Anomaly Detection for Predictive Maintenance in Industry 4.0- A survey

Maintenance and reliability professionals in the manufacturing industry have the primary goal of improving asset availability. Poor and fewer maintenance strategies can result in lower productivity of machinery. At the same time unplanned downtimes due to frequent maintenance activities can lead to...

Full description

Saved in:
Bibliographic Details
Published inE3S web of conferences Vol. 170; p. 2007
Main Authors Kamat, Pooja, Sugandhi, Rekha
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Maintenance and reliability professionals in the manufacturing industry have the primary goal of improving asset availability. Poor and fewer maintenance strategies can result in lower productivity of machinery. At the same time unplanned downtimes due to frequent maintenance activities can lead to financial loss. This has put organizations’ thought process into a trade-off situation to choose between extending the remaining functional life of the equipment at the risk of taking machine down (run-to-failure) or attempting to improve uptime by carrying out early and periodic replacement of potentially good parts which could have run successfully for a few more cycles. Predictive maintenance (PdM) aims to break these tradeoffs by empowering manufacturers to improve the remaining useful life of their machines and at the same time avoiding unplanned downtime and decreasing planned downtime. Anomaly detection lies at the core of PdM with the primary focus on finding anomalies in the working equipment at early stages and alerting the manufacturing supervisor to carry out maintenance activity. This paper describes the challenges in traditional anomaly detection strategies and propose a novel deep learning technique to predict abnormalities ahead of actual failure of the machinery.
AbstractList Maintenance and reliability professionals in the manufacturing industry have the primary goal of improving asset availability. Poor and fewer maintenance strategies can result in lower productivity of machinery. At the same time unplanned downtimes due to frequent maintenance activities can lead to financial loss. This has put organizations’ thought process into a trade-off situation to choose between extending the remaining functional life of the equipment at the risk of taking machine down (run-to-failure) or attempting to improve uptime by carrying out early and periodic replacement of potentially good parts which could have run successfully for a few more cycles. Predictive maintenance (PdM) aims to break these tradeoffs by empowering manufacturers to improve the remaining useful life of their machines and at the same time avoiding unplanned downtime and decreasing planned downtime. Anomaly detection lies at the core of PdM with the primary focus on finding anomalies in the working equipment at early stages and alerting the manufacturing supervisor to carry out maintenance activity. This paper describes the challenges in traditional anomaly detection strategies and propose a novel deep learning technique to predict abnormalities ahead of actual failure of the machinery.
Author Kamat, Pooja
Sugandhi, Rekha
Author_xml – sequence: 1
  givenname: Pooja
  surname: Kamat
  fullname: Kamat, Pooja
– sequence: 2
  givenname: Rekha
  surname: Sugandhi
  fullname: Sugandhi, Rekha
BookMark eNp9UU1LAzEQDVLBr_4DDwHPtfnazdZbUauFih70HKaziaTURJOtsP_e1FYQD15m5g3zHo95J2QQYrCEnHN2yVnFx1ZmjMGNBROMa1Yq0wfkWIhaj7hQYvBrPiLDnFeMMS6qRjF1TGbTEN9g3dMb21nsfAzUxUSfkm19gZ-WPoAPnQ0Q0FIf6Dy0m9ylnqpLNqJTmjfp0_Zn5NDBOtvhvp-Sl9nt8_X9aPF4N7-eLkYoWfHgpGwF1E2jkTmJ7QSWS-VwwismZMF1o5xopJWATrd1rbGSqCcgcQktRy5PyXyn20ZYmffk3yD1JoI334uYXg2kzuPaGsmhEhOnoego7mqoEJe21RwasEpj0brYab2n-LGxuTOruEmh2C9c3TSVUkqWq6vdFaaYc7LOoO9g-6gugV8bzsw2BrOPwfyOoZDVH_KP5X9pX86Cjbo
CitedBy_id crossref_primary_10_3390_s21072376
crossref_primary_10_2139_ssrn_4069988
crossref_primary_10_1155_2022_8221351
crossref_primary_10_1016_j_jmsy_2021_02_010
crossref_primary_10_1021_acs_iecr_4c02007
crossref_primary_10_3390_app12168181
crossref_primary_10_1002_aisy_202300706
crossref_primary_10_3390_asi4020034
crossref_primary_10_3390_mi13091471
crossref_primary_10_1007_s41019_021_00172_2
crossref_primary_10_3390_s23218688
crossref_primary_10_1002_int_22493
crossref_primary_10_1109_ACCESS_2021_3107975
crossref_primary_10_1016_j_segan_2024_101497
crossref_primary_10_1007_s00170_023_11255_x
crossref_primary_10_1007_s11227_022_04739_2
crossref_primary_10_3390_s21248320
crossref_primary_10_1007_s13042_023_01840_7
crossref_primary_10_1016_j_iot_2023_100735
crossref_primary_10_1109_ACCESS_2023_3333242
crossref_primary_10_3390_s22124501
crossref_primary_10_1051_e3sconf_202451301006
crossref_primary_10_1016_j_procs_2024_01_105
crossref_primary_10_3233_AIC_230064
crossref_primary_10_3390_pr10081476
crossref_primary_10_3390_s22155901
crossref_primary_10_3390_buildings13020447
crossref_primary_10_1007_s42979_024_03425_9
crossref_primary_10_3390_s22082837
crossref_primary_10_1007_s12541_023_00908_2
crossref_primary_10_1007_s11831_023_09979_w
crossref_primary_10_1186_s42162_024_00401_8
crossref_primary_10_3390_ai4010010
crossref_primary_10_1016_j_ifacol_2024_09_119
crossref_primary_10_3390_en14113206
crossref_primary_10_1016_j_aei_2024_102800
crossref_primary_10_3233_IDA_226811
crossref_primary_10_1109_ACCESS_2022_3230352
crossref_primary_10_3390_en14113275
crossref_primary_10_3390_electronics12183971
crossref_primary_10_1007_s12206_021_1105_z
crossref_primary_10_3390_machines13010021
crossref_primary_10_1007_s11042_022_13803_1
Cites_doi 10.1016/J.ENG.2017.05.015
10.1007/s10845-018-1456-1
10.1109/COMST.2018.2844341
10.1002/stc.2296
10.1016/j.procir.2019.02.012
10.1016/j.eng.2019.03.012
ContentType Journal Article
Conference Proceeding
Copyright 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
GNUQQ
H8D
HCIFZ
KR7
L6V
L7M
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
DOA
DOI 10.1051/e3sconf/202017002007
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
Aerospace Database
SciTech Collection (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2267-1242
ExternalDocumentID oai_doaj_org_article_31a529f7ad6641f6a5ccbed71a8ae47c
10_1051_e3sconf_202017002007
Genre Conference Proceeding
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
EBS
EJD
GI~
GROUPED_DOAJ
HCIFZ
IPNFZ
KQ8
L6V
LK5
M7R
M7S
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
PYCSY
RIG
7ST
8FD
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
H8D
KR7
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
SOI
PUEGO
ID FETCH-LOGICAL-c3067-f33d2a6887c0f3cd9abb4fc9150233cd684f283e3acf7d667c53c79a3cbad1c13
IEDL.DBID BENPR
ISSN 2267-1242
2555-0403
IngestDate Wed Aug 27 01:17:50 EDT 2025
Fri Jul 25 11:46:31 EDT 2025
Tue Jul 01 02:41:00 EDT 2025
Thu Apr 24 23:07:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3067-f33d2a6887c0f3cd9abb4fc9150233cd684f283e3acf7d667c53c79a3cbad1c13
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://www.proquest.com/docview/3178854443?pq-origsite=%requestingapplication%
PQID 3178854443
PQPubID 2040555
ParticipantIDs doaj_primary_oai_doaj_org_article_31a529f7ad6641f6a5ccbed71a8ae47c
proquest_journals_3178854443
crossref_citationtrail_10_1051_e3sconf_202017002007
crossref_primary_10_1051_e3sconf_202017002007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 20200101
  day: 01
PublicationDecade 2020
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle E3S web of conferences
PublicationYear 2020
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References R2
R3
Zabiński (R12) 2019; 79
R4
Liang (R13) 2019; 5
R5
R6
R7
R8
R9
Graß (R11) 2019; 9
R14
R15
Mohammadi (R16) 2018; 20
R18
R17
Zhong (R1) 2017; 3
Li (R10) 2020; 31
References_xml – ident: R14
– volume: 3
  start-page: 616
  issue: 5
  year: 2017
  ident: R1
  publication-title: Engineering
  doi: 10.1016/J.ENG.2017.05.015
– volume: 31
  start-page: 433
  year: 2020
  ident: R10
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-018-1456-1
– volume: 20
  start-page: 2923
  year: 2018
  ident: R16
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2018.2844341
– ident: R7
– ident: R9
  doi: 10.1002/stc.2296
– volume: 79
  start-page: 63
  year: 2019
  ident: R12
  publication-title: in Procedia CIRP
  doi: 10.1016/j.procir.2019.02.012
– volume: 5
  start-page: 646
  issue: 4
  year: 2019
  ident: R13
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.03.012
– ident: R2
– ident: R3
– volume: 9
  start-page: 18
  year: 2019
  ident: R11
  publication-title: TIA
– ident: R4
– ident: R5
– ident: R6
– ident: R15
– ident: R18
– ident: R8
– ident: R17
SSID ssj0001258404
Score 2.4339077
Snippet Maintenance and reliability professionals in the manufacturing industry have the primary goal of improving asset availability. Poor and fewer maintenance...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2007
SubjectTerms Abnormalities
Anomalies
Artificial intelligence
Breakdowns
Deep learning
Downtime
Failure
Industrial Internet of Things
Industry 4.0
Machine learning
Manufacturers
Manufacturing
Manufacturing industry
Predictive maintenance
Preventive maintenance
Process controls
Productivity
Sensors
Statistical analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbEq6JQkAdWUyd-JBkLtKqQihio1C2yL7aEVALqA6n_nnOSliKGLoxJbMU6n--7O9vfEXKLIOM5FJZpnngmnYqZFZAy4zOE-8QhgoYLzuNnPZrIp6ma7pT6CmfCanrgWnA9ERkVZz4xhdYy8tooAOuKJDKpcTKBYH0R83aCqTq7gsDK5eaunIp6TiwwwPQh2A-UMTzk6H5hUUXZ_8ciVzAzPCZHjX9I-_W4TsiBK09Je_BzHQ0_NutxcUaGGL2_m9maPrpldaaqpOiE0pd52H4JhoyOTSCECKwajr6VtKnUsabyjjPap4vV_Mutz8lkOHh9GLGmMgKD4OIzL0QRG40GArgXUGTGWukhQ-8uFvisU-nRb3DCgE9QcAkoAUlmBFhTRBCJNmmVH6W7IBSUB-e5jLj3UhqexS6QHSmlvbGpzTpEbGSUQ0MbHqpXzPJq-1pFeSPZfFeyHcK2vT5r2ow97e-D-LdtA-l19QJVIW9UId-nCh3S3Uxe3qzEBXbCIF9JKcXlf_zjihyGcddJmC5pLecrd41uydLeVBr4DbRe3_8
  priority: 102
  providerName: Directory of Open Access Journals
Title Anomaly Detection for Predictive Maintenance in Industry 4.0- A survey
URI https://www.proquest.com/docview/3178854443
https://doaj.org/article/31a529f7ad6641f6a5ccbed71a8ae47c
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JT-swELZYLu_22PT6gMoHroYktrOcEEvLIoEQAolbZE9shFRSaApSL_x2ZoLbgpDgEimJEyVe5pvF8w1jOwgyPoLKijTKvFBOJ8JKyIXxBcJ95hBBKcH54jI9vVXnd_ouONyasK1yKhNbQV0NgXzke4hzea6VUnL_6VlQ1SiKroYSGotsGUVwjsbX8mHv8ur6k5cFAbatIYiqsxY4Y-U0f07He042aHR6cgAQjUxEfrsv-NTS-H-T0i309P-y9XlSHr-awc0KW3D1KtvozRPVzICHldqssT7a9Y9mMOHHbtzutqo5qqf4AgrMkIjjF4aoIohvw_GHmocaHhOudiPBD3jzMnp1k3V22-_dHJ2KUDNBACn_wktZJSZF0QGRl1AVxlrloUC9L5F4nubKo0bhpAGfVWmagZaQFUaCNVUMsdxgS_Wwdv8YB-3B-UjFkfdKmahIHNEgaZ16Y3NbdJic9lQJgVCc6loMyjawreMy9G_5uX87TMyeevog1Pil_SENwqwt0WG3F4aj-zKsrlLGRieFzwz-kYp9ajSAdVUWm9w4lUGHbU2HsAxrtCnnM-r_z7c32R_6og_HyxZbGo9e3DaqImPbZYt5_6QbZl23NejxeHL29g6O1973
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLfGeIC3AZs4GJAHeAxrm6R_HhAabMeN7SYeNmlvJXGTCenobdcb6L4UnxG7194NIcHTHtumUevY_jl2bAO8JpAJEVZOplEWpPYmkU5hLm0oCO4zTwjKCc7j03R0rj9fmIsN-NXnwvCxyl4ntoq6miL7yPcI5_LcaK3V-6tryV2jOLrat9BYssWxX_ykLVvz7uiA1vdNkgwPzz6OZNdVQCKbxzIoVSU2JeHCKCisCuucDliQZZQouk5zHQhzvbIYsipNMzQKs8IqdLaKMVY07z24r5UqWKLy4adbPh2C87ZjIRnqRpJ8qD5bz8R7XjW0xQ3sbuCiNRF7Cf9Aw7ZpwF-Y0ALdcAu21ymA4ssK3B7Bhq8fw87hOi3OTkSnF5onMNyvp9_tZCEO_Lw921ULMoZpAg4DsUIVY8uFKbi6hxffatF1DFkI_TaSYl80N7MffrEN53dCyx3YrKe1fwoCTUAfIh1HIWhtoyLxXHTJmDRYl7tiAKqnVIld-XLuojEp2zC6icuOvuVt-g5Art66Wpbv-M_4D7wIq7FcfLu9MZ1dlp0slyq2JilCZumPdBxSaxCdr7LY5tbrDAew2y9h2WmEplzz77N_P34FD0Zn45Py5Oj0-Dk85K9bunx2YXM-u_EvyAiau5ct5wn4etes_hvocRg8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=E3S+web+of+conferences&rft.atitle=Anomaly+Detection+for+Predictive+Maintenance+in+Industry+4.0-+A+survey&rft.au=Kamat%2C+Pooja&rft.au=Sugandhi%2C+Rekha&rft.date=2020-01-01&rft.pub=EDP+Sciences&rft.issn=2555-0403&rft.eissn=2267-1242&rft.volume=170&rft_id=info:doi/10.1051%2Fe3sconf%2F202017002007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-1242&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-1242&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-1242&client=summon