Improved plant yield efficiency alleviates the erratic optimum density in maize

Plant yield efficiency (PYE) reflects the ability of the single‐plant to respond to additional inputs and is fully expressed at the nil‐competition regime (an ultra‐low density to preclude inter‐plant interference for inputs). The purpose of this study was to determine if PYE could prevent the errat...

Full description

Saved in:
Bibliographic Details
Published inAgronomy journal Vol. 112; no. 3; pp. 1690 - 1701
Main Authors Mylonas, Ioannis, Sinapidou, Evaggelia, Remountakis, Emmanouel, Sistanis, Iosif, Pankou, Chrysanthi, Ninou, Elissavet, Papadopoulos, Ioannis, Papathanasiou, Fokion, Lithourgidis, Anastasios, Gekas, Fotakis, Dordas, Christos, Tzantarmas, Constantinos, Kargiotidou, Anastasia, Tokamani, Maria, Sandaltzopoulos, Raphael, Tokatlidis, Ioannis S.
Format Journal Article
LanguageEnglish
Published 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant yield efficiency (PYE) reflects the ability of the single‐plant to respond to additional inputs and is fully expressed at the nil‐competition regime (an ultra‐low density to preclude inter‐plant interference for inputs). The purpose of this study was to determine if PYE could prevent the erratic optimum plant density–yield interaction effect in maize (Zea mays L.). Seven hybrids were evaluated across five environments at four densities, under both the normal‐input regime (NIR) and low‐input regime (LIR). Plant yield efficiency was measured at the lowest density approaching the nil‐competition regime (0.74 plants m–2), while crop (per area) yield potential was estimated at the highest density corresponding to the typical farming density in the NIR (8.89 plants m–2). In terms of optimum density, the hybrids varied extensively in the NIR (6.64–8.81 plants m–2) but performed similarly in the LIR (5.11–5.61 plants m–2). The hybrid displaying the highest PYE also had high harvest index (HI) and low anthesis to silking interval (ASI) and was proved the most stable according to various stability statistics including the genotype and genotype by environment (GGE) biplot model. In conclusion, crop yield by density interaction is a matter of hybrid. Hybrids with low PYE have inconsistent optimum density, which is a causal factor of yield loss in rainfed maize. High PYE improves hybrid flexibility and performance at low densities ultimately enhancing crop resilience to extremely fluctuating environments.
AbstractList Plant yield efficiency (PYE) reflects the ability of the single‐plant to respond to additional inputs and is fully expressed at the nil‐competition regime (an ultra‐low density to preclude inter‐plant interference for inputs). The purpose of this study was to determine if PYE could prevent the erratic optimum plant density–yield interaction effect in maize (Zea mays L.). Seven hybrids were evaluated across five environments at four densities, under both the normal‐input regime (NIR) and low‐input regime (LIR). Plant yield efficiency was measured at the lowest density approaching the nil‐competition regime (0.74 plants m–2), while crop (per area) yield potential was estimated at the highest density corresponding to the typical farming density in the NIR (8.89 plants m–2). In terms of optimum density, the hybrids varied extensively in the NIR (6.64–8.81 plants m–2) but performed similarly in the LIR (5.11–5.61 plants m–2). The hybrid displaying the highest PYE also had high harvest index (HI) and low anthesis to silking interval (ASI) and was proved the most stable according to various stability statistics including the genotype and genotype by environment (GGE) biplot model. In conclusion, crop yield by density interaction is a matter of hybrid. Hybrids with low PYE have inconsistent optimum density, which is a causal factor of yield loss in rainfed maize. High PYE improves hybrid flexibility and performance at low densities ultimately enhancing crop resilience to extremely fluctuating environments.
Plant yield efficiency (PYE) reflects the ability of the single‐plant to respond to additional inputs and is fully expressed at the nil ‐competition regime (an ultra‐low density to preclude inter‐plant interference for inputs). The purpose of this study was to determine if PYE could prevent the erratic optimum plant density–yield interaction effect in maize ( Zea mays L.). Seven hybrids were evaluated across five environments at four densities, under both the normal‐input regime (NIR) and low‐input regime (LIR). Plant yield efficiency was measured at the lowest density approaching the nil ‐competition regime (0.74 plants m –2 ), while crop (per area) yield potential was estimated at the highest density corresponding to the typical farming density in the NIR (8.89 plants m –2 ). In terms of optimum density, the hybrids varied extensively in the NIR (6.64–8.81 plants m –2 ) but performed similarly in the LIR (5.11–5.61 plants m –2 ). The hybrid displaying the highest PYE also had high harvest index (HI) and low anthesis to silking interval (ASI) and was proved the most stable according to various stability statistics including the genotype and genotype by environment (GGE) biplot model. In conclusion, crop yield by density interaction is a matter of hybrid. Hybrids with low PYE have inconsistent optimum density, which is a causal factor of yield loss in rainfed maize. High PYE improves hybrid flexibility and performance at low densities ultimately enhancing crop resilience to extremely fluctuating environments.
