Component-mixing strategy: A decomposition-based data augmentation algorithm for motor imagery signals

Deep learning has achieved a remarkable success in areas such as brain-computer interface systems (BCI). However, electroencephalography (EEG) signals evoked by motor imagery (MI) are sometimes limited in their amount due to invalid data caused by the subjects’ fatigue, leading to a performance degr...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 465; pp. 325 - 335
Main Authors Li, Binghua, Zhang, Zhiwen, Duan, Feng, Yang, Zhenglu, Zhao, Qibin, Sun, Zhe, Solé-Casals, Jordi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 20.11.2021
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2021.08.119

Cover

Abstract Deep learning has achieved a remarkable success in areas such as brain-computer interface systems (BCI). However, electroencephalography (EEG) signals evoked by motor imagery (MI) are sometimes limited in their amount due to invalid data caused by the subjects’ fatigue, leading to a performance degradation. To this end, in this work we extend empirical mode decomposition into multivariate empirical mode decomposition and intrinsic time-scale decomposition, proposing a component-mixing strategy (CMS) for MI data augmentation. Compared to commonly used data augmentation methods such as generative adversarial networks, CMS can generate artificial trials from a few training samples without any required training. We claim that raw and artificial data generated by CMS are consistent with respect to the distribution and power spectral density. Experiments done on the BCI Competition IV dataset 2b show that CMS can achieve a considerable improvement on the binary classification accuracy and the area under the curve score using EEGNet, wavelet neural networks and a support vector machine.
AbstractList Deep learning has achieved a remarkable success in areas such as brain-computer interface systems (BCI). However, electroencephalography (EEG) signals evoked by motor imagery (MI) are sometimes limited in their amount due to invalid data caused by the subjects’ fatigue, leading to a performance degradation. To this end, in this work we extend empirical mode decomposition into multivariate empirical mode decomposition and intrinsic time-scale decomposition, proposing a component-mixing strategy (CMS) for MI data augmentation. Compared to commonly used data augmentation methods such as generative adversarial networks, CMS can generate artificial trials from a few training samples without any required training. We claim that raw and artificial data generated by CMS are consistent with respect to the distribution and power spectral density. Experiments done on the BCI Competition IV dataset 2b show that CMS can achieve a considerable improvement on the binary classification accuracy and the area under the curve score using EEGNet, wavelet neural networks and a support vector machine.
Author Li, Binghua
Zhang, Zhiwen
Solé-Casals, Jordi
Yang, Zhenglu
Duan, Feng
Sun, Zhe
Zhao, Qibin
Author_xml – sequence: 1
  givenname: Binghua
  surname: Li
  fullname: Li, Binghua
  organization: College of Artificial Intelligence, Nankai University, Tianjin 300071, China
– sequence: 2
  givenname: Zhiwen
  surname: Zhang
  fullname: Zhang, Zhiwen
  organization: College of Artificial Intelligence, Nankai University, Tianjin 300071, China
– sequence: 3
  givenname: Feng
  surname: Duan
  fullname: Duan, Feng
  email: duanf@nankai.edu.cn
  organization: College of Artificial Intelligence, Nankai University, Tianjin 300071, China
– sequence: 4
  givenname: Zhenglu
  surname: Yang
  fullname: Yang, Zhenglu
  organization: College of Computer Science, Nankai University, Tianjin 300071, China
– sequence: 5
  givenname: Qibin
  surname: Zhao
  fullname: Zhao, Qibin
  organization: Tensor Learning Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
– sequence: 6
  givenname: Zhe
  surname: Sun
  fullname: Sun, Zhe
  email: zhe.sun.vk@riken.jp
  organization: Computational Engineering Applications Unit, Head Office for Information Systems and Cybersecurity, RIKEN, Saitama 351-0198, Japan
– sequence: 7
  givenname: Jordi
  surname: Solé-Casals
  fullname: Solé-Casals, Jordi
  email: jordi.sole@uvic.cat
  organization: College of Artificial Intelligence, Nankai University, Tianjin 300071, China
BookMark eNqFkNtKAzEQhoNUsK2-gRd5gV1z2EPSC6EUT1DwRq9DNju7pnQ3JUnFvr0p65UXSiADM3w_M98CzUY3AkK3lOSU0Opul49wNG7IGWE0JyKnVF6gORU1ywQT1QzNiWRlxjhlV2gRwo4QWlMm56jbuOGQ0saYDfbLjj0O0esI_WmF17gFcx4HG60bs0YHaHGro8b62A-J0ec-1vveeRs_Btw5jwcX028H3YM_4WD7Ue_DNbrsUoGbn7pE748Pb5vnbPv69LJZbzPDSRUzSowGyivCpSSlFLyoGQcpKqlLWTXpmaoQUHFo6ralrW4aWUPZcKmlKEjBl6iYco13IXjo1MGnVfxJUaLOrtROTa7U2ZUiQiVXCVv9woydjksy7P4_-H6CIR32acGrYCyMBlrrwUTVOvt3wDfaiIwc
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124511
crossref_primary_10_1109_TIM_2023_3301902
crossref_primary_10_1186_s12984_023_01169_w
crossref_primary_10_3389_fenrg_2023_1069119
crossref_primary_10_1016_j_isatra_2022_02_038
crossref_primary_10_1109_TNSRE_2023_3314679
crossref_primary_10_1109_TICPS_2023_3323600
crossref_primary_10_1007_s12559_023_10188_7
crossref_primary_10_1016_j_aej_2025_02_001
Cites_doi 10.1007/s11042-017-5586-9
10.1093/ietisy/e91-d.1.44
10.1029/2007RG000228
10.1142/S0129065716500325
10.1088/1741-2552/aace8c
10.1109/TBME.2004.826691
10.1088/1741-2560/9/2/026013
10.1016/j.neucom.2005.05.015
10.1088/1741-2552/ab0328
10.1016/j.compbiomed.2017.09.017
10.1016/j.ymssp.2011.08.001
10.1155/2017/5491296
10.1109/TNSRE.2012.2229296
10.1109/TBME.2012.2217495
10.3389/fnins.2012.00039
10.1088/1741-2560/14/1/016003
10.1109/TNSRE.2016.2601240
10.1142/S0129065717500460
10.1007/978-3-642-03040-6_119
10.1098/rspa.2009.0502
10.1016/S1388-2457(98)00038-8
10.1109/TBME.2010.2082539
10.1007/BF01129656
10.1016/j.eswa.2010.06.065
10.1109/TNSRE.2006.875567
10.1109/ACCESS.2019.2895133
10.1098/rspa.1998.0193
10.1587/nolta.1.37
10.1016/j.jneumeth.2015.08.004
10.1016/S1388-2457(02)00057-3
10.3389/fnins.2018.00308
10.1016/S0165-1684(97)00038-8
10.1098/rspa.2006.1761
10.1109/TNSRE.2003.814441
10.1142/S0129065713500238
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2021.08.119
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 335
ExternalDocumentID 10_1016_j_neucom_2021_08_119
S0925231221013308
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c306t-10cae1360399059834723e9869a596b6b6c648e63eb7dd1dabb97e5b39a984043
IEDL.DBID AIKHN
ISSN 0925-2312
IngestDate Tue Jul 01 04:24:43 EDT 2025
Thu Apr 24 23:11:57 EDT 2025
Fri Feb 23 02:42:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Brain-computer interface
Data augmentation
Motor imagery
Signal decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-10cae1360399059834723e9869a596b6b6c648e63eb7dd1dabb97e5b39a984043
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_neucom_2021_08_119
crossref_citationtrail_10_1016_j_neucom_2021_08_119
elsevier_sciencedirect_doi_10_1016_j_neucom_2021_08_119
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-20
PublicationDateYYYYMMDD 2021-11-20
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-20
  day: 20
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sakhavi, Guan, Yan (b0115) 2015
Harmeling, Dornhege, Tax, Meinecke, Mueller (b0225) 2006; 69
Mohamed, Yusoff, Malik, Bahloul, Adam, Adam (b0205) 2018; 77
Zhang, Zhou, Jin, Wang, Cichocki (b0070) 2015; 255
Subasi, Gursoy (b0085) 2010; 37
K.G. Hartmann, R.T. Schirrmeister, T. Ball, EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals, arXiv: Signal Processing (2018).
Zhao, Patel, Zuo (b0190) 2012; 27
Phothisonothai, Nakagawa (b0130) 2008; 91
Batula, Mark, Kim, Ayaz (b0035) 2017; 2017
Zhang, Duan, Solé-Casals, Dinarès-Ferran, Cichocki, Yang, Sun (b0160) 2019; 7
Q. Zhang, Y. Liu, Improving brain computer interface performance by data augmentation with conditional deep convolutional generative adversarial networks, arXiv: Human-Computer Interaction (2018).
Frei, Osorio (b0195) 2007; 463
Lu, Li, Ren, Miao (b0105) 2017; 25
Blanchard, Blankertz (b0050) 2004; 51
Garrett, Anderson, Thaut, Peterson (b0095) 2003; 11
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b0165) 2018; 15
Hazarika, Chen, Tsoi, Sergejew (b0075) 1997; 59
Ang, Chin, Wang, Guan, Zhang (b0065) 2012; 6
Hadjidimitriou, Hadjileontiadis (b0080) 2012; 59
Acharya, Oh, Hagiwara, Tan, Adeli (b0110) 2017; 100
F. Lotte, Generating artificial EEG signals to reduce BCI calibration time, in: Proceedings of International Brain-Computer Interface Workshop, (2011).
Mullergerking, Pfurtscheller, Flyvbjerg (b0040) 1999; 110
Ren, Wu (b0100) 2014
Park, Looney, Rehman, Ahrabian, Mandic (b0185) 2013; 21
Koles, Lazar, Zhou (b0045) 1990; 2
Rehman, Mandic (b0180) 2010; 466
A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, MobileNets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861 (2017).
Liu, Wang, Newman, Thakor, Ying (b0015) 2017; 27
Wolpaw, Birbaumer, Mcfarland, Pfurtscheller, Vaughan (b0005) 2002; 113
Dinarès-Ferran, Ortner, Guger, Solé-Casals (b0155) 2018; 12
Martis, Acharya, Tan, Petznick, Tong, Chua, Ng (b0200) 2013; 23
Zhang, Wang, Jin, Wang (b0020) 2017; 27
Gandhi, Arora, Behera, Prasad, Coyle, Mcginnity (b0125) 2011
Yang, Sakhavi, Kai, Guan (b0120) 2015
F.B. Vialatte, J. Solécasals, M. Maurice, C.F.V. Latchoumane, N. Hudson, S.R. Wimalaratna, J. Jaeseung, A. Cichocki, Improving the quality of EEG data in patients with alzheimer’s disease using ICA, in: Proceedings of Neuroinformation Processing, 2009.
Tabar, Halici (b0025) 2017; 14
Lotte, Guan (b0060) 2011; 58
Samek, Vidaurre, Muller, Kawanabe (b0055) 2012; 9
Yun, Luo (b0145) 2018
Phan, Cichocki (b0215) 2010; 1
Ai, Chen, Chen, Liu, Zhou, Xin, Ji (b0030) 2019; 16
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (b0170) 1998; 454
Der Maaten, Hinton (b0220) 2008; 9
Yamawaki, Wilke, Liu, He (b0010) 2006; 14
Huang, Wu (b0175) 2008; 46
Lu (10.1016/j.neucom.2021.08.119_b0105) 2017; 25
Huang (10.1016/j.neucom.2021.08.119_b0170) 1998; 454
Zhang (10.1016/j.neucom.2021.08.119_b0020) 2017; 27
Rehman (10.1016/j.neucom.2021.08.119_b0180) 2010; 466
Harmeling (10.1016/j.neucom.2021.08.119_b0225) 2006; 69
10.1016/j.neucom.2021.08.119_b0140
Phothisonothai (10.1016/j.neucom.2021.08.119_b0130) 2008; 91
Subasi (10.1016/j.neucom.2021.08.119_b0085) 2010; 37
Liu (10.1016/j.neucom.2021.08.119_b0015) 2017; 27
Phan (10.1016/j.neucom.2021.08.119_b0215) 2010; 1
Zhang (10.1016/j.neucom.2021.08.119_b0070) 2015; 255
Ren (10.1016/j.neucom.2021.08.119_b0100) 2014
Zhao (10.1016/j.neucom.2021.08.119_b0190) 2012; 27
Samek (10.1016/j.neucom.2021.08.119_b0055) 2012; 9
Garrett (10.1016/j.neucom.2021.08.119_b0095) 2003; 11
Wolpaw (10.1016/j.neucom.2021.08.119_b0005) 2002; 113
Sakhavi (10.1016/j.neucom.2021.08.119_b0115) 2015
10.1016/j.neucom.2021.08.119_b0090
Huang (10.1016/j.neucom.2021.08.119_b0175) 2008; 46
10.1016/j.neucom.2021.08.119_b0135
Martis (10.1016/j.neucom.2021.08.119_b0200) 2013; 23
10.1016/j.neucom.2021.08.119_b0210
Yun (10.1016/j.neucom.2021.08.119_b0145) 2018
Ai (10.1016/j.neucom.2021.08.119_b0030) 2019; 16
Zhang (10.1016/j.neucom.2021.08.119_b0160) 2019; 7
Hadjidimitriou (10.1016/j.neucom.2021.08.119_b0080) 2012; 59
Lawhern (10.1016/j.neucom.2021.08.119_b0165) 2018; 15
Koles (10.1016/j.neucom.2021.08.119_b0045) 1990; 2
Yang (10.1016/j.neucom.2021.08.119_b0120) 2015
10.1016/j.neucom.2021.08.119_b0150
Tabar (10.1016/j.neucom.2021.08.119_b0025) 2017; 14
Mullergerking (10.1016/j.neucom.2021.08.119_b0040) 1999; 110
Batula (10.1016/j.neucom.2021.08.119_b0035) 2017; 2017
Lotte (10.1016/j.neucom.2021.08.119_b0060) 2011; 58
Mohamed (10.1016/j.neucom.2021.08.119_b0205) 2018; 77
Acharya (10.1016/j.neucom.2021.08.119_b0110) 2017; 100
Gandhi (10.1016/j.neucom.2021.08.119_b0125) 2011
Park (10.1016/j.neucom.2021.08.119_b0185) 2013; 21
Hazarika (10.1016/j.neucom.2021.08.119_b0075) 1997; 59
Ang (10.1016/j.neucom.2021.08.119_b0065) 2012; 6
Der Maaten (10.1016/j.neucom.2021.08.119_b0220) 2008; 9
Blanchard (10.1016/j.neucom.2021.08.119_b0050) 2004; 51
Dinarès-Ferran (10.1016/j.neucom.2021.08.119_b0155) 2018; 12
Yamawaki (10.1016/j.neucom.2021.08.119_b0010) 2006; 14
Frei (10.1016/j.neucom.2021.08.119_b0195) 2007; 463
References_xml – volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b0170
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences
– start-page: 2850
  year: 2014
  end-page: 2853
  ident: b0100
  article-title: Convolutional deep belief networks for feature extraction of EEG signal, in
  publication-title: Proceedings of International Joint Conference on Neural Networks (IJCNN)
– reference: Q. Zhang, Y. Liu, Improving brain computer interface performance by data augmentation with conditional deep convolutional generative adversarial networks, arXiv: Human-Computer Interaction (2018).
– volume: 1
  start-page: 37
  year: 2010
  end-page: 68
  ident: b0215
  article-title: Tensor decompositions for feature extraction and classification of high dimensional datasets
  publication-title: Nonlinear Theory and Its Applications, IEICE
– volume: 58
  start-page: 355
  year: 2011
  end-page: 362
  ident: b0060
  article-title: Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 6
  start-page: 39
  year: 2012
  ident: b0065
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
  publication-title: Front. Neurosci.
– volume: 7
  start-page: 15945
  year: 2019
  end-page: 15954
  ident: b0160
  article-title: A novel deep learning approach with data augmentation to classify motor imagery signals
  publication-title: IEEE Access
– volume: 11
  start-page: 141
  year: 2003
  end-page: 144
  ident: b0095
  article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 77
  start-page: 21305
  year: 2018
  end-page: 21327
  ident: b0205
  article-title: Comparison of EEG signal decomposition methods in classification of motor-imagery BCI
  publication-title: Multimed. Tools Appl.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b0220
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 16
  year: 2019
  ident: b0030
  article-title: Feature extraction of four-class motor imagery EEG signals based on functional brain network
  publication-title: J. Neural Eng.
– volume: 466
  start-page: 1291
  year: 2010
  end-page: 1302
  ident: b0180
  article-title: Multivariate empirical mode decomposition
  publication-title: Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences
– start-page: 2736
  year: 2015
  end-page: 2740
  ident: b0115
  article-title: Parallel convolutional-linear neural network for motor imagery classification, in
  publication-title: Proceedings of European Signal Processing Conference (EUSIPCO)
– volume: 110
  start-page: 787
  year: 1999
  end-page: 798
  ident: b0040
  article-title: Designing optimal spatial filters for single-trial EEG classification in a movement task
  publication-title: Clin. Neurophysuil.
– volume: 14
  start-page: 250
  year: 2006
  end-page: 254
  ident: b0010
  article-title: An enhanced time-frequency-spatial approach for motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 2015
  ident: b0120
  article-title: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification
  publication-title: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS)
– volume: 27
  start-page: 1750046
  year: 2017
  ident: b0015
  article-title: EEG classification with a sequential decision-making method in motor imagery BCI
  publication-title: Int. J. Neural Syst.
– volume: 14
  year: 2017
  ident: b0025
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: J. Neural Eng.
– volume: 23
  start-page: 1350023
  year: 2013
  ident: b0200
  article-title: Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction
  publication-title: Int. J. of Neural Syst.
– volume: 69
  start-page: 1608
  year: 2006
  end-page: 1618
  ident: b0225
  article-title: From outliers to prototypes: Ordering data
  publication-title: Neurocomputing
– volume: 255
  start-page: 85
  year: 2015
  end-page: 91
  ident: b0070
  article-title: Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface
  publication-title: J. Neurosci. Methods
– volume: 91
  start-page: 44
  year: 2008
  end-page: 53
  ident: b0130
  article-title: EEG-based classification of motor imagery tasks using fractal dimension and neural network for brain-computer interface
  publication-title: IEICE Trans. Inf. Syst.
– volume: 2
  start-page: 275
  year: 1990
  end-page: 284
  ident: b0045
  article-title: Spatial patterns underlying population differences in the background EEG
  publication-title: Brain Topogr.
– reference: F. Lotte, Generating artificial EEG signals to reduce BCI calibration time, in: Proceedings of International Brain-Computer Interface Workshop, (2011).
– volume: 59
  start-page: 3498
  year: 2012
  end-page: 3510
  ident: b0080
  article-title: Toward an EEG-based recognition of music liking using time-frequency analysis
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 21
  start-page: 10
  year: 2013
  end-page: 22
  ident: b0185
  article-title: Classification of motor imagery BCI using multivariate empirical mode decomposition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 27
  start-page: 712
  year: 2012
  end-page: 728
  ident: b0190
  article-title: Multivariate EMD and full spectrum based condition monitoring for rotating machinery
  publication-title: Mech. Syst. Signal. Process.
– volume: 12
  start-page: 308
  year: 2018
  ident: b0155
  article-title: A new method to generate artificial frames using the empirical mode decomposition for an EEG-based motor imagery BCI
  publication-title: Front. Neurosci.
– volume: 46
  year: 2008
  ident: b0175
  article-title: A review on Hilbert-Huang transform: Method and its applications to geophysical studies
  publication-title: Reviews of Geophysics
– volume: 9
  start-page: 026013
  year: 2012
  ident: b0055
  article-title: Stationary common spatial patterns for brain-computer interfacing
  publication-title: J. Neural Eng.
– reference: A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, MobileNets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861 (2017).
– reference: K.G. Hartmann, R.T. Schirrmeister, T. Ball, EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals, arXiv: Signal Processing (2018).
– year: 2011
  ident: b0125
  article-title: EEG denoising with a recurrent quantum neural network for a brain-computer interface
  publication-title: Proceedings of International Joint Conference on Neural Networks
– year: 2018
  ident: b0145
  article-title: EEG data augmentation for emotion recognition using a conditional wasserstein GAN
  publication-title: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 37
  start-page: 8659
  year: 2010
  end-page: 8666
  ident: b0085
  article-title: EEG signal classification using PCA, ICA, LDA and support vector machines
  publication-title: Expert Syst. Appl.
– reference: F.B. Vialatte, J. Solécasals, M. Maurice, C.F.V. Latchoumane, N. Hudson, S.R. Wimalaratna, J. Jaeseung, A. Cichocki, Improving the quality of EEG data in patients with alzheimer’s disease using ICA, in: Proceedings of Neuroinformation Processing, 2009.
– volume: 463
  start-page: 321
  year: 2007
  end-page: 342
  ident: b0195
  article-title: Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals
  publication-title: Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 51
  start-page: 1062
  year: 2004
  end-page: 1066
  ident: b0050
  article-title: BCI competition 2003-data set IIa: spatial patterns of self-controlled brain rhythm modulations
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 25
  start-page: 566
  year: 2017
  end-page: 576
  ident: b0105
  article-title: A deep learning scheme for motor imagery classification based on restricted boltzmann machines
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 27
  start-page: 1650032
  year: 2017
  ident: b0020
  article-title: Sparse bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification
  publication-title: Int. J. Neural Syst.
– volume: 59
  start-page: 61
  year: 1997
  end-page: 72
  ident: b0075
  article-title: Classification of EEG signals using the wavelet transform
  publication-title: Signal Processing
– volume: 100
  start-page: 270
  year: 2017
  end-page: 278
  ident: b0110
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput. Biol. Med.
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: b0005
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
– volume: 15
  year: 2018
  ident: b0165
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng.
– volume: 2017
  start-page: 5491296
  year: 2017
  ident: b0035
  article-title: Comparison of brain activation during motor imagery and motor movement using fNIRS
  publication-title: Comput. Intell. Neurosci.
– volume: 77
  start-page: 21305
  issue: 16
  year: 2018
  ident: 10.1016/j.neucom.2021.08.119_b0205
  article-title: Comparison of EEG signal decomposition methods in classification of motor-imagery BCI
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-5586-9
– start-page: 2850
  year: 2014
  ident: 10.1016/j.neucom.2021.08.119_b0100
  article-title: Convolutional deep belief networks for feature extraction of EEG signal, in
– volume: 91
  start-page: 44
  issue: 1
  year: 2008
  ident: 10.1016/j.neucom.2021.08.119_b0130
  article-title: EEG-based classification of motor imagery tasks using fractal dimension and neural network for brain-computer interface
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1093/ietisy/e91-d.1.44
– volume: 46
  issue: 2
  year: 2008
  ident: 10.1016/j.neucom.2021.08.119_b0175
  article-title: A review on Hilbert-Huang transform: Method and its applications to geophysical studies
  publication-title: Reviews of Geophysics
  doi: 10.1029/2007RG000228
– volume: 27
  start-page: 1650032
  issue: 2
  year: 2017
  ident: 10.1016/j.neucom.2021.08.119_b0020
  article-title: Sparse bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500325
– year: 2011
  ident: 10.1016/j.neucom.2021.08.119_b0125
  article-title: EEG denoising with a recurrent quantum neural network for a brain-computer interface
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.neucom.2021.08.119_b0165
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 51
  start-page: 1062
  issue: 6
  year: 2004
  ident: 10.1016/j.neucom.2021.08.119_b0050
  article-title: BCI competition 2003-data set IIa: spatial patterns of self-controlled brain rhythm modulations
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826691
– volume: 9
  start-page: 026013
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2021.08.119_b0055
  article-title: Stationary common spatial patterns for brain-computer interfacing
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/9/2/026013
– volume: 69
  start-page: 1608
  issue: 13–15
  year: 2006
  ident: 10.1016/j.neucom.2021.08.119_b0225
  article-title: From outliers to prototypes: Ordering data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.05.015
– volume: 16
  issue: 2
  year: 2019
  ident: 10.1016/j.neucom.2021.08.119_b0030
  article-title: Feature extraction of four-class motor imagery EEG signals based on functional brain network
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0328
– ident: 10.1016/j.neucom.2021.08.119_b0150
– volume: 100
  start-page: 270
  year: 2017
  ident: 10.1016/j.neucom.2021.08.119_b0110
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.017
– start-page: 2736
  year: 2015
  ident: 10.1016/j.neucom.2021.08.119_b0115
  article-title: Parallel convolutional-linear neural network for motor imagery classification, in
– volume: 27
  start-page: 712
  year: 2012
  ident: 10.1016/j.neucom.2021.08.119_b0190
  article-title: Multivariate EMD and full spectrum based condition monitoring for rotating machinery
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2011.08.001
– year: 2015
  ident: 10.1016/j.neucom.2021.08.119_b0120
  article-title: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification
– volume: 2017
  start-page: 5491296
  year: 2017
  ident: 10.1016/j.neucom.2021.08.119_b0035
  article-title: Comparison of brain activation during motor imagery and motor movement using fNIRS
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2017/5491296
– ident: 10.1016/j.neucom.2021.08.119_b0140
– volume: 21
  start-page: 10
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2021.08.119_b0185
  article-title: Classification of motor imagery BCI using multivariate empirical mode decomposition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2229296
– volume: 59
  start-page: 3498
  issue: 12
  year: 2012
  ident: 10.1016/j.neucom.2021.08.119_b0080
  article-title: Toward an EEG-based recognition of music liking using time-frequency analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2217495
– volume: 6
  start-page: 39
  year: 2012
  ident: 10.1016/j.neucom.2021.08.119_b0065
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00039
– volume: 14
  issue: 1
  year: 2017
  ident: 10.1016/j.neucom.2021.08.119_b0025
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/14/1/016003
– volume: 25
  start-page: 566
  issue: 6
  year: 2017
  ident: 10.1016/j.neucom.2021.08.119_b0105
  article-title: A deep learning scheme for motor imagery classification based on restricted boltzmann machines
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2601240
– volume: 27
  start-page: 1750046
  issue: 8
  year: 2017
  ident: 10.1016/j.neucom.2021.08.119_b0015
  article-title: EEG classification with a sequential decision-making method in motor imagery BCI
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500460
– ident: 10.1016/j.neucom.2021.08.119_b0090
  doi: 10.1007/978-3-642-03040-6_119
– volume: 466
  start-page: 1291
  issue: 2117
  year: 2010
  ident: 10.1016/j.neucom.2021.08.119_b0180
  article-title: Multivariate empirical mode decomposition
  publication-title: Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.2009.0502
– ident: 10.1016/j.neucom.2021.08.119_b0210
– volume: 110
  start-page: 787
  issue: 5
  year: 1999
  ident: 10.1016/j.neucom.2021.08.119_b0040
  article-title: Designing optimal spatial filters for single-trial EEG classification in a movement task
  publication-title: Clin. Neurophysuil.
  doi: 10.1016/S1388-2457(98)00038-8
– volume: 58
  start-page: 355
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2021.08.119_b0060
  article-title: Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082539
– year: 2018
  ident: 10.1016/j.neucom.2021.08.119_b0145
  article-title: EEG data augmentation for emotion recognition using a conditional wasserstein GAN
– volume: 2
  start-page: 275
  issue: 4
  year: 1990
  ident: 10.1016/j.neucom.2021.08.119_b0045
  article-title: Spatial patterns underlying population differences in the background EEG
  publication-title: Brain Topogr.
  doi: 10.1007/BF01129656
– volume: 37
  start-page: 8659
  issue: 12
  year: 2010
  ident: 10.1016/j.neucom.2021.08.119_b0085
  article-title: EEG signal classification using PCA, ICA, LDA and support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.065
– volume: 14
  start-page: 250
  issue: 2
  year: 2006
  ident: 10.1016/j.neucom.2021.08.119_b0010
  article-title: An enhanced time-frequency-spatial approach for motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875567
– ident: 10.1016/j.neucom.2021.08.119_b0135
– volume: 7
  start-page: 15945
  year: 2019
  ident: 10.1016/j.neucom.2021.08.119_b0160
  article-title: A novel deep learning approach with data augmentation to classify motor imagery signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2895133
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.neucom.2021.08.119_b0170
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.1998.0193
– volume: 1
  start-page: 37
  issue: 1
  year: 2010
  ident: 10.1016/j.neucom.2021.08.119_b0215
  article-title: Tensor decompositions for feature extraction and classification of high dimensional datasets
  publication-title: Nonlinear Theory and Its Applications, IEICE
  doi: 10.1587/nolta.1.37
– volume: 255
  start-page: 85
  year: 2015
  ident: 10.1016/j.neucom.2021.08.119_b0070
  article-title: Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.08.004
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.neucom.2021.08.119_b0220
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: 10.1016/j.neucom.2021.08.119_b0005
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 12
  start-page: 308
  year: 2018
  ident: 10.1016/j.neucom.2021.08.119_b0155
  article-title: A new method to generate artificial frames using the empirical mode decomposition for an EEG-based motor imagery BCI
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00308
– volume: 59
  start-page: 61
  issue: 1
  year: 1997
  ident: 10.1016/j.neucom.2021.08.119_b0075
  article-title: Classification of EEG signals using the wavelet transform
  publication-title: Signal Processing
  doi: 10.1016/S0165-1684(97)00038-8
– volume: 463
  start-page: 321
  issue: 2078
  year: 2007
  ident: 10.1016/j.neucom.2021.08.119_b0195
  article-title: Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals
  publication-title: Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.2006.1761
– volume: 11
  start-page: 141
  issue: 2
  year: 2003
  ident: 10.1016/j.neucom.2021.08.119_b0095
  article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2003.814441
– volume: 23
  start-page: 1350023
  issue: 5
  year: 2013
  ident: 10.1016/j.neucom.2021.08.119_b0200
  article-title: Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction
  publication-title: Int. J. of Neural Syst.
  doi: 10.1142/S0129065713500238
SSID ssj0017129
Score 2.3845677
Snippet Deep learning has achieved a remarkable success in areas such as brain-computer interface systems (BCI). However, electroencephalography (EEG) signals evoked...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 325
SubjectTerms Brain-computer interface
Data augmentation
Motor imagery
Signal decomposition
Title Component-mixing strategy: A decomposition-based data augmentation algorithm for motor imagery signals
URI https://dx.doi.org/10.1016/j.neucom.2021.08.119
Volume 465
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS91AEF70eenF1qpoW2UPva4v-yObXW8PqTxb6qUK3sL-ikZ8UfQ90It_uzNmIxaKBQkEsmQgzO7ON0O--ZaQ70kbFUrYgNp4ySADV8yWSTMepU_RN0VTYe_w72M9PVU_z8qzJXIw9MIgrTLH_j6mP0frPDLO3hzftO34T2EFVFFcQNEChRY2_K4IaXU5IiuTo1_T45efCRUXveSeKBkaDB10zzSvLi2QNiIA61DLk6Pkzr8Q6hXqHH4iqzldpJP-i9bIUuo-k4_DUQw078x10uDQdQcIwmbtPcARvetlZx_26YTGhMzxTM9iCFyRIjWUusX5LDcfddRdnV_ftvOLGYVElsIUwr2docbFA0WaByzUDXJ6-OPkYMryEQosQC0whyAbXOJSF5CHQCJlpKqETNZo60qrPVxBK5O0TL6KkUfnva1S6aV11qDwziYZdfD1W4S6RiUtVGySEyoV3ART-ZACDypGy902kYPb6pD1xfGYi6t6IJJd1r2za3R2XRioPuw2YS9WN72-xn_er4YZqf9aJzVAwJuWX95t-ZV8wCfsQBTFNzKa3y7SDqQic79Llvce-W5ecE_1COCa
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhObSXJumDJs1Dh17VtR6WpdyWkLBtHpcmkJvRy6nDrhOSXehe-ts7s5ZDC6WFYvBBDxAjab4Z-OYTIR-TNiqUcAG18ZJBBK6YLZNmPEqfom-KpsLa4YtLPblWX27KmzVyPNTCIK0y-_7ep6-8dW4ZZWuOHtp29LWwArIoLiBpgUQLC343VCkr5PV9-vHM8-AVF73gnigZDh_q51Ykry4tkDQiAOlQyZOj4M6f8OkXzDndIq9ysEjH_Xq2yVrqXpPN4SEGmu_lG9Jg030H-MFm7XcAI_rUi84uj-iYxoS88UzOYghbkSIxlLrF7SyXHnXUTW_vH9v5txmFMJbCBsK_naHCxZIiyQOO6VtyfXpydTxh-QEFFiATmIOLDS5xqQuIQiCMMlJVQiZrtHWl1R6-oJVJWiZfxcij895WqfTSOmtQducdWe9g9e8JdY1KWqjYJCdUKrgJpvIhBR5UjJa7HSIHs9Uhq4vjIxfTeqCR3dW9sWs0dl0YyD3sDmHPsx56dY1_jK-GHal_OyU1AMBfZ-7-98xD8mJydXFen3--PPtAXmIP1iKKYo-szx8XaR-Ckrk_WB26n93w4WU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Component-mixing+strategy%3A+A+decomposition-based+data+augmentation+algorithm+for+motor+imagery+signals&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Li%2C+Binghua&rft.au=Zhang%2C+Zhiwen&rft.au=Duan%2C+Feng&rft.au=Yang%2C+Zhenglu&rft.date=2021-11-20&rft.issn=0925-2312&rft.volume=465&rft.spage=325&rft.epage=335&rft_id=info:doi/10.1016%2Fj.neucom.2021.08.119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2021_08_119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon