Improved plant yield efficiency alleviates the erratic optimum density in maize
Plant yield efficiency (PYE) reflects the ability of the single‐plant to respond to additional inputs and is fully expressed at the nil‐competition regime (an ultra‐low density to preclude inter‐plant interference for inputs). The purpose of this study was to determine if PYE could prevent the errat...
Saved in:
Published in | Agronomy journal Vol. 112; no. 3; pp. 1690 - 1701 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant yield efficiency (PYE) reflects the ability of the single‐plant to respond to additional inputs and is fully expressed at the nil‐competition regime (an ultra‐low density to preclude inter‐plant interference for inputs). The purpose of this study was to determine if PYE could prevent the erratic optimum plant density–yield interaction effect in maize (Zea mays L.). Seven hybrids were evaluated across five environments at four densities, under both the normal‐input regime (NIR) and low‐input regime (LIR). Plant yield efficiency was measured at the lowest density approaching the nil‐competition regime (0.74 plants m–2), while crop (per area) yield potential was estimated at the highest density corresponding to the typical farming density in the NIR (8.89 plants m–2). In terms of optimum density, the hybrids varied extensively in the NIR (6.64–8.81 plants m–2) but performed similarly in the LIR (5.11–5.61 plants m–2). The hybrid displaying the highest PYE also had high harvest index (HI) and low anthesis to silking interval (ASI) and was proved the most stable according to various stability statistics including the genotype and genotype by environment (GGE) biplot model. In conclusion, crop yield by density interaction is a matter of hybrid. Hybrids with low PYE have inconsistent optimum density, which is a causal factor of yield loss in rainfed maize. High PYE improves hybrid flexibility and performance at low densities ultimately enhancing crop resilience to extremely fluctuating environments. |
---|---|
AbstractList | Plant yield efficiency (PYE) reflects the ability of the single‐plant to respond to additional inputs and is fully expressed at the nil‐competition regime (an ultra‐low density to preclude inter‐plant interference for inputs). The purpose of this study was to determine if PYE could prevent the erratic optimum plant density–yield interaction effect in maize (Zea mays L.). Seven hybrids were evaluated across five environments at four densities, under both the normal‐input regime (NIR) and low‐input regime (LIR). Plant yield efficiency was measured at the lowest density approaching the nil‐competition regime (0.74 plants m–2), while crop (per area) yield potential was estimated at the highest density corresponding to the typical farming density in the NIR (8.89 plants m–2). In terms of optimum density, the hybrids varied extensively in the NIR (6.64–8.81 plants m–2) but performed similarly in the LIR (5.11–5.61 plants m–2). The hybrid displaying the highest PYE also had high harvest index (HI) and low anthesis to silking interval (ASI) and was proved the most stable according to various stability statistics including the genotype and genotype by environment (GGE) biplot model. In conclusion, crop yield by density interaction is a matter of hybrid. Hybrids with low PYE have inconsistent optimum density, which is a causal factor of yield loss in rainfed maize. High PYE improves hybrid flexibility and performance at low densities ultimately enhancing crop resilience to extremely fluctuating environments. Plant yield efficiency (PYE) reflects the ability of the single‐plant to respond to additional inputs and is fully expressed at the nil ‐competition regime (an ultra‐low density to preclude inter‐plant interference for inputs). The purpose of this study was to determine if PYE could prevent the erratic optimum plant density–yield interaction effect in maize ( Zea mays L.). Seven hybrids were evaluated across five environments at four densities, under both the normal‐input regime (NIR) and low‐input regime (LIR). Plant yield efficiency was measured at the lowest density approaching the nil ‐competition regime (0.74 plants m –2 ), while crop (per area) yield potential was estimated at the highest density corresponding to the typical farming density in the NIR (8.89 plants m –2 ). In terms of optimum density, the hybrids varied extensively in the NIR (6.64–8.81 plants m –2 ) but performed similarly in the LIR (5.11–5.61 plants m –2 ). The hybrid displaying the highest PYE also had high harvest index (HI) and low anthesis to silking interval (ASI) and was proved the most stable according to various stability statistics including the genotype and genotype by environment (GGE) biplot model. In conclusion, crop yield by density interaction is a matter of hybrid. Hybrids with low PYE have inconsistent optimum density, which is a causal factor of yield loss in rainfed maize. High PYE improves hybrid flexibility and performance at low densities ultimately enhancing crop resilience to extremely fluctuating environments. Plant yield efficiency (PYE) reflects the ability of the single‐plant to respond to additional inputs and is fully expressed at the nil‐competition regime (an ultra‐low density to preclude inter‐plant interference for inputs). The purpose of this study was to determine if PYE could prevent the erratic optimum plant density–yield interaction effect in maize (Zea mays L.). Seven hybrids were evaluated across five environments at four densities, under both the normal‐input regime (NIR) and low‐input regime (LIR). Plant yield efficiency was measured at the lowest density approaching the nil‐competition regime (0.74 plants m–²), while crop (per area) yield potential was estimated at the highest density corresponding to the typical farming density in the NIR (8.89 plants m–²). In terms of optimum density, the hybrids varied extensively in the NIR (6.64–8.81 plants m–²) but performed similarly in the LIR (5.11–5.61 plants m–²). The hybrid displaying the highest PYE also had high harvest index (HI) and low anthesis to silking interval (ASI) and was proved the most stable according to various stability statistics including the genotype and genotype by environment (GGE) biplot model. In conclusion, crop yield by density interaction is a matter of hybrid. Hybrids with low PYE have inconsistent optimum density, which is a causal factor of yield loss in rainfed maize. High PYE improves hybrid flexibility and performance at low densities ultimately enhancing crop resilience to extremely fluctuating environments. |
Author | Lithourgidis, Anastasios Ninou, Elissavet Papathanasiou, Fokion Sistanis, Iosif Kargiotidou, Anastasia Remountakis, Emmanouel Tokamani, Maria Sandaltzopoulos, Raphael Tokatlidis, Ioannis S. Pankou, Chrysanthi Dordas, Christos Mylonas, Ioannis Papadopoulos, Ioannis Gekas, Fotakis Sinapidou, Evaggelia Tzantarmas, Constantinos |
Author_xml | – sequence: 1 givenname: Ioannis orcidid: 0000-0001-6980-0813 surname: Mylonas fullname: Mylonas, Ioannis organization: Hellenic Agricultural Organization Demeter – sequence: 2 givenname: Evaggelia surname: Sinapidou fullname: Sinapidou, Evaggelia organization: Democritus Univ. of Thrace – sequence: 3 givenname: Emmanouel surname: Remountakis fullname: Remountakis, Emmanouel organization: American Genetics Inc – sequence: 4 givenname: Iosif surname: Sistanis fullname: Sistanis, Iosif organization: University of Western Macedonia – sequence: 5 givenname: Chrysanthi surname: Pankou fullname: Pankou, Chrysanthi organization: Aristotle University of Thessaloniki – sequence: 6 givenname: Elissavet surname: Ninou fullname: Ninou, Elissavet organization: Hellenic Agricultural Organization Demeter – sequence: 7 givenname: Ioannis surname: Papadopoulos fullname: Papadopoulos, Ioannis organization: University of Western Macedonia – sequence: 8 givenname: Fokion surname: Papathanasiou fullname: Papathanasiou, Fokion organization: University of Western Macedonia – sequence: 9 givenname: Anastasios surname: Lithourgidis fullname: Lithourgidis, Anastasios organization: Aristotle University of Thessaloniki – sequence: 10 givenname: Fotakis surname: Gekas fullname: Gekas, Fotakis organization: Aristotle University of Thessaloniki – sequence: 11 givenname: Christos surname: Dordas fullname: Dordas, Christos organization: Aristotle University of Thessaloniki – sequence: 12 givenname: Constantinos surname: Tzantarmas fullname: Tzantarmas, Constantinos organization: Hellenic Agricultural Organization Demeter – sequence: 13 givenname: Anastasia surname: Kargiotidou fullname: Kargiotidou, Anastasia organization: Hellenic Agricultural Organization Demeter – sequence: 14 givenname: Maria surname: Tokamani fullname: Tokamani, Maria organization: Democritus University of Thrace – sequence: 15 givenname: Raphael surname: Sandaltzopoulos fullname: Sandaltzopoulos, Raphael organization: Democritus University of Thrace – sequence: 16 givenname: Ioannis S. orcidid: 0000-0003-0058-1696 surname: Tokatlidis fullname: Tokatlidis, Ioannis S. email: itokatl@agro.duth.gr organization: Hellenic Agricultural Organization Demeter |
BookMark | eNp9kMtOwzAURC1UJNrChi_wEiGl-JU4WVYVlKJK3cDacpxrcJUXsVsUvp6UsEKI1V3cM6OZmaFJ3dSA0DUlC0oIu9Ove7ZghKbyDE2p4HFEEhFP0JQM34hmCbtAM-_3hFCaCTpFu03Vds0RCtyWug64d1AWGKx1xkFteqzLEo5OB_A4vAGGrtPBGdy0wVWHChdQexd67GpcafcJl-jc6tLD1c-do5eH--fVY7TdrTer5TYynCQyohZy0FbkPJEiN8BZqmNdSOBGSmZJKhKeZAyYjaktcgkZZ4UQUmoz5C4Yn6Ob0XdI_34AH1TlvIFyKAHNwSsmacpFlvJ4QMmImq7xvgOrjAtDiaYOnXalokSdtlOn7dT3doPk9pek7Vylu_5vmI7whyuh_4dUy_UTGzVfvDSBcw |
CitedBy_id | crossref_primary_10_1002_jsfa_12602 crossref_primary_10_3390_plants12132561 crossref_primary_10_3389_fpls_2022_934359 crossref_primary_10_3390_agriculture15060616 crossref_primary_10_1016_j_fcr_2024_109282 crossref_primary_10_3390_agriculture14030351 crossref_primary_10_3389_fpls_2021_752606 crossref_primary_10_3389_fpls_2021_771739 crossref_primary_10_3390_agronomy13112830 crossref_primary_10_1016_j_fcr_2022_108804 crossref_primary_10_1016_j_jia_2022_08_103 crossref_primary_10_1071_CP24064 crossref_primary_10_3389_fpls_2022_969332 crossref_primary_10_1002_agg2_70079 crossref_primary_10_3390_agronomy10081203 crossref_primary_10_1007_s00271_022_00805_y crossref_primary_10_3389_fpls_2022_838536 crossref_primary_10_1002_csc2_20576 crossref_primary_10_1080_14620316_2024_2400127 crossref_primary_10_3390_plants11182432 crossref_primary_10_3389_fpls_2022_1047268 crossref_primary_10_1016_j_fcr_2024_109310 |
Cites_doi | 10.2135/cropsci2013.04.0252 10.2134/agronj2012.0027 10.2135/cropsci2016.02.0083 10.1007/s10681-010-0160-9 10.1016/S0378-4290(02)00024-2 10.2135/cropsci2005.07-0193 10.1017/S0021859601001496 10.1051/agro:2002010 10.2135/cropsci2010.09.0563 10.2134/agronj14.0025 10.2135/cropsci2000.4041056x 10.1016/j.fcr.2009.01.011 10.2135/cropsci2016.04.0215 10.2307/2531947 10.1556/AAgr.54.2006.4.4 10.1093/jxb/err105 10.2134/agronj14.0599 10.2135/cropsci2008.03.0152 10.1016/0378-4290(96)00036-6 10.1016/S0378-4290(02)00124-7 10.2135/cropsci2007.09.0513 10.2134/agronj2005.0201 10.1007/BF00035428 10.1093/jxb/erx452 10.1038/s41598-018-23362-x 10.1007/BF00265344 10.2136/sssaj2015.11.0395 10.2134/agronj2003.8780 10.1007/s12571-013-0256-x 10.1371/journal.pone.0228809 10.2135/cropsci2006.06.0374 10.1007/s13593-012-0108-7 10.2134/agronj2011.0205 10.2135/cropsci2016.06.0547 10.1038/hdy.1972.87 10.4141/cjps78-157 10.1007/s10681-017-1874-8 10.4141/P05-169 10.1016/S0065-2113(05)86002-X 10.2134/agronj2001.933540x 10.1111/jac.12213 10.2134/agronj2006.0205 10.1016/j.fcr.2016.07.023 10.2135/cropsci1981.0011183X002100060033x 10.2135/cropsci2005.04-0034 10.2135/cropsci1999.3951306x 10.2134/agronj14.0355 10.1023/B:PRAG.0000032762.72510.10 10.2135/cropsci1966.0011183X000600010011x |
ContentType | Journal Article |
Copyright | 2020 The Authors. Agronomy Journal © 2020 American Society of Agronomy |
Copyright_xml | – notice: 2020 The Authors. Agronomy Journal © 2020 American Society of Agronomy |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1002/agj2.20187 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Statistics |
EISSN | 1435-0645 |
EndPage | 1701 |
ExternalDocumentID | 10_1002_agj2_20187 AGJ220187 |
Genre | article |
GrantInformation_xml | – fundername: European Regional Development Fund and Greek |
GroupedDBID | -~X .86 .~0 0R~ 186 1OB 1OC 23M 2WC 33P 3V. 5GY 6J9 6KN 7X2 7XC 88I 8FE 8FG 8FH 8FW 8G5 8R4 8R5 AABCJ AAHBH AAHHS AAHQN AAMNL AANLZ AAYCA ABCQX ABCUV ABEFU ABJCF ABJNI ABRSH ABUWG ACAWQ ACCFJ ACCZN ACGFO ACGOD ACIWK ACPOU ACQAM ACXQS ADFRT ADKYN ADMHG ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFFPM AFKRA AFRAH AFWVQ AHBTC AI. AIDBO AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ATCPS AZQEC BCR BCU BEC BENPR BES BFHJK BGLVJ BHPHI BLC BPHCQ C1A CCPQU D0L DCZOG DROCM DWQXO E3Z EBS ECGQY EJD F5P GNUQQ GUQSH H13 HCIFZ HF~ HGLYW L6V L7B LAS LATKE LEEKS LPU M0K M2O M2P M7S MEWTI MV1 NEJ NHAZY NHB O9- P2P PATMY PEA PQQKQ PROAC PTHSS PYCSY Q2X QF4 QM4 QN7 ROL RPX RWL S0X SAMSI SJFOW SJN SUPJJ TAE TR2 TWZ U2A VH1 VOH WOQ WXSBR Y6R YR5 YYP ZCG ~02 ~KM AAYXX AETEA AEYWJ AGHNM AGYGG CITATION PHGZM PHGZT 7S9 AAMMB AEFGJ AGXDD AIDQK AIDYY L.6 |
ID | FETCH-LOGICAL-c3067-1febeaf4b3674bce328a5ad7e3c772f08463692e2f51fdb7e932d4477ac194d23 |
ISSN | 0002-1962 |
IngestDate | Fri Jul 11 18:27:38 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Tue Jul 01 02:17:17 EDT 2025 Wed Jan 22 16:33:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3067-1febeaf4b3674bce328a5ad7e3c772f08463692e2f51fdb7e932d4477ac194d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0058-1696 0000-0001-6980-0813 |
PQID | 2718349835 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2718349835 crossref_citationtrail_10_1002_agj2_20187 crossref_primary_10_1002_agj2_20187 wiley_primary_10_1002_agj2_20187_AGJ220187 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May/June 2020 2020-05-00 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May/June 2020 |
PublicationDecade | 2020 |
PublicationTitle | Agronomy journal |
PublicationYear | 2020 |
References | 2001; 93 2002; 94 2011; 62 2004; 24 1988; 76 2020; 15 2009; 112 2004; 5 2015; 107 2003; 95 2013; 5 1998; 43 2009; 49 2018; 8 1987; 43 2009; 54 1997; 14 1962; 47 2016; 80 2016; 197 2017; 203 2001; 137 2014; 54 1989 2002; 75 2006; 54 2006; 98 1995; 13 2002; 79 1966; 6 2005; 86 1993 1978; 58 2012; 104 2007; 99 2011; 5 2017; 213 1981; 21 1972; 29 2016; 56 2018; 69 2014; 106 2006; 86 2013; 33 2006; 46 1999; 39 2017; 57 2011; 51 2002; 22 2000; 40 2008; 48 2010; 174 2005; 50 1985; 34 2009; 1 1996; 48 2007; 47 2018; 58 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 Carena M. J. (e_1_2_9_13_1) 2009; 54 Kiniry J. R. (e_1_2_9_30_1) 2002; 22 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Wricke G. (e_1_2_9_59_1) 1962; 47 Duvick D. N. (e_1_2_9_18_1) 2004; 24 Papadopoulos I. I. (e_1_2_9_39_1) 2011; 5 Tokatlidis I. S. (e_1_2_9_56_1) 1998; 43 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 Assefa Y. (e_1_2_9_3_1) 2018; 8 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 Berzsenyi Z. (e_1_2_9_5_1) 2006; 54 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Snedecor G. W. (e_1_2_9_49_1) 1989 e_1_2_9_26_1 Matteo Di J. (e_1_2_9_35_1) 2016; 197 e_1_2_9_28_1 e_1_2_9_47_1 Tokatlidis I. S. (e_1_2_9_51_1) 2001; 137 e_1_2_9_53_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_32_1 e_1_2_9_55_1 Fasoula D. A. (e_1_2_9_21_1) 1997; 14 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_44_1 Tokatlidis I. S. (e_1_2_9_57_1) 2005; 50 e_1_2_9_7_1 Payne R. W. (e_1_2_9_40_1) 2009; 1 Fasoulas A. C. (e_1_2_9_23_1) 1995; 13 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 Yan W. (e_1_2_9_60_1) 2002; 94 e_1_2_9_29_1 |
References_xml | – volume: 54 start-page: 157 year: 2014 end-page: 173 article-title: Survey of plant density tolerance in U.S. maize germplasm publication-title: Crop Science – volume: 174 start-page: 283 year: 2010 end-page: 291 article-title: Density effects on environmental variance and expected response to selection in maize ( L.) publication-title: Euphytica – year: 1989 – volume: 54 start-page: 413 year: 2006 end-page: 424 article-title: Effect of crop production factors on the yield and yield stability of maize ( L.) hybrids publication-title: Acta Agronomica Hungarica – volume: 21 start-page: 943 year: 1981 end-page: 946 article-title: Theoretical aspects of selection for yield in stress and non‐stress environments publication-title: Crop Science – volume: 15 issue: 2 year: 2020 article-title: Understanding variability in optimum plant density and recommendation domains for crowding stress tolerant processing sweet corn publication-title: Plos One – volume: 43 start-page: 123 year: 1998 end-page: 129 article-title: Improving maize hybrids for potential yield per plant publication-title: Maydica – volume: 106 start-page: 2107 year: 2014 end-page: 2117 article-title: Understanding global and historical nutrient use efficiencies for closing maize yield gaps publication-title: Agronomy Journal – volume: 8 year: 2018 article-title: Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain publication-title: Scientific Reports – volume: 107 start-page: 1011 year: 2015 end-page: 1018 article-title: Improved plant yield efficiency is essential for maize rainfed production publication-title: Agronomy Journal – volume: 24 start-page: 109 year: 2004 end-page: 151 article-title: Long‐term selection in a commercial maize breeding program publication-title: Plant Breeding Reviews – volume: 14 start-page: 89 year: 1997 end-page: 138 article-title: Competitive ability and plant breeding publication-title: Plant Breeding Reviews – volume: 46 start-page: 180 year: 2006 end-page: 191 article-title: Drought tolerance improvement in tropical maize source populations: Evidence of progress publication-title: Crop Science – volume: 5 start-page: 345 year: 2013 end-page: 360 article-title: Adapting maize production to climate change in sub‐Saharan Africa publication-title: Food Security – volume: 58 start-page: 472 year: 2018 end-page: 485 article-title: Maize yield potential and density tolerance publication-title: Crop Science – volume: 47 start-page: 641 year: 2007 end-page: 653 article-title: GGE biplot vs. AMMI analysis of genotype‐by‐environment data publication-title: Crop Science – volume: 46 start-page: 1488 year: 2006 end-page: 1500 article-title: Statistical analysis of yield trials by AMMI and GGE publication-title: Crop Science – volume: 54 start-page: 287 year: 2009 end-page: 296 article-title: Breeding maize for higher yield and quality under drought stress publication-title: Maydica – volume: 51 start-page: 1965 year: 2011 end-page: 1972 article-title: Selection and adaptation to high plant density in the Iowa stiff stalk synthetic maize ( L.) population publication-title: Crop Science – volume: 50 start-page: 9 year: 2005 end-page: 17 article-title: Benefits from using maize density‐independent hybrids publication-title: Maydica – volume: 95 start-page: 878 year: 2003 end-page: 883 article-title: Optimal plant population and nitrogen fertility for dryland corn in western Nebraska publication-title: Agronomy Journal – volume: 76 start-page: 425 year: 1988 end-page: 430 article-title: A method of analyzing cultivar x location x year experiments: A new stability parameter publication-title: Theoretical and Applied Genetics – volume: 62 start-page: 3135 year: 2011 end-page: 3153 article-title: Enhancing drought tolerance in C4 crops publication-title: Journal of Experimental Botany – volume: 22 start-page: 265 year: 2002 end-page: 272 article-title: Similarity of maize seed number responses for a diverse set of sites publication-title: Agronomie – volume: 5 start-page: 207 year: 2004 end-page: 225 article-title: Feasibility of site‐specific management of corn hybrids and plant densities in the Great Plains publication-title: Precision Agriculture – year: 1993 – volume: 58 start-page: 1029 year: 1978 end-page: 1034 article-title: Yield stability studied in short‐season maize: I. A descriptive method for grouping genotypes publication-title: Canadian Journal of Plant Science – volume: 29 start-page: 237 year: 1972 end-page: 245 article-title: Some statistical aspects of partitioning genotype‐environmental components of variability publication-title: Heredity – volume: 98 start-page: 760 year: 2006 end-page: 765 article-title: Plant population density and maturity effects on profitability of short‐season maize production in mid‐southern USA publication-title: Agronomy Journal – volume: 40 start-page: 1056 year: 2000 end-page: 1061 article-title: Synchronous pollination within and between ears improves kernel set in maize publication-title: Crop Science – volume: 99 start-page: 984 year: 2007 end-page: 991 article-title: Why do maize hybrids respond differently to variations in plant density? publication-title: Agronomy Journal – volume: 203 start-page: 519 year: 2017 end-page: 527 article-title: Risks of yield loss due to variation in optimum density for different maize genotypes under variable environmental conditions publication-title: Journal of Agronomy and Crop Science – volume: 49 start-page: 299 year: 2009 end-page: 312 article-title: Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? publication-title: Crop Science – volume: 104 start-page: 945 year: 2012 end-page: 952 article-title: Lack of hybrid, seeding, and nitrogen rate interactions for corn growth and yield publication-title: Agronomy Journal – volume: 43 start-page: 45 year: 1987 end-page: 53 article-title: Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability publication-title: Biometrics – volume: 1 start-page: 255 year: 2009 end-page: 258 article-title: Genstat. publication-title: Statistics – volume: 86 start-page: 623 year: 2006 end-page: 645 article-title: Biplot analysis of multi‐environment trial data: Principles and applications publication-title: Canadian Journal of Plant Science – volume: 197 start-page: 107 year: 2016 end-page: 116 article-title: Yield potential and yield stability of Argentine maize hybrids over 45 years of breeding publication-title: Field Crops Research – volume: 107 start-page: 495 year: 2015 end-page: 505 article-title: Evaluating management factor contributions to reduce corn yield gaps publication-title: Agronomy Journal – volume: 213 start-page: 92 year: 2017 article-title: Crop adaptation to density to optimise grain yield: Breeding implications publication-title: Euphytica – volume: 86 start-page: 83 year: 2005 end-page: 145 article-title: The contribution of breeding to yield advances in maize ( L.) publication-title: Advances in Agronomy – volume: 79 start-page: 39 year: 2002 end-page: 51 article-title: Response of Brazilian maize hybrids from different eras to changes in plant population publication-title: Field Crops Research – volume: 57 start-page: 32 year: 2017 end-page: 39 article-title: Maize stand density yield response of parental inbred lines and derived hybrids publication-title: Crop Science – volume: 34 start-page: 883 year: 1985 end-page: 895 article-title: Effects of competition and selection pressure on yield response in winter rye ( L.) publication-title: Euphytica – volume: 80 start-page: 563 year: 2016 end-page: 578 article-title: Evaluating the role of water availability in determining the yield–plant population density relationship publication-title: Soil Science Society of America Journal – volume: 93 start-page: 540 year: 2001 end-page: 547 article-title: Dryland corn in western Kansas: Effects of hybrid maturity, planting date, and plant population publication-title: Agronomy Journal – volume: 104 start-page: 331 year: 2012 end-page: 336 article-title: Density‐dependence rather maturity determines hybrid selection in dryland maize production publication-title: Agronomy Journal – volume: 47 start-page: 92 year: 1962 end-page: 96 article-title: Über eine Methode zur Erfassung der ökologischen Streubreite in Feldversuchen publication-title: Z. Pflanzenzüchtg – volume: 56 start-page: 2802 year: 2016 end-page: 2817 article-title: Yield responses to planting density for US modern corn hybrids: A synthesis‐analysis publication-title: Crop Science – volume: 48 start-page: 866 year: 2008 end-page: 889 article-title: Statistical analysis of yield trials by AMMI and GGE: Further considerations publication-title: Crop Science – volume: 5 start-page: 822 year: 2011 end-page: 830 article-title: A novel statistic estimated in the absence of competition to foresee genotype performance at the farming conditions parallels the agronomic concept of stability publication-title: Australian Journal of Crop Science – volume: 94 start-page: 990 year: 2002 end-page: 996 article-title: Singular‐value partition in biplot analysis of multienvironment trial data publication-title: Agronomy Journal – volume: 75 start-page: 161 year: 2002 end-page: 169 article-title: Yield potential, yield stability, and stress tolerance in maize publication-title: Field Crops Research – volume: 48 start-page: 65 year: 1996 end-page: 80 article-title: The importance of the anthesis‐silking interval in breeding for drought tolerance in tropical maize publication-title: Field Crops Research – volume: 6 start-page: 36 year: 1966 end-page: 40 article-title: Stability parameters for comparing varieties publication-title: Crop Science – volume: 33 start-page: 63 year: 2013 end-page: 79 article-title: Adapting maize crop to climate change publication-title: Agronomy for Sustainable Development – volume: 39 start-page: 1306 year: 1999 end-page: 1315 article-title: Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index publication-title: Crop Science – volume: 112 start-page: 124 year: 2009 end-page: 130 article-title: Identifying superior wheat cultivars in participatory research on resource poor farms publication-title: Field Crops Research – volume: 13 start-page: 87 year: 1995 end-page: 139 article-title: Honeycomb selection designs publication-title: Plant Breeding Reviews – volume: 137 start-page: 299 year: 2001 end-page: 305 article-title: The effect of improved potential yield per plant on crop yield potential and optimum plant density in maize hybrids publication-title: Journal of Agricultural Science – volume: 69 start-page: 3235 year: 2018 end-page: 3243 article-title: Maize reproductive development and kernel set under limited plant growth environments publication-title: Journal of Experimental Botany – volume: 13 start-page: 87 year: 1995 ident: e_1_2_9_23_1 article-title: Honeycomb selection designs publication-title: Plant Breeding Reviews – ident: e_1_2_9_34_1 doi: 10.2135/cropsci2013.04.0252 – ident: e_1_2_9_15_1 doi: 10.2134/agronj2012.0027 – volume: 94 start-page: 990 year: 2002 ident: e_1_2_9_60_1 article-title: Singular‐value partition in biplot analysis of multienvironment trial data publication-title: Agronomy Journal – ident: e_1_2_9_2_1 doi: 10.2135/cropsci2016.02.0083 – ident: e_1_2_9_55_1 doi: 10.1007/s10681-010-0160-9 – ident: e_1_2_9_58_1 doi: 10.1016/S0378-4290(02)00024-2 – ident: e_1_2_9_26_1 doi: 10.2135/cropsci2005.07-0193 – volume-title: Statistical methods year: 1989 ident: e_1_2_9_49_1 – volume: 137 start-page: 299 year: 2001 ident: e_1_2_9_51_1 article-title: The effect of improved potential yield per plant on crop yield potential and optimum plant density in maize hybrids publication-title: Journal of Agricultural Science doi: 10.1017/S0021859601001496 – volume: 24 start-page: 109 year: 2004 ident: e_1_2_9_18_1 article-title: Long‐term selection in a commercial maize breeding program publication-title: Plant Breeding Reviews – volume: 22 start-page: 265 year: 2002 ident: e_1_2_9_30_1 article-title: Similarity of maize seed number responses for a diverse set of sites publication-title: Agronomie doi: 10.1051/agro:2002010 – ident: e_1_2_9_10_1 doi: 10.2135/cropsci2010.09.0563 – ident: e_1_2_9_14_1 doi: 10.2134/agronj14.0025 – ident: e_1_2_9_12_1 doi: 10.2135/cropsci2000.4041056x – ident: e_1_2_9_50_1 doi: 10.1016/j.fcr.2009.01.011 – ident: e_1_2_9_4_1 doi: 10.2135/cropsci2016.04.0215 – ident: e_1_2_9_37_1 doi: 10.2307/2531947 – volume: 5 start-page: 822 year: 2011 ident: e_1_2_9_39_1 article-title: A novel statistic estimated in the absence of competition to foresee genotype performance at the farming conditions parallels the agronomic concept of stability publication-title: Australian Journal of Crop Science – volume: 54 start-page: 413 year: 2006 ident: e_1_2_9_5_1 article-title: Effect of crop production factors on the yield and yield stability of maize (Zea mays L.) hybrids publication-title: Acta Agronomica Hungarica doi: 10.1556/AAgr.54.2006.4.4 – ident: e_1_2_9_33_1 doi: 10.1093/jxb/err105 – ident: e_1_2_9_54_1 doi: 10.2134/agronj14.0599 – ident: e_1_2_9_29_1 doi: 10.2135/cropsci2008.03.0152 – ident: e_1_2_9_8_1 doi: 10.1016/0378-4290(96)00036-6 – ident: e_1_2_9_44_1 doi: 10.1016/S0378-4290(02)00124-7 – ident: e_1_2_9_27_1 doi: 10.2135/cropsci2007.09.0513 – ident: e_1_2_9_41_1 doi: 10.2134/agronj2005.0201 – ident: e_1_2_9_31_1 doi: 10.1007/BF00035428 – volume: 14 start-page: 89 year: 1997 ident: e_1_2_9_21_1 article-title: Competitive ability and plant breeding publication-title: Plant Breeding Reviews – volume: 50 start-page: 9 year: 2005 ident: e_1_2_9_57_1 article-title: Benefits from using maize density‐independent hybrids publication-title: Maydica – ident: e_1_2_9_9_1 doi: 10.1093/jxb/erx452 – ident: e_1_2_9_22_1 – volume: 8 start-page: 4937. year: 2018 ident: e_1_2_9_3_1 article-title: Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain publication-title: Scientific Reports doi: 10.1038/s41598-018-23362-x – ident: e_1_2_9_32_1 doi: 10.1007/BF00265344 – ident: e_1_2_9_25_1 doi: 10.2136/sssaj2015.11.0395 – ident: e_1_2_9_7_1 doi: 10.2134/agronj2003.8780 – ident: e_1_2_9_11_1 doi: 10.1007/s12571-013-0256-x – ident: e_1_2_9_16_1 doi: 10.1371/journal.pone.0228809 – ident: e_1_2_9_62_1 doi: 10.2135/cropsci2006.06.0374 – volume: 54 start-page: 287 year: 2009 ident: e_1_2_9_13_1 article-title: Breeding maize for higher yield and quality under drought stress publication-title: Maydica – ident: e_1_2_9_52_1 doi: 10.1007/s13593-012-0108-7 – ident: e_1_2_9_6_1 doi: 10.2134/agronj2011.0205 – ident: e_1_2_9_28_1 doi: 10.2135/cropsci2016.06.0547 – ident: e_1_2_9_47_1 doi: 10.1038/hdy.1972.87 – ident: e_1_2_9_24_1 doi: 10.4141/cjps78-157 – ident: e_1_2_9_53_1 doi: 10.1007/s10681-017-1874-8 – ident: e_1_2_9_61_1 doi: 10.4141/P05-169 – ident: e_1_2_9_17_1 doi: 10.1016/S0065-2113(05)86002-X – ident: e_1_2_9_38_1 doi: 10.2134/agronj2001.933540x – ident: e_1_2_9_48_1 doi: 10.1111/jac.12213 – ident: e_1_2_9_45_1 doi: 10.2134/agronj2006.0205 – volume: 197 start-page: 107 year: 2016 ident: e_1_2_9_35_1 article-title: Yield potential and yield stability of Argentine maize hybrids over 45 years of breeding publication-title: Field Crops Research doi: 10.1016/j.fcr.2016.07.023 – ident: e_1_2_9_42_1 doi: 10.2135/cropsci1981.0011183X002100060033x – volume: 47 start-page: 92 year: 1962 ident: e_1_2_9_59_1 article-title: Über eine Methode zur Erfassung der ökologischen Streubreite in Feldversuchen publication-title: Z. Pflanzenzüchtg – ident: e_1_2_9_36_1 doi: 10.2135/cropsci2005.04-0034 – volume: 43 start-page: 123 year: 1998 ident: e_1_2_9_56_1 article-title: Improving maize hybrids for potential yield per plant publication-title: Maydica – ident: e_1_2_9_20_1 doi: 10.2135/cropsci1999.3951306x – ident: e_1_2_9_43_1 doi: 10.2134/agronj14.0355 – ident: e_1_2_9_46_1 doi: 10.1023/B:PRAG.0000032762.72510.10 – ident: e_1_2_9_19_1 doi: 10.2135/cropsci1966.0011183X000600010011x – volume: 1 start-page: 255 year: 2009 ident: e_1_2_9_40_1 article-title: Genstat. WIREs Computational publication-title: Statistics |
SSID | ssj0011941 |
Score | 2.4192395 |
Snippet | Plant yield efficiency (PYE) reflects the ability of the single‐plant to respond to additional inputs and is fully expressed at the nil‐competition regime (an... Plant yield efficiency (PYE) reflects the ability of the single‐plant to respond to additional inputs and is fully expressed at the nil ‐competition regime (an... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1690 |
SubjectTerms | agronomy corn flowering genotype genotype-environment interaction harvest index hybrids statistics Zea mays |
Title | Improved plant yield efficiency alleviates the erratic optimum density in maize |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fagj2.20187 https://www.proquest.com/docview/2718349835 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiKsoNxnBC1SB2XGb9LGgwTSJgcYm7S1yHKfylEvVNZO2J34659hukkKFBi9RlCZO6vPl83fi43MIeaPiSHGpxoFWTARCiziQqWJBlDIFA2w-4XZR2NejycGpODwbnw0GP3tRS80qfa-ut64r-R-rwjGwK66S_QfLto3CAdgH-8IWLAzbG9nYfREAybgooINGVxiNhhEaxr6wVyOsk3JpUE262I3l0uZnrYEmyqYcZRi8vrIL_0pprjeCgmbzpV3uMOo_iC0SUYB2d9RSY72jVpP_MJVcmKxuLL1eyvlcF6Yl_WNdYlUK1Kv297KUVd3oorsaZarxDV-YvP85gu91wX89ioXX2lGsdqwKmizAxHgbtMt4D19hj0Rx5q43IGPG-K1k75LHyvk5LqhjftzeyKj920jXxh-6XM08wWsTe-0tssvB0QCm3P24f_T9uJ2JYlPB1i4U_q02xS3_0N15U9R0nkrf37GC5eQeues9DTpzsLlPBrp6QO6AXX22Ff2QfFsDiFoAUQsg2gGIdgCiACDqAUQ9gKgHEDUVtQB6RE4_7598Ogh8hY1AoasYsBzeYZmLNJxEIlU65LEcyyzSoYLOyPdiTCc35ZrnY5ZjIm5Q-5kQUSQV9EvGw8dkp6or_YTQNGVY6yDONAuhKTg5AxrIcRZcTUAGDcnbdRclyqefxyooRfKnMYbkdXvuwiVd2XrWq3VPJ8CJONElK103FwkHwRWKKTgXQ_LOmuAvzSSzL4fc7j290W2fkdsd7p-TndWy0S9AmK7Slx47vwCeGJEN |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+plant+yield+efficiency+alleviates+the+erratic+optimum+density+in+maize&rft.jtitle=Agronomy+journal&rft.au=Mylonas%2C+Ioannis&rft.au=Sinapidou%2C+Evaggelia&rft.au=Remountakis%2C+Emmanouel&rft.au=Sistanis%2C+Iosif&rft.date=2020-05-01&rft.issn=0002-1962&rft.eissn=1435-0645&rft.volume=112&rft.issue=3&rft.spage=1690&rft.epage=1701&rft_id=info:doi/10.1002%2Fagj2.20187&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_agj2_20187 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-1962&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-1962&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-1962&client=summon |