Plant yield efficiency (PYE) reflects the ability of the single‐plant to respond to additional inputs and is fully expressed at the nil‐competition regime (an ultra‐low density to preclude inter‐plant interference for inputs). The purpose of this study was to determine if PYE could prevent the erratic optimum plant density–yield interaction effect in maize (Zea mays L.). Seven hybrids were evaluated across five environments at four densities, under both the normal‐input regime (NIR) and low‐input regime (LIR). Plant yield efficiency was measured at the lowest density approaching the nil‐competition regime (0.74 plants m–²), while crop (per area) yield potential was estimated at the highest density corresponding to the typical farming density in the NIR (8.89 plants m–²). In terms of optimum density, the hybrids varied extensively in the NIR (6.64–8.81 plants m–²) but performed similarly in the LIR (5.11–5.61 plants m–²). The hybrid displaying the highest PYE also had high harvest index (HI) and low anthesis to silking interval (ASI) and was proved the most stable according to various stability statistics including the genotype and genotype by environment (GGE) biplot model. In conclusion, crop yield by density interaction is a matter of hybrid. Hybrids with low PYE have inconsistent optimum density, which is a causal factor of yield loss in rainfed maize. High PYE improves hybrid flexibility and performance at low densities ultimately enhancing crop resilience to extremely fluctuating environments.
Author Lithourgidis, Anastasios
Ninou, Elissavet
Papathanasiou, Fokion
Sistanis, Iosif
Kargiotidou, Anastasia
Remountakis, Emmanouel
Tokamani, Maria
Sandaltzopoulos, Raphael
Tokatlidis, Ioannis S.
Pankou, Chrysanthi
Dordas, Christos
Mylonas, Ioannis
Papadopoulos, Ioannis
Gekas, Fotakis
Sinapidou, Evaggelia
Tzantarmas, Constantinos
Author_xml – sequence: 1
  givenname: Ioannis
  orcidid: 0000-0001-6980-0813
  surname: Mylonas
  fullname: Mylonas, Ioannis
  organization: Hellenic Agricultural Organization Demeter
– sequence: 2
  givenname: Evaggelia
  surname: Sinapidou
  fullname: Sinapidou, Evaggelia
  organization: Democritus Univ. of Thrace
– sequence: 3
  givenname: Emmanouel
  surname: Remountakis
  fullname: Remountakis, Emmanouel
  organization: American Genetics Inc
– sequence: 4
  givenname: Iosif
  surname: Sistanis
  fullname: Sistanis, Iosif
  organization: University of Western Macedonia
– sequence: 5
  givenname: Chrysanthi
  surname: Pankou
  fullname: Pankou, Chrysanthi
  organization: Aristotle University of Thessaloniki
– sequence: 6
  givenname: Elissavet
  surname: Ninou
  fullname: Ninou, Elissavet
  organization: Hellenic Agricultural Organization Demeter
– sequence: 7
  givenname: Ioannis
  surname: Papadopoulos
  fullname: Papadopoulos, Ioannis
  organization: University of Western Macedonia
– sequence: 8
  givenname: Fokion
  surname: Papathanasiou
  fullname: Papathanasiou, Fokion
  organization: University of Western Macedonia
– sequence: 9
  givenname: Anastasios
  surname: Lithourgidis
  fullname: Lithourgidis, Anastasios
  organization: Aristotle University of Thessaloniki
– sequence: 10
  givenname: Fotakis
  surname: Gekas
  fullname: Gekas, Fotakis
  organization: Aristotle University of Thessaloniki
– sequence: 11
  givenname: Christos
  surname: Dordas
  fullname: Dordas, Christos
  organization: Aristotle University of Thessaloniki
– sequence: 12
  givenname: Constantinos
  surname: Tzantarmas
  fullname: Tzantarmas, Constantinos
  organization: Hellenic Agricultural Organization Demeter
– sequence: 13
  givenname: Anastasia
  surname: Kargiotidou
  fullname: Kargiotidou, Anastasia
  organization: Hellenic Agricultural Organization Demeter
– sequence: 14
  givenname: Maria
  surname: Tokamani
  fullname: Tokamani, Maria
  organization: Democritus University of Thrace
– sequence: 15
  givenname: Raphael
  surname: Sandaltzopoulos
  fullname: Sandaltzopoulos, Raphael
  organization: Democritus University of Thrace
– sequence: 16
  givenname: Ioannis S.
  orcidid: 0000-0003-0058-1696
  surname: Tokatlidis
  fullname: Tokatlidis, Ioannis S.
