A hybrid cascade-parallel discriminative-generative model for pipeline integrity threat detection in a smart fiber optic surveillance system
This paper presents an advanced system for the continuous monitoring of potential threats in a long gas pipeline. For signal acquisition, phase-sensitive optical time domain reflectometry ( ϕ -OTDR) technology is employed. Then, pattern recognition strategies are incorporated, which are aimed at ide...
Saved in:
Published in | Multimedia tools and applications Vol. 84; no. 12; pp. 11177 - 11201 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1573-7721 1380-7501 1573-7721 |
DOI | 10.1007/s11042-024-19386-3 |
Cover
Abstract | This paper presents an advanced system for the continuous monitoring of potential threats in a long gas pipeline. For signal acquisition, phase-sensitive optical time domain reflectometry (
ϕ
-OTDR) technology is employed. Then, pattern recognition strategies are incorporated, which are aimed at identifying threats. To do so, the system integrates a random forest-based approach on top of a multiple-layer perceptron (MLP)-based discriminative approach for feature extraction within a parallel Gaussian Mixture Model (GMM)-Hidden Markov Model (HMM) for pattern classification in a
hybrid
approach. Subsequently, a system combination strategy, which makes use of the decisions carried out by this
hybrid
approach, is also presented. This strategy is based on the so-called majority voting technique, which makes use of the output of the classification step from the different feature extraction strategies and the different number of states in the GMM-HMM-based classification. The system is tested on two tasks: (1) Identification of machine and activity, and (2) detection of threats for the pipeline. Compared with our previous system, the results of this advanced system show that the hybrid feature extraction and pattern classification achieve statistically significant improvements for both tasks (i.e., 5% of relative improvement for the machine and activity identification task, 1% of relative improvement in the threat detection rate, and 15% of relative improvement in the false alarm rate for the threat detection task). |
---|---|
AbstractList | This paper presents an advanced system for the continuous monitoring of potential threats in a long gas pipeline. For signal acquisition, phase-sensitive optical time domain reflectometry (
ϕ
-OTDR) technology is employed. Then, pattern recognition strategies are incorporated, which are aimed at identifying threats. To do so, the system integrates a random forest-based approach on top of a multiple-layer perceptron (MLP)-based discriminative approach for feature extraction within a parallel Gaussian Mixture Model (GMM)-Hidden Markov Model (HMM) for pattern classification in a
hybrid
approach. Subsequently, a system combination strategy, which makes use of the decisions carried out by this
hybrid
approach, is also presented. This strategy is based on the so-called majority voting technique, which makes use of the output of the classification step from the different feature extraction strategies and the different number of states in the GMM-HMM-based classification. The system is tested on two tasks: (1) Identification of machine and activity, and (2) detection of threats for the pipeline. Compared with our previous system, the results of this advanced system show that the hybrid feature extraction and pattern classification achieve statistically significant improvements for both tasks (i.e., 5% of relative improvement for the machine and activity identification task, 1% of relative improvement in the threat detection rate, and 15% of relative improvement in the false alarm rate for the threat detection task). This paper presents an advanced system for the continuous monitoring of potential threats in a long gas pipeline. For signal acquisition, phase-sensitive optical time domain reflectometry (ϕ-OTDR) technology is employed. Then, pattern recognition strategies are incorporated, which are aimed at identifying threats. To do so, the system integrates a random forest-based approach on top of a multiple-layer perceptron (MLP)-based discriminative approach for feature extraction within a parallel Gaussian Mixture Model (GMM)-Hidden Markov Model (HMM) for pattern classification in a hybrid approach. Subsequently, a system combination strategy, which makes use of the decisions carried out by this hybrid approach, is also presented. This strategy is based on the so-called majority voting technique, which makes use of the output of the classification step from the different feature extraction strategies and the different number of states in the GMM-HMM-based classification. The system is tested on two tasks: (1) Identification of machine and activity, and (2) detection of threats for the pipeline. Compared with our previous system, the results of this advanced system show that the hybrid feature extraction and pattern classification achieve statistically significant improvements for both tasks (i.e., 5% of relative improvement for the machine and activity identification task, 1% of relative improvement in the threat detection rate, and 15% of relative improvement in the false alarm rate for the threat detection task). |
Author | Macias-Guarasa, Javier Gonzalez-Herraez, Miguel Tejedor, Javier Martins, Hugo F. Martin-Lopez, Sonia |
Author_xml | – sequence: 1 givenname: Javier orcidid: 0000-0001-7699-5620 surname: Tejedor fullname: Tejedor, Javier email: javier.tejedornoguerales@ceu.es organization: Department of Information Technology, Institute of Technology, Universidad San Pablo-CEU, CEU universities – sequence: 2 givenname: Javier orcidid: 0000-0002-3303-3963 surname: Macias-Guarasa fullname: Macias-Guarasa, Javier organization: Universidad de Alcalá, Department of Electronics – sequence: 3 givenname: Hugo F. orcidid: 0000-0003-3927-8125 surname: Martins fullname: Martins, Hugo F. organization: Instituto de Óptica Daza de Valdés, Consejo Superior de Investigaciones Científicas (CISC) – sequence: 4 givenname: Sonia orcidid: 0000-0002-4308-5572 surname: Martin-Lopez fullname: Martin-Lopez, Sonia organization: Universidad de Alcalá, Department of Electronics – sequence: 5 givenname: Miguel orcidid: 0000-0003-2555-2971 surname: Gonzalez-Herraez fullname: Gonzalez-Herraez, Miguel organization: Universidad de Alcalá, Department of Electronics |
BookMark | eNp9kM9qGzEQh0VJoUnaF-hJkLMS_dmVvMdgmrRg6KU9C0k7smXW2s1IDvgd-tBZ24GEHnLSwPy-0cx3RS7ymIGQ74LfCs7NXRGCN5Jx2TDRqYVm6hO5FK1RzBgpLt7VX8hVKVvOhW5lc0n-3dPNwWPqaXAluB7Y5NANAwy0TyVg2qXsanoGtoYMeCrpbuznfhyRTmmCIWWgKVdYY6oHWjcIrtIeKoSaxjy3qKNl57DSmDwgHaeaAi17fIY0DC4HoOVQKuy-ks_RDQW-vb7X5O_Djz_Ln2z1-_HX8n7FguJasRg8KNO4qJXswQetW-6N8U3wvjGdBhND1_rOtU2nfIzOLFoe2lZL00lQnbomN-e5E45PeyjVbsc95vlLq6RQspG6k3NqcU4FHEtBiDak6o4nVXRpsILbo3t7dm9n9_bk3qoZlf-h02zS4eFjSJ2hMofzGvBtqw-oF3eVnEY |
CitedBy_id | crossref_primary_10_1186_s43074_025_00160_z |
Cites_doi | 10.3390/s150715179 10.3390/s22041670 10.1109/JLT.2015.2421953 10.1109/JLT.2021.3102265 10.1364/AO.437852 10.3390/electronics10060712 10.1177/1475921720930649 10.3390/s17020355 10.3390/s18092841 10.3390/s22031127 10.1364/OFS.2020.Th4.44 10.1016/j.yofte.2019.101980 10.1109/ACCESS.2020.3004207 10.1364/OE.27.023682 10.3390/s22051994 10.1109/JSEN.2019.2891750 10.1109/JLT.2019.2923839 10.1109/JLT.2019.2908816 10.1016/j.yofte.2019.102060 10.1109/JLT.2016.2542981 10.1364/OFS.2018.WF36 10.1364/ACPC.2015.ASu2A.145 10.1117/1.OE.57.1.016103 10.1007/s13320-017-0360-1 10.1364/OE.416537 10.3390/s21227527 10.1364/OFS.2020.T3.76 10.1038/s41598-020-77147-2 10.3390/s19153322 10.1364/OFS.2020.Th4.37 10.3390/s20020450 10.1016/j.yofte.2020.102149 10.1023/A:1010933404324 10.3390/s19153421 10.1109/CyberC.2018.00059 10.1117/12.2058503 10.1109/JLT.2019.2926745 10.1109/5.18626 10.1016/j.yofte.2018.06.005 10.1093/oso/9780198538493.001.0001 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Apr 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Apr 2025 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s11042-024-19386-3 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 11201 |
ExternalDocumentID | 10_1007_s11042_024_19386_3 |
GrantInformation_xml | – fundername: Ministerio de Ciencia e Innovación grantid: TIN2016-75982-C2-1-R,TIN2016-80939-R,MCIN/AEI/10.13039/501100011033 funderid: http://dx.doi.org/10.13039/501100004837 – fundername: Ministerio de Ciencia, Innovación y Universidades grantid: RTI2018-095324-B-I00; PLEC2021-007875,PID2020-115995RBI00, PID2020-113118RB-C31 funderid: http://dx.doi.org/10.13039/100014440 – fundername: Comunidad de Madrid grantid: PIUAH21/IA-016,CM/JIN/2021-015 funderid: http://dx.doi.org/10.13039/100012818 |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP ATHPR CITATION PUEGO 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3063-fcbe374af632debc6650b77b4cbb4796e7fc95b9a5493bffa7850c5562792e393 |
IEDL.DBID | U2A |
ISSN | 1573-7721 1380-7501 |
IngestDate | Fri Jul 25 09:40:21 EDT 2025 Wed Sep 10 05:50:25 EDT 2025 Thu Apr 24 22:51:03 EDT 2025 Fri May 02 01:12:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Distributed acoustic sensing Pattern recognition Hybrid approaches Pipeline integrity Phase-sensitive OTDR |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3063-fcbe374af632debc6650b77b4cbb4796e7fc95b9a5493bffa7850c5562792e393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2555-2971 0000-0002-4308-5572 0000-0001-7699-5620 0000-0002-3303-3963 0000-0003-3927-8125 |
PQID | 3213242692 |
PQPubID | 54626 |
PageCount | 25 |
ParticipantIDs | proquest_journals_3213242692 crossref_citationtrail_10_1007_s11042_024_19386_3 crossref_primary_10_1007_s11042_024_19386_3 springer_journals_10_1007_s11042_024_19386_3 |
PublicationCentury | 2000 |
PublicationDate | 20250400 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 4 year: 2025 text: 20250400 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | 19386_CR10 19386_CR11 J Tejedor (19386_CR31) 2017; 17 19386_CR13 H Wu (19386_CR42) 2019; 37 19386_CR50 19386_CR52 L Ma (19386_CR22) 2022; 22 19386_CR19 19386_CR14 H Wu (19386_CR40) 2017; 7 XD Huang (19386_CR16) 2018; 45 N Yang (19386_CR49) 2022; 22 LR Rabiner (19386_CR26) 1987; 77 19386_CR21 J Tejedor (19386_CR33) 2019; 37 M Bublin (19386_CR4) 2021; 21 S Kowarik (19386_CR20) 2020; 20 L Breiman (19386_CR3) 2001; 45 MT Hussels (19386_CR17) 2019; 19 19386_CR25 J Tejedor (19386_CR30) 2016; 34 H Wu (19386_CR43) 2020; 8 X Wang (19386_CR35) 2022; 123 W Xu (19386_CR47) 2022; 22 L Huang (19386_CR15) 2020; 55 J He (19386_CR12) 2021; 61 19386_CR32 Y Bai (19386_CR1) 2019; 53 C Xu (19386_CR46) 2018; 57 Y Pan (19386_CR23) 2022; 251 J Tejedor (19386_CR34) 2021; 10 19386_CR37 19386_CR38 Z Wang (19386_CR36) 2019; 27 M Zhang (19386_CR51) 2019; 52 CM Bishop (19386_CR2) 1995 H Wu (19386_CR41) 2019; 37 Q Sun (19386_CR29) 2015; 15 Z Peng (19386_CR24) 2020; 10 H Jia (19386_CR18) 2019; 19 19386_CR48 Y Shi (19386_CR27) 2019; 19 H Wu (19386_CR45) 2021; 29 P Stajanca (19386_CR28) 2018; 18 H Wu (19386_CR44) 2021; 39 19386_CR9 19386_CR7 H Wu (19386_CR39) 2015; 33 19386_CR8 19386_CR5 19386_CR6 |
References_xml | – volume: 15 start-page: 15,179 year: 2015 ident: 19386_CR29 publication-title: Sensors doi: 10.3390/s150715179 – volume: 22 start-page: 1670:1 issue: 4 year: 2022 ident: 19386_CR22 publication-title: Sensors doi: 10.3390/s22041670 – volume: 33 start-page: 3156 issue: 15 year: 2015 ident: 19386_CR39 publication-title: J Light Technol doi: 10.1109/JLT.2015.2421953 – volume: 251 start-page: 168,127:1 issue: 168127 year: 2022 ident: 19386_CR23 publication-title: Optik – volume: 39 start-page: 6606 issue: 20 year: 2021 ident: 19386_CR44 publication-title: J Light Technol doi: 10.1109/JLT.2021.3102265 – ident: 19386_CR8 – volume: 61 start-page: C65 issue: 6 year: 2021 ident: 19386_CR12 publication-title: Appl Opt doi: 10.1364/AO.437852 – volume: 10 start-page: 712:1 issue: 6 year: 2021 ident: 19386_CR34 publication-title: Electronics doi: 10.3390/electronics10060712 – ident: 19386_CR21 doi: 10.1177/1475921720930649 – volume: 17 start-page: E355:1 issue: 2 year: 2017 ident: 19386_CR31 publication-title: Sensors doi: 10.3390/s17020355 – volume: 123 start-page: 191 issue: 104 year: 2022 ident: 19386_CR35 publication-title: Infrared Phys Technol – volume: 18 start-page: 2841:1 issue: 9 year: 2018 ident: 19386_CR28 publication-title: Sensors doi: 10.3390/s18092841 – volume: 22 start-page: 1127:1 issue: 3 year: 2022 ident: 19386_CR49 publication-title: Sensors doi: 10.3390/s22031127 – ident: 19386_CR48 doi: 10.1364/OFS.2020.Th4.44 – ident: 19386_CR13 – volume: 52 start-page: 101,980:1 year: 2019 ident: 19386_CR51 publication-title: Optical fiber technology doi: 10.1016/j.yofte.2019.101980 – volume: 8 start-page: 119,448 year: 2020 ident: 19386_CR43 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004207 – volume: 27 start-page: 23,682 issue: 17 year: 2019 ident: 19386_CR36 publication-title: Opt Express doi: 10.1364/OE.27.023682 – volume: 22 start-page: 1994:1 issue: 5 year: 2022 ident: 19386_CR47 publication-title: Sensors doi: 10.3390/s22051994 – volume: 19 start-page: 3683 issue: 10 year: 2019 ident: 19386_CR18 publication-title: IEEE Sensors doi: 10.1109/JSEN.2019.2891750 – volume: 37 start-page: 4359 issue: 17 year: 2019 ident: 19386_CR41 publication-title: J Light Technol doi: 10.1109/JLT.2019.2923839 – ident: 19386_CR9 – volume: 37 start-page: 4514 issue: 18 year: 2019 ident: 19386_CR33 publication-title: J Light Technol doi: 10.1109/JLT.2019.2908816 – volume: 53 start-page: 102,060:1 year: 2019 ident: 19386_CR1 publication-title: Opt Fiber Technol doi: 10.1016/j.yofte.2019.102060 – volume: 34 start-page: 4445 issue: 19 year: 2016 ident: 19386_CR30 publication-title: J Light Technol doi: 10.1109/JLT.2016.2542981 – ident: 19386_CR32 doi: 10.1364/OFS.2018.WF36 – ident: 19386_CR5 doi: 10.1364/ACPC.2015.ASu2A.145 – volume: 57 start-page: 016,103:1 issue: 1 year: 2018 ident: 19386_CR46 publication-title: Optical Engineering doi: 10.1117/1.OE.57.1.016103 – volume: 7 start-page: 305 issue: 4 year: 2017 ident: 19386_CR40 publication-title: Photonic Sensors doi: 10.1007/s13320-017-0360-1 – volume: 29 start-page: 3269 issue: 3 year: 2021 ident: 19386_CR45 publication-title: Opt Express doi: 10.1364/OE.416537 – volume: 21 start-page: 7527:1 issue: 22 year: 2021 ident: 19386_CR4 publication-title: Sensors doi: 10.3390/s21227527 – ident: 19386_CR11 doi: 10.1364/OFS.2020.T3.76 – volume: 10 start-page: 21,014:1 year: 2020 ident: 19386_CR24 publication-title: Sci Rep doi: 10.1038/s41598-020-77147-2 – volume: 19 start-page: 3322:1 issue: 15 year: 2019 ident: 19386_CR17 publication-title: Sensors doi: 10.3390/s19153322 – ident: 19386_CR50 doi: 10.1364/OFS.2020.Th4.37 – ident: 19386_CR38 – volume: 20 start-page: 450:1 issue: 2 year: 2020 ident: 19386_CR20 publication-title: Sensors doi: 10.3390/s20020450 – ident: 19386_CR19 – volume: 55 start-page: 102,149:1 year: 2020 ident: 19386_CR15 publication-title: Opt Fiber Technol doi: 10.1016/j.yofte.2020.102149 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 19386_CR3 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 19 start-page: 3421:1 issue: 15 year: 2019 ident: 19386_CR27 publication-title: Sensors doi: 10.3390/s19153421 – ident: 19386_CR6 doi: 10.1109/CyberC.2018.00059 – ident: 19386_CR25 – ident: 19386_CR37 doi: 10.1117/12.2058503 – ident: 19386_CR7 – volume: 37 start-page: 4991 issue: 19 year: 2019 ident: 19386_CR42 publication-title: J Light Technol doi: 10.1109/JLT.2019.2926745 – volume: 77 start-page: 257 issue: 2 year: 1987 ident: 19386_CR26 publication-title: Proc IEEE doi: 10.1109/5.18626 – volume: 45 start-page: 64 year: 2018 ident: 19386_CR16 publication-title: Opt Fiber Technol doi: 10.1016/j.yofte.2018.06.005 – ident: 19386_CR52 – volume-title: Neural Networks for Pattern Recognition year: 1995 ident: 19386_CR2 doi: 10.1093/oso/9780198538493.001.0001 – ident: 19386_CR14 – ident: 19386_CR10 |
SSID | ssj0016524 |
Score | 2.382946 |
Snippet | This paper presents an advanced system for the continuous monitoring of potential threats in a long gas pipeline. For signal acquisition, phase-sensitive... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11177 |
SubjectTerms | Classification Computer Communication Networks Computer Science Data Structures and Information Theory Decision trees False alarms Feature extraction Fiber optics Gas pipelines Markov chains Multimedia Information Systems Pattern classification Pattern recognition Pipelines Probabilistic models Special Purpose and Application-Based Systems Surveillance systems Threats |
Title | A hybrid cascade-parallel discriminative-generative model for pipeline integrity threat detection in a smart fiber optic surveillance system |
URI | https://link.springer.com/article/10.1007/s11042-024-19386-3 https://www.proquest.com/docview/3213242692 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC5cvbgHnys7vqiDtzUw3Un6cRzFURQ8OeCemk46WRfGcbDHBf-DP9qqdLejsgqeuiFJ06SS1Fekvq8ADpShRWM5o0YrK5TNIpFb1xfWJpXta0ceOGRbXCZnI3V-ra9bUljdZbt3V5LhpJ6T3SKmkpBPEQQ6skTIb7CkKXbn7TiKBy93B4mOVUuP-f-4ty5ojivfXYUGDzNcg5UWGuKgseU6LLjJBqx2ZRew3YUb8P2VhuAmPA3w5pFpV2jLmpPdBat5j8dujMy4bap28Zkm_gSFaX7FUP8GCa_i9O-UGekOG90IwuQ4u2EgiZWbhTStCTVhifUtLTL0nGCCd3TOWKwf7v85LlpEf4WNIvQPGA1Pro7PRFtiQViKFaTw1jiZqtInMq6csQkBNpOmRlljVJonLvU21yYvKYyUxvsyzXTfagJNaR47mcstWJzcTdxPwChKM5NFFPHKSuncZ31feZf4jLyw15XvQdTNemFb_XEugzEu5srJbKmCLFUESxWyB79exkwb9Y1Pe-92xizanVgXMo5k4OvGPTjsDDxv_vhr21_rvgPLMZcGDkk9u7A4u39we4RXZmYflgbDo6NLfp7-vjjZD8v1GRk36H8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsQwFL34WKgL3-L4vAt3Gpg2SR_LQZTxuXLAXWnSRIVxZrCj4D_40d6kraOigrtCklJ6k9wTcs85AAdC0aTRrqJGCs2ETgKWatNmWkeFbktDGdhXW1xH3Z44v5W3NSmsbKrdmytJv1NPyG6Bo5JQTmEEOpKI8WmYJTCQON-CXtj5uDuIZChqeszP476moAmu_HYV6jPM6TIs1tAQO1UsV2DKDFZhqbFdwHoVrsLCJw3BNXjr4P2ro12hzktX7M6cmne_b_roGLeVa5fb09idV5h2j-j9b5DwKo4eRo6RbrDSjSBMjuN7BySxMGNfpjWgJsyxfKRJhtYVmOCQ9hmN5fPTi3GmRfRVWClCr0Pv9OTmuMtqiwWm6azAmdXK8FjkNuJhYZSOCLCpOFZCKyXiNDKx1alUaU7HSK6szeNEtrUk0BSnoeEp34CZwXBgNgGDIE5UEtCJlxdCpjZp28KayCaUha0sbAuC5q9nutYfdzYY_WyinOwilVGkMh-pjLfg8GPMqFLf-LP3ThPMrF6JZcbDgHu-btiCoybAk-bf37b1v-77MNe9ubrMLs-uL7ZhPnQ2wb7AZwdmxk_PZpewy1jt-an6DqNb6GI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21VELlQAsUsYW2c-itWGxiOx_HFXRFP4Q4dCVuUezYLNISVmxA4j_wozvjJCxFtFJvkWxHUWY88yzPewPwWRlyGssVNVpZoWwWidy6obA2qexQO8rAodriJDmeqO9n-uwRiz9Uu_dXki2ngVWa6uZgXvmDJfEtYloJ5RdBACRLhHwJrygcR-zpk3j0cI-Q6Fh1VJnn1_2ZjpYY88m1aMg247ew3sFEHLV23YAXrt6EN30LBux25CasPdIT3IL7EU7vmIKFtlxw4btgZe_ZzM2Q2bdtBy-Ob-I8qE3zI4ZeOEjYFecXc2anO2w1JAifYzNlUImVa0LJVk1DWOLikhwOPReb4BXFHIuLm-tbxw2M6KuwVYd-B5Px11-Hx6JrtyAsnRuk8NY4marSJzKunLEJgTeTpkZZY1SaJy71NtcmL-lIKY33ZZrpodUEoNI8djKX27BSX9VuBzCK0sxkEZ1-ZaV07rOhr7xLfEYZ2evKDyDq_3phOy1ybokxK5YqymypgixVBEsVcgBfHtbMWyWOf87e641ZdLtyUcg4koG7Gw9gvzfwcvjvb3v_f9M_werp0bj4-e3kxy68jrljcKj12YOV5vrGfSAY05iPwVN_A9XJ7J4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+cascade-parallel+discriminative-generative+model+for+pipeline+integrity+threat+detection+in+a+smart+fiber+optic+surveillance+system&rft.jtitle=Multimedia+tools+and+applications&rft.au=Tejedor%2C+Javier&rft.au=Macias-Guarasa%2C+Javier&rft.au=Martins%2C+Hugo+F.&rft.au=Martin-Lopez%2C+Sonia&rft.date=2025-04-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=84&rft.issue=12&rft.spage=11177&rft.epage=11201&rft_id=info:doi/10.1007%2Fs11042-024-19386-3&rft.externalDocID=10_1007_s11042_024_19386_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |