Component-mixing strategy: A decomposition-based data augmentation algorithm for motor imagery signals
Deep learning has achieved a remarkable success in areas such as brain-computer interface systems (BCI). However, electroencephalography (EEG) signals evoked by motor imagery (MI) are sometimes limited in their amount due to invalid data caused by the subjects’ fatigue, leading to a performance degr...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 465; pp. 325 - 335 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
20.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0925-2312 1872-8286 |
DOI | 10.1016/j.neucom.2021.08.119 |
Cover
Abstract | Deep learning has achieved a remarkable success in areas such as brain-computer interface systems (BCI). However, electroencephalography (EEG) signals evoked by motor imagery (MI) are sometimes limited in their amount due to invalid data caused by the subjects’ fatigue, leading to a performance degradation. To this end, in this work we extend empirical mode decomposition into multivariate empirical mode decomposition and intrinsic time-scale decomposition, proposing a component-mixing strategy (CMS) for MI data augmentation. Compared to commonly used data augmentation methods such as generative adversarial networks, CMS can generate artificial trials from a few training samples without any required training. We claim that raw and artificial data generated by CMS are consistent with respect to the distribution and power spectral density. Experiments done on the BCI Competition IV dataset 2b show that CMS can achieve a considerable improvement on the binary classification accuracy and the area under the curve score using EEGNet, wavelet neural networks and a support vector machine. |
---|---|
AbstractList | Deep learning has achieved a remarkable success in areas such as brain-computer interface systems (BCI). However, electroencephalography (EEG) signals evoked by motor imagery (MI) are sometimes limited in their amount due to invalid data caused by the subjects’ fatigue, leading to a performance degradation. To this end, in this work we extend empirical mode decomposition into multivariate empirical mode decomposition and intrinsic time-scale decomposition, proposing a component-mixing strategy (CMS) for MI data augmentation. Compared to commonly used data augmentation methods such as generative adversarial networks, CMS can generate artificial trials from a few training samples without any required training. We claim that raw and artificial data generated by CMS are consistent with respect to the distribution and power spectral density. Experiments done on the BCI Competition IV dataset 2b show that CMS can achieve a considerable improvement on the binary classification accuracy and the area under the curve score using EEGNet, wavelet neural networks and a support vector machine. |
Author | Li, Binghua Zhang, Zhiwen Solé-Casals, Jordi Yang, Zhenglu Duan, Feng Sun, Zhe Zhao, Qibin |
Author_xml | – sequence: 1 givenname: Binghua surname: Li fullname: Li, Binghua organization: College of Artificial Intelligence, Nankai University, Tianjin 300071, China – sequence: 2 givenname: Zhiwen surname: Zhang fullname: Zhang, Zhiwen organization: College of Artificial Intelligence, Nankai University, Tianjin 300071, China – sequence: 3 givenname: Feng surname: Duan fullname: Duan, Feng email: duanf@nankai.edu.cn organization: College of Artificial Intelligence, Nankai University, Tianjin 300071, China – sequence: 4 givenname: Zhenglu surname: Yang fullname: Yang, Zhenglu organization: College of Computer Science, Nankai University, Tianjin 300071, China – sequence: 5 givenname: Qibin surname: Zhao fullname: Zhao, Qibin organization: Tensor Learning Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan – sequence: 6 givenname: Zhe surname: Sun fullname: Sun, Zhe email: zhe.sun.vk@riken.jp organization: Computational Engineering Applications Unit, Head Office for Information Systems and Cybersecurity, RIKEN, Saitama 351-0198, Japan – sequence: 7 givenname: Jordi surname: Solé-Casals fullname: Solé-Casals, Jordi email: jordi.sole@uvic.cat organization: College of Artificial Intelligence, Nankai University, Tianjin 300071, China |
BookMark | eNqFkNtKAzEQhoNUsK2-gRd5gV1z2EPSC6EUT1DwRq9DNju7pnQ3JUnFvr0p65UXSiADM3w_M98CzUY3AkK3lOSU0Opul49wNG7IGWE0JyKnVF6gORU1ywQT1QzNiWRlxjhlV2gRwo4QWlMm56jbuOGQ0saYDfbLjj0O0esI_WmF17gFcx4HG60bs0YHaHGro8b62A-J0ec-1vveeRs_Btw5jwcX028H3YM_4WD7Ue_DNbrsUoGbn7pE748Pb5vnbPv69LJZbzPDSRUzSowGyivCpSSlFLyoGQcpKqlLWTXpmaoQUHFo6ralrW4aWUPZcKmlKEjBl6iYco13IXjo1MGnVfxJUaLOrtROTa7U2ZUiQiVXCVv9woydjksy7P4_-H6CIR32acGrYCyMBlrrwUTVOvt3wDfaiIwc |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_124511 crossref_primary_10_1109_TIM_2023_3301902 crossref_primary_10_1186_s12984_023_01169_w crossref_primary_10_3389_fenrg_2023_1069119 crossref_primary_10_1016_j_isatra_2022_02_038 crossref_primary_10_1109_TNSRE_2023_3314679 crossref_primary_10_1109_TICPS_2023_3323600 crossref_primary_10_1007_s12559_023_10188_7 crossref_primary_10_1016_j_aej_2025_02_001 |
Cites_doi | 10.1007/s11042-017-5586-9 10.1093/ietisy/e91-d.1.44 10.1029/2007RG000228 10.1142/S0129065716500325 10.1088/1741-2552/aace8c 10.1109/TBME.2004.826691 10.1088/1741-2560/9/2/026013 10.1016/j.neucom.2005.05.015 10.1088/1741-2552/ab0328 10.1016/j.compbiomed.2017.09.017 10.1016/j.ymssp.2011.08.001 10.1155/2017/5491296 10.1109/TNSRE.2012.2229296 10.1109/TBME.2012.2217495 10.3389/fnins.2012.00039 10.1088/1741-2560/14/1/016003 10.1109/TNSRE.2016.2601240 10.1142/S0129065717500460 10.1007/978-3-642-03040-6_119 10.1098/rspa.2009.0502 10.1016/S1388-2457(98)00038-8 10.1109/TBME.2010.2082539 10.1007/BF01129656 10.1016/j.eswa.2010.06.065 10.1109/TNSRE.2006.875567 10.1109/ACCESS.2019.2895133 10.1098/rspa.1998.0193 10.1587/nolta.1.37 10.1016/j.jneumeth.2015.08.004 10.1016/S1388-2457(02)00057-3 10.3389/fnins.2018.00308 10.1016/S0165-1684(97)00038-8 10.1098/rspa.2006.1761 10.1109/TNSRE.2003.814441 10.1142/S0129065713500238 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2021.08.119 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 335 |
ExternalDocumentID | 10_1016_j_neucom_2021_08_119 S0925231221013308 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c306t-10cae1360399059834723e9869a596b6b6c648e63eb7dd1dabb97e5b39a984043 |
IEDL.DBID | AIKHN |
ISSN | 0925-2312 |
IngestDate | Tue Jul 01 04:24:43 EDT 2025 Thu Apr 24 23:11:57 EDT 2025 Fri Feb 23 02:42:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brain-computer interface Data augmentation Motor imagery Signal decomposition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-10cae1360399059834723e9869a596b6b6c648e63eb7dd1dabb97e5b39a984043 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_neucom_2021_08_119 crossref_citationtrail_10_1016_j_neucom_2021_08_119 elsevier_sciencedirect_doi_10_1016_j_neucom_2021_08_119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-20 |
PublicationDateYYYYMMDD | 2021-11-20 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sakhavi, Guan, Yan (b0115) 2015 Harmeling, Dornhege, Tax, Meinecke, Mueller (b0225) 2006; 69 Mohamed, Yusoff, Malik, Bahloul, Adam, Adam (b0205) 2018; 77 Zhang, Zhou, Jin, Wang, Cichocki (b0070) 2015; 255 Subasi, Gursoy (b0085) 2010; 37 K.G. Hartmann, R.T. Schirrmeister, T. Ball, EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals, arXiv: Signal Processing (2018). Zhao, Patel, Zuo (b0190) 2012; 27 Phothisonothai, Nakagawa (b0130) 2008; 91 Batula, Mark, Kim, Ayaz (b0035) 2017; 2017 Zhang, Duan, Solé-Casals, Dinarès-Ferran, Cichocki, Yang, Sun (b0160) 2019; 7 Q. Zhang, Y. Liu, Improving brain computer interface performance by data augmentation with conditional deep convolutional generative adversarial networks, arXiv: Human-Computer Interaction (2018). Frei, Osorio (b0195) 2007; 463 Lu, Li, Ren, Miao (b0105) 2017; 25 Blanchard, Blankertz (b0050) 2004; 51 Garrett, Anderson, Thaut, Peterson (b0095) 2003; 11 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b0165) 2018; 15 Hazarika, Chen, Tsoi, Sergejew (b0075) 1997; 59 Ang, Chin, Wang, Guan, Zhang (b0065) 2012; 6 Hadjidimitriou, Hadjileontiadis (b0080) 2012; 59 Acharya, Oh, Hagiwara, Tan, Adeli (b0110) 2017; 100 F. Lotte, Generating artificial EEG signals to reduce BCI calibration time, in: Proceedings of International Brain-Computer Interface Workshop, (2011). Mullergerking, Pfurtscheller, Flyvbjerg (b0040) 1999; 110 Ren, Wu (b0100) 2014 Park, Looney, Rehman, Ahrabian, Mandic (b0185) 2013; 21 Koles, Lazar, Zhou (b0045) 1990; 2 Rehman, Mandic (b0180) 2010; 466 A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, MobileNets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861 (2017). Liu, Wang, Newman, Thakor, Ying (b0015) 2017; 27 Wolpaw, Birbaumer, Mcfarland, Pfurtscheller, Vaughan (b0005) 2002; 113 Dinarès-Ferran, Ortner, Guger, Solé-Casals (b0155) 2018; 12 Martis, Acharya, Tan, Petznick, Tong, Chua, Ng (b0200) 2013; 23 Zhang, Wang, Jin, Wang (b0020) 2017; 27 Gandhi, Arora, Behera, Prasad, Coyle, Mcginnity (b0125) 2011 Yang, Sakhavi, Kai, Guan (b0120) 2015 F.B. Vialatte, J. Solécasals, M. Maurice, C.F.V. Latchoumane, N. Hudson, S.R. Wimalaratna, J. Jaeseung, A. Cichocki, Improving the quality of EEG data in patients with alzheimer’s disease using ICA, in: Proceedings of Neuroinformation Processing, 2009. Tabar, Halici (b0025) 2017; 14 Lotte, Guan (b0060) 2011; 58 Samek, Vidaurre, Muller, Kawanabe (b0055) 2012; 9 Yun, Luo (b0145) 2018 Phan, Cichocki (b0215) 2010; 1 Ai, Chen, Chen, Liu, Zhou, Xin, Ji (b0030) 2019; 16 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (b0170) 1998; 454 Der Maaten, Hinton (b0220) 2008; 9 Yamawaki, Wilke, Liu, He (b0010) 2006; 14 Huang, Wu (b0175) 2008; 46 Lu (10.1016/j.neucom.2021.08.119_b0105) 2017; 25 Huang (10.1016/j.neucom.2021.08.119_b0170) 1998; 454 Zhang (10.1016/j.neucom.2021.08.119_b0020) 2017; 27 Rehman (10.1016/j.neucom.2021.08.119_b0180) 2010; 466 Harmeling (10.1016/j.neucom.2021.08.119_b0225) 2006; 69 10.1016/j.neucom.2021.08.119_b0140 Phothisonothai (10.1016/j.neucom.2021.08.119_b0130) 2008; 91 Subasi (10.1016/j.neucom.2021.08.119_b0085) 2010; 37 Liu (10.1016/j.neucom.2021.08.119_b0015) 2017; 27 Phan (10.1016/j.neucom.2021.08.119_b0215) 2010; 1 Zhang (10.1016/j.neucom.2021.08.119_b0070) 2015; 255 Ren (10.1016/j.neucom.2021.08.119_b0100) 2014 Zhao (10.1016/j.neucom.2021.08.119_b0190) 2012; 27 Samek (10.1016/j.neucom.2021.08.119_b0055) 2012; 9 Garrett (10.1016/j.neucom.2021.08.119_b0095) 2003; 11 Wolpaw (10.1016/j.neucom.2021.08.119_b0005) 2002; 113 Sakhavi (10.1016/j.neucom.2021.08.119_b0115) 2015 10.1016/j.neucom.2021.08.119_b0090 Huang (10.1016/j.neucom.2021.08.119_b0175) 2008; 46 10.1016/j.neucom.2021.08.119_b0135 Martis (10.1016/j.neucom.2021.08.119_b0200) 2013; 23 10.1016/j.neucom.2021.08.119_b0210 Yun (10.1016/j.neucom.2021.08.119_b0145) 2018 Ai (10.1016/j.neucom.2021.08.119_b0030) 2019; 16 Zhang (10.1016/j.neucom.2021.08.119_b0160) 2019; 7 Hadjidimitriou (10.1016/j.neucom.2021.08.119_b0080) 2012; 59 Lawhern (10.1016/j.neucom.2021.08.119_b0165) 2018; 15 Koles (10.1016/j.neucom.2021.08.119_b0045) 1990; 2 Yang (10.1016/j.neucom.2021.08.119_b0120) 2015 10.1016/j.neucom.2021.08.119_b0150 Tabar (10.1016/j.neucom.2021.08.119_b0025) 2017; 14 Mullergerking (10.1016/j.neucom.2021.08.119_b0040) 1999; 110 Batula (10.1016/j.neucom.2021.08.119_b0035) 2017; 2017 Lotte (10.1016/j.neucom.2021.08.119_b0060) 2011; 58 Mohamed (10.1016/j.neucom.2021.08.119_b0205) 2018; 77 Acharya (10.1016/j.neucom.2021.08.119_b0110) 2017; 100 Gandhi (10.1016/j.neucom.2021.08.119_b0125) 2011 Park (10.1016/j.neucom.2021.08.119_b0185) 2013; 21 Hazarika (10.1016/j.neucom.2021.08.119_b0075) 1997; 59 Ang (10.1016/j.neucom.2021.08.119_b0065) 2012; 6 Der Maaten (10.1016/j.neucom.2021.08.119_b0220) 2008; 9 Blanchard (10.1016/j.neucom.2021.08.119_b0050) 2004; 51 Dinarès-Ferran (10.1016/j.neucom.2021.08.119_b0155) 2018; 12 Yamawaki (10.1016/j.neucom.2021.08.119_b0010) 2006; 14 Frei (10.1016/j.neucom.2021.08.119_b0195) 2007; 463 |
References_xml | – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b0170 article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences – start-page: 2850 year: 2014 end-page: 2853 ident: b0100 article-title: Convolutional deep belief networks for feature extraction of EEG signal, in publication-title: Proceedings of International Joint Conference on Neural Networks (IJCNN) – reference: Q. Zhang, Y. Liu, Improving brain computer interface performance by data augmentation with conditional deep convolutional generative adversarial networks, arXiv: Human-Computer Interaction (2018). – volume: 1 start-page: 37 year: 2010 end-page: 68 ident: b0215 article-title: Tensor decompositions for feature extraction and classification of high dimensional datasets publication-title: Nonlinear Theory and Its Applications, IEICE – volume: 58 start-page: 355 year: 2011 end-page: 362 ident: b0060 article-title: Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms publication-title: IEEE Trans. Biomed. Eng. – volume: 6 start-page: 39 year: 2012 ident: b0065 article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b publication-title: Front. Neurosci. – volume: 7 start-page: 15945 year: 2019 end-page: 15954 ident: b0160 article-title: A novel deep learning approach with data augmentation to classify motor imagery signals publication-title: IEEE Access – volume: 11 start-page: 141 year: 2003 end-page: 144 ident: b0095 article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 77 start-page: 21305 year: 2018 end-page: 21327 ident: b0205 article-title: Comparison of EEG signal decomposition methods in classification of motor-imagery BCI publication-title: Multimed. Tools Appl. – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b0220 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 16 year: 2019 ident: b0030 article-title: Feature extraction of four-class motor imagery EEG signals based on functional brain network publication-title: J. Neural Eng. – volume: 466 start-page: 1291 year: 2010 end-page: 1302 ident: b0180 article-title: Multivariate empirical mode decomposition publication-title: Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences – start-page: 2736 year: 2015 end-page: 2740 ident: b0115 article-title: Parallel convolutional-linear neural network for motor imagery classification, in publication-title: Proceedings of European Signal Processing Conference (EUSIPCO) – volume: 110 start-page: 787 year: 1999 end-page: 798 ident: b0040 article-title: Designing optimal spatial filters for single-trial EEG classification in a movement task publication-title: Clin. Neurophysuil. – volume: 14 start-page: 250 year: 2006 end-page: 254 ident: b0010 article-title: An enhanced time-frequency-spatial approach for motor imagery classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2015 ident: b0120 article-title: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification publication-title: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS) – volume: 27 start-page: 1750046 year: 2017 ident: b0015 article-title: EEG classification with a sequential decision-making method in motor imagery BCI publication-title: Int. J. Neural Syst. – volume: 14 year: 2017 ident: b0025 article-title: A novel deep learning approach for classification of EEG motor imagery signals publication-title: J. Neural Eng. – volume: 23 start-page: 1350023 year: 2013 ident: b0200 article-title: Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction publication-title: Int. J. of Neural Syst. – volume: 69 start-page: 1608 year: 2006 end-page: 1618 ident: b0225 article-title: From outliers to prototypes: Ordering data publication-title: Neurocomputing – volume: 255 start-page: 85 year: 2015 end-page: 91 ident: b0070 article-title: Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface publication-title: J. Neurosci. Methods – volume: 91 start-page: 44 year: 2008 end-page: 53 ident: b0130 article-title: EEG-based classification of motor imagery tasks using fractal dimension and neural network for brain-computer interface publication-title: IEICE Trans. Inf. Syst. – volume: 2 start-page: 275 year: 1990 end-page: 284 ident: b0045 article-title: Spatial patterns underlying population differences in the background EEG publication-title: Brain Topogr. – reference: F. Lotte, Generating artificial EEG signals to reduce BCI calibration time, in: Proceedings of International Brain-Computer Interface Workshop, (2011). – volume: 59 start-page: 3498 year: 2012 end-page: 3510 ident: b0080 article-title: Toward an EEG-based recognition of music liking using time-frequency analysis publication-title: IEEE Trans. Biomed. Eng. – volume: 21 start-page: 10 year: 2013 end-page: 22 ident: b0185 article-title: Classification of motor imagery BCI using multivariate empirical mode decomposition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 27 start-page: 712 year: 2012 end-page: 728 ident: b0190 article-title: Multivariate EMD and full spectrum based condition monitoring for rotating machinery publication-title: Mech. Syst. Signal. Process. – volume: 12 start-page: 308 year: 2018 ident: b0155 article-title: A new method to generate artificial frames using the empirical mode decomposition for an EEG-based motor imagery BCI publication-title: Front. Neurosci. – volume: 46 year: 2008 ident: b0175 article-title: A review on Hilbert-Huang transform: Method and its applications to geophysical studies publication-title: Reviews of Geophysics – volume: 9 start-page: 026013 year: 2012 ident: b0055 article-title: Stationary common spatial patterns for brain-computer interfacing publication-title: J. Neural Eng. – reference: A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, MobileNets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861 (2017). – reference: K.G. Hartmann, R.T. Schirrmeister, T. Ball, EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals, arXiv: Signal Processing (2018). – year: 2011 ident: b0125 article-title: EEG denoising with a recurrent quantum neural network for a brain-computer interface publication-title: Proceedings of International Joint Conference on Neural Networks – year: 2018 ident: b0145 article-title: EEG data augmentation for emotion recognition using a conditional wasserstein GAN publication-title: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 37 start-page: 8659 year: 2010 end-page: 8666 ident: b0085 article-title: EEG signal classification using PCA, ICA, LDA and support vector machines publication-title: Expert Syst. Appl. – reference: F.B. Vialatte, J. Solécasals, M. Maurice, C.F.V. Latchoumane, N. Hudson, S.R. Wimalaratna, J. Jaeseung, A. Cichocki, Improving the quality of EEG data in patients with alzheimer’s disease using ICA, in: Proceedings of Neuroinformation Processing, 2009. – volume: 463 start-page: 321 year: 2007 end-page: 342 ident: b0195 article-title: Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals publication-title: Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 51 start-page: 1062 year: 2004 end-page: 1066 ident: b0050 article-title: BCI competition 2003-data set IIa: spatial patterns of self-controlled brain rhythm modulations publication-title: IEEE Trans. Biomed. Eng. – volume: 25 start-page: 566 year: 2017 end-page: 576 ident: b0105 article-title: A deep learning scheme for motor imagery classification based on restricted boltzmann machines publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 27 start-page: 1650032 year: 2017 ident: b0020 article-title: Sparse bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification publication-title: Int. J. Neural Syst. – volume: 59 start-page: 61 year: 1997 end-page: 72 ident: b0075 article-title: Classification of EEG signals using the wavelet transform publication-title: Signal Processing – volume: 100 start-page: 270 year: 2017 end-page: 278 ident: b0110 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput. Biol. Med. – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: b0005 article-title: Brain-computer interfaces for communication and control publication-title: Clin. Neurophysiol. – volume: 15 year: 2018 ident: b0165 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J. Neural Eng. – volume: 2017 start-page: 5491296 year: 2017 ident: b0035 article-title: Comparison of brain activation during motor imagery and motor movement using fNIRS publication-title: Comput. Intell. Neurosci. – volume: 77 start-page: 21305 issue: 16 year: 2018 ident: 10.1016/j.neucom.2021.08.119_b0205 article-title: Comparison of EEG signal decomposition methods in classification of motor-imagery BCI publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-017-5586-9 – start-page: 2850 year: 2014 ident: 10.1016/j.neucom.2021.08.119_b0100 article-title: Convolutional deep belief networks for feature extraction of EEG signal, in – volume: 91 start-page: 44 issue: 1 year: 2008 ident: 10.1016/j.neucom.2021.08.119_b0130 article-title: EEG-based classification of motor imagery tasks using fractal dimension and neural network for brain-computer interface publication-title: IEICE Trans. Inf. Syst. doi: 10.1093/ietisy/e91-d.1.44 – volume: 46 issue: 2 year: 2008 ident: 10.1016/j.neucom.2021.08.119_b0175 article-title: A review on Hilbert-Huang transform: Method and its applications to geophysical studies publication-title: Reviews of Geophysics doi: 10.1029/2007RG000228 – volume: 27 start-page: 1650032 issue: 2 year: 2017 ident: 10.1016/j.neucom.2021.08.119_b0020 article-title: Sparse bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500325 – year: 2011 ident: 10.1016/j.neucom.2021.08.119_b0125 article-title: EEG denoising with a recurrent quantum neural network for a brain-computer interface – volume: 15 issue: 5 year: 2018 ident: 10.1016/j.neucom.2021.08.119_b0165 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 51 start-page: 1062 issue: 6 year: 2004 ident: 10.1016/j.neucom.2021.08.119_b0050 article-title: BCI competition 2003-data set IIa: spatial patterns of self-controlled brain rhythm modulations publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.826691 – volume: 9 start-page: 026013 issue: 2 year: 2012 ident: 10.1016/j.neucom.2021.08.119_b0055 article-title: Stationary common spatial patterns for brain-computer interfacing publication-title: J. Neural Eng. doi: 10.1088/1741-2560/9/2/026013 – volume: 69 start-page: 1608 issue: 13–15 year: 2006 ident: 10.1016/j.neucom.2021.08.119_b0225 article-title: From outliers to prototypes: Ordering data publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.05.015 – volume: 16 issue: 2 year: 2019 ident: 10.1016/j.neucom.2021.08.119_b0030 article-title: Feature extraction of four-class motor imagery EEG signals based on functional brain network publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0328 – ident: 10.1016/j.neucom.2021.08.119_b0150 – volume: 100 start-page: 270 year: 2017 ident: 10.1016/j.neucom.2021.08.119_b0110 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.017 – start-page: 2736 year: 2015 ident: 10.1016/j.neucom.2021.08.119_b0115 article-title: Parallel convolutional-linear neural network for motor imagery classification, in – volume: 27 start-page: 712 year: 2012 ident: 10.1016/j.neucom.2021.08.119_b0190 article-title: Multivariate EMD and full spectrum based condition monitoring for rotating machinery publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2011.08.001 – year: 2015 ident: 10.1016/j.neucom.2021.08.119_b0120 article-title: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification – volume: 2017 start-page: 5491296 year: 2017 ident: 10.1016/j.neucom.2021.08.119_b0035 article-title: Comparison of brain activation during motor imagery and motor movement using fNIRS publication-title: Comput. Intell. Neurosci. doi: 10.1155/2017/5491296 – ident: 10.1016/j.neucom.2021.08.119_b0140 – volume: 21 start-page: 10 issue: 1 year: 2013 ident: 10.1016/j.neucom.2021.08.119_b0185 article-title: Classification of motor imagery BCI using multivariate empirical mode decomposition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2229296 – volume: 59 start-page: 3498 issue: 12 year: 2012 ident: 10.1016/j.neucom.2021.08.119_b0080 article-title: Toward an EEG-based recognition of music liking using time-frequency analysis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2217495 – volume: 6 start-page: 39 year: 2012 ident: 10.1016/j.neucom.2021.08.119_b0065 article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00039 – volume: 14 issue: 1 year: 2017 ident: 10.1016/j.neucom.2021.08.119_b0025 article-title: A novel deep learning approach for classification of EEG motor imagery signals publication-title: J. Neural Eng. doi: 10.1088/1741-2560/14/1/016003 – volume: 25 start-page: 566 issue: 6 year: 2017 ident: 10.1016/j.neucom.2021.08.119_b0105 article-title: A deep learning scheme for motor imagery classification based on restricted boltzmann machines publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2601240 – volume: 27 start-page: 1750046 issue: 8 year: 2017 ident: 10.1016/j.neucom.2021.08.119_b0015 article-title: EEG classification with a sequential decision-making method in motor imagery BCI publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065717500460 – ident: 10.1016/j.neucom.2021.08.119_b0090 doi: 10.1007/978-3-642-03040-6_119 – volume: 466 start-page: 1291 issue: 2117 year: 2010 ident: 10.1016/j.neucom.2021.08.119_b0180 article-title: Multivariate empirical mode decomposition publication-title: Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2009.0502 – ident: 10.1016/j.neucom.2021.08.119_b0210 – volume: 110 start-page: 787 issue: 5 year: 1999 ident: 10.1016/j.neucom.2021.08.119_b0040 article-title: Designing optimal spatial filters for single-trial EEG classification in a movement task publication-title: Clin. Neurophysuil. doi: 10.1016/S1388-2457(98)00038-8 – volume: 58 start-page: 355 issue: 2 year: 2011 ident: 10.1016/j.neucom.2021.08.119_b0060 article-title: Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082539 – year: 2018 ident: 10.1016/j.neucom.2021.08.119_b0145 article-title: EEG data augmentation for emotion recognition using a conditional wasserstein GAN – volume: 2 start-page: 275 issue: 4 year: 1990 ident: 10.1016/j.neucom.2021.08.119_b0045 article-title: Spatial patterns underlying population differences in the background EEG publication-title: Brain Topogr. doi: 10.1007/BF01129656 – volume: 37 start-page: 8659 issue: 12 year: 2010 ident: 10.1016/j.neucom.2021.08.119_b0085 article-title: EEG signal classification using PCA, ICA, LDA and support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.06.065 – volume: 14 start-page: 250 issue: 2 year: 2006 ident: 10.1016/j.neucom.2021.08.119_b0010 article-title: An enhanced time-frequency-spatial approach for motor imagery classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.875567 – ident: 10.1016/j.neucom.2021.08.119_b0135 – volume: 7 start-page: 15945 year: 2019 ident: 10.1016/j.neucom.2021.08.119_b0160 article-title: A novel deep learning approach with data augmentation to classify motor imagery signals publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2895133 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.neucom.2021.08.119_b0170 article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.1998.0193 – volume: 1 start-page: 37 issue: 1 year: 2010 ident: 10.1016/j.neucom.2021.08.119_b0215 article-title: Tensor decompositions for feature extraction and classification of high dimensional datasets publication-title: Nonlinear Theory and Its Applications, IEICE doi: 10.1587/nolta.1.37 – volume: 255 start-page: 85 year: 2015 ident: 10.1016/j.neucom.2021.08.119_b0070 article-title: Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.08.004 – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.neucom.2021.08.119_b0220 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 113 start-page: 767 issue: 6 year: 2002 ident: 10.1016/j.neucom.2021.08.119_b0005 article-title: Brain-computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 12 start-page: 308 year: 2018 ident: 10.1016/j.neucom.2021.08.119_b0155 article-title: A new method to generate artificial frames using the empirical mode decomposition for an EEG-based motor imagery BCI publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00308 – volume: 59 start-page: 61 issue: 1 year: 1997 ident: 10.1016/j.neucom.2021.08.119_b0075 article-title: Classification of EEG signals using the wavelet transform publication-title: Signal Processing doi: 10.1016/S0165-1684(97)00038-8 – volume: 463 start-page: 321 issue: 2078 year: 2007 ident: 10.1016/j.neucom.2021.08.119_b0195 article-title: Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals publication-title: Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2006.1761 – volume: 11 start-page: 141 issue: 2 year: 2003 ident: 10.1016/j.neucom.2021.08.119_b0095 article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2003.814441 – volume: 23 start-page: 1350023 issue: 5 year: 2013 ident: 10.1016/j.neucom.2021.08.119_b0200 article-title: Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction publication-title: Int. J. of Neural Syst. doi: 10.1142/S0129065713500238 |
SSID | ssj0017129 |
Score | 2.3845677 |
Snippet | Deep learning has achieved a remarkable success in areas such as brain-computer interface systems (BCI). However, electroencephalography (EEG) signals evoked... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 325 |
SubjectTerms | Brain-computer interface Data augmentation Motor imagery Signal decomposition |
Title | Component-mixing strategy: A decomposition-based data augmentation algorithm for motor imagery signals |
URI | https://dx.doi.org/10.1016/j.neucom.2021.08.119 |
Volume | 465 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS91AEF70eenF1qpoW2UPva4v-yObXW8PqTxb6qUK3sL-ikZ8UfQ90It_uzNmIxaKBQkEsmQgzO7ON0O--ZaQ70kbFUrYgNp4ySADV8yWSTMepU_RN0VTYe_w72M9PVU_z8qzJXIw9MIgrTLH_j6mP0frPDLO3hzftO34T2EFVFFcQNEChRY2_K4IaXU5IiuTo1_T45efCRUXveSeKBkaDB10zzSvLi2QNiIA61DLk6Pkzr8Q6hXqHH4iqzldpJP-i9bIUuo-k4_DUQw078x10uDQdQcIwmbtPcARvetlZx_26YTGhMzxTM9iCFyRIjWUusX5LDcfddRdnV_ftvOLGYVElsIUwr2docbFA0WaByzUDXJ6-OPkYMryEQosQC0whyAbXOJSF5CHQCJlpKqETNZo60qrPVxBK5O0TL6KkUfnva1S6aV11qDwziYZdfD1W4S6RiUtVGySEyoV3ART-ZACDypGy902kYPb6pD1xfGYi6t6IJJd1r2za3R2XRioPuw2YS9WN72-xn_er4YZqf9aJzVAwJuWX95t-ZV8wCfsQBTFNzKa3y7SDqQic79Llvce-W5ecE_1COCa |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhObSXJumDJs1Dh17VtR6WpdyWkLBtHpcmkJvRy6nDrhOSXehe-ts7s5ZDC6WFYvBBDxAjab4Z-OYTIR-TNiqUcAG18ZJBBK6YLZNmPEqfom-KpsLa4YtLPblWX27KmzVyPNTCIK0y-_7ep6-8dW4ZZWuOHtp29LWwArIoLiBpgUQLC343VCkr5PV9-vHM8-AVF73gnigZDh_q51Ykry4tkDQiAOlQyZOj4M6f8OkXzDndIq9ysEjH_Xq2yVrqXpPN4SEGmu_lG9Jg030H-MFm7XcAI_rUi84uj-iYxoS88UzOYghbkSIxlLrF7SyXHnXUTW_vH9v5txmFMJbCBsK_naHCxZIiyQOO6VtyfXpydTxh-QEFFiATmIOLDS5xqQuIQiCMMlJVQiZrtHWl1R6-oJVJWiZfxcij895WqfTSOmtQducdWe9g9e8JdY1KWqjYJCdUKrgJpvIhBR5UjJa7HSIHs9Uhq4vjIxfTeqCR3dW9sWs0dl0YyD3sDmHPsx56dY1_jK-GHal_OyU1AMBfZ-7-98xD8mJydXFen3--PPtAXmIP1iKKYo-szx8XaR-Ckrk_WB26n93w4WU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Component-mixing+strategy%3A+A+decomposition-based+data+augmentation+algorithm+for+motor+imagery+signals&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Li%2C+Binghua&rft.au=Zhang%2C+Zhiwen&rft.au=Duan%2C+Feng&rft.au=Yang%2C+Zhenglu&rft.date=2021-11-20&rft.issn=0925-2312&rft.volume=465&rft.spage=325&rft.epage=335&rft_id=info:doi/10.1016%2Fj.neucom.2021.08.119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2021_08_119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |