom.2020.12.003_b28 article-title: IoT Survey: An SDN and fog computing perspective publication-title: Comput. Netw. doi: 10.1016/j.comnet.2018.07.020 – volume: 33 start-page: 64 issue: 6 year: 2019 ident: 10.1016/j.comcom.2020.12.003_b39 article-title: Intrusion detection based on stacked autoencoder for connected healthcare systems publication-title: IEEE Netw. doi: 10.1109/MNET.001.1900105 |
SSID | ssj0004773 |
Score | 2.642333 |
Snippet | Internet of Medical Things (IoMT), an application of Internet of Things (IoT), is addressing countless limitation of traditional health-care systems such as... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110 |
SubjectTerms | Cyber-attacks Ensemble learning Fog computing Internet of Medical Things (IoMT) Intrusion detection system (IDS) |
Title | An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks |
URI | https://dx.doi.org/10.1016/j.comcom.2020.12.003 |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywmsaJ4yRjVVG1oHZqpW5R_KoKJalCOrDw2znnAYUBJNbEF0Xny-f74s93CN0qBoHAhSZC-hFhrgqJ8GgCsWzZQgQ3jf2hP5ny0Zw9LPxFCw2aszBWVlljf4XpJVrXV3q1N3ub1apXypI8Dvmz7QHuRJa3MxbYKL97_5J5sKDaZbYyRju6OT5Xarzg2VYz4kLOVP4UbFpn_Vyedpac4RE6rHNF3K9e5xi1dHqCDnYqCJ6iVT_FQET1i1hrXHeAWOIkVdhkSyLX2Vbh3b0ConILb1i-CZ2TpCgS-YyVLkpBVopNI9UC8xyPs8kMp5VO_PUMzYf3s8GI1N0TiAQaUBBbZ8f1GIMpcrTjGkfpAMhFwn1PRlwwX3DlhhoYVxhy-LKNDGUA2WBCDVU-Vd45aqdZqi8QBtbhCCVoGEjGkkhFXBlqIDEzjuSAlh3kNU6LZV1a3Ha4WMeNhuwprlwdW1fH1LUlSTuIfFptqtIaf4wPmvmIv4VIDOj_q-Xlvy2v0L5rRSwOJdS_Ru0i3-obyEIK0S3DrIv2-uPH0fQDU4zcVA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdgAGxFOUpwdWq3EeTjJWFVVKH1MrdYviFyqUpArpwL_nnAcUBpBYk1wUnS9399nf3SF0L10wBMYV4cILiWvLgHCHJmDLBi2EcFObDf3pjEUL93HpLVto0NTCGFpl7fsrn1566_pKr9Zmb7Na9UpaksMgfzYzwK0QcHvHdKfy2qjTH42j2Vd5pF8dNBsmoxFoKuhKmhe83tBGbEibyn3BZnrWzwi1E3WGR-iwThdxv_qiY9RS6Qk62GkieIpW_RQDFlWvfK1wPQTiCSepxDp7ImKdbSXePS4gMjceDot3rnKSFEUiXrBURcnJSrFu2FognuNRNp3jtKKKv52hxfBhPohIPUCBCEACBTGtdmzHdWGVLGXZ2pLKB3yRMM8RIeOux5m0AwWgKwgY_NxaBMKHhDChmkqPSucctdMsVRcIA_CwuOQ08IXrJqEMmdRUQ26mLcHAYXaR0ygtFnV3cTPkYh03NLLnuFJ1bFQdU9t0Je0i8im1qbpr_PG836xH_M1KYggAv0pe_lvyDu1F8-kknoxm4yu0bxtOi0UJ9a5Ru8i36gaSkoLf1kb3AemB3wU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+learning+and+fog-cloud+architecture-driven+cyber-attack+detection+framework+for+IoMT+networks&rft.jtitle=Computer+communications&rft.au=Kumar%2C+Prabhat&rft.au=Gupta%2C+Govind+P.&rft.au=Tripathi%2C+Rakesh&rft.date=2021-01-15&rft.pub=Elsevier+B.V&rft.issn=0140-3664&rft.eissn=1873-703X&rft.volume=166&rft.spage=110&rft.epage=124&rft_id=info:doi/10.1016%2Fj.comcom.2020.12.003&rft.externalDocID=S0140366420320090 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon |