A hybrid cascade-parallel discriminative-generative model for pipeline integrity threat detection in a smart fiber optic surveillance system

This paper presents an advanced system for the continuous monitoring of potential threats in a long gas pipeline. For signal acquisition, phase-sensitive optical time domain reflectometry ( ϕ -OTDR) technology is employed. Then, pattern recognition strategies are incorporated, which are aimed at ide...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 84; no. 12; pp. 11177 - 11201
Main Authors Tejedor, Javier, Macias-Guarasa, Javier, Martins, Hugo F., Martin-Lopez, Sonia, Gonzalez-Herraez, Miguel
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-024-19386-3

Cover

Abstract This paper presents an advanced system for the continuous monitoring of potential threats in a long gas pipeline. For signal acquisition, phase-sensitive optical time domain reflectometry ( ϕ -OTDR) technology is employed. Then, pattern recognition strategies are incorporated, which are aimed at identifying threats. To do so, the system integrates a random forest-based approach on top of a multiple-layer perceptron (MLP)-based discriminative approach for feature extraction within a parallel Gaussian Mixture Model (GMM)-Hidden Markov Model (HMM) for pattern classification in a hybrid approach. Subsequently, a system combination strategy, which makes use of the decisions carried out by this hybrid approach, is also presented. This strategy is based on the so-called majority voting technique, which makes use of the output of the classification step from the different feature extraction strategies and the different number of states in the GMM-HMM-based classification. The system is tested on two tasks: (1) Identification of machine and activity, and (2) detection of threats for the pipeline. Compared with our previous system, the results of this advanced system show that the hybrid feature extraction and pattern classification achieve statistically significant improvements for both tasks (i.e., 5% of relative improvement for the machine and activity identification task, 1% of relative improvement in the threat detection rate, and 15% of relative improvement in the false alarm rate for the threat detection task).
AbstractList This paper presents an advanced system for the continuous monitoring of potential threats in a long gas pipeline. For signal acquisition, phase-sensitive optical time domain reflectometry ( ϕ -OTDR) technology is employed. Then, pattern recognition strategies are incorporated, which are aimed at identifying threats. To do so, the system integrates a random forest-based approach on top of a multiple-layer perceptron (MLP)-based discriminative approach for feature extraction within a parallel Gaussian Mixture Model (GMM)-Hidden Markov Model (HMM) for pattern classification in a hybrid approach. Subsequently, a system combination strategy, which makes use of the decisions carried out by this hybrid approach, is also presented. This strategy is based on the so-called majority voting technique, which makes use of the output of the classification step from the different feature extraction strategies and the different number of states in the GMM-HMM-based classification. The system is tested on two tasks: (1) Identification of machine and activity, and (2) detection of threats for the pipeline. Compared with our previous system, the results of this advanced system show that the hybrid feature extraction and pattern classification achieve statistically significant improvements for both tasks (i.e., 5% of relative improvement for the machine and activity identification task, 1% of relative improvement in the threat detection rate, and 15% of relative improvement in the false alarm rate for the threat detection task).
This paper presents an advanced system for the continuous monitoring of potential threats in a long gas pipeline. For signal acquisition, phase-sensitive optical time domain reflectometry (ϕ-OTDR) technology is employed. Then, pattern recognition strategies are incorporated, which are aimed at identifying threats. To do so, the system integrates a random forest-based approach on top of a multiple-layer perceptron (MLP)-based discriminative approach for feature extraction within a parallel Gaussian Mixture Model (GMM)-Hidden Markov Model (HMM) for pattern classification in a hybrid approach. Subsequently, a system combination strategy, which makes use of the decisions carried out by this hybrid approach, is also presented. This strategy is based on the so-called majority voting technique, which makes use of the output of the classification step from the different feature extraction strategies and the different number of states in the GMM-HMM-based classification. The system is tested on two tasks: (1) Identification of machine and activity, and (2) detection of threats for the pipeline. Compared with our previous system, the results of this advanced system show that the hybrid feature extraction and pattern classification achieve statistically significant improvements for both tasks (i.e., 5% of relative improvement for the machine and activity identification task, 1% of relative improvement in the threat detection rate, and 15% of relative improvement in the false alarm rate for the threat detection task).
Author Macias-Guarasa, Javier
Gonzalez-Herraez, Miguel
Tejedor, Javier
Martins, Hugo F.
Martin-Lopez, Sonia
Author_xml – sequence: 1
  givenname: Javier
  orcidid: 0000-0001-7699-5620
  surname: Tejedor
  fullname: Tejedor, Javier
  email: javier.tejedornoguerales@ceu.es
  organization: Department of Information Technology, Institute of Technology, Universidad San Pablo-CEU, CEU universities
– sequence: 2
  givenname: Javier
  orcidid: 0000-0002-3303-3963
  surname: Macias-Guarasa
  fullname: Macias-Guarasa, Javier
  organization: Universidad de Alcalá, Department of Electronics
– sequence: 3
  givenname: Hugo F.
  orcidid: 0000-0003-3927-8125
  surname: Martins
  fullname: Martins, Hugo F.
  organization: Instituto de Óptica Daza de Valdés, Consejo Superior de Investigaciones Científicas (CISC)
– sequence: 4
  givenname: Sonia
  orcidid: 0000-0002-4308-5572
  surname: Martin-Lopez
  fullname: Martin-Lopez, Sonia
  organization: Universidad de Alcalá, Department of Electronics
– sequence: 5
  givenname: Miguel
  orcidid: 0000-0003-2555-2971
  surname: Gonzalez-Herraez
  fullname: Gonzalez-Herraez, Miguel
  organization: Universidad de Alcalá, Department of Electronics
BookMark eNp9kM9qGzEQh0VJoUnaF-hJkLMS_dmVvMdgmrRg6KU9C0k7smXW2s1IDvgd-tBZ24GEHnLSwPy-0cx3RS7ymIGQ74LfCs7NXRGCN5Jx2TDRqYVm6hO5FK1RzBgpLt7VX8hVKVvOhW5lc0n-3dPNwWPqaXAluB7Y5NANAwy0TyVg2qXsanoGtoYMeCrpbuznfhyRTmmCIWWgKVdYY6oHWjcIrtIeKoSaxjy3qKNl57DSmDwgHaeaAi17fIY0DC4HoOVQKuy-ks_RDQW-vb7X5O_Djz_Ln2z1-_HX8n7FguJasRg8KNO4qJXswQetW-6N8U3wvjGdBhND1_rOtU2nfIzOLFoe2lZL00lQnbomN-e5E45PeyjVbsc95vlLq6RQspG6k3NqcU4FHEtBiDak6o4nVXRpsILbo3t7dm9n9_bk3qoZlf-h02zS4eFjSJ2hMofzGvBtqw-oF3eVnEY
CitedBy_id crossref_primary_10_1186_s43074_025_00160_z
Cites_doi 10.3390/s150715179
10.3390/s22041670
10.1109/JLT.2015.2421953
10.1109/JLT.2021.3102265
10.1364/AO.437852
10.3390/electronics10060712
10.1177/1475921720930649
10.3390/s17020355
10.3390/s18092841
10.3390/s22031127
10.1364/OFS.2020.Th4.44
10.1016/j.yofte.2019.101980
10.1109/ACCESS.2020.3004207
10.1364/OE.27.023682
10.3390/s22051994
10.1109/JSEN.2019.2891750
10.1109/JLT.2019.2923839
10.1109/JLT.2019.2908816
10.1016/j.yofte.2019.102060
10.1109/JLT.2016.2542981
10.1364/OFS.2018.WF36
10.1364/ACPC.2015.ASu2A.145
10.1117/1.OE.57.1.016103
10.1007/s13320-017-0360-1
10.1364/OE.416537
10.3390/s21227527
10.1364/OFS.2020.T3.76
10.1038/s41598-020-77147-2
10.3390/s19153322
10.1364/OFS.2020.Th4.37
10.3390/s20020450
10.1016/j.yofte.2020.102149
10.1023/A:1010933404324
10.3390/s19153421
10.1109/CyberC.2018.00059
10.1117/12.2058503
10.1109/JLT.2019.2926745
10.1109/5.18626
10.1016/j.yofte.2018.06.005
10.1093/oso/9780198538493.001.0001
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Apr 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-024-19386-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 11201
ExternalDocumentID 10_1007_s11042_024_19386_3
GrantInformation_xml – fundername: Ministerio de Ciencia e Innovación
  grantid: TIN2016-75982-C2-1-R,TIN2016-80939-R,MCIN/AEI/10.13039/501100011033
  funderid: http://dx.doi.org/10.13039/501100004837
– fundername: Ministerio de Ciencia, Innovación y Universidades
  grantid: RTI2018-095324-B-I00; PLEC2021-007875,PID2020-115995RBI00, PID2020-113118RB-C31
  funderid: http://dx.doi.org/10.13039/100014440
– fundername: Comunidad de Madrid
  grantid: PIUAH21/IA-016,CM/JIN/2021-015
  funderid: http://dx.doi.org/10.13039/100012818
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
PUEGO
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3063-fcbe374af632debc6650b77b4cbb4796e7fc95b9a5493bffa7850c5562792e393
IEDL.DBID U2A
ISSN 1573-7721
1380-7501
IngestDate Fri Jul 25 09:40:21 EDT 2025
Wed Sep 10 05:50:25 EDT 2025
Thu Apr 24 22:51:03 EDT 2025
Fri May 02 01:12:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Distributed acoustic sensing
Pattern recognition
Hybrid approaches
Pipeline integrity
Phase-sensitive OTDR
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3063-fcbe374af632debc6650b77b4cbb4796e7fc95b9a5493bffa7850c5562792e393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2555-2971
0000-0002-4308-5572
0000-0001-7699-5620
0000-0002-3303-3963
0000-0003-3927-8125
PQID 3213242692
PQPubID 54626
PageCount 25
ParticipantIDs proquest_journals_3213242692
crossref_citationtrail_10_1007_s11042_024_19386_3
crossref_primary_10_1007_s11042_024_19386_3
springer_journals_10_1007_s11042_024_19386_3
PublicationCentury 2000
PublicationDate 20250400
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 19386_CR10
19386_CR11
J Tejedor (19386_CR31) 2017; 17
19386_CR13
H Wu (19386_CR42) 2019; 37
19386_CR50
19386_CR52
L Ma (19386_CR22) 2022; 22
19386_CR19
19386_CR14
H Wu (19386_CR40) 2017; 7
XD Huang (19386_CR16) 2018; 45
N Yang (19386_CR49) 2022; 22
LR Rabiner (19386_CR26) 1987; 77
19386_CR21
J Tejedor (19386_CR33) 2019; 37
M Bublin (19386_CR4) 2021; 21
S Kowarik (19386_CR20) 2020; 20
L Breiman (19386_CR3) 2001; 45
MT Hussels (19386_CR17) 2019; 19
19386_CR25
J Tejedor (19386_CR30) 2016; 34
H Wu (19386_CR43) 2020; 8
X Wang (19386_CR35) 2022; 123
W Xu (19386_CR47) 2022; 22
L Huang (19386_CR15) 2020; 55
J He (19386_CR12) 2021; 61
19386_CR32
Y Bai (19386_CR1) 2019; 53
C Xu (19386_CR46) 2018; 57
Y Pan (19386_CR23) 2022; 251
J Tejedor (19386_CR34) 2021; 10
19386_CR37
19386_CR38
Z Wang (19386_CR36) 2019; 27
M Zhang (19386_CR51) 2019; 52
CM Bishop (19386_CR2) 1995
H Wu (19386_CR41) 2019; 37
Q Sun (19386_CR29) 2015; 15
Z Peng (19386_CR24) 2020; 10
H Jia (19386_CR18) 2019; 19
19386_CR48
Y Shi (19386_CR27) 2019; 19
H Wu (19386_CR45) 2021; 29
P Stajanca (19386_CR28) 2018; 18
H Wu (19386_CR44) 2021; 39
19386_CR9
19386_CR7
H Wu (19386_CR39) 2015; 33
19386_CR8
19386_CR5
19386_CR6
References_xml – volume: 15
  start-page: 15,179
  year: 2015
  ident: 19386_CR29
  publication-title: Sensors
  doi: 10.3390/s150715179
– volume: 22
  start-page: 1670:1
  issue: 4
  year: 2022
  ident: 19386_CR22
  publication-title: Sensors
  doi: 10.3390/s22041670
– volume: 33
  start-page: 3156
  issue: 15
  year: 2015
  ident: 19386_CR39
  publication-title: J Light Technol
  doi: 10.1109/JLT.2015.2421953
– volume: 251
  start-page: 168,127:1
  issue: 168127
  year: 2022
  ident: 19386_CR23
  publication-title: Optik
– volume: 39
  start-page: 6606
  issue: 20
  year: 2021
  ident: 19386_CR44
  publication-title: J Light Technol
  doi: 10.1109/JLT.2021.3102265
– ident: 19386_CR8
– volume: 61
  start-page: C65
  issue: 6
  year: 2021
  ident: 19386_CR12
  publication-title: Appl Opt
  doi: 10.1364/AO.437852
– volume: 10
  start-page: 712:1
  issue: 6
  year: 2021
  ident: 19386_CR34
  publication-title: Electronics
  doi: 10.3390/electronics10060712
– ident: 19386_CR21
  doi: 10.1177/1475921720930649
– volume: 17
  start-page: E355:1
  issue: 2
  year: 2017
  ident: 19386_CR31
  publication-title: Sensors
  doi: 10.3390/s17020355
– volume: 123
  start-page: 191
  issue: 104
  year: 2022
  ident: 19386_CR35
  publication-title: Infrared Phys Technol
– volume: 18
  start-page: 2841:1
  issue: 9
  year: 2018
  ident: 19386_CR28
  publication-title: Sensors
  doi: 10.3390/s18092841
– volume: 22
  start-page: 1127:1
  issue: 3
  year: 2022
  ident: 19386_CR49
  publication-title: Sensors
  doi: 10.3390/s22031127
– ident: 19386_CR48
  doi: 10.1364/OFS.2020.Th4.44
– ident: 19386_CR13
– volume: 52
  start-page: 101,980:1
  year: 2019
  ident: 19386_CR51
  publication-title: Optical fiber technology
  doi: 10.1016/j.yofte.2019.101980
– volume: 8
  start-page: 119,448
  year: 2020
  ident: 19386_CR43
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004207
– volume: 27
  start-page: 23,682
  issue: 17
  year: 2019
  ident: 19386_CR36
  publication-title: Opt Express
  doi: 10.1364/OE.27.023682
– volume: 22
  start-page: 1994:1
  issue: 5
  year: 2022
  ident: 19386_CR47
  publication-title: Sensors
  doi: 10.3390/s22051994
– volume: 19
  start-page: 3683
  issue: 10
  year: 2019
  ident: 19386_CR18
  publication-title: IEEE Sensors
  doi: 10.1109/JSEN.2019.2891750
– volume: 37
  start-page: 4359
  issue: 17
  year: 2019
  ident: 19386_CR41
  publication-title: J Light Technol
  doi: 10.1109/JLT.2019.2923839
– ident: 19386_CR9
– volume: 37
  start-page: 4514
  issue: 18
  year: 2019
  ident: 19386_CR33
  publication-title: J Light Technol
  doi: 10.1109/JLT.2019.2908816
– volume: 53
  start-page: 102,060:1
  year: 2019
  ident: 19386_CR1
  publication-title: Opt Fiber Technol
  doi: 10.1016/j.yofte.2019.102060
– volume: 34
  start-page: 4445
  issue: 19
  year: 2016
  ident: 19386_CR30
  publication-title: J Light Technol
  doi: 10.1109/JLT.2016.2542981
– ident: 19386_CR32
  doi: 10.1364/OFS.2018.WF36
– ident: 19386_CR5
  doi: 10.1364/ACPC.2015.ASu2A.145
– volume: 57
  start-page: 016,103:1
  issue: 1
  year: 2018
  ident: 19386_CR46
  publication-title: Optical Engineering
  doi: 10.1117/1.OE.57.1.016103
– volume: 7
  start-page: 305
  issue: 4
  year: 2017
  ident: 19386_CR40
  publication-title: Photonic Sensors
  doi: 10.1007/s13320-017-0360-1
– volume: 29
  start-page: 3269
  issue: 3
  year: 2021
  ident: 19386_CR45
  publication-title: Opt Express
  doi: 10.1364/OE.416537
– volume: 21
  start-page: 7527:1
  issue: 22
  year: 2021
  ident: 19386_CR4
  publication-title: Sensors
  doi: 10.3390/s21227527
– ident: 19386_CR11
  doi: 10.1364/OFS.2020.T3.76
– volume: 10
  start-page: 21,014:1
  year: 2020
  ident: 19386_CR24
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-77147-2
– volume: 19
  start-page: 3322:1
  issue: 15
  year: 2019
  ident: 19386_CR17
  publication-title: Sensors
  doi: 10.3390/s19153322
– ident: 19386_CR50
  doi: 10.1364/OFS.2020.Th4.37
– ident: 19386_CR38
– volume: 20
  start-page: 450:1
  issue: 2
  year: 2020
  ident: 19386_CR20
  publication-title: Sensors
  doi: 10.3390/s20020450
– ident: 19386_CR19
– volume: 55
  start-page: 102,149:1
  year: 2020
  ident: 19386_CR15
  publication-title: Opt Fiber Technol
  doi: 10.1016/j.yofte.2020.102149
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 19386_CR3
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 19
  start-page: 3421:1
  issue: 15
  year: 2019
  ident: 19386_CR27
  publication-title: Sensors
  doi: 10.3390/s19153421
– ident: 19386_CR6
  doi: 10.1109/CyberC.2018.00059
– ident: 19386_CR25
– ident: 19386_CR37
  doi: 10.1117/12.2058503
– ident: 19386_CR7
– volume: 37
  start-page: 4991
  issue: 19
  year: 2019
  ident: 19386_CR42
  publication-title: J Light Technol
  doi: 10.1109/JLT.2019.2926745
– volume: 77
  start-page: 257
  issue: 2
  year: 1987
  ident: 19386_CR26
  publication-title: Proc IEEE
  doi: 10.1109/5.18626
– volume: 45
  start-page: 64
  year: 2018
  ident: 19386_CR16
  publication-title: Opt Fiber Technol
  doi: 10.1016/j.yofte.2018.06.005
– ident: 19386_CR52
– volume-title: Neural Networks for Pattern Recognition
  year: 1995
  ident: 19386_CR2
  doi: 10.1093/oso/9780198538493.001.0001
– ident: 19386_CR14
– ident: 19386_CR10
SSID ssj0016524
Score 2.382946
Snippet This paper presents an advanced system for the continuous monitoring of potential threats in a long gas pipeline. For signal acquisition, phase-sensitive...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11177
SubjectTerms Classification
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Decision trees
False alarms
Feature extraction
Fiber optics
Gas pipelines
Markov chains
Multimedia Information Systems
Pattern classification
Pattern recognition
Pipelines
Probabilistic models
Special Purpose and Application-Based Systems
Surveillance systems
Threats
Title A hybrid cascade-parallel discriminative-generative model for pipeline integrity threat detection in a smart fiber optic surveillance system
URI https://link.springer.com/article/10.1007/s11042-024-19386-3
https://www.proquest.com/docview/3213242692
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC5cvbgHnys7vqiDtzUw3Un6cRzFURQ8OeCemk46WRfGcbDHBf-DP9qqdLejsgqeuiFJ06SS1Fekvq8ADpShRWM5o0YrK5TNIpFb1xfWJpXta0ceOGRbXCZnI3V-ra9bUljdZbt3V5LhpJ6T3SKmkpBPEQQ6skTIb7CkKXbn7TiKBy93B4mOVUuP-f-4ty5ojivfXYUGDzNcg5UWGuKgseU6LLjJBqx2ZRew3YUb8P2VhuAmPA3w5pFpV2jLmpPdBat5j8dujMy4bap28Zkm_gSFaX7FUP8GCa_i9O-UGekOG90IwuQ4u2EgiZWbhTStCTVhifUtLTL0nGCCd3TOWKwf7v85LlpEf4WNIvQPGA1Pro7PRFtiQViKFaTw1jiZqtInMq6csQkBNpOmRlljVJonLvU21yYvKYyUxvsyzXTfagJNaR47mcstWJzcTdxPwChKM5NFFPHKSuncZ31feZf4jLyw15XvQdTNemFb_XEugzEu5srJbKmCLFUESxWyB79exkwb9Y1Pe-92xizanVgXMo5k4OvGPTjsDDxv_vhr21_rvgPLMZcGDkk9u7A4u39we4RXZmYflgbDo6NLfp7-vjjZD8v1GRk36H8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsQwFL34WKgL3-L4vAt3Gpg2SR_LQZTxuXLAXWnSRIVxZrCj4D_40d6kraOigrtCklJ6k9wTcs85AAdC0aTRrqJGCs2ETgKWatNmWkeFbktDGdhXW1xH3Z44v5W3NSmsbKrdmytJv1NPyG6Bo5JQTmEEOpKI8WmYJTCQON-CXtj5uDuIZChqeszP476moAmu_HYV6jPM6TIs1tAQO1UsV2DKDFZhqbFdwHoVrsLCJw3BNXjr4P2ro12hzktX7M6cmne_b_roGLeVa5fb09idV5h2j-j9b5DwKo4eRo6RbrDSjSBMjuN7BySxMGNfpjWgJsyxfKRJhtYVmOCQ9hmN5fPTi3GmRfRVWClCr0Pv9OTmuMtqiwWm6azAmdXK8FjkNuJhYZSOCLCpOFZCKyXiNDKx1alUaU7HSK6szeNEtrUk0BSnoeEp34CZwXBgNgGDIE5UEtCJlxdCpjZp28KayCaUha0sbAuC5q9nutYfdzYY_WyinOwilVGkMh-pjLfg8GPMqFLf-LP3ThPMrF6JZcbDgHu-btiCoybAk-bf37b1v-77MNe9ubrMLs-uL7ZhPnQ2wb7AZwdmxk_PZpewy1jt-an6DqNb6GI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21VELlQAsUsYW2c-itWGxiOx_HFXRFP4Q4dCVuUezYLNISVmxA4j_wozvjJCxFtFJvkWxHUWY88yzPewPwWRlyGssVNVpZoWwWidy6obA2qexQO8rAodriJDmeqO9n-uwRiz9Uu_dXki2ngVWa6uZgXvmDJfEtYloJ5RdBACRLhHwJrygcR-zpk3j0cI-Q6Fh1VJnn1_2ZjpYY88m1aMg247ew3sFEHLV23YAXrt6EN30LBux25CasPdIT3IL7EU7vmIKFtlxw4btgZe_ZzM2Q2bdtBy-Ob-I8qE3zI4ZeOEjYFecXc2anO2w1JAifYzNlUImVa0LJVk1DWOLikhwOPReb4BXFHIuLm-tbxw2M6KuwVYd-B5Px11-Hx6JrtyAsnRuk8NY4marSJzKunLEJgTeTpkZZY1SaJy71NtcmL-lIKY33ZZrpodUEoNI8djKX27BSX9VuBzCK0sxkEZ1-ZaV07rOhr7xLfEYZ2evKDyDq_3phOy1ybokxK5YqymypgixVBEsVcgBfHtbMWyWOf87e641ZdLtyUcg4koG7Gw9gvzfwcvjvb3v_f9M_werp0bj4-e3kxy68jrljcKj12YOV5vrGfSAY05iPwVN_A9XJ7J4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+cascade-parallel+discriminative-generative+model+for+pipeline+integrity+threat+detection+in+a+smart+fiber+optic+surveillance+system&rft.jtitle=Multimedia+tools+and+applications&rft.au=Tejedor%2C+Javier&rft.au=Macias-Guarasa%2C+Javier&rft.au=Martins%2C+Hugo+F.&rft.au=Martin-Lopez%2C+Sonia&rft.date=2025-04-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=84&rft.issue=12&rft.spage=11177&rft.epage=11201&rft_id=info:doi/10.1007%2Fs11042-024-19386-3&rft.externalDocID=10_1007_s11042_024_19386_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon