Anomaly Detection for Predictive Maintenance in Industry 4.0- A survey
Maintenance and reliability professionals in the manufacturing industry have the primary goal of improving asset availability. Poor and fewer maintenance strategies can result in lower productivity of machinery. At the same time unplanned downtimes due to frequent maintenance activities can lead to...
Saved in:
Published in | E3S web of conferences Vol. 170; p. 2007 |
---|---|
Main Authors | , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Les Ulis
EDP Sciences
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Maintenance and reliability professionals in the manufacturing industry have the primary goal of improving asset availability. Poor and fewer maintenance strategies can result in lower productivity of machinery. At the same time unplanned downtimes due to frequent maintenance activities can lead to financial loss. This has put organizations’ thought process into a trade-off situation to choose between extending the remaining functional life of the equipment at the risk of taking machine down (run-to-failure) or attempting to improve uptime by carrying out early and periodic replacement of potentially good parts which could have run successfully for a few more cycles. Predictive maintenance (PdM) aims to break these tradeoffs by empowering manufacturers to improve the remaining useful life of their machines and at the same time avoiding unplanned downtime and decreasing planned downtime. Anomaly detection lies at the core of PdM with the primary focus on finding anomalies in the working equipment at early stages and alerting the manufacturing supervisor to carry out maintenance activity. This paper describes the challenges in traditional anomaly detection strategies and propose a novel deep learning technique to predict abnormalities ahead of actual failure of the machinery. |
---|---|
AbstractList | Maintenance and reliability professionals in the manufacturing industry have the primary goal of improving asset availability. Poor and fewer maintenance strategies can result in lower productivity of machinery. At the same time unplanned downtimes due to frequent maintenance activities can lead to financial loss. This has put organizations’ thought process into a trade-off situation to choose between extending the remaining functional life of the equipment at the risk of taking machine down (run-to-failure) or attempting to improve uptime by carrying out early and periodic replacement of potentially good parts which could have run successfully for a few more cycles. Predictive maintenance (PdM) aims to break these tradeoffs by empowering manufacturers to improve the remaining useful life of their machines and at the same time avoiding unplanned downtime and decreasing planned downtime. Anomaly detection lies at the core of PdM with the primary focus on finding anomalies in the working equipment at early stages and alerting the manufacturing supervisor to carry out maintenance activity. This paper describes the challenges in traditional anomaly detection strategies and propose a novel deep learning technique to predict abnormalities ahead of actual failure of the machinery. |
Author | Kamat, Pooja Sugandhi, Rekha |
Author_xml | – sequence: 1 givenname: Pooja surname: Kamat fullname: Kamat, Pooja – sequence: 2 givenname: Rekha surname: Sugandhi fullname: Sugandhi, Rekha |
BookMark | eNp9UU1LAzEQDVLBr_4DDwHPtfnazdZbUauFih70HKaziaTURJOtsP_e1FYQD15m5g3zHo95J2QQYrCEnHN2yVnFx1ZmjMGNBROMa1Yq0wfkWIhaj7hQYvBrPiLDnFeMMS6qRjF1TGbTEN9g3dMb21nsfAzUxUSfkm19gZ-WPoAPnQ0Q0FIf6Dy0m9ylnqpLNqJTmjfp0_Zn5NDBOtvhvp-Sl9nt8_X9aPF4N7-eLkYoWfHgpGwF1E2jkTmJ7QSWS-VwwismZMF1o5xopJWATrd1rbGSqCcgcQktRy5PyXyn20ZYmffk3yD1JoI334uYXg2kzuPaGsmhEhOnoego7mqoEJe21RwasEpj0brYab2n-LGxuTOruEmh2C9c3TSVUkqWq6vdFaaYc7LOoO9g-6gugV8bzsw2BrOPwfyOoZDVH_KP5X9pX86Cjbo |
CitedBy_id | crossref_primary_10_3390_s21072376 crossref_primary_10_2139_ssrn_4069988 crossref_primary_10_1155_2022_8221351 crossref_primary_10_1016_j_jmsy_2021_02_010 crossref_primary_10_1021_acs_iecr_4c02007 crossref_primary_10_3390_app12168181 crossref_primary_10_1002_aisy_202300706 crossref_primary_10_3390_asi4020034 crossref_primary_10_3390_mi13091471 crossref_primary_10_1007_s41019_021_00172_2 crossref_primary_10_3390_s23218688 crossref_primary_10_1002_int_22493 crossref_primary_10_1109_ACCESS_2021_3107975 crossref_primary_10_1016_j_segan_2024_101497 crossref_primary_10_1007_s00170_023_11255_x crossref_primary_10_1007_s11227_022_04739_2 crossref_primary_10_3390_s21248320 crossref_primary_10_1007_s13042_023_01840_7 crossref_primary_10_1016_j_iot_2023_100735 crossref_primary_10_1109_ACCESS_2023_3333242 crossref_primary_10_3390_s22124501 crossref_primary_10_1051_e3sconf_202451301006 crossref_primary_10_1016_j_procs_2024_01_105 crossref_primary_10_3233_AIC_230064 crossref_primary_10_3390_pr10081476 crossref_primary_10_3390_s22155901 crossref_primary_10_3390_buildings13020447 crossref_primary_10_1007_s42979_024_03425_9 crossref_primary_10_3390_s22082837 crossref_primary_10_1007_s12541_023_00908_2 crossref_primary_10_1007_s11831_023_09979_w crossref_primary_10_1186_s42162_024_00401_8 crossref_primary_10_3390_ai4010010 crossref_primary_10_1016_j_ifacol_2024_09_119 crossref_primary_10_3390_en14113206 crossref_primary_10_1016_j_aei_2024_102800 crossref_primary_10_3233_IDA_226811 crossref_primary_10_1109_ACCESS_2022_3230352 crossref_primary_10_3390_en14113275 crossref_primary_10_3390_electronics12183971 crossref_primary_10_1007_s12206_021_1105_z crossref_primary_10_3390_machines13010021 crossref_primary_10_1007_s11042_022_13803_1 |
Cites_doi | 10.1016/J.ENG.2017.05.015 10.1007/s10845-018-1456-1 10.1109/COMST.2018.2844341 10.1002/stc.2296 10.1016/j.procir.2019.02.012 10.1016/j.eng.2019.03.012 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7ST 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO FR3 GNUQQ H8D HCIFZ KR7 L6V L7M M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY SOI DOA |
DOI | 10.1051/e3sconf/202017002007 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student Aerospace Database SciTech Collection (ProQuest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2267-1242 |
ExternalDocumentID | oai_doaj_org_article_31a529f7ad6641f6a5ccbed71a8ae47c 10_1051_e3sconf_202017002007 |
Genre | Conference Proceeding |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV ADMLS AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION EBS EJD GI~ GROUPED_DOAJ HCIFZ IPNFZ KQ8 L6V LK5 M7R M7S M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PROAC PTHSS PYCSY RIG 7ST 8FD ABUWG AZQEC C1K DWQXO FR3 GNUQQ H8D KR7 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS SOI PUEGO |
ID | FETCH-LOGICAL-c3067-f33d2a6887c0f3cd9abb4fc9150233cd684f283e3acf7d667c53c79a3cbad1c13 |
IEDL.DBID | BENPR |
ISSN | 2267-1242 2555-0403 |
IngestDate | Wed Aug 27 01:17:50 EDT 2025 Fri Jul 25 11:46:31 EDT 2025 Tue Jul 01 02:41:00 EDT 2025 Thu Apr 24 23:07:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3067-f33d2a6887c0f3cd9abb4fc9150233cd684f283e3acf7d667c53c79a3cbad1c13 |
Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 |
OpenAccessLink | https://www.proquest.com/docview/3178854443?pq-origsite=%requestingapplication% |
PQID | 3178854443 |
PQPubID | 2040555 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_31a529f7ad6641f6a5ccbed71a8ae47c proquest_journals_3178854443 crossref_citationtrail_10_1051_e3sconf_202017002007 crossref_primary_10_1051_e3sconf_202017002007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 20200101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Les Ulis |
PublicationPlace_xml | – name: Les Ulis |
PublicationTitle | E3S web of conferences |
PublicationYear | 2020 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | R2 R3 Zabiński (R12) 2019; 79 R4 Liang (R13) 2019; 5 R5 R6 R7 R8 R9 Graß (R11) 2019; 9 R14 R15 Mohammadi (R16) 2018; 20 R18 R17 Zhong (R1) 2017; 3 Li (R10) 2020; 31 |
References_xml | – ident: R14 – volume: 3 start-page: 616 issue: 5 year: 2017 ident: R1 publication-title: Engineering doi: 10.1016/J.ENG.2017.05.015 – volume: 31 start-page: 433 year: 2020 ident: R10 publication-title: J. Intell. Manuf. doi: 10.1007/s10845-018-1456-1 – volume: 20 start-page: 2923 year: 2018 ident: R16 publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2018.2844341 – ident: R7 – ident: R9 doi: 10.1002/stc.2296 – volume: 79 start-page: 63 year: 2019 ident: R12 publication-title: in Procedia CIRP doi: 10.1016/j.procir.2019.02.012 – volume: 5 start-page: 646 issue: 4 year: 2019 ident: R13 publication-title: Engineering doi: 10.1016/j.eng.2019.03.012 – ident: R2 – ident: R3 – volume: 9 start-page: 18 year: 2019 ident: R11 publication-title: TIA – ident: R4 – ident: R5 – ident: R6 – ident: R15 – ident: R18 – ident: R8 – ident: R17 |
SSID | ssj0001258404 |
Score | 2.4339077 |
Snippet | Maintenance and reliability professionals in the manufacturing industry have the primary goal of improving asset availability. Poor and fewer maintenance... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2007 |
SubjectTerms | Abnormalities Anomalies Artificial intelligence Breakdowns Deep learning Downtime Failure Industrial Internet of Things Industry 4.0 Machine learning Manufacturers Manufacturing Manufacturing industry Predictive maintenance Preventive maintenance Process controls Productivity Sensors Statistical analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbEq6JQkAdWUyd-JBkLtKqQihio1C2yL7aEVALqA6n_nnOSliKGLoxJbMU6n--7O9vfEXKLIOM5FJZpnngmnYqZFZAy4zOE-8QhgoYLzuNnPZrIp6ma7pT6CmfCanrgWnA9ERkVZz4xhdYy8tooAOuKJDKpcTKBYH0R83aCqTq7gsDK5eaunIp6TiwwwPQh2A-UMTzk6H5hUUXZ_8ciVzAzPCZHjX9I-_W4TsiBK09Je_BzHQ0_NutxcUaGGL2_m9maPrpldaaqpOiE0pd52H4JhoyOTSCECKwajr6VtKnUsabyjjPap4vV_Mutz8lkOHh9GLGmMgKD4OIzL0QRG40GArgXUGTGWukhQ-8uFvisU-nRb3DCgE9QcAkoAUlmBFhTRBCJNmmVH6W7IBSUB-e5jLj3UhqexS6QHSmlvbGpzTpEbGSUQ0MbHqpXzPJq-1pFeSPZfFeyHcK2vT5r2ow97e-D-LdtA-l19QJVIW9UId-nCh3S3Uxe3qzEBXbCIF9JKcXlf_zjihyGcddJmC5pLecrd41uydLeVBr4DbRe3_8 priority: 102 providerName: Directory of Open Access Journals |
Title | Anomaly Detection for Predictive Maintenance in Industry 4.0- A survey |
URI | https://www.proquest.com/docview/3178854443 https://doaj.org/article/31a529f7ad6641f6a5ccbed71a8ae47c |
Volume | 170 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JT-swELZYLu_22PT6gMoHroYktrOcEEvLIoEQAolbZE9shFRSaApSL_x2ZoLbgpDgEimJEyVe5pvF8w1jOwgyPoLKijTKvFBOJ8JKyIXxBcJ95hBBKcH54jI9vVXnd_ouONyasK1yKhNbQV0NgXzke4hzea6VUnL_6VlQ1SiKroYSGotsGUVwjsbX8mHv8ur6k5cFAbatIYiqsxY4Y-U0f07He042aHR6cgAQjUxEfrsv-NTS-H-T0i309P-y9XlSHr-awc0KW3D1KtvozRPVzICHldqssT7a9Y9mMOHHbtzutqo5qqf4AgrMkIjjF4aoIohvw_GHmocaHhOudiPBD3jzMnp1k3V22-_dHJ2KUDNBACn_wktZJSZF0QGRl1AVxlrloUC9L5F4nubKo0bhpAGfVWmagZaQFUaCNVUMsdxgS_Wwdv8YB-3B-UjFkfdKmahIHNEgaZ16Y3NbdJic9lQJgVCc6loMyjawreMy9G_5uX87TMyeevog1Pil_SENwqwt0WG3F4aj-zKsrlLGRieFzwz-kYp9ajSAdVUWm9w4lUGHbU2HsAxrtCnnM-r_z7c32R_6og_HyxZbGo9e3DaqImPbZYt5_6QbZl23NejxeHL29g6O1973 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLfGeIC3AZs4GJAHeAxrm6R_HhAabMeN7SYeNmlvJXGTCenobdcb6L4UnxG7194NIcHTHtumUevY_jl2bAO8JpAJEVZOplEWpPYmkU5hLm0oCO4zTwjKCc7j03R0rj9fmIsN-NXnwvCxyl4ntoq6miL7yPcI5_LcaK3V-6tryV2jOLrat9BYssWxX_ykLVvz7uiA1vdNkgwPzz6OZNdVQCKbxzIoVSU2JeHCKCisCuucDliQZZQouk5zHQhzvbIYsipNMzQKs8IqdLaKMVY07z24r5UqWKLy4adbPh2C87ZjIRnqRpJ8qD5bz8R7XjW0xQ3sbuCiNRF7Cf9Aw7ZpwF-Y0ALdcAu21ymA4ssK3B7Bhq8fw87hOi3OTkSnF5onMNyvp9_tZCEO_Lw921ULMoZpAg4DsUIVY8uFKbi6hxffatF1DFkI_TaSYl80N7MffrEN53dCyx3YrKe1fwoCTUAfIh1HIWhtoyLxXHTJmDRYl7tiAKqnVIld-XLuojEp2zC6icuOvuVt-g5Art66Wpbv-M_4D7wIq7FcfLu9MZ1dlp0slyq2JilCZumPdBxSaxCdr7LY5tbrDAew2y9h2WmEplzz77N_P34FD0Zn45Py5Oj0-Dk85K9bunx2YXM-u_EvyAiau5ct5wn4etes_hvocRg8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=E3S+web+of+conferences&rft.atitle=Anomaly+Detection+for+Predictive+Maintenance+in+Industry+4.0-+A+survey&rft.au=Kamat%2C+Pooja&rft.au=Sugandhi%2C+Rekha&rft.date=2020-01-01&rft.pub=EDP+Sciences&rft.issn=2555-0403&rft.eissn=2267-1242&rft.volume=170&rft_id=info:doi/10.1051%2Fe3sconf%2F202017002007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-1242&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-1242&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-1242&client=summon |