  email: itokatl@agro.duth.gr
  organization: Hellenic Agricultural Organization Demeter
BookMark eNp9kMtOwzAURC1UJNrChi_wEiGl-JU4WVYVlKJK3cDacpxrcJUXsVsUvp6UsEKI1V3cM6OZmaFJ3dSA0DUlC0oIu9Ove7ZghKbyDE2p4HFEEhFP0JQM34hmCbtAM-_3hFCaCTpFu03Vds0RCtyWug64d1AWGKx1xkFteqzLEo5OB_A4vAGGrtPBGdy0wVWHChdQexd67GpcafcJl-jc6tLD1c-do5eH--fVY7TdrTer5TYynCQyohZy0FbkPJEiN8BZqmNdSOBGSmZJKhKeZAyYjaktcgkZZ4UQUmoz5C4Yn6Ob0XdI_34AH1TlvIFyKAHNwSsmacpFlvJ4QMmImq7xvgOrjAtDiaYOnXalokSdtlOn7dT3doPk9pek7Vylu_5vmI7whyuh_4dUy_UTGzVfvDSBcw
CitedBy_id crossref_primary_10_1002_jsfa_12602
crossref_primary_10_3390_plants12132561
crossref_primary_10_3389_fpls_2022_934359
crossref_primary_10_3390_agriculture15060616
crossref_primary_10_1016_j_fcr_2024_109282
crossref_primary_10_3390_agriculture14030351
crossref_primary_10_3389_fpls_2021_752606
crossref_primary_10_3389_fpls_2021_771739
crossref_primary_10_3390_agronomy13112830
crossref_primary_10_1016_j_fcr_2022_108804
crossref_primary_10_1016_j_jia_2022_08_103
crossref_primary_10_1071_CP24064
crossref_primary_10_3389_fpls_2022_969332
crossref_primary_10_1002_agg2_70079
crossref_primary_10_3390_agronomy10081203
crossref_primary_10_1007_s00271_022_00805_y
crossref_primary_10_3389_fpls_2022_838536
crossref_primary_10_1002_csc2_20576
crossref_primary_10_1080_14620316_2024_2400127
crossref_primary_10_3390_plants11182432
crossref_primary_10_3389_fpls_2022_1047268
crossref_primary_10_1016_j_fcr_2024_109310
Cites_doi 10.2135/cropsci2013.04.0252
10.2134/agronj2012.0027
10.2135/cropsci2016.02.0083
10.1007/s10681-010-0160-9
10.1016/S0378-4290(02)00024-2
10.2135/cropsci2005.07-0193
10.1017/S0021859601001496
10.1051/agro:2002010
10.2135/cropsci2010.09.0563
10.2134/agronj14.0025
10.2135/cropsci2000.4041056x
10.1016/j.fcr.2009.01.011
10.2135/cropsci2016.04.0215
10.2307/2531947
10.1556/AAgr.54.2006.4.4
10.1093/jxb/err105
10.2134/agronj14.0599
10.2135/cropsci2008.03.0152
10.1016/0378-4290(96)00036-6
10.1016/S0378-4290(02)00124-7
10.2135/cropsci2007.09.0513
10.2134/agronj2005.0201
10.1007/BF00035428
10.1093/jxb/erx452
10.1038/s41598-018-23362-x
10.1007/BF00265344
10.2136/sssaj2015.11.0395
10.2134/agronj2003.8780
10.1007/s12571-013-0256-x
10.1371/journal.pone.0228809
10.2135/cropsci2006.06.0374
10.1007/s13593-012-0108-7
10.2134/agronj2011.0205
10.2135/cropsci2016.06.0547
10.1038/hdy.1972.87
10.4141/cjps78-157
10.1007/s10681-017-1874-8
10.4141/P05-169
10.1016/S0065-2113(05)86002-X
10.2134/agronj2001.933540x
10.1111/jac.12213
10.2134/agronj2006.0205
10.1016/j.fcr.2016.07.023
10.2135/cropsci1981.0011183X002100060033x
10.2135/cropsci2005.04-0034
10.2135/cropsci1999.3951306x
10.2134/agronj14.0355
10.1023/B:PRAG.0000032762.72510.10
10.2135/cropsci1966.0011183X000600010011x
ContentType Journal Article
Copyright 2020 The Authors. Agronomy Journal © 2020 American Society of Agronomy
Copyright_xml – notice: 2020 The Authors. Agronomy Journal © 2020 American Society of Agronomy
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1002/agj2.20187
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Statistics
EISSN 1435-0645
EndPage 1701
ExternalDocumentID 10_1002_agj2_20187
AGJ220187
Genre article
GrantInformation_xml – fundername: European Regional Development Fund and Greek
GroupedDBID -~X
.86
.~0
0R~
186
1OB
1OC
23M
2WC
33P
3V.
5GY
6J9
6KN
7X2
7XC
88I
8FE
8FG
8FH
8FW
8G5
8R4
8R5
AABCJ
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
ABCQX
ABCUV
ABEFU
ABJCF
ABJNI
ABRSH
ABUWG
ACAWQ
ACCFJ
ACCZN
ACGFO
ACGOD
ACIWK
ACPOU
ACQAM
ACXQS
ADFRT
ADKYN
ADMHG
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFFPM
AFKRA
AFRAH
AFWVQ
AHBTC
AI.
AIDBO
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ATCPS
AZQEC
BCR
BCU
BEC
BENPR
BES
BFHJK
BGLVJ
BHPHI
BLC
BPHCQ
C1A
CCPQU
D0L
DCZOG
DROCM
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
GNUQQ
GUQSH
H13
HCIFZ
HF~
HGLYW
L6V
L7B
LAS
LATKE
LEEKS
LPU
M0K
M2O
M2P
M7S
MEWTI
MV1
NEJ
NHAZY
NHB
O9-
P2P
PATMY
PEA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
QF4
QM4
QN7
ROL
RPX
RWL
S0X
SAMSI
SJFOW
SJN
SUPJJ
TAE
TR2
TWZ
U2A
VH1
VOH
WOQ
WXSBR
Y6R
YR5
YYP
ZCG
~02
~KM
AAYXX
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
PHGZM
PHGZT
7S9
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L.6
ID FETCH-LOGICAL-c3067-1febeaf4b3674bce328a5ad7e3c772f08463692e2f51fdb7e932d4477ac194d23
ISSN 0002-1962
IngestDate Fri Jul 11 18:27:38 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Tue Jul 01 02:17:17 EDT 2025
Wed Jan 22 16:33:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3067-1febeaf4b3674bce328a5ad7e3c772f08463692e2f51fdb7e932d4477ac194d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0058-1696
0000-0001-6980-0813
PQID 2718349835
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2718349835
crossref_citationtrail_10_1002_agj2_20187
crossref_primary_10_1002_agj2_20187
wiley_primary_10_1002_agj2_20187_AGJ220187
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May/June 2020
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May/June 2020
PublicationDecade 2020
PublicationTitle Agronomy journal
PublicationYear 2020
References 2001; 93
2002; 94
2011; 62
2004; 24
1988; 76
2020; 15
2009; 112
2004; 5
2015; 107
2003; 95
2013; 5
1998; 43
2009; 49
2018; 8
1987; 43
2009; 54
1997; 14
1962; 47
2016; 80
2016; 197
2017; 203
2001; 137
2014; 54
1989
2002; 75
2006; 54
2006; 98
1995; 13
2002; 79
1966; 6
2005; 86
1993
1978; 58
2012; 104
2007; 99
2011; 5
2017; 213
1981; 21
1972; 29
2016; 56
2018; 69
2014; 106
2006; 86
2013; 33
2006; 46
1999; 39
2017; 57
2011; 51
2002; 22
2000; 40
2008; 48
2010; 174
2005; 50
1985; 34
2009; 1
1996; 48
2007; 47
2018; 58
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
Carena M. J. (e_1_2_9_13_1) 2009; 54
Kiniry J. R. (e_1_2_9_30_1) 2002; 22
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Wricke G. (e_1_2_9_59_1) 1962; 47
Duvick D. N. (e_1_2_9_18_1) 2004; 24
Papadopoulos I. I. (e_1_2_9_39_1) 2011; 5
Tokatlidis I. S. (e_1_2_9_56_1) 1998; 43
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
Assefa Y. (e_1_2_9_3_1) 2018; 8
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
Berzsenyi Z. (e_1_2_9_5_1) 2006; 54
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Snedecor G. W. (e_1_2_9_49_1) 1989
e_1_2_9_26_1
Matteo Di J. (e_1_2_9_35_1) 2016; 197
e_1_2_9_28_1
e_1_2_9_47_1
Tokatlidis I. S. (e_1_2_9_51_1) 2001; 137
e_1_2_9_53_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_32_1
e_1_2_9_55_1
Fasoula D. A. (e_1_2_9_21_1) 1997; 14
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_44_1
Tokatlidis I. S. (e_1_2_9_57_1) 2005; 50
e_1_2_9_7_1
Payne R. W. (e_1_2_9_40_1) 2009; 1
Fasoulas A. C. (e_1_2_9_23_1) 1995; 13
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
Yan W. (e_1_2_9_60_1) 2002; 94
e_1_2_9_29_1
References_xml – volume: 54
  start-page: 157
  year: 2014
  end-page: 173
  article-title: Survey of plant density tolerance in U.S. maize germplasm
  publication-title: Crop Science
– volume: 174
  start-page: 283
  year: 2010
  end-page: 291
  article-title: Density effects on environmental variance and expected response to selection in maize ( L.)
  publication-title: Euphytica
– year: 1989
– volume: 54
  start-page: 413
  year: 2006
  end-page: 424
  article-title: Effect of crop production factors on the yield and yield stability of maize ( L.) hybrids
  publication-title: Acta Agronomica Hungarica
– volume: 21
  start-page: 943
  year: 1981
  end-page: 946
  article-title: Theoretical aspects of selection for yield in stress and non‐stress environments
  publication-title: Crop Science
– volume: 15
  issue: 2
  year: 2020
  article-title: Understanding variability in optimum plant density and recommendation domains for crowding stress tolerant processing sweet corn
  publication-title: Plos One
– volume: 43
  start-page: 123
  year: 1998
  end-page: 129
  article-title: Improving maize hybrids for potential yield per plant
  publication-title: Maydica
– volume: 106
  start-page: 2107
  year: 2014
  end-page: 2117
  article-title: Understanding global and historical nutrient use efficiencies for closing maize yield gaps
  publication-title: Agronomy Journal
– volume: 8
  year: 2018
  article-title: Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain
  publication-title: Scientific Reports
– volume: 107
  start-page: 1011
  year: 2015
  end-page: 1018
  article-title: Improved plant yield efficiency is essential for maize rainfed production
  publication-title: Agronomy Journal
– volume: 24
  start-page: 109
  year: 2004
  end-page: 151
  article-title: Long‐term selection in a commercial maize breeding program
  publication-title: Plant Breeding Reviews
– volume: 14
  start-page: 89
  year: 1997
  end-page: 138
  article-title: Competitive ability and plant breeding
  publication-title: Plant Breeding Reviews
– volume: 46
  start-page: 180
  year: 2006
  end-page: 191
  article-title: Drought tolerance improvement in tropical maize source populations: Evidence of progress
  publication-title: Crop Science
– volume: 5
  start-page: 345
  year: 2013
  end-page: 360
  article-title: Adapting maize production to climate change in sub‐Saharan Africa
  publication-title: Food Security
– volume: 58
  start-page: 472
  year: 2018
  end-page: 485
  article-title: Maize yield potential and density tolerance
  publication-title: Crop Science
– volume: 47
  start-page: 641
  year: 2007
  end-page: 653
  article-title: GGE biplot vs. AMMI analysis of genotype‐by‐environment data
  publication-title: Crop Science
– volume: 46
  start-page: 1488
  year: 2006
  end-page: 1500
  article-title: Statistical analysis of yield trials by AMMI and GGE
  publication-title: Crop Science
– volume: 54
  start-page: 287
  year: 2009
  end-page: 296
  article-title: Breeding maize for higher yield and quality under drought stress
  publication-title: Maydica
– volume: 51
  start-page: 1965
  year: 2011
  end-page: 1972
  article-title: Selection and adaptation to high plant density in the Iowa stiff stalk synthetic maize ( L.) population
  publication-title: Crop Science
– volume: 50
  start-page: 9
  year: 2005
  end-page: 17
  article-title: Benefits from using maize density‐independent hybrids
  publication-title: Maydica
– volume: 95
  start-page: 878
  year: 2003
  end-page: 883
  article-title: Optimal plant population and nitrogen fertility for dryland corn in western Nebraska
  publication-title: Agronomy Journal
– volume: 76
  start-page: 425
  year: 1988
  end-page: 430
  article-title: A method of analyzing cultivar x location x year experiments: A new stability parameter
  publication-title: Theoretical and Applied Genetics
– volume: 62
  start-page: 3135
  year: 2011
  end-page: 3153
  article-title: Enhancing drought tolerance in C4 crops
  publication-title: Journal of Experimental Botany
– volume: 22
  start-page: 265
  year: 2002
  end-page: 272
  article-title: Similarity of maize seed number responses for a diverse set of sites
  publication-title: Agronomie
– volume: 5
  start-page: 207
  year: 2004
  end-page: 225
  article-title: Feasibility of site‐specific management of corn hybrids and plant densities in the Great Plains
  publication-title: Precision Agriculture
– year: 1993
– volume: 58
  start-page: 1029
  year: 1978
  end-page: 1034
  article-title: Yield stability studied in short‐season maize: I. A descriptive method for grouping genotypes
  publication-title: Canadian Journal of Plant Science
– volume: 29
  start-page: 237
  year: 1972
  end-page: 245
  article-title: Some statistical aspects of partitioning genotype‐environmental components of variability
  publication-title: Heredity
– volume: 98
  start-page: 760
  year: 2006
  end-page: 765
  article-title: Plant population density and maturity effects on profitability of short‐season maize production in mid‐southern USA
  publication-title: Agronomy Journal
– volume: 40
  start-page: 1056
  year: 2000
  end-page: 1061
  article-title: Synchronous pollination within and between ears improves kernel set in maize
  publication-title: Crop Science
– volume: 99
  start-page: 984
  year: 2007
  end-page: 991
  article-title: Why do maize hybrids respond differently to variations in plant density?
  publication-title: Agronomy Journal
– volume: 203
  start-page: 519
  year: 2017
  end-page: 527
  article-title: Risks of yield loss due to variation in optimum density for different maize genotypes under variable environmental conditions
  publication-title: Journal of Agronomy and Crop Science
– volume: 49
  start-page: 299
  year: 2009
  end-page: 312
  article-title: Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt?
  publication-title: Crop Science
– volume: 104
  start-page: 945
  year: 2012
  end-page: 952
  article-title: Lack of hybrid, seeding, and nitrogen rate interactions for corn growth and yield
  publication-title: Agronomy Journal
– volume: 43
  start-page: 45
  year: 1987
  end-page: 53
  article-title: Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability
  publication-title: Biometrics
– volume: 1
  start-page: 255
  year: 2009
  end-page: 258
  article-title: Genstat.
  publication-title: Statistics
– volume: 86
  start-page: 623
  year: 2006
  end-page: 645
  article-title: Biplot analysis of multi‐environment trial data: Principles and applications
  publication-title: Canadian Journal of Plant Science
– volume: 197
  start-page: 107
  year: 2016
  end-page: 116
  article-title: Yield potential and yield stability of Argentine maize hybrids over 45 years of breeding
  publication-title: Field Crops Research
– volume: 107
  start-page: 495
  year: 2015
  end-page: 505
  article-title: Evaluating management factor contributions to reduce corn yield gaps
  publication-title: Agronomy Journal
– volume: 213
  start-page: 92
  year: 2017
  article-title: Crop adaptation to density to optimise grain yield: Breeding implications
  publication-title: Euphytica
– volume: 86
  start-page: 83
  year: 2005
  end-page: 145
  article-title: The contribution of breeding to yield advances in maize ( L.)
  publication-title: Advances in Agronomy
– volume: 79
  start-page: 39
  year: 2002
  end-page: 51
  article-title: Response of Brazilian maize hybrids from different eras to changes in plant population
  publication-title: Field Crops Research
– volume: 57
  start-page: 32
  year: 2017
  end-page: 39
  article-title: Maize stand density yield response of parental inbred lines and derived hybrids
  publication-title: Crop Science
– volume: 34
  start-page: 883
  year: 1985
  end-page: 895
  article-title: Effects of competition and selection pressure on yield response in winter rye ( L.)
  publication-title: Euphytica
– volume: 80
  start-page: 563
  year: 2016
  end-page: 578
  article-title: Evaluating the role of water availability in determining the yield–plant population density relationship
  publication-title: Soil Science Society of America Journal
– volume: 93
  start-page: 540
  year: 2001
  end-page: 547
  article-title: Dryland corn in western Kansas: Effects of hybrid maturity, planting date, and plant population
  publication-title: Agronomy Journal
– volume: 104
  start-page: 331
  year: 2012
  end-page: 336
  article-title: Density‐dependence rather maturity determines hybrid selection in dryland maize production
  publication-title: Agronomy Journal
– volume: 47
  start-page: 92
  year: 1962
  end-page: 96
  article-title: Über eine Methode zur Erfassung der ökologischen Streubreite in Feldversuchen
  publication-title: Z. Pflanzenzüchtg
– volume: 56
  start-page: 2802
  year: 2016
  end-page: 2817
  article-title: Yield responses to planting density for US modern corn hybrids: A synthesis‐analysis
  publication-title: Crop Science
– volume: 48
  start-page: 866
  year: 2008
  end-page: 889
  article-title: Statistical analysis of yield trials by AMMI and GGE: Further considerations
  publication-title: Crop Science
– volume: 5
  start-page: 822
  year: 2011
  end-page: 830
  article-title: A novel statistic estimated in the absence of competition to foresee genotype performance at the farming conditions parallels the agronomic concept of stability
  publication-title: Australian Journal of Crop Science
– volume: 94
  start-page: 990
  year: 2002
  end-page: 996
  article-title: Singular‐value partition in biplot analysis of multienvironment trial data
  publication-title: Agronomy Journal
– volume: 75
  start-page: 161
  year: 2002
  end-page: 169
  article-title: Yield potential, yield stability, and stress tolerance in maize
  publication-title: Field Crops Research
– volume: 48
  start-page: 65
  year: 1996
  end-page: 80
  article-title: The importance of the anthesis‐silking interval in breeding for drought tolerance in tropical maize
  publication-title: Field Crops Research
– volume: 6
  start-page: 36
  year: 1966
  end-page: 40
  article-title: Stability parameters for comparing varieties
  publication-title: Crop Science
– volume: 33
  start-page: 63
  year: 2013
  end-page: 79
  article-title: Adapting maize crop to climate change
  publication-title: Agronomy for Sustainable Development
– volume: 39
  start-page: 1306
  year: 1999
  end-page: 1315
  article-title: Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index
  publication-title: Crop Science
– volume: 112
  start-page: 124
  year: 2009
  end-page: 130
  article-title: Identifying superior wheat cultivars in participatory research on resource poor farms
  publication-title: Field Crops Research
– volume: 13
  start-page: 87
  year: 1995
  end-page: 139
  article-title: Honeycomb selection designs
  publication-title: Plant Breeding Reviews
– volume: 137
  start-page: 299
  year: 2001
  end-page: 305
  article-title: The effect of improved potential yield per plant on crop yield potential and optimum plant density in maize hybrids
  publication-title: Journal of Agricultural Science
– volume: 69
  start-page: 3235
  year: 2018
  end-page: 3243
  article-title: Maize reproductive development and kernel set under limited plant growth environments
  publication-title: Journal of Experimental Botany
– volume: 13
  start-page: 87
  year: 1995
  ident: e_1_2_9_23_1
  article-title: Honeycomb selection designs
  publication-title: Plant Breeding Reviews
– ident: e_1_2_9_34_1
  doi: 10.2135/cropsci2013.04.0252
– ident: e_1_2_9_15_1
  doi: 10.2134/agronj2012.0027
– volume: 94
  start-page: 990
  year: 2002
  ident: e_1_2_9_60_1
  article-title: Singular‐value partition in biplot analysis of multienvironment trial data
  publication-title: Agronomy Journal
– ident: e_1_2_9_2_1
  doi: 10.2135/cropsci2016.02.0083
– ident: e_1_2_9_55_1
  doi: 10.1007/s10681-010-0160-9
– ident: e_1_2_9_58_1
  doi: 10.1016/S0378-4290(02)00024-2
– ident: e_1_2_9_26_1
  doi: 10.2135/cropsci2005.07-0193
– volume-title: Statistical methods
  year: 1989
  ident: e_1_2_9_49_1
– volume: 137
  start-page: 299
  year: 2001
  ident: e_1_2_9_51_1
  article-title: The effect of improved potential yield per plant on crop yield potential and optimum plant density in maize hybrids
  publication-title: Journal of Agricultural Science
  doi: 10.1017/S0021859601001496
– volume: 24
  start-page: 109
  year: 2004
  ident: e_1_2_9_18_1
  article-title: Long‐term selection in a commercial maize breeding program
  publication-title: Plant Breeding Reviews
– volume: 22
  start-page: 265
  year: 2002
  ident: e_1_2_9_30_1
  article-title: Similarity of maize seed number responses for a diverse set of sites
  publication-title: Agronomie
  doi: 10.1051/agro:2002010
– ident: e_1_2_9_10_1
  doi: 10.2135/cropsci2010.09.0563
– ident: e_1_2_9_14_1
  doi: 10.2134/agronj14.0025
– ident: e_1_2_9_12_1
  doi: 10.2135/cropsci2000.4041056x
– ident: e_1_2_9_50_1
  doi: 10.1016/j.fcr.2009.01.011
– ident: e_1_2_9_4_1
  doi: 10.2135/cropsci2016.04.0215
– ident: e_1_2_9_37_1
  doi: 10.2307/2531947
– volume: 5
  start-page: 822
  year: 2011
  ident: e_1_2_9_39_1
  article-title: A novel statistic estimated in the absence of competition to foresee genotype performance at the farming conditions parallels the agronomic concept of stability
  publication-title: Australian Journal of Crop Science
– volume: 54
  start-page: 413
  year: 2006
  ident: e_1_2_9_5_1
  article-title: Effect of crop production factors on the yield and yield stability of maize (Zea mays L.) hybrids
  publication-title: Acta Agronomica Hungarica
  doi: 10.1556/AAgr.54.2006.4.4
– ident: e_1_2_9_33_1
  doi: 10.1093/jxb/err105
– ident: e_1_2_9_54_1
  doi: 10.2134/agronj14.0599
– ident: e_1_2_9_29_1
  doi: 10.2135/cropsci2008.03.0152
– ident: e_1_2_9_8_1
  doi: 10.1016/0378-4290(96)00036-6
– ident: e_1_2_9_44_1
  doi: 10.1016/S0378-4290(02)00124-7
– ident: e_1_2_9_27_1
  doi: 10.2135/cropsci2007.09.0513
– ident: e_1_2_9_41_1
  doi: 10.2134/agronj2005.0201
– ident: e_1_2_9_31_1
  doi: 10.1007/BF00035428
– volume: 14
  start-page: 89
  year: 1997
  ident: e_1_2_9_21_1
  article-title: Competitive ability and plant breeding
  publication-title: Plant Breeding Reviews
– volume: 50
  start-page: 9
  year: 2005
  ident: e_1_2_9_57_1
  article-title: Benefits from using maize density‐independent hybrids
  publication-title: Maydica
– ident: e_1_2_9_9_1
  doi: 10.1093/jxb/erx452
– ident: e_1_2_9_22_1
– volume: 8
  start-page: 4937.
  year: 2018
  ident: e_1_2_9_3_1
  article-title: Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-23362-x
– ident: e_1_2_9_32_1
  doi: 10.1007/BF00265344
– ident: e_1_2_9_25_1
  doi: 10.2136/sssaj2015.11.0395
– ident: e_1_2_9_7_1
  doi: 10.2134/agronj2003.8780
– ident: e_1_2_9_11_1
  doi: 10.1007/s12571-013-0256-x
– ident: e_1_2_9_16_1
  doi: 10.1371/journal.pone.0228809
– ident: e_1_2_9_62_1
  doi: 10.2135/cropsci2006.06.0374
– volume: 54
  start-page: 287
  year: 2009
  ident: e_1_2_9_13_1
  article-title: Breeding maize for higher yield and quality under drought stress
  publication-title: Maydica
– ident: e_1_2_9_52_1
  doi: 10.1007/s13593-012-0108-7
– ident: e_1_2_9_6_1
  doi: 10.2134/agronj2011.0205
– ident: e_1_2_9_28_1
  doi: 10.2135/cropsci2016.06.0547
– ident: e_1_2_9_47_1
  doi: 10.1038/hdy.1972.87
– ident: e_1_2_9_24_1
  doi: 10.4141/cjps78-157
– ident: e_1_2_9_53_1
  doi: 10.1007/s10681-017-1874-8
– ident: e_1_2_9_61_1
  doi: 10.4141/P05-169
– ident: e_1_2_9_17_1
  doi: 10.1016/S0065-2113(05)86002-X
– ident: e_1_2_9_38_1
  doi: 10.2134/agronj2001.933540x
– ident: e_1_2_9_48_1
  doi: 10.1111/jac.12213
– ident: e_1_2_9_45_1
  doi: 10.2134/agronj2006.0205
– volume: 197
  start-page: 107
  year: 2016
  ident: e_1_2_9_35_1
  article-title: Yield potential and yield stability of Argentine maize hybrids over 45 years of breeding
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2016.07.023
– ident: e_1_2_9_42_1
  doi: 10.2135/cropsci1981.0011183X002100060033x
– volume: 47
  start-page: 92
  year: 1962
  ident: e_1_2_9_59_1
  article-title: Über eine Methode zur Erfassung der ökologischen Streubreite in Feldversuchen
  publication-title: Z. Pflanzenzüchtg
– ident: e_1_2_9_36_1
  doi: 10.2135/cropsci2005.04-0034
– volume: 43
  start-page: 123
  year: 1998
  ident: e_1_2_9_56_1
  article-title: Improving maize hybrids for potential yield per plant
  publication-title: Maydica
– ident: e_1_2_9_20_1
  doi: 10.2135/cropsci1999.3951306x
– ident: e_1_2_9_43_1
  doi: 10.2134/agronj14.0355
– ident: e_1_2_9_46_1
  doi: 10.1023/B:PRAG.0000032762.72510.10
– ident: e_1_2_9_19_1
  doi: 10.2135/cropsci1966.0011183X000600010011x
– volume: 1
  start-page: 255
  year: 2009
  ident: e_1_2_9_40_1
  article-title: Genstat. WIREs Computational
  publication-title: Statistics
SSID ssj0011941
Score 2.4192395
Snippet Plant yield efficiency (PYE) reflects the ability of the single‐plant to respond to additional inputs and is fully expressed at the nil‐competition regime (an...
Plant yield efficiency (PYE) reflects the ability of the single‐plant to respond to additional inputs and is fully expressed at the nil ‐competition regime (an...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1690
SubjectTerms agronomy
corn
flowering
genotype
genotype-environment interaction
harvest index
hybrids
statistics
Zea mays
Title Improved plant yield efficiency alleviates the erratic optimum density in maize
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fagj2.20187
https://www.proquest.com/docview/2718349835
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiKsoNxnBC1SB2XGb9LGgwTSJgcYm7S1yHKfylEvVNZO2J34659hukkKFBi9RlCZO6vPl83fi43MIeaPiSHGpxoFWTARCiziQqWJBlDIFA2w-4XZR2NejycGpODwbnw0GP3tRS80qfa-ut64r-R-rwjGwK66S_QfLto3CAdgH-8IWLAzbG9nYfREAybgooINGVxiNhhEaxr6wVyOsk3JpUE262I3l0uZnrYEmyqYcZRi8vrIL_0pprjeCgmbzpV3uMOo_iC0SUYB2d9RSY72jVpP_MJVcmKxuLL1eyvlcF6Yl_WNdYlUK1Kv297KUVd3oorsaZarxDV-YvP85gu91wX89ioXX2lGsdqwKmizAxHgbtMt4D19hj0Rx5q43IGPG-K1k75LHyvk5LqhjftzeyKj920jXxh-6XM08wWsTe-0tssvB0QCm3P24f_T9uJ2JYlPB1i4U_q02xS3_0N15U9R0nkrf37GC5eQeues9DTpzsLlPBrp6QO6AXX22Ff2QfFsDiFoAUQsg2gGIdgCiACDqAUQ9gKgHEDUVtQB6RE4_7598Ogh8hY1AoasYsBzeYZmLNJxEIlU65LEcyyzSoYLOyPdiTCc35ZrnY5ZjIm5Q-5kQUSQV9EvGw8dkp6or_YTQNGVY6yDONAuhKTg5AxrIcRZcTUAGDcnbdRclyqefxyooRfKnMYbkdXvuwiVd2XrWq3VPJ8CJONElK103FwkHwRWKKTgXQ_LOmuAvzSSzL4fc7j290W2fkdsd7p-TndWy0S9AmK7Slx47vwCeGJEN
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+plant+yield+efficiency+alleviates+the+erratic+optimum+density+in+maize&rft.jtitle=Agronomy+journal&rft.au=Mylonas%2C+Ioannis&rft.au=Sinapidou%2C+Evaggelia&rft.au=Remountakis%2C+Emmanouel&rft.au=Sistanis%2C+Iosif&rft.date=2020-05-01&rft.issn=0002-1962&rft.eissn=1435-0645&rft.volume=112&rft.issue=3&rft.spage=1690&rft.epage=1701&rft_id=info:doi/10.1002%2Fagj2.20187&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_agj2_20187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-1962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-1962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-1962&client=summon