ASHLEY: A New Empirical Model for the High‐Latitude Electron Precipitation and Electric Field
In this study, a new high‐latitude empirical model is introduced, named for Auroral energy Spectrum and High‐Latitude Electric field variabilitY (ASHLEY). This model improves specifications of soft electron precipitations and electric field variability that are not well represented in existing high‐...
Saved in:
Published in | Space Weather Vol. 19; no. 5 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, a new high‐latitude empirical model is introduced, named for Auroral energy Spectrum and High‐Latitude Electric field variabilitY (ASHLEY). This model improves specifications of soft electron precipitations and electric field variability that are not well represented in existing high‐latitude empirical models. ASHLEY consists of three components, ASHLEY‐A, ASHLEY‐E, and ASHLEY‐Evar, which are developed based on the electron precipitation and bulk ion drift measurements from the Defense Meteorological Satellite Program (DMSP) satellites during the most recent solar cycle. On the one hand, unlike most existing high‐latitude electron precipitation models, which have assumptions about the energy spectrum of incident electrons, the electron precipitation component of ASHLEY, ASHLEY‐A, provides the differential energy fluxes in the 19 DMSP energy channels under different geophysical conditions without making any assumptions about the energy spectrum. It has been found that the relaxation of spectral assumptions significantly improves soft electron precipitation specifications with respect to a Maxwellian spectrum (up to several orders of magnitude). On the other hand, ASHLEY provides consistent mean electric field and electric field variability under different geophysical conditions by ASHLEY‐E and ASHLEY‐Evar components, respectively. This is different from most existing electric field models which only focus on the large‐scale mean electric field and ignore the electric field variability. Furthermore, the consistency between the electric field and electron precipitation is better taken into account in ASHLEY.
Key Points
ASHLEY better considers the consistency between the electric field and electron precipitation than existing models
ASHLEY better incorporates IMF By polarity impacts on the electron precipitation and improves soft electron precipitation specifications
ASHLEY provides consistent mean electric field and electric field variability |
---|---|
AbstractList | In this study, a new high‐latitude empirical model is introduced, named for Auroral energy Spectrum and High‐Latitude Electric field variabilitY (ASHLEY). This model improves specifications of soft electron precipitations and electric field variability that are not well represented in existing high‐latitude empirical models. ASHLEY consists of three components, ASHLEY‐A, ASHLEY‐E, and ASHLEY‐Evar, which are developed based on the electron precipitation and bulk ion drift measurements from the Defense Meteorological Satellite Program (DMSP) satellites during the most recent solar cycle. On the one hand, unlike most existing high‐latitude electron precipitation models, which have assumptions about the energy spectrum of incident electrons, the electron precipitation component of ASHLEY, ASHLEY‐A, provides the differential energy fluxes in the 19 DMSP energy channels under different geophysical conditions without making any assumptions about the energy spectrum. It has been found that the relaxation of spectral assumptions significantly improves soft electron precipitation specifications with respect to a Maxwellian spectrum (up to several orders of magnitude). On the other hand, ASHLEY provides consistent mean electric field and electric field variability under different geophysical conditions by ASHLEY‐E and ASHLEY‐Evar components, respectively. This is different from most existing electric field models which only focus on the large‐scale mean electric field and ignore the electric field variability. Furthermore, the consistency between the electric field and electron precipitation is better taken into account in ASHLEY.
Key Points
ASHLEY better considers the consistency between the electric field and electron precipitation than existing models
ASHLEY better incorporates IMF By polarity impacts on the electron precipitation and improves soft electron precipitation specifications
ASHLEY provides consistent mean electric field and electric field variability Abstract In this study, a new high‐latitude empirical model is introduced, named for Auroral energy Spectrum and High‐Latitude Electric field variabilitY (ASHLEY). This model improves specifications of soft electron precipitations and electric field variability that are not well represented in existing high‐latitude empirical models. ASHLEY consists of three components, ASHLEY‐A, ASHLEY‐E, and ASHLEY‐Evar, which are developed based on the electron precipitation and bulk ion drift measurements from the Defense Meteorological Satellite Program (DMSP) satellites during the most recent solar cycle. On the one hand, unlike most existing high‐latitude electron precipitation models, which have assumptions about the energy spectrum of incident electrons, the electron precipitation component of ASHLEY, ASHLEY‐A, provides the differential energy fluxes in the 19 DMSP energy channels under different geophysical conditions without making any assumptions about the energy spectrum. It has been found that the relaxation of spectral assumptions significantly improves soft electron precipitation specifications with respect to a Maxwellian spectrum (up to several orders of magnitude). On the other hand, ASHLEY provides consistent mean electric field and electric field variability under different geophysical conditions by ASHLEY‐E and ASHLEY‐Evar components, respectively. This is different from most existing electric field models which only focus on the large‐scale mean electric field and ignore the electric field variability. Furthermore, the consistency between the electric field and electron precipitation is better taken into account in ASHLEY. Key Points ASHLEY better considers the consistency between the electric field and electron precipitation than existing models ASHLEY better incorporates IMF B y polarity impacts on the electron precipitation and improves soft electron precipitation specifications ASHLEY provides consistent mean electric field and electric field variability In this study, a new high‐latitude empirical model is introduced, named for Auroral energy Spectrum and High‐Latitude Electric field variabilitY (ASHLEY). This model improves specifications of soft electron precipitations and electric field variability that are not well represented in existing high‐latitude empirical models. ASHLEY consists of three components, ASHLEY‐A, ASHLEY‐E, and ASHLEY‐Evar, which are developed based on the electron precipitation and bulk ion drift measurements from the Defense Meteorological Satellite Program (DMSP) satellites during the most recent solar cycle. On the one hand, unlike most existing high‐latitude electron precipitation models, which have assumptions about the energy spectrum of incident electrons, the electron precipitation component of ASHLEY, ASHLEY‐A, provides the differential energy fluxes in the 19 DMSP energy channels under different geophysical conditions without making any assumptions about the energy spectrum. It has been found that the relaxation of spectral assumptions significantly improves soft electron precipitation specifications with respect to a Maxwellian spectrum (up to several orders of magnitude). On the other hand, ASHLEY provides consistent mean electric field and electric field variability under different geophysical conditions by ASHLEY‐E and ASHLEY‐Evar components, respectively. This is different from most existing electric field models which only focus on the large‐scale mean electric field and ignore the electric field variability. Furthermore, the consistency between the electric field and electron precipitation is better taken into account in ASHLEY. |
Author | Knipp, Delores J. Zhu, Qingyu Deng, Yue Hairston, Marc Kilcommons, Liam M. Maute, Astrid |
Author_xml | – sequence: 1 givenname: Qingyu orcidid: 0000-0002-4003-4104 surname: Zhu fullname: Zhu, Qingyu organization: University of Texas at Arlington – sequence: 2 givenname: Yue orcidid: 0000-0002-8508-1588 surname: Deng fullname: Deng, Yue email: yuedeng@uta.edu organization: University of Texas at Arlington – sequence: 3 givenname: Astrid orcidid: 0000-0003-3393-0987 surname: Maute fullname: Maute, Astrid organization: National Center for Atmosphere Research – sequence: 4 givenname: Liam M. orcidid: 0000-0002-4980-3045 surname: Kilcommons fullname: Kilcommons, Liam M. organization: University of Colorado Boulder – sequence: 5 givenname: Delores J. orcidid: 0000-0002-2047-5754 surname: Knipp fullname: Knipp, Delores J. organization: University of Colorado Boulder – sequence: 6 givenname: Marc orcidid: 0000-0003-4524-4837 surname: Hairston fullname: Hairston, Marc organization: University of Texas at Dallas |
BookMark | eNp90M1Kw0AQB_BFKthWbz7Aglej-5FNut5KSa0QP6BK8bRs9sNuSZO4SSm9-Qg-o0_iSnvoydPM8P8xAzMAvaquDACXGN1gRPgtQQTNFwiRJMUnoI9ZTKKUctQ76s_AoG1XwcSMxH0gxvNZnr3fwTF8MluYrRvnnZIlfKy1KaGtPeyWBs7cx_Ln6zuXnes22sCsNKrzdQVfvFGucV0IwiQrfYicglNnSn0OTq0sW3NxqEPwNs1eJ7Mof75_mIzzSFGU0MgynaBEcYNjldiCyRHHEhfSypgTpCiWhFjNbFGMtMYjFlupY05JYhhKeZzSIbja7218_bkxbSdW9cZX4aQgjFEaKKdBXe-V8nXbemNF491a-p3ASPy9UBy_MHCy51tXmt2_VswXGcE4HPoFcWxzSQ |
CitedBy_id | crossref_primary_10_1029_2021GL097260 crossref_primary_10_1029_2022SW003170 crossref_primary_10_1029_2023JA032040 crossref_primary_10_5194_angeo_42_229_2024 crossref_primary_10_1029_2023JA031598 crossref_primary_10_1029_2021GL094781 crossref_primary_10_3389_fphy_2021_744298 crossref_primary_10_1029_2023JA032232 crossref_primary_10_1029_2023JA032002 crossref_primary_10_1029_2023JA032079 crossref_primary_10_3389_fspas_2022_916739 crossref_primary_10_1051_e3sconf_202453104011 crossref_primary_10_3389_fspas_2023_1062265 crossref_primary_10_1029_2021JA029816 crossref_primary_10_3389_fspas_2022_958977 crossref_primary_10_1029_2022SW003146 crossref_primary_10_1029_2021SW002856 crossref_primary_10_1029_2022SW003301 |
Cites_doi | 10.5636/jgg.47.191 10.1007/s00585-000-0766-7 10.1029/93JA01645 10.1002/9781119815631.ch1 10.1016/j.jastp.2008.03.008 10.1029/2020JA028057 10.1002/2017JA025141 10.1029/2006JA011658 10.1029/JA079i019p02853 10.1029/2007JA012825 10.1002/2017JA024683 10.1002/2015JA022294 10.1029/2006JA012015 10.1002/essoar.10506300.1 10.1029/2012JA017929 10.1029/2012JA017885 10.1029/JA092iA07p07606 10.1029/JA094iA10p13541 10.1029/2019JA027270 10.1029/95GL01909 10.1029/JA092iA11p12275 10.1029/2000JA000604 10.1002/2018JA025280 10.1016/0032-0633(83)90040-5 10.1016/j.asr.2011.09.004 10.1029/93JA02015 10.1029/2010JA016019 10.1029/1999JA000409 10.1029/2011SW000724 10.1016/0273-1177(92)90040-5 10.1007/s11214-016-0275-y 10.1186/s40623-015-0228-9 10.1029/2018JA025771 10.1029/2004JA010884 10.1029/1999JA900463 10.1002/2014JA020080 10.1029/2020JA028059 10.1029/JA094iA07p08921 10.1002/2016JA023339 10.1029/2002JA009429 10.1029/95JA00766 10.1029/2018JA026446 10.1023/A:1005107532631 10.1029/95JA01755 10.1029/JA093iA12p14549 10.1029/2007JA012840 10.1007/s10712-010-9104-0 10.1038/s41586-020-2649-2 10.1029/2019JA027726 10.1029/JA092iA03p02565 10.1029/JA093iA06p05741 10.1016/j.jastp.2006.07.022 10.1029/2001JA000264 10.1029/2018JA025749 10.1002/2014SW001056 10.1016/0032-0633(67)90190-0 10.1029/2004JA010732 10.1029/2008GL034040 10.1029/JA090iA05p04229 10.1029/2019GL082383 10.1029/2017JA025097 10.1071/PH620223 10.1029/2008GL036916 10.1016/S1364-6826(98)00137-0 10.1029/2018GL081886 10.1029/2011JA016665 10.1002/2016JA023342 10.1029/JA087iA08p06339 10.1029/JA086iA01p00065 10.1029/2020JA028332 10.1029/2009JA014326 10.5194/angeo-19-773-2001 10.1029/JA093iA04p02715 10.1029/2007GL029357 10.1002/2014JA020615 10.1029/2009JA015119 10.1002/2013JA019325 10.1029/93JA02273 10.1029/2000GL012624 10.1029/2007SW000364 10.1029/JA084iA11p06451 10.1029/2003GL019113 10.1029/2010JA016017 |
ContentType | Journal Article |
Copyright | 2021. The Authors. 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. The Authors. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.1029/2020SW002671 |
DatabaseName | Wiley Online Library Wiley-Blackwell Open Access Backfiles CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1542-7390 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2020SW002671 SWE21133 |
Genre | article |
GrantInformation_xml | – fundername: DOD, USAF, AFMC, Air Force Office of Scientific Research (AFOSR) funderid: FA9559‐16‐1‐0364; FA9550‐17‐1‐0248; FA9550‐17‐1‐0258; FA9559‐16‐1‐0364 – fundername: National Science Foundation – fundername: University of Texas at Arlington – fundername: National Aeronautics and Space Administration (NASA) funderid: 80NSSC20K0195, 80NSSC20K1786 and 80NSSC20K0606 – fundername: National Center for Atmospheric Research |
GroupedDBID | 05W 0R~ 123 1OC 24P 31~ 50Y 6IK 8-1 8R4 8R5 AAESR AAHHS AAJGR AAZKR ABCUV ABHFT ACBWZ ACCFJ ACGFO ACGFS ACPOU ACXQS ADBBV ADEOM ADMGS ADXAS AEEZP AEQDE AFBPY AFGKR AFPWT AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DPXWK EBS EJD FEDTE G-S GODZA HVGLF HZ~ IAO IGS IPLJI KZ1 LITHE LMP LOXES LUTES LYRES MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W Q2X R.K ROL SUPJJ WBKPD WIN ZZTAW ~02 ~OA AAYXX CITATION ITC 7TG 8FD H8D KL. L7M |
ID | FETCH-LOGICAL-c3063-f5d606c9e14c6fb5a891a1bafa4920c31a22fd5fbb8dd1854fad49326e5079473 |
IEDL.DBID | 24P |
ISSN | 1542-7390 1539-4964 |
IngestDate | Thu Oct 31 10:35:59 EDT 2024 Thu Sep 26 16:32:01 EDT 2024 Sat Aug 24 01:00:57 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3063-f5d606c9e14c6fb5a891a1bafa4920c31a22fd5fbb8dd1854fad49326e5079473 |
ORCID | 0000-0002-2047-5754 0000-0002-4003-4104 0000-0002-8508-1588 0000-0003-3393-0987 0000-0003-4524-4837 0000-0002-4980-3045 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020SW002671 |
PQID | 2553332693 |
PQPubID | 54316 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2553332693 crossref_primary_10_1029_2020SW002671 wiley_primary_10_1029_2020SW002671_SWE21133 |
PublicationCentury | 2000 |
PublicationDate | May 2021 2021-05-00 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Space Weather |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2011; 116 2018; 123 1987; 5 1999; 88 2019; 124 2008; 35 2008; 6 2020; 125 2008; 70 2007; 34 1992; 12 2009; 114 2012; 10 1981; 86 2001; 106 2004; 31 2000; 18 2013; 51 2010; 115 1995; 22 2001; 19 2002; 107 2020b 2020a 1985; 90 1967; 15 2008; 113 2017; 122 2014; 12 2007; 69 2017; 206 2014; 119 1974; 79 1989; 1 2005; 110 1987; 92 2015; 120 1983; 31 2007 2021; 261 1962; 15 2016; 121 2011; 32 2020; 585 2001; 28 1999; 61 2004; 109 1988; 93 2006; 111 2015; 67 2009; 36 2007; 112 1989; 94 2003; 108 2000; 105 1995; 47 2019; 46 1993; 98 1982; 87 1994; 99 2019 2018 1995; 100 2012; 117 1979; 84 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_2_1 Cosgrove R. B. (e_1_2_11_11_1) 2009; 114 Lotko W. (e_1_2_11_44_1) 2018; 123 Jackson J. D. (e_1_2_11_37_1) 2007 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 Matsuo T. (e_1_2_11_48_1) 2008; 113 Roble R. G. (e_1_2_11_75_1) 1987; 5 e_1_2_11_94_1 e_1_2_11_50_1 e_1_2_11_71_1 e_1_2_11_92_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_31_1 Hardy D. A. (e_1_2_11_32_1) 2008; 113 e_1_2_11_56_1 Newell P. T. (e_1_2_11_58_1) 2004; 109 e_1_2_11_77_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 Hairston M. R. (e_1_2_11_29_1) 2005; 110 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_82_1 e_1_2_11_61_1 e_1_2_11_80_1 Newell P. T. (e_1_2_11_62_1) 2010; 115 e_1_2_11_21_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_25_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_18_1 e_1_2_11_16_1 Rees M. H. (e_1_2_11_67_1) 1989 e_1_2_11_39_1 Kilcommons L. M. (e_1_2_11_40_1) 2019 |
References_xml | – volume: 125 issue: 8 year: 2020 article-title: How magnetically conjugate atmospheres and the magnetosphere participate in the formation of low‐energy electron precipitation in the region of diffuse aurora publication-title: Journal of Geophysical Research: Space Physics – volume: 22 start-page: 2393 year: 1995 end-page: 2396 article-title: On the importance of E‐field variability for Joule heating in the high‐latitude thermosphere publication-title: Geophysical Research Letters – year: 2018 article-title: Identification of auroral electron precipitation mechanism combinations and their relationships to net downgoing energy and number flux' publication-title: Journal of Geophysical Research: Space Physics – volume: 90 start-page: 4229 issue: A5 year: 1985 end-page: 4248 article-title: A statistical model of auroral electron precipitation publication-title: Journal of Geophysical Research – volume: 15 start-page: 209 year: 1967 end-page: 229 article-title: Dynamics of auroral belt and polar geomagnetic disturbances publication-title: Planetary and Space Science – volume: 61 start-page: 329 issue: 3–4 year: 1999 end-page: 350 article-title: Time dependent thermospheric neutral response to the 2–11 November 1993 storm period publication-title: Journal of Atmospheric and Terrestrial Physics – volume: 115 issue: A6 year: 2010 article-title: Saturation of transpolar potential for large Y component interplanetary magnetic field publication-title: Journal of Geophysical Research – volume: 121 start-page: 7108 issue: 7 year: 2016 end-page: 7124 article-title: High‐latitude energy input and its impact on the thermosphere publication-title: Journal of Geophysical Research: Space Physics – volume: 120 start-page: 1035 issue: 2 year: 2015 end-page: 1056 article-title: Electron precipitation models in global magnetosphere simulations publication-title: Journal of Geophysical Research: Space Physics – volume: 69 start-page: 234 issue: 3 year: 2007 end-page: 248 article-title: Polar cap potential saturation: Observations, theory, and modeling publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics – volume: 111 issue: A10 year: 2006 article-title: Parametric dependence of electric field variability in the Sondrestrom database: A linear relation with Kp publication-title: Journal of Geophysical Research – volume: 119 start-page: 171 issue: 1 year: 2014 end-page: 184 article-title: Magnetosphere‐ionosphere energy interchange in the electron diffuse aurora publication-title: Journal of Geophysical Research: Space Physics – volume: 32 start-page: 101 issue: 2 year: 2011 end-page: 195 article-title: Density perturbations in the upper atmosphere caused by the dissipation of solar wind energy publication-title: Surveys in Geophysics – volume: 46 start-page: 3582 issue: 7 year: 2019 end-page: 3589 article-title: Low energy precipitating electrons in the diffuse aurorae publication-title: Geophysical Research Letters – volume: 88 start-page: 563 issue: 3 year: 1999 end-page: 601 article-title: Ionospheric storms—A review publication-title: Space Science Reviews – volume: 113 year: 2008 article-title: Analysis of thermospheric response to magnetospheric inputs publication-title: Journal of Geophysical Research – volume: 84 start-page: 6451 issue: A11 year: 1979 end-page: 6457 article-title: Precipitating electrons associated with the diffuse aurora: Evidence for electrons of atmospheric origin in the plasma sheet publication-title: Journal of Geophysical Research – volume: 122 start-page: 9068 year: 2017 end-page: 9079 article-title: A new DMSP magnetometer and auroral boundary data set and estimates of field‐aligned currents in dynamic auroral boundary coordinates publication-title: Journal of Geophysical Research: Space Physics – volume: 117 issue: A12 year: 2012 article-title: Statistical maps of small‐scale electric field variability in the high‐latitude ionosphere publication-title: Journal of Geophysical Research – volume: 99 start-page: 273 issue: A1 year: 1994 end-page: 286 article-title: Ionospheric projections of magnetospheric regions under low and high solar wind pressure conditions publication-title: Journal of Geophysical Research – volume: 116 year: 2011 article-title: Impact of the altitudinal Joule heating distribution on the thermosphere publication-title: Journal of Geophysical Research – volume: 113 issue: A7 year: 2008 article-title: Effects of high‐latitude ionospheric electric field variability on global thermospheric Joule heating and mechanical energy transfer rate publication-title: Journal of Geophysical Research: Space Physics – volume: 94 start-page: 8921 issue: A7 year: 1989 end-page: 8927 article-title: Some low‐altitude cusp dependencies on the interplanetary magnetic field publication-title: Journal of Geophysical Research – volume: 125 issue: 1 year: 2020 article-title: Impacts of binning methods on high‐latitude electrodynamic forcing: Static versus boundary‐oriented binning methods publication-title: Journal of Geophysical Research: Space Physics – volume: 116 issue: A9 year: 2011 article-title: The bias on the joule heating estimate: Small‐scale variability versus resolved‐scale model uncertainty and the correlation of electric field and conductance publication-title: Journal of Geophysical Research – volume: 36 year: 2009 article-title: Impact of electric field variability on Joule heating and thermospheric temperature and density publication-title: Geophysical Research Letters – volume: 47 start-page: 191 issue: 2 year: 1995 end-page: 212 article-title: Ionospheric electrodynamics using magnetic apex coordinates publication-title: Journal of Geomagnetism and Geoelectricity – volume: 31 issue: 7 year: 2004 article-title: Polar cap index comparisons with AMIE cross polar cap potential, electric field, and polar cap area publication-title: Geophysical Research Letters – volume: 122 start-page: 9056 year: 2017 end-page: 9067 article-title: New DMSP database of precipitating auroral electrons and ions publication-title: Journal of Geophysical Research: Space Physics – volume: 108 start-page: 1005 year: 2003 article-title: High‐latitude ionospheric electric field variability and electric potential derived from DE‐2 plasma drift measurements: Dependence on IMF and dipole tilt publication-title: Journal of Geophysical Research – volume: 100 start-page: 19643 year: 1995 end-page: 19660 article-title: Magnetosphere‐ionosphere‐thermosphere coupling: Effect of neutral winds on energy transfer and field‐aligned current publication-title: Journal of Geophysical Research – volume: 94 start-page: 13541 issue: A10 year: 1989 end-page: 13552 article-title: Deducing composition and incident electron spectra from ground‐based auroral optical measurements: A study of auroral red line processes publication-title: Journal of Geophysical Research – volume: 123 start-page: 5210 issue: 6 year: 2018 end-page: 5222 article-title: Semianalytical estimation of energy deposition in the ionosphere by monochromatic Alfvén waves publication-title: Journal of Geophysical Research: Space Physics – volume: 106 start-page: 407 issue: A1 year: 2001 end-page: 416 article-title: An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event publication-title: Journal of Geophysical Research – volume: 67 start-page: 79 issue: 1 year: 2015 article-title: International Geomagnetic Reference Field: The 12th generation publication-title: Earth Planets and Space – volume: 123 start-page: 2398 year: 2018 end-page: 2411 article-title: Diurnal variations in global Joule heating morphology and magnitude due to neutral winds publication-title: Journal of Geophysical Research: Space Physics – volume: 46 start-page: 6297 issue: 12 year: 2019 end-page: 6305 article-title: Transient ionospheric upflow driven by poleward moving auroral forms observed during the Rocket Experiment for Neutral Upwelling 2 (RENU2) campaign publication-title: Geophysical Research Letters – volume: 12 start-page: 368 issue: 6 year: 2014 end-page: 379 article-title: OVATION Prime‐2013: Extension of auroral precipitation model to higher disturbance levels publication-title: Space Weather – volume: 86 start-page: 65 issue: A1 year: 1981 end-page: 75 article-title: The diurnal and latitudinal variation of auroral zone ionospheric conductivity publication-title: Journal of Geophysical Research – volume: 110 issue: A9 year: 2005 article-title: Saturation of the ionospheric polar cap potential during the October‐November 2003 superstorms publication-title: Journal of Geophysical Research – volume: 100 start-page: 19595 issue: A10 year: 1995 end-page: 19608 article-title: Models of high‐latitude electric potentials derived with a least error fit of spherical harmonic coefficients publication-title: Journal of Geophysical Research – year: 2019 – volume: 112 issue: A1 year: 2007 article-title: A nearly universal solar wind‐magnetosphere coupling function inferred from 10 magnetospheric state variables publication-title: Journal of Geophysical Research – volume: 119 start-page: 10116 issue: 12 year: 2014 end-page: 10132 article-title: Maps of precipitating electron spectra characterized by Maxwellian and kappa distributions publication-title: Journal of Geophysical Research: Space Physics – volume: 93 start-page: 2715 issue: A4 year: 1988 end-page: 2724 article-title: On the spectrum of the secondary auroral electrons publication-title: Journal of Geophysical Research – volume: 18 start-page: 766 year: 2000 end-page: 781 article-title: Quantitative modeling of the ionospheric response to geomagnetic activity publication-title: Annales Geophysicae – volume: 110 year: 2005 article-title: Improved ionospheric electrodynamic models and application to calculating Joule heating rates publication-title: Journal of Geophysical Research – volume: 109 issue: A10 year: 2004 article-title: Maps of precipitation by source region, binned by IMF, with inertial convection streamlines publication-title: Journal of Geophysical Research: Space Physics – volume: 585 start-page: 357 year: 2020 end-page: 362 article-title: Array programming with NumPy publication-title: Nature – volume: 99 start-page: 3893 issue: A3 year: 1994 end-page: 3914 article-title: Response of the thermosphere and ionosphere to geomagnetic storms publication-title: Journal of Geophysical Research – volume: 98 start-page: 21533 issue: A12 year: 1993 end-page: 21548 article-title: Transport‐theoretic model for the electron‐proton‐hydrogen atom Aurora: 2. Model results publication-title: Journal of Geophysical Research – volume: 123 start-page: 368 issue: 12 year: 2018 end-page: 410 article-title: Alfvénic heating in the cusp ionosphere‐thermosphere publication-title: Journal of Geophysical Research: Space Physics – volume: 15 start-page: 223 year: 1962 article-title: Joule heating of the upper atmosphere publication-title: Australian Journal of Physics – volume: 12 start-page: 59 issue: 6 year: 1992 end-page: 68 article-title: Assimilative mapping of ionospheric electrodynamics publication-title: Advances in Space Research – volume: 31 start-page: 489 issue: 5 year: 1983 end-page: 498 article-title: Intensity distribution of dayside polar soft electron precipitation and the IMF publication-title: Planetary and Space Science – volume: 117 year: 2012 article-title: Height distribution of Joule heating and its influence on the thermosphere publication-title: Journal of Geophysical Research – volume: 34 issue: 9 year: 2007 article-title: Does the polar cap area saturate? publication-title: Geophysical Research Letters – year: 2007 – volume: 123 start-page: 862 year: 2018 end-page: 882 article-title: Effects of high‐latitude forcing uncertainty on the low‐latitude and midlatitude ionosphere publication-title: Journal of Geophysical Research: Space Physics – volume: 5 start-page: 369 year: 1987 end-page: 382 article-title: An auroral model for the NCAR thermospheric general circulation model (TGCM) publication-title: Annales Geophysicae – volume: 6 issue: 9 year: 2008 article-title: Validation of the coupled thermosphere ionosphere plasmasphere electrodynamics model: CTIPE‐mass spectrometer incoherent scatter temperature comparison publication-title: Space Weather – volume: 87 start-page: 6339 issue: A8 year: 1982 end-page: 6345 article-title: A model of the high‐latitude ionospheric convection pattern publication-title: Journal of Geophysical Research – volume: 10 issue: 3 year: 2012 article-title: Global Joule heating index derived from thermospheric density physics‐based modeling and observations publication-title: Space Weather – volume: 92 start-page: 2565 issue: A3 year: 1987 end-page: 2569 article-title: On calculating ionospheric conductances from the flux and energy of precipitating electrons publication-title: Journal of Geophysical Research – volume: 1 year: 1989 – volume: 113 issue: A4 year: 2008 article-title: Pairs of solar wind‐magnetosphere coupling functions: Combining a merging term with a viscous term works best publication-title: Journal of Geophysical Research – volume: 115 year: 2010 article-title: A dynamical model of high‐latitude convection derived from SuperDARN plasma drift measurements publication-title: Journal of Geophysical Research – volume: 51 start-page: 610 issue: 4 year: 2013 end-page: 619 article-title: Reevaluation of thermosphere heating by auroral electrons publication-title: Advances in Space Research – year: 2020a – volume: 107 start-page: 17 issue: A8 year: 2002 article-title: High‐latitude ionospheric convection models derived from Defense Meteorological Satellite Program ion drift observations and parameterized by the interplanetary magnetic field strength and direction publication-title: Journal of Geophysical Research – volume: 123 start-page: 9862 issue: 11 year: 2018 end-page: 9872 article-title: Small‐scale and mesoscale variabilities in the electric field and particle precipitation and their impacts on Joule heating publication-title: Journal of Geophysical Research: Space Physics – volume: 125 issue: 10 year: 2020 article-title: The case for improving the Robinson Formulas publication-title: Journal of Geophysical Research: Space Physics – volume: 125 issue: 12 year: 2020 article-title: Alfvénic thermospheric upwelling in a global geospace model publication-title: Journal of Geophysical Research: Space Physics – volume: 92 start-page: 7606 year: 1987 end-page: 7618 article-title: Height‐integrated Pedersen and Hall conductivity patterns inferred from the TIROS‐NOAA satellite data publication-title: Journal of Geophysical Research – volume: 113 issue: A6 year: 2008 article-title: Probability distributions of electron precipitation at high magnetic latitudes publication-title: Journal of Geophysical Research: Space Physics – volume: 125 issue: 5 year: 2020 article-title: Large‐scale ionospheric disturbances during the 17 March 2015 Storm: A model‐data comparative study publication-title: Journal of Geophysical Research: Space Physics – volume: 124 start-page: 4905 issue: 6 year: 2019 end-page: 4915 article-title: Effects of alignment between particle precipitation and ion convection patterns on Joule heating publication-title: Journal of Geophysical Research: Space Physics – volume: 115 issue: A3 year: 2010 article-title: Seasonal variations in diffuse, monoenergetic, and broadband aurora publication-title: Journal of Geophysical Research: Space Physics – volume: 92 start-page: 12275 issue: A11 year: 1987 end-page: 12294 article-title: Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity publication-title: Journal of Geophysical Research – volume: 19 start-page: 773 issue: 7 year: 2001 end-page: 781 article-title: The variability of Joule heating, and its effects on the ionosphere and thermosphere publication-title: Annales Geophysicae – volume: 79 start-page: 2853 issue: 19 year: 1974 article-title: Precipitating electron fluxes formed by a magnetic field aligned potential difference publication-title: Journal of Geophysical Research – volume: 110 year: 2005 article-title: Comparison of SuperDARN radar boundaries with DMSP particle precipitation boundaries publication-title: Journal of Geophysical Research – volume: 93 start-page: 14549 issue: A12 year: 1988 end-page: 14556 article-title: The cusp and the cleft/boundary layer: Low‐altitude identification and statistical local time variation publication-title: Journal of Geophysical Research – volume: 123 start-page: 3196 issue: 4 year: 2018 end-page: 3216 article-title: Statistical patterns of ionospheric convection derived from mid‐latitude, high‐latitude, and polar SuperDARN HF radar observations publication-title: Journal of Geophysical Research: Space Physics – volume: 114 year: 2009 article-title: Diffuse, monoenergetic, and broadband aurora: The global precipitation budget publication-title: Journal of Geophysical Research – volume: 28 start-page: 2783 issue: 14 year: 2001 end-page: 2786 article-title: Quantification of high latitude electric field variability publication-title: Geophysical Research Letters – volume: 93 start-page: 5741 issue: A6 year: 1988 end-page: 5759 article-title: Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique publication-title: Journal of Geophysical Research – volume: 105 start-page: 23015 issue: A10 year: 2000 end-page: 23024 article-title: High‐latitude currents and their energy exchange with the ionosphere‐thermosphere system publication-title: Journal of Geophysical Research – volume: 114 issue: A6 year: 2009 article-title: Electric field variability and model uncertainty: A classification of source terms in estimating the squared electric field from an electric field model publication-title: Journal of Geophysical Research: Space Physics – volume: 105 start-page: 5265 issue: A3 year: 2000 end-page: 5273 article-title: Electric field variability associated with the Millstone Hill electric field model publication-title: Journal of Geophysical Research – year: 2020b – volume: 261 year: 2021 – volume: 35 issue: 12 year: 2008 article-title: Reverse convection potential saturation during northward IMF publication-title: Geophysical Research Letters – volume: 206 start-page: 27 year: 2017 end-page: 59 article-title: Magnetic coordinate systems publication-title: Space Science Reviews – volume: 70 start-page: 1231 year: 2008 end-page: 1242 article-title: An empirical Kp‐dependent global auroral model based on TIMED/GUVI FUV data publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics – ident: e_1_2_11_70_1 doi: 10.5636/jgg.47.191 – ident: e_1_2_11_25_1 doi: 10.1007/s00585-000-0766-7 – ident: e_1_2_11_80_1 doi: 10.1029/93JA01645 – ident: e_1_2_11_94_1 – ident: e_1_2_11_71_1 doi: 10.1002/9781119815631.ch1 – ident: e_1_2_11_92_1 doi: 10.1016/j.jastp.2008.03.008 – ident: e_1_2_11_38_1 doi: 10.1029/2020JA028057 – ident: e_1_2_11_2_1 doi: 10.1002/2017JA025141 – ident: e_1_2_11_12_1 doi: 10.1029/2006JA011658 – ident: e_1_2_11_21_1 doi: 10.1029/JA079i019p02853 – ident: e_1_2_11_60_1 doi: 10.1029/2007JA012825 – ident: e_1_2_11_64_1 doi: 10.1002/2017JA024683 – ident: e_1_2_11_46_1 doi: 10.1002/2015JA022294 – ident: e_1_2_11_59_1 doi: 10.1029/2006JA012015 – ident: e_1_2_11_93_1 doi: 10.1002/essoar.10506300.1 – volume: 113 issue: 7 year: 2008 ident: e_1_2_11_48_1 article-title: Effects of high‐latitude ionospheric electric field variability on global thermospheric Joule heating and mechanical energy transfer rate publication-title: Journal of Geophysical Research: Space Physics contributor: fullname: Matsuo T. – ident: e_1_2_11_14_1 doi: 10.1029/2012JA017929 – ident: e_1_2_11_36_1 doi: 10.1029/2012JA017885 – ident: e_1_2_11_27_1 doi: 10.1029/JA092iA07p07606 – ident: e_1_2_11_51_1 doi: 10.1029/JA094iA10p13541 – volume: 110 start-page: A09S26 issue: 9 year: 2005 ident: e_1_2_11_29_1 article-title: Saturation of the ionospheric polar cap potential during the October‐November 2003 superstorms publication-title: Journal of Geophysical Research contributor: fullname: Hairston M. R. – ident: e_1_2_11_96_1 doi: 10.1029/2019JA027270 – ident: e_1_2_11_6_1 doi: 10.1029/95GL01909 – ident: e_1_2_11_31_1 doi: 10.1029/JA092iA11p12275 – ident: e_1_2_11_87_1 doi: 10.1029/2000JA000604 – ident: e_1_2_11_83_1 doi: 10.1002/2018JA025280 – ident: e_1_2_11_5_1 doi: 10.1016/0032-0633(83)90040-5 – ident: e_1_2_11_68_1 doi: 10.1016/j.asr.2011.09.004 – ident: e_1_2_11_26_1 doi: 10.1029/93JA02015 – ident: e_1_2_11_16_1 doi: 10.1029/2010JA016019 – ident: e_1_2_11_81_1 doi: 10.1029/1999JA000409 – ident: e_1_2_11_23_1 doi: 10.1029/2011SW000724 – ident: e_1_2_11_69_1 doi: 10.1016/0273-1177(92)90040-5 – ident: e_1_2_11_42_1 doi: 10.1007/s11214-016-0275-y – ident: e_1_2_11_82_1 doi: 10.1186/s40623-015-0228-9 – ident: e_1_2_11_95_1 doi: 10.1029/2018JA025771 – ident: e_1_2_11_88_1 doi: 10.1029/2004JA010884 – ident: e_1_2_11_7_1 doi: 10.1029/1999JA900463 – ident: e_1_2_11_50_1 doi: 10.1002/2014JA020080 – ident: e_1_2_11_35_1 doi: 10.1029/2020JA028059 – volume-title: lkilcommons/ssj_auroral_boundary: Version 1 (Version v1.0.0) year: 2019 ident: e_1_2_11_40_1 contributor: fullname: Kilcommons L. M. – ident: e_1_2_11_57_1 doi: 10.1029/JA094iA07p08921 – ident: e_1_2_11_66_1 doi: 10.1002/2016JA023339 – ident: e_1_2_11_49_1 doi: 10.1029/2002JA009429 – ident: e_1_2_11_45_1 doi: 10.1029/95JA00766 – ident: e_1_2_11_77_1 doi: 10.1029/2018JA026446 – year: 1989 ident: e_1_2_11_67_1 contributor: fullname: Rees M. H. – ident: e_1_2_11_3_1 doi: 10.1023/A:1005107532631 – ident: e_1_2_11_86_1 doi: 10.1029/95JA01755 – ident: e_1_2_11_55_1 doi: 10.1029/JA093iA12p14549 – ident: e_1_2_11_17_1 doi: 10.1029/2007JA012840 – ident: e_1_2_11_65_1 doi: 10.1007/s10712-010-9104-0 – ident: e_1_2_11_33_1 doi: 10.1038/s41586-020-2649-2 – volume-title: Classical electrodynamics year: 2007 ident: e_1_2_11_37_1 contributor: fullname: Jackson J. D. – ident: e_1_2_11_47_1 doi: 10.1029/2019JA027726 – ident: e_1_2_11_74_1 doi: 10.1029/JA092iA03p02565 – ident: e_1_2_11_72_1 doi: 10.1029/JA093iA06p05741 – ident: e_1_2_11_78_1 doi: 10.1016/j.jastp.2006.07.022 – ident: e_1_2_11_63_1 doi: 10.1029/2001JA000264 – ident: e_1_2_11_19_1 doi: 10.1029/2018JA025749 – ident: e_1_2_11_54_1 doi: 10.1002/2014SW001056 – ident: e_1_2_11_24_1 doi: 10.1016/0032-0633(67)90190-0 – ident: e_1_2_11_79_1 doi: 10.1029/2004JA010732 – ident: e_1_2_11_89_1 doi: 10.1029/2008GL034040 – ident: e_1_2_11_30_1 doi: 10.1029/JA090iA05p04229 – ident: e_1_2_11_90_1 doi: 10.1029/2019GL082383 – ident: e_1_2_11_84_1 doi: 10.1029/2017JA025097 – ident: e_1_2_11_9_1 doi: 10.1071/PH620223 – volume: 5 start-page: 369 year: 1987 ident: e_1_2_11_75_1 article-title: An auroral model for the NCAR thermospheric general circulation model (TGCM) publication-title: Annales Geophysicae contributor: fullname: Roble R. G. – ident: e_1_2_11_18_1 doi: 10.1029/2008GL036916 – ident: e_1_2_11_20_1 doi: 10.1016/S1364-6826(98)00137-0 – ident: e_1_2_11_4_1 doi: 10.1029/2018GL081886 – volume: 123 start-page: 368 issue: 12 year: 2018 ident: e_1_2_11_44_1 article-title: Alfvénic heating in the cusp ionosphere‐thermosphere publication-title: Journal of Geophysical Research: Space Physics contributor: fullname: Lotko W. – ident: e_1_2_11_10_1 doi: 10.1029/2011JA016665 – ident: e_1_2_11_41_1 doi: 10.1002/2016JA023342 – ident: e_1_2_11_34_1 doi: 10.1029/JA087iA08p06339 – ident: e_1_2_11_85_1 doi: 10.1029/JA086iA01p00065 – ident: e_1_2_11_43_1 doi: 10.1029/2020JA028332 – volume: 109 issue: 10 year: 2004 ident: e_1_2_11_58_1 article-title: Maps of precipitation by source region, binned by IMF, with inertial convection streamlines publication-title: Journal of Geophysical Research: Space Physics contributor: fullname: Newell P. T. – ident: e_1_2_11_61_1 doi: 10.1029/2009JA014326 – ident: e_1_2_11_76_1 doi: 10.5194/angeo-19-773-2001 – ident: e_1_2_11_28_1 doi: 10.1029/JA093iA04p02715 – ident: e_1_2_11_52_1 doi: 10.1029/2007GL029357 – volume: 114 issue: 6 year: 2009 ident: e_1_2_11_11_1 article-title: Electric field variability and model uncertainty: A classification of source terms in estimating the squared electric field from an electric field model publication-title: Journal of Geophysical Research: Space Physics contributor: fullname: Cosgrove R. B. – ident: e_1_2_11_91_1 doi: 10.1002/2014JA020615 – volume: 113 issue: 6 year: 2008 ident: e_1_2_11_32_1 article-title: Probability distributions of electron precipitation at high magnetic latitudes publication-title: Journal of Geophysical Research: Space Physics contributor: fullname: Hardy D. A. – ident: e_1_2_11_53_1 doi: 10.1029/2009JA015119 – ident: e_1_2_11_39_1 doi: 10.1002/2013JA019325 – ident: e_1_2_11_56_1 doi: 10.1029/93JA02273 – volume: 115 issue: 3 year: 2010 ident: e_1_2_11_62_1 article-title: Seasonal variations in diffuse, monoenergetic, and broadband