An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks

Internet of Medical Things (IoMT), an application of Internet of Things (IoT), is addressing countless limitation of traditional health-care systems such as quality of patient care, healthcare costs, shortage of medical staff and inadequate medical supplies in an efficient manner. With the use of th...

Full description

Saved in:
Bibliographic Details
Published inComputer communications Vol. 166; pp. 110 - 124
Main Authors Kumar, Prabhat, Gupta, Govind P., Tripathi, Rakesh
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Internet of Medical Things (IoMT), an application of Internet of Things (IoT), is addressing countless limitation of traditional health-care systems such as quality of patient care, healthcare costs, shortage of medical staff and inadequate medical supplies in an efficient manner. With the use of the IoMT systems, there are unparalleled benefits that are enhancing the quality and efficiency of treatments and thereby are improving patients health. However, the 2018 Ransomware cyber-attack on Indiana hospital system exposed the critical fault-lines among IoMT environment. The gravity and frequency of cyber-attacks are expanding at an alarming rate. Motivated from aforementioned challenges, we propose an ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks. The ensemble design, combines Decision Tree, Naive Bayes, and Random Forest as first-level individual learners. In the next level, the classification results are used by XGBoost for identifying normal and attack instances. Second, for dynamic and heterogeneous networks such as IoMT, fog, and cloud, we present a deployment architecture for the proposed framework as, Software as a Service (SaaS) in fog side and Infrastructure as a Service (IaaS) in cloud side. Further, most of the existing work is evaluated using KDD CUP99 or NSL-KDD dataset. These datasets lack modern IoMT-based attacks. Therefore, the proposed model uses a realistic dataset namely, ToN-IoT which is collected from a heterogeneous and large-scale IoT network. The experimental result shows that the proposed framework can achieve detection rate of 99.98%, accuracy of 96.35%, and can reduce false alarm rate up to 5.59%.
AbstractList Internet of Medical Things (IoMT), an application of Internet of Things (IoT), is addressing countless limitation of traditional health-care systems such as quality of patient care, healthcare costs, shortage of medical staff and inadequate medical supplies in an efficient manner. With the use of the IoMT systems, there are unparalleled benefits that are enhancing the quality and efficiency of treatments and thereby are improving patients health. However, the 2018 Ransomware cyber-attack on Indiana hospital system exposed the critical fault-lines among IoMT environment. The gravity and frequency of cyber-attacks are expanding at an alarming rate. Motivated from aforementioned challenges, we propose an ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks. The ensemble design, combines Decision Tree, Naive Bayes, and Random Forest as first-level individual learners. In the next level, the classification results are used by XGBoost for identifying normal and attack instances. Second, for dynamic and heterogeneous networks such as IoMT, fog, and cloud, we present a deployment architecture for the proposed framework as, Software as a Service (SaaS) in fog side and Infrastructure as a Service (IaaS) in cloud side. Further, most of the existing work is evaluated using KDD CUP99 or NSL-KDD dataset. These datasets lack modern IoMT-based attacks. Therefore, the proposed model uses a realistic dataset namely, ToN-IoT which is collected from a heterogeneous and large-scale IoT network. The experimental result shows that the proposed framework can achieve detection rate of 99.98%, accuracy of 96.35%, and can reduce false alarm rate up to 5.59%.
Author Kumar, Prabhat
Tripathi, Rakesh
Gupta, Govind P.
Author_xml – sequence: 1
  givenname: Prabhat
  surname: Kumar
  fullname: Kumar, Prabhat
  email: pkumar.phd2019.it@nitrr.ac.in
– sequence: 2
  givenname: Govind P.
  orcidid: 0000-0002-0456-1572
  surname: Gupta
  fullname: Gupta, Govind P.
  email: gpgupta.it@nitrr.ac.in
– sequence: 3
  givenname: Rakesh
  surname: Tripathi
  fullname: Tripathi, Rakesh
  email: rtripathi.it@nitrr.ac.in
BookMark eNqFkM9KAzEQh4Mo2FbfwENeIDXZ7CapB6EU_xQqXip4C9lktqbdTSS7rfTt3aWePCgMDMzw_Zj5xug8xAAI3TA6ZZSJ2-3UxqavaUazfpRNKeVnaMSU5ERS_n6ORpTllHAh8ks0btstpTSXko-QnwcMoYWmrAHXYFLwYYNNcLiKG2LruHfYJPvhO7DdPgFxyR8gYHssIRHTdcbusINh62PAVTINfMW06_GEl_FljQN0w6C9QheVqVu4_ukT9Pb4sF48k9Xr03IxXxHLqegIY0We8Ty31lCgWUUdyEIKIwpuZ6LMi1K4TIHKlFKCM1VZZeVMSsMq5grm-ATdnXJtim2boNLWd2a4rkvG15pRPUjTW32SpgdpmmW6l9bD-S_4M_nGpON_2P0Jg_6xg4ekW-shWHA-9Wa0i_7vgG_kh4xC
CitedBy_id crossref_primary_10_3390_electronics10111257
crossref_primary_10_1109_TII_2022_3161631
crossref_primary_10_3390_ai5020037
crossref_primary_10_2478_jaiscr_2023_0017
crossref_primary_10_1109_ACCESS_2023_3346320
crossref_primary_10_3390_electronics12122612
crossref_primary_10_1016_j_jpdc_2024_104934
crossref_primary_10_1109_ACCESS_2023_3294479
crossref_primary_10_1109_TII_2022_3231424
crossref_primary_10_1142_S0219649222500423
crossref_primary_10_3390_s22176436
crossref_primary_10_1016_j_comcom_2021_11_021
crossref_primary_10_1109_JBHI_2024_3352013
crossref_primary_10_3390_s21248289
crossref_primary_10_1007_s11042_023_18013_x
crossref_primary_10_1109_ACCESS_2022_3172304
crossref_primary_10_1109_JIOT_2021_3122021
crossref_primary_10_1109_TNSM_2022_3193748
crossref_primary_10_1109_ACCESS_2022_3225038
crossref_primary_10_1016_j_bspc_2024_107034
crossref_primary_10_1016_j_dajour_2023_100233
crossref_primary_10_1002_ett_4594
crossref_primary_10_1109_ACCESS_2023_3323573
crossref_primary_10_1007_s11227_022_04568_3
crossref_primary_10_3390_electronics13061053
crossref_primary_10_1016_j_cose_2024_104288
crossref_primary_10_1007_s11042_023_17300_x
crossref_primary_10_1109_ACCESS_2024_3357749
crossref_primary_10_3233_JIFS_234441
crossref_primary_10_3390_s22228646
crossref_primary_10_1016_j_iot_2023_100887
crossref_primary_10_1049_ise2_12091
crossref_primary_10_1016_j_asej_2023_102211
crossref_primary_10_3390_computers12120262
crossref_primary_10_1016_j_vlsi_2024_102159
crossref_primary_10_1007_s10462_024_11101_w
crossref_primary_10_1007_s10586_024_04768_x
crossref_primary_10_1109_JIOT_2022_3230694
crossref_primary_10_3390_electronics11152314
crossref_primary_10_3390_fi14040102
crossref_primary_10_3390_su141912828
crossref_primary_10_1016_j_dajour_2022_100142
crossref_primary_10_3390_app12041990
crossref_primary_10_1016_j_compeleceng_2022_108043
crossref_primary_10_3390_math9192522
crossref_primary_10_1016_j_comnet_2023_109662
crossref_primary_10_3390_designs7060139
crossref_primary_10_1109_IOTM_001_2300021
crossref_primary_10_1109_JIOT_2024_3452421
crossref_primary_10_1016_j_procs_2024_04_235
crossref_primary_10_3390_fi15100332
crossref_primary_10_1109_ACCESS_2024_3480011
crossref_primary_10_1109_TITS_2021_3122368
crossref_primary_10_4018_IJSSCI_291713
crossref_primary_10_1007_s10586_024_04404_8
crossref_primary_10_1002_spy2_454
crossref_primary_10_1016_j_pmcj_2023_101750
crossref_primary_10_1007_s11227_022_04453_z
crossref_primary_10_1515_jisys_2023_0220
crossref_primary_10_1007_s10115_024_02149_9
crossref_primary_10_1109_ACCESS_2022_3159235
crossref_primary_10_1007_s10665_023_10309_z
crossref_primary_10_3390_rs15143611
crossref_primary_10_1016_j_seta_2022_102852
crossref_primary_10_1016_j_compeleceng_2022_108158
crossref_primary_10_1007_s12046_024_02622_9
crossref_primary_10_1016_j_asoc_2023_110227
crossref_primary_10_1155_2022_1620500
crossref_primary_10_1002_spe_3319
crossref_primary_10_3390_jsan12010003
crossref_primary_10_1109_ACCESS_2023_3270225
crossref_primary_10_4018_IJSWIS_297035
crossref_primary_10_1080_19393555_2024_2362813
crossref_primary_10_1109_TGCN_2022_3165692
crossref_primary_10_1109_JAS_2021_1004087
crossref_primary_10_1109_JIOT_2023_3323771
crossref_primary_10_1109_TCSS_2022_3170375
crossref_primary_10_1016_j_adhoc_2024_103694
crossref_primary_10_1016_j_iot_2024_101420
crossref_primary_10_1016_j_eswa_2023_121758
crossref_primary_10_1016_j_comcom_2024_02_023
crossref_primary_10_1016_j_engappai_2024_109203
crossref_primary_10_1016_j_inffus_2023_102029
crossref_primary_10_1016_j_future_2024_06_023
crossref_primary_10_1155_2022_9023904
crossref_primary_10_1145_3539608
crossref_primary_10_1007_s00500_025_10521_2
crossref_primary_10_7717_peerj_cs_2041
crossref_primary_10_1016_j_rineng_2024_102659
crossref_primary_10_1016_j_future_2024_107636
crossref_primary_10_1080_03772063_2022_2098187
crossref_primary_10_1016_j_jpdc_2022_12_009
crossref_primary_10_1109_TVT_2023_3342127
crossref_primary_10_3390_app132011145
crossref_primary_10_1007_s13369_024_09680_5
crossref_primary_10_1016_j_jisa_2025_103970
crossref_primary_10_3390_s24061782
crossref_primary_10_1007_s13198_023_02119_4
crossref_primary_10_1016_j_compeleceng_2024_109949
crossref_primary_10_1142_S0219649223500661
crossref_primary_10_1016_j_cose_2022_102861
crossref_primary_10_1016_j_sysarc_2023_102831
crossref_primary_10_3390_app13179588
crossref_primary_10_1016_j_bbe_2022_11_005
crossref_primary_10_1016_j_icte_2023_03_006
crossref_primary_10_3390_s24175712
crossref_primary_10_32604_cmes_2024_056308
crossref_primary_10_1109_ACCESS_2025_3538331
crossref_primary_10_3390_s23229247
crossref_primary_10_1142_S0219265921410280
crossref_primary_10_1108_IJPCC_10_2021_0259
crossref_primary_10_1007_s42235_024_00575_7
crossref_primary_10_1016_j_eswa_2023_121618
crossref_primary_10_1007_s12652_022_04449_w
crossref_primary_10_1109_ACCESS_2024_3359033
crossref_primary_10_1038_s41598_024_80581_1
crossref_primary_10_1007_s10586_022_03686_0
crossref_primary_10_1016_j_bbe_2022_05_008
crossref_primary_10_1038_s41598_024_84691_8
crossref_primary_10_1002_ett_5008
crossref_primary_10_3390_math9233012
crossref_primary_10_1016_j_ijcip_2023_100658
crossref_primary_10_3390_s23125568
crossref_primary_10_1016_j_knosys_2023_110941
crossref_primary_10_1142_S0218126624502396
crossref_primary_10_1109_JIOT_2024_3387294
crossref_primary_10_1142_S1469026824500330
crossref_primary_10_1007_s11277_022_09726_7
crossref_primary_10_32604_cmc_2022_029283
crossref_primary_10_1109_ACCESS_2025_3547572
crossref_primary_10_15388_23_INFOR525
crossref_primary_10_1142_S0219649224500795
crossref_primary_10_32604_cmc_2023_033153
crossref_primary_10_3390_app12094664
crossref_primary_10_1007_s11280_024_01285_0
crossref_primary_10_1016_j_comnet_2022_109154
crossref_primary_10_1109_TITS_2021_3102581
crossref_primary_10_1109_ACCESS_2023_3281655
crossref_primary_10_1109_TGCN_2024_3403901
Cites_doi 10.1109/ACCESS.2020.2998452
10.1016/j.future.2019.12.028
10.1002/ett.3710
10.1109/JIOT.2020.3002255
10.1109/MCE.2019.2923929
10.1016/j.comcom.2019.12.030
10.1007/s11227-018-2572-6
10.1007/s10489-018-01408-x
10.1016/j.comnet.2019.02.019
10.1186/s13677-018-0123-6
10.1016/j.procs.2018.01.136
10.1145/3231535.3231538
10.1002/9781119488330.ch15
10.1109/MIC.2017.37
10.1016/j.iot.2019.100123
10.1016/j.procs.2018.05.020
10.1109/ACCESS.2020.2968537
10.1038/s41587-019-0045-y
10.1016/j.compbiomed.2019.103375
10.1016/j.comcom.2018.03.008
10.1016/j.cose.2020.101863
10.1155/2018/5978636
10.1016/j.jnca.2016.09.002
10.1109/JIOT.2019.2963288
10.21105/joss.00638
10.1109/ACCESS.2019.2930962
10.1016/j.comcom.2020.05.048
10.1109/MCC.2014.53
10.1016/j.future.2018.07.049
10.1109/TFUZZ.2017.2719619
10.1002/cpe.3166
10.1002/ett.4112
10.1016/j.comnet.2019.01.023
10.1016/j.knosys.2019.105124
10.1016/j.comcom.2020.02.008
10.1016/j.comnet.2018.07.020
10.1109/MNET.001.1900105
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.comcom.2020.12.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-703X
EndPage 124
ExternalDocumentID 10_1016_j_comcom_2020_12_003
S0140366420320090
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
ZMT
~G-
07C
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
F0J
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
TAE
UHS
VH1
VOH
WUQ
XPP
ZY4
ID FETCH-LOGICAL-c306t-11542344cca0e02f0de7576a653c96b45b6d28e828886318fc8c7977a1f1d51d3
IEDL.DBID .~1
ISSN 0140-3664
IngestDate Thu Apr 24 23:10:02 EDT 2025
Tue Jul 01 02:43:06 EDT 2025
Fri Feb 23 02:48:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fog computing
Cyber-attacks
Intrusion detection system (IDS)
Ensemble learning
Internet of Medical Things (IoMT)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-11542344cca0e02f0de7576a653c96b45b6d28e828886318fc8c7977a1f1d51d3
ORCID 0000-0002-0456-1572
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_comcom_2020_12_003
crossref_primary_10_1016_j_comcom_2020_12_003
elsevier_sciencedirect_doi_10_1016_j_comcom_2020_12_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Computer communications
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References da Costa, Papa, Lisboa, Munoz, de Albuquerque (b12) 2019; 151
Djenna, Saïdouni (b40) 2018
NATELORD (b18) 2017
Dr. Rajashekhar Karjagi, Manish Jindal (b6) 2019
Al-Shaher, Hameed, Ţăpuş (b41) 2017
Kaur, Sharma, Mittal (b43) 2018; 132
Remeseiro, Bolon-Canedo (b52) 2019
Newaz, Sikder, Rahman, Uluagac (b38) 2019
Sharma, Singh, Park (b31) 2018; 122
Moustafa (b36) 2019
Menon, Jacob, Joseph, Almagrabi (b26) 2020; 7
Kim, Campbell, de Ávila, Wang (b8) 2019; 37
Garrett Hill (b17) 2018
Yang, Jan, Menon, Shynu, Aimal, Alshehri (b7) 2020; 8
Liaw, Wiener (b50) 2002; 2
Tan, Nagar, He, Nanda, Liu, Wang, Hu (b59) 2014; 1
Sharafaldin, Lashkari, Ghorbani (b57) 2018
Luke Irwin (b16) 2018
Choudhuri, Chatterjee, Garg (b9) 2019
Hartmann, Hashmi, Imran (b24) 2019
Al-Turjman, Nawaz, Ulusar (b19) 2020; 150
Hawedi, Talhi, Boucheneb (b60) 2018; 74
He, Qiao, Gao, Zheng, Chan, Li, Guizani (b39) 2019; 33
Balandina, Balandin, Koucheryavy, Mouromtsev (b4) 2015
Yaacoub, Noura, Noura, Salman, Yaacoub, Couturier, Chehab (b15) 2020; 105
.
Laber, Shedden, Yang (b69) 2016
Salman, Elhajj, Chehab, Kayssi (b28) 2018; 143
Halder, Ghosal, Conti (b1) 2019; 154
Hatzivasilis, Soultatos, Ioannidis, Verikoukis, Demetriou, Tsatsoulis (b13) 2019
Colaco, Kumar, Tamang, Biju (b51) 2019
Banerjee, Chattopadhyay, Pal, Garain (b54) 2018; 15
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b63) 2011; 12
Alsubaei, Abuhussein, Shandilya, Shiva (b20) 2019; 8
Oracle Corporation (b58) 2018
Raschka (b64) 2018; 3
Shafiq, Tian, Bashir, Du, Guizani (b67) 2020
Begli, Derakhshan, Karimipour (b37) 2019
Priyadarshini, Panda, Mishra (b14) 2019
Mutlag, Ghani, Arunkumar, Mohammed, Mohd (b25) 2019; 90
Singh, Jeong, Park (b23) 2016; 75
Li, Gao, Li, Fan (b56) 2014
Çavuşoğlu (b48) 2019; 49
Yi, Qin, Li (b30) 2015
Zhou, Han, Lu, Fu (b33) 2020
Shafiq, Tian, Bashir, Du, Guizani (b34) 2020; 94
Marwan, Kartit, Ouahmane (b42) 2018; 127
Aldweesh, Derhab, Emam (b55) 2020; 189
Bao, Rong, Angelov, Chen, Wong (b53) 2017; 26
Ma, Qu, Zhao (b68) 2013
Singh, Sharma, Moon, Park (b3) 2017
Zhu, Wu, Koo, Tsang, Liu, Chi, Tsang (b5) 2019; 8
Azeez, Bada, Misra, Adewumi, Van der Vyver, Ahuja (b32) 2020
Alrawais, Alhothaily, Hu, Cheng (b22) 2017; 21
Cisco (b27) 2015
Elizabeth Engler Modic (b10) 2019
Algarni (b29) 2019; 7
Dr Nour Moustafa (b65) 2019
Sun, Cai, Li, Liu, Fang, Wang (b46) 2018; 2018
Le Bris, El Asri (b47) 2016
P. Kumar, R. Kumar, G.P. Gupta, R. Tripathi, A distributed framework for detecting DDoS attacks in smart contract-based blockchain-IoT systems by leveraging fog computing, Trans. Emerg. Telecommun. Technol., e4112
Alrashdi, Alqazzaz, Alharthi, Aloufi, Zohdy, Ming (b44) 2019
Iwendi, Khan, Anajemba, Bashir, Noor (b49) 2020; 8
Bierzynski, Escobar, Eberl (b35) 2017
Probst, Alata, Kaâniche, Nicomette (b61) 2015
Li, Li, Liu (b62) 2015; 27
Elrawy, Awad, Hamed (b2) 2018; 7
Gupta, Tanwar, Tyagi, Kumar (b11) 2020; 153
Alsubaei, Abuhussein, Shiva (b21) 2017
R.M., Maddikunta, M., Koppu, Gadekallu, Chowdhary, Alazab (b45) 2020; 160
Kim (10.1016/j.comcom.2020.12.003_b8) 2019; 37
Choudhuri (10.1016/j.comcom.2020.12.003_b9) 2019
Azeez (10.1016/j.comcom.2020.12.003_b32) 2020
Shafiq (10.1016/j.comcom.2020.12.003_b67) 2020
Alrashdi (10.1016/j.comcom.2020.12.003_b44) 2019
Iwendi (10.1016/j.comcom.2020.12.003_b49) 2020; 8
Oracle Corporation (10.1016/j.comcom.2020.12.003_b58) 2018
Tan (10.1016/j.comcom.2020.12.003_b59) 2014; 1
Elizabeth Engler Modic (10.1016/j.comcom.2020.12.003_b10) 2019
Dr. Rajashekhar Karjagi (10.1016/j.comcom.2020.12.003_b6) 2019
Halder (10.1016/j.comcom.2020.12.003_b1) 2019; 154
Garrett Hill (10.1016/j.comcom.2020.12.003_b17) 2018
Remeseiro (10.1016/j.comcom.2020.12.003_b52) 2019
Moustafa (10.1016/j.comcom.2020.12.003_b36) 2019
Mutlag (10.1016/j.comcom.2020.12.003_b25) 2019; 90
Bao (10.1016/j.comcom.2020.12.003_b53) 2017; 26
Gupta (10.1016/j.comcom.2020.12.003_b11) 2020; 153
Liaw (10.1016/j.comcom.2020.12.003_b50) 2002; 2
10.1016/j.comcom.2020.12.003_b66
Newaz (10.1016/j.comcom.2020.12.003_b38) 2019
Li (10.1016/j.comcom.2020.12.003_b56) 2014
da Costa (10.1016/j.comcom.2020.12.003_b12) 2019; 151
Pedregosa (10.1016/j.comcom.2020.12.003_b63) 2011; 12
Li (10.1016/j.comcom.2020.12.003_b62) 2015; 27
NATELORD (10.1016/j.comcom.2020.12.003_b18) 2017
Yang (10.1016/j.comcom.2020.12.003_b7) 2020; 8
Sharafaldin (10.1016/j.comcom.2020.12.003_b57) 2018
Sun (10.1016/j.comcom.2020.12.003_b46) 2018; 2018
Dr Nour Moustafa (10.1016/j.comcom.2020.12.003_b65) 2019
Yaacoub (10.1016/j.comcom.2020.12.003_b15) 2020; 105
Probst (10.1016/j.comcom.2020.12.003_b61) 2015
Djenna (10.1016/j.comcom.2020.12.003_b40) 2018
Kaur (10.1016/j.comcom.2020.12.003_b43) 2018; 132
Aldweesh (10.1016/j.comcom.2020.12.003_b55) 2020; 189
Ma (10.1016/j.comcom.2020.12.003_b68) 2013
Al-Turjman (10.1016/j.comcom.2020.12.003_b19) 2020; 150
Laber (10.1016/j.comcom.2020.12.003_b69) 2016
Shafiq (10.1016/j.comcom.2020.12.003_b34) 2020; 94
Sharma (10.1016/j.comcom.2020.12.003_b31) 2018; 122
Bierzynski (10.1016/j.comcom.2020.12.003_b35) 2017
Begli (10.1016/j.comcom.2020.12.003_b37) 2019
Cisco (10.1016/j.comcom.2020.12.003_b27) 2015
Colaco (10.1016/j.comcom.2020.12.003_b51) 2019
Banerjee (10.1016/j.comcom.2020.12.003_b54) 2018; 15
Algarni (10.1016/j.comcom.2020.12.003_b29) 2019; 7
R.M. (10.1016/j.comcom.2020.12.003_b45) 2020; 160
Alrawais (10.1016/j.comcom.2020.12.003_b22) 2017; 21
Menon (10.1016/j.comcom.2020.12.003_b26) 2020; 7
Hartmann (10.1016/j.comcom.2020.12.003_b24) 2019
Zhu (10.1016/j.comcom.2020.12.003_b5) 2019; 8
Elrawy (10.1016/j.comcom.2020.12.003_b2) 2018; 7
He (10.1016/j.comcom.2020.12.003_b39) 2019; 33
Balandina (10.1016/j.comcom.2020.12.003_b4) 2015
Çavuşoğlu (10.1016/j.comcom.2020.12.003_b48) 2019; 49
Raschka (10.1016/j.comcom.2020.12.003_b64) 2018; 3
Luke Irwin (10.1016/j.comcom.2020.12.003_b16) 2018
Salman (10.1016/j.comcom.2020.12.003_b28) 2018; 143
Al-Shaher (10.1016/j.comcom.2020.12.003_b41) 2017
Alsubaei (10.1016/j.comcom.2020.12.003_b20) 2019; 8
Marwan (10.1016/j.comcom.2020.12.003_b42) 2018; 127
Yi (10.1016/j.comcom.2020.12.003_b30) 2015
Hawedi (10.1016/j.comcom.2020.12.003_b60) 2018; 74
Zhou (10.1016/j.comcom.2020.12.003_b33) 2020
Le Bris (10.1016/j.comcom.2020.12.003_b47) 2016
Singh (10.1016/j.comcom.2020.12.003_b23) 2016; 75
Hatzivasilis (10.1016/j.comcom.2020.12.003_b13) 2019
Singh (10.1016/j.comcom.2020.12.003_b3) 2017
Priyadarshini (10.1016/j.comcom.2020.12.003_b14) 2019
Alsubaei (10.1016/j.comcom.2020.12.003_b21) 2017
References_xml – start-page: 1
  year: 2018
  end-page: 4
  ident: b40
  article-title: Cyber attacks classification in IoT-based-healthcare infrastructure
  publication-title: 2018 2nd Cyber Security in Networking Conference, CSNet
– volume: 74
  start-page: 5199
  year: 2018
  end-page: 5230
  ident: b60
  article-title: Multi-tenant intrusion detection system for public cloud (MTIDS)
  publication-title: J. Supercomput.
– volume: 7
  start-page: 5874
  year: 2020
  end-page: 5881
  ident: b26
  article-title: SDN-Powered humanoid with edge computing for assisting paralyzed patients
  publication-title: IEEE Internet Things J.
– start-page: 490
  year: 2013
  end-page: 494
  ident: b68
  article-title: Estimator with forgetting factor of correntropy and recursive algorithm for traffic network prediction
  publication-title: 2013 25th Chinese Control and Decision Conference, CCDC
– year: 2019
  ident: b6
  article-title: What can iot do for healthcare?
– volume: 7
  start-page: 21
  year: 2018
  ident: b2
  article-title: Intrusion detection systems for IoT-based smart environments: a survey
  publication-title: J. Cloud Comput.
– start-page: 62
  year: 2017
  end-page: 67
  ident: b35
  article-title: Cloud, fog and edge: Cooperation for the future?
  publication-title: 2017 Second International Conference on Fog and Mobile Edge Computing, FMEC
– year: 2018
  ident: b16
  article-title: Indiana hospital pays $55,000 after ransomware attack
– volume: 94
  year: 2020
  ident: b34
  article-title: IoT Malicious traffic identification using wrapper-based feature selection mechanisms
  publication-title: Comput. Secur.
– start-page: 511
  year: 2014
  end-page: 538
  ident: b56
  article-title: Ensemble learning
  publication-title: Data Classification
– volume: 7
  start-page: 101879
  year: 2019
  end-page: 101894
  ident: b29
  article-title: A survey and classification of security and privacy research in smart healthcare systems
  publication-title: IEEE Access
– volume: 127
  start-page: 388
  year: 2018
  end-page: 397
  ident: b42
  article-title: Security enhancement in healthcare cloud using machine learning
  publication-title: Procedia Comput. Sci.
– volume: 8
  year: 2019
  ident: b20
  article-title: IoMT-SAF: Internet of medical things security assessment framework
  publication-title: Internet Things
– start-page: 457
  year: 2019
  end-page: 464
  ident: b13
  article-title: Review of security and privacy for the Internet of Medical Things (IoMT)
  publication-title: 2019 15th International Conference on Distributed Computing in Sensor Systems, DCOSS
– year: 2015
  ident: b27
  article-title: Fog computing and the internet of things: Extend the cloud to where the things are
– year: 2018
  ident: b17
  article-title: Indiana hospital pays $55,000 after ransomware attack
– start-page: 112
  year: 2017
  end-page: 120
  ident: b21
  article-title: Security and privacy in the internet of medical things: taxonomy and risk assessment
  publication-title: 2017 IEEE 42nd Conference on Local Computer Networks Workshops, LCN Workshops
– start-page: 49
  year: 2015
  end-page: 60
  ident: b61
  article-title: Automated evaluation of network intrusion detection systems in iaas clouds
  publication-title: 2015 11th European Dependable Computing Conference, EDCC
– volume: 154
  start-page: 28
  year: 2019
  end-page: 46
  ident: b1
  article-title: Efficient physical intrusion detection in Internet of Things: A Node deployment approach
  publication-title: Comput. Netw.
– year: 2019
  ident: b52
  article-title: A review of feature selection methods in medical applications
  publication-title: Comput. Biol. Med.
– start-page: 189
  year: 2016
  end-page: 209
  ident: b69
  article-title: An imputation method for estimating the learning curve in classification problems
  publication-title: Statistical Analysis for High-Dimensional Data
– start-page: 37
  year: 2015
  end-page: 44
  ident: b4
  article-title: IoT Use cases in healthcare and tourism
  publication-title: 2015 IEEE 17th Conference on Business Informatics, vol. 2
– volume: 37
  start-page: 389
  year: 2019
  end-page: 406
  ident: b8
  article-title: Wearable biosensors for healthcare monitoring
  publication-title: Nature Biotechnol.
– volume: 33
  start-page: 64
  year: 2019
  end-page: 69
  ident: b39
  article-title: Intrusion detection based on stacked autoencoder for connected healthcare systems
  publication-title: IEEE Netw.
– volume: 1
  start-page: 27
  year: 2014
  end-page: 33
  ident: b59
  article-title: Enhancing big data security with collaborative intrusion detection
  publication-title: IEEE Cloud Comput.
– start-page: 131
  year: 2019
  end-page: 160
  ident: b9
  article-title: Internet of things in healthcare: A brief overview
  publication-title: Internet of Things in Biomedical Engineering
– start-page: 389
  year: 2019
  end-page: 396
  ident: b38
  article-title: Healthguard: A machine learning-based security framework for smart healthcare systems
  publication-title: 2019 Sixth International Conference on Social Networks Analysis, Management and Security, SNAMS
– volume: 27
  start-page: 1861
  year: 2015
  end-page: 1885
  ident: b62
  article-title: CloudMon: a resource-efficient IaaS cloud monitoring system based on networked intrusion detection system virtual appliances
  publication-title: Concurr. Comput.: Pract. Exper.
– year: 2019
  ident: b65
  article-title: TON_IoT Datasets for cybersecurity applications based artificial intelligence
– start-page: 133
  year: 2019
  end-page: 153
  ident: b51
  article-title: A review on feature selection algorithms
  publication-title: Emerging Research in Computing, Information, Communication and Applications
– volume: 122
  start-page: 1
  year: 2018
  end-page: 8
  ident: b31
  article-title: OpCloudSec: OPen cloud software defined wireless network security for the Internet of Things
  publication-title: Comput. Commun.
– year: 2019
  ident: b36
  article-title: ToN_IoT Datasets
– start-page: 1
  year: 2017
  end-page: 18
  ident: b3
  article-title: Advanced lightweight encryption algorithms for IoT devices: survey, challenges and solutions
  publication-title: J. Ambient Intell. Humanized Comput.
– volume: 2018
  year: 2018
  ident: b46
  article-title: Security and privacy in the medical internet of things: a review
  publication-title: Secur. Commun. Netw.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: b50
  article-title: Classification and regression by randomForest
  publication-title: R News
– start-page: 685
  year: 2015
  end-page: 695
  ident: b30
  article-title: Security and privacy issues of fog computing: A survey
  publication-title: International Conference on Wireless Algorithms, Systems, and Applications
– volume: 49
  start-page: 2735
  year: 2019
  end-page: 2761
  ident: b48
  article-title: A new hybrid approach for intrusion detection using machine learning methods
  publication-title: Appl. Intell.
– start-page: 120
  year: 2019
  end-page: 124
  ident: b37
  article-title: A layered intrusion detection system for critical infrastructure using machine learning
  publication-title: 2019 IEEE 7th International Conference on Smart Energy Grid Engineering, SEGE
– volume: 90
  start-page: 62
  year: 2019
  end-page: 78
  ident: b25
  article-title: Enabling technologies for fog computing in healthcare IoT systems
  publication-title: Future Gener. Comput. Syst.
– volume: 143
  start-page: 221
  year: 2018
  end-page: 246
  ident: b28
  article-title: IoT Survey: An SDN and fog computing perspective
  publication-title: Comput. Netw.
– volume: 132
  start-page: 1049
  year: 2018
  end-page: 1059
  ident: b43
  article-title: Big data and machine learning based secure healthcare framework
  publication-title: Proc. Comput. Sci.
– start-page: 231
  year: 2019
  end-page: 243
  ident: b14
  article-title: Security in healthcare applications based on fog and cloud computing
  publication-title: Cyber Secur. Parallel Distributed Comput.
– volume: 105
  start-page: 581
  year: 2020
  end-page: 606
  ident: b15
  article-title: Securing internet of medical things systems: Limitations, issues and recommendations
  publication-title: Future Gener. Comput. Syst.
– volume: 150
  start-page: 644
  year: 2020
  end-page: 660
  ident: b19
  article-title: Intelligence in the Internet of Medical Things era: A systematic review of current and future trends
  publication-title: Comput. Commun.
– volume: 15
  start-page: 24
  year: 2018
  end-page: 30
  ident: b54
  article-title: Automation of feature engineering for iot analytics
  publication-title: ACM SIGBED Rev.
– volume: 21
  start-page: 34
  year: 2017
  end-page: 42
  ident: b22
  article-title: Fog computing for the internet of things: Security and privacy issues
  publication-title: IEEE Internet Comput.
– year: 2018
  ident: b58
  article-title: MySQL Cluster CGE
– volume: 189
  year: 2020
  ident: b55
  article-title: Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues
  publication-title: Knowl.-Based Syst.
– year: 2019
  ident: b24
  article-title: Edge computing in smart health care systems: Review, challenges, and research directions
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b63
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– start-page: 12
  year: 2016
  ident: b47
  article-title: State of cybersecurity & cyber threats in healthcare organizations
  publication-title: ESSEC Business School
– volume: 26
  start-page: 1324
  year: 2017
  end-page: 1338
  ident: b53
  article-title: Correntropy-based evolving fuzzy neural system
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 8
  start-page: 101464
  year: 2020
  end-page: 101475
  ident: b7
  article-title: A centralized cluster-based hierarchical approach for green communication in a smart healthcare system
  publication-title: IEEE Access
– start-page: 1
  year: 2020
  end-page: 14
  ident: b33
  article-title: Intrusion detection system for IoT heterogeneous perceptual network
  publication-title: Mob. Netw. Appl.
– start-page: 685
  year: 2020
  end-page: 696
  ident: b32
  article-title: Intrusion detection and prevention systems: An updated review
  publication-title: Data Management, Analytics and Innovation
– year: 2017
  ident: b18
  article-title: IoMT: A Smart, connected infrastructure
– start-page: 0421
  year: 2017
  end-page: 0426
  ident: b41
  article-title: Protect healthcare system based on intelligent techniques
  publication-title: 2017 4th International Conference on Control, Decision and Information Technologies, CoDIT
– volume: 75
  start-page: 200
  year: 2016
  end-page: 222
  ident: b23
  article-title: A survey on cloud computing security: Issues, threats, and solutions
  publication-title: J. Netw. Comput. Appl.
– start-page: 0515
  year: 2019
  end-page: 0522
  ident: b44
  article-title: FBAD: Fog-based attack detection for IoT healthcare in smart cities
  publication-title: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, UEMCON
– reference: .
– volume: 8
  start-page: 28462
  year: 2020
  end-page: 28474
  ident: b49
  article-title: Realizing an efficient iomt-assisted patient diet recommendation system through machine learning model
  publication-title: IEEE Access
– volume: 151
  start-page: 147
  year: 2019
  end-page: 157
  ident: b12
  article-title: Internet of things: A survey on machine learning-based intrusion detection approaches
  publication-title: Comput. Netw.
– reference: P. Kumar, R. Kumar, G.P. Gupta, R. Tripathi, A distributed framework for detecting DDoS attacks in smart contract-based blockchain-IoT systems by leveraging fog computing, Trans. Emerg. Telecommun. Technol., e4112,
– start-page: 108
  year: 2018
  end-page: 116
  ident: b57
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
  publication-title: ICISSP
– volume: 8
  start-page: 26
  year: 2019
  end-page: 30
  ident: b5
  article-title: Smart healthcare in the era of internet-of-things
  publication-title: IEEE Consumer Electron. Mag.
– volume: 160
  start-page: 139
  year: 2020
  end-page: 149
  ident: b45
  article-title: An effective feature engineering for DNN using hybrid PCA-gwo for intrusion detection in IoMT architecture
  publication-title: Comput. Commun.
– start-page: 1
  year: 2020
  ident: b67
  article-title: Corrauc: a malicious bot-IoT traffic detection method in IoT network using machine learning techniques
  publication-title: IEEE Internet Things J.
– volume: 153
  start-page: 406
  year: 2020
  end-page: 440
  ident: b11
  article-title: Machine learning models for secure data analytics: A taxonomy and threat model
  publication-title: Comput. Commun.
– year: 2019
  ident: b10
  article-title: IoMT: A Smart, connected infrastructure
– volume: 3
  year: 2018
  ident: b64
  article-title: MLxtend: PRoviding machine learning and data science utilities and extensions to python’s scientific computing stack
  publication-title: J. Open Source Softw.
– volume: 8
  start-page: 101464
  year: 2020
  ident: 10.1016/j.comcom.2020.12.003_b7
  article-title: A centralized cluster-based hierarchical approach for green communication in a smart healthcare system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2998452
– volume: 105
  start-page: 581
  year: 2020
  ident: 10.1016/j.comcom.2020.12.003_b15
  article-title: Securing internet of medical things systems: Limitations, issues and recommendations
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.12.028
– year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b24
  article-title: Edge computing in smart health care systems: Review, challenges, and research directions
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.3710
– start-page: 1
  year: 2020
  ident: 10.1016/j.comcom.2020.12.003_b67
  article-title: Corrauc: a malicious bot-IoT traffic detection method in IoT network using machine learning techniques
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3002255
– volume: 8
  start-page: 26
  issue: 5
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b5
  article-title: Smart healthcare in the era of internet-of-things
  publication-title: IEEE Consumer Electron. Mag.
  doi: 10.1109/MCE.2019.2923929
– start-page: 0515
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b44
  article-title: FBAD: Fog-based attack detection for IoT healthcare in smart cities
– volume: 150
  start-page: 644
  year: 2020
  ident: 10.1016/j.comcom.2020.12.003_b19
  article-title: Intelligence in the Internet of Medical Things era: A systematic review of current and future trends
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.12.030
– start-page: 389
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b38
  article-title: Healthguard: A machine learning-based security framework for smart healthcare systems
– start-page: 189
  year: 2016
  ident: 10.1016/j.comcom.2020.12.003_b69
  article-title: An imputation method for estimating the learning curve in classification problems
– volume: 74
  start-page: 5199
  issue: 10
  year: 2018
  ident: 10.1016/j.comcom.2020.12.003_b60
  article-title: Multi-tenant intrusion detection system for public cloud (MTIDS)
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-018-2572-6
– volume: 49
  start-page: 2735
  issue: 7
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b48
  article-title: A new hybrid approach for intrusion detection using machine learning methods
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-01408-x
– volume: 154
  start-page: 28
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b1
  article-title: Efficient physical intrusion detection in Internet of Things: A Node deployment approach
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.02.019
– volume: 7
  start-page: 21
  issue: 1
  year: 2018
  ident: 10.1016/j.comcom.2020.12.003_b2
  article-title: Intrusion detection systems for IoT-based smart environments: a survey
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-018-0123-6
– volume: 127
  start-page: 388
  year: 2018
  ident: 10.1016/j.comcom.2020.12.003_b42
  article-title: Security enhancement in healthcare cloud using machine learning
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.01.136
– year: 2018
  ident: 10.1016/j.comcom.2020.12.003_b58
– volume: 15
  start-page: 24
  issue: 2
  year: 2018
  ident: 10.1016/j.comcom.2020.12.003_b54
  article-title: Automation of feature engineering for iot analytics
  publication-title: ACM SIGBED Rev.
  doi: 10.1145/3231535.3231538
– start-page: 231
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b14
  article-title: Security in healthcare applications based on fog and cloud computing
  publication-title: Cyber Secur. Parallel Distributed Comput.
  doi: 10.1002/9781119488330.ch15
– year: 2018
  ident: 10.1016/j.comcom.2020.12.003_b16
– volume: 21
  start-page: 34
  issue: 2
  year: 2017
  ident: 10.1016/j.comcom.2020.12.003_b22
  article-title: Fog computing for the internet of things: Security and privacy issues
  publication-title: IEEE Internet Comput.
  doi: 10.1109/MIC.2017.37
– start-page: 133
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b51
  article-title: A review on feature selection algorithms
– start-page: 685
  year: 2015
  ident: 10.1016/j.comcom.2020.12.003_b30
  article-title: Security and privacy issues of fog computing: A survey
– start-page: 1
  year: 2020
  ident: 10.1016/j.comcom.2020.12.003_b33
  article-title: Intrusion detection system for IoT heterogeneous perceptual network
  publication-title: Mob. Netw. Appl.
– volume: 8
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b20
  article-title: IoMT-SAF: Internet of medical things security assessment framework
  publication-title: Internet Things
  doi: 10.1016/j.iot.2019.100123
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.comcom.2020.12.003_b50
  article-title: Classification and regression by randomForest
  publication-title: R News
– start-page: 511
  year: 2014
  ident: 10.1016/j.comcom.2020.12.003_b56
  article-title: Ensemble learning
– start-page: 0421
  year: 2017
  ident: 10.1016/j.comcom.2020.12.003_b41
  article-title: Protect healthcare system based on intelligent techniques
– volume: 132
  start-page: 1049
  year: 2018
  ident: 10.1016/j.comcom.2020.12.003_b43
  article-title: Big data and machine learning based secure healthcare framework
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2018.05.020
– volume: 8
  start-page: 28462
  year: 2020
  ident: 10.1016/j.comcom.2020.12.003_b49
  article-title: Realizing an efficient iomt-assisted patient diet recommendation system through machine learning model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968537
– start-page: 108
  year: 2018
  ident: 10.1016/j.comcom.2020.12.003_b57
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
– start-page: 120
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b37
  article-title: A layered intrusion detection system for critical infrastructure using machine learning
– volume: 37
  start-page: 389
  issue: 4
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b8
  article-title: Wearable biosensors for healthcare monitoring
  publication-title: Nature Biotechnol.
  doi: 10.1038/s41587-019-0045-y
– year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b36
– year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b52
  article-title: A review of feature selection methods in medical applications
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103375
– start-page: 1
  year: 2018
  ident: 10.1016/j.comcom.2020.12.003_b40
  article-title: Cyber attacks classification in IoT-based-healthcare infrastructure
– year: 2018
  ident: 10.1016/j.comcom.2020.12.003_b17
– volume: 122
  start-page: 1
  year: 2018
  ident: 10.1016/j.comcom.2020.12.003_b31
  article-title: OpCloudSec: OPen cloud software defined wireless network security for the Internet of Things
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2018.03.008
– volume: 94
  year: 2020
  ident: 10.1016/j.comcom.2020.12.003_b34
  article-title: IoT Malicious traffic identification using wrapper-based feature selection mechanisms
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2020.101863
– volume: 2018
  year: 2018
  ident: 10.1016/j.comcom.2020.12.003_b46
  article-title: Security and privacy in the medical internet of things: a review
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2018/5978636
– start-page: 685
  year: 2020
  ident: 10.1016/j.comcom.2020.12.003_b32
  article-title: Intrusion detection and prevention systems: An updated review
– year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b65
– volume: 75
  start-page: 200
  year: 2016
  ident: 10.1016/j.comcom.2020.12.003_b23
  article-title: A survey on cloud computing security: Issues, threats, and solutions
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2016.09.002
– start-page: 49
  year: 2015
  ident: 10.1016/j.comcom.2020.12.003_b61
  article-title: Automated evaluation of network intrusion detection systems in iaas clouds
– start-page: 457
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b13
  article-title: Review of security and privacy for the Internet of Medical Things (IoMT)
– start-page: 490
  year: 2013
  ident: 10.1016/j.comcom.2020.12.003_b68
  article-title: Estimator with forgetting factor of correntropy and recursive algorithm for traffic network prediction
– volume: 7
  start-page: 5874
  issue: 7
  year: 2020
  ident: 10.1016/j.comcom.2020.12.003_b26
  article-title: SDN-Powered humanoid with edge computing for assisting paralyzed patients
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2963288
– year: 2017
  ident: 10.1016/j.comcom.2020.12.003_b18
– year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b6
– volume: 3
  issue: 24
  year: 2018
  ident: 10.1016/j.comcom.2020.12.003_b64
  article-title: MLxtend: PRoviding machine learning and data science utilities and extensions to python’s scientific computing stack
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00638
– volume: 7
  start-page: 101879
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b29
  article-title: A survey and classification of security and privacy research in smart healthcare systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2930962
– volume: 160
  start-page: 139
  year: 2020
  ident: 10.1016/j.comcom.2020.12.003_b45
  article-title: An effective feature engineering for DNN using hybrid PCA-gwo for intrusion detection in IoMT architecture
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.05.048
– start-page: 112
  year: 2017
  ident: 10.1016/j.comcom.2020.12.003_b21
  article-title: Security and privacy in the internet of medical things: taxonomy and risk assessment
– volume: 1
  start-page: 27
  issue: 3
  year: 2014
  ident: 10.1016/j.comcom.2020.12.003_b59
  article-title: Enhancing big data security with collaborative intrusion detection
  publication-title: IEEE Cloud Comput.
  doi: 10.1109/MCC.2014.53
– start-page: 62
  year: 2017
  ident: 10.1016/j.comcom.2020.12.003_b35
  article-title: Cloud, fog and edge: Cooperation for the future?
– volume: 90
  start-page: 62
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b25
  article-title: Enabling technologies for fog computing in healthcare IoT systems
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.07.049
– start-page: 131
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b9
  article-title: Internet of things in healthcare: A brief overview
– volume: 26
  start-page: 1324
  issue: 3
  year: 2017
  ident: 10.1016/j.comcom.2020.12.003_b53
  article-title: Correntropy-based evolving fuzzy neural system
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2017.2719619
– volume: 27
  start-page: 1861
  issue: 8
  year: 2015
  ident: 10.1016/j.comcom.2020.12.003_b62
  article-title: CloudMon: a resource-efficient IaaS cloud monitoring system based on networked intrusion detection system virtual appliances
  publication-title: Concurr. Comput.: Pract. Exper.
  doi: 10.1002/cpe.3166
– ident: 10.1016/j.comcom.2020.12.003_b66
  doi: 10.1002/ett.4112
– start-page: 37
  year: 2015
  ident: 10.1016/j.comcom.2020.12.003_b4
  article-title: IoT Use cases in healthcare and tourism
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.comcom.2020.12.003_b63
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 151
  start-page: 147
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b12
  article-title: Internet of things: A survey on machine learning-based intrusion detection approaches
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.01.023
– start-page: 1
  year: 2017
  ident: 10.1016/j.comcom.2020.12.003_b3
  article-title: Advanced lightweight encryption algorithms for IoT devices: survey, challenges and solutions
  publication-title: J. Ambient Intell. Humanized Comput.
– year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b10
– volume: 189
  year: 2020
  ident: 10.1016/j.comcom.2020.12.003_b55
  article-title: Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105124
– volume: 153
  start-page: 406
  year: 2020
  ident: 10.1016/j.comcom.2020.12.003_b11
  article-title: Machine learning models for secure data analytics: A taxonomy and threat model
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.02.008
– start-page: 12
  year: 2016
  ident: 10.1016/j.comcom.2020.12.003_b47
  article-title: State of cybersecurity & cyber threats in healthcare organizations
  publication-title: ESSEC Business School
– year: 2015
  ident: 10.1016/j.comcom.2020.12.003_b27
– volume: 143
  start-page: 221
  year: 2018
  ident: 10.1016/j.comcom.2020.12.003_b28
  article-title: IoT Survey: An SDN and fog computing perspective
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2018.07.020
– volume: 33
  start-page: 64
  issue: 6
  year: 2019
  ident: 10.1016/j.comcom.2020.12.003_b39
  article-title: Intrusion detection based on stacked autoencoder for connected healthcare systems
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.001.1900105
SSID ssj0004773
Score 2.642333
Snippet Internet of Medical Things (IoMT), an application of Internet of Things (IoT), is addressing countless limitation of traditional health-care systems such as...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110
SubjectTerms Cyber-attacks
Ensemble learning
Fog computing
Internet of Medical Things (IoMT)
Intrusion detection system (IDS)
Title An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks
URI https://dx.doi.org/10.1016/j.comcom.2020.12.003
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywmsaJ4yRjVVG1oHZqpW5R_KoKJalCOrDw2znnAYUBJNbEF0Xny-f74s93CN0qBoHAhSZC-hFhrgqJ8GgCsWzZQgQ3jf2hP5ny0Zw9LPxFCw2aszBWVlljf4XpJVrXV3q1N3ub1apXypI8Dvmz7QHuRJa3MxbYKL97_5J5sKDaZbYyRju6OT5Xarzg2VYz4kLOVP4UbFpn_Vyedpac4RE6rHNF3K9e5xi1dHqCDnYqCJ6iVT_FQET1i1hrXHeAWOIkVdhkSyLX2Vbh3b0ConILb1i-CZ2TpCgS-YyVLkpBVopNI9UC8xyPs8kMp5VO_PUMzYf3s8GI1N0TiAQaUBBbZ8f1GIMpcrTjGkfpAMhFwn1PRlwwX3DlhhoYVxhy-LKNDGUA2WBCDVU-Vd45aqdZqi8QBtbhCCVoGEjGkkhFXBlqIDEzjuSAlh3kNU6LZV1a3Ha4WMeNhuwprlwdW1fH1LUlSTuIfFptqtIaf4wPmvmIv4VIDOj_q-Xlvy2v0L5rRSwOJdS_Ru0i3-obyEIK0S3DrIv2-uPH0fQDU4zcVA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdgAGxFOUpwdWq3EeTjJWFVVKH1MrdYviFyqUpArpwL_nnAcUBpBYk1wUnS9399nf3SF0L10wBMYV4cILiWvLgHCHJmDLBi2EcFObDf3pjEUL93HpLVto0NTCGFpl7fsrn1566_pKr9Zmb7Na9UpaksMgfzYzwK0QcHvHdKfy2qjTH42j2Vd5pF8dNBsmoxFoKuhKmhe83tBGbEibyn3BZnrWzwi1E3WGR-iwThdxv_qiY9RS6Qk62GkieIpW_RQDFlWvfK1wPQTiCSepxDp7ImKdbSXePS4gMjceDot3rnKSFEUiXrBURcnJSrFu2FognuNRNp3jtKKKv52hxfBhPohIPUCBCEACBTGtdmzHdWGVLGXZ2pLKB3yRMM8RIeOux5m0AwWgKwgY_NxaBMKHhDChmkqPSucctdMsVRcIA_CwuOQ08IXrJqEMmdRUQ26mLcHAYXaR0ygtFnV3cTPkYh03NLLnuFJ1bFQdU9t0Je0i8im1qbpr_PG836xH_M1KYggAv0pe_lvyDu1F8-kknoxm4yu0bxtOi0UJ9a5Ru8i36gaSkoLf1kb3AemB3wU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+learning+and+fog-cloud+architecture-driven+cyber-attack+detection+framework+for+IoMT+networks&rft.jtitle=Computer+communications&rft.au=Kumar%2C+Prabhat&rft.au=Gupta%2C+Govind+P.&rft.au=Tripathi%2C+Rakesh&rft.date=2021-01-15&rft.pub=Elsevier+B.V&rft.issn=0140-3664&rft.eissn=1873-703X&rft.volume=166&rft.spage=110&rft.epage=124&rft_id=info:doi/10.1016%2Fj.comcom.2020.12.003&rft.externalDocID=S0140366420320090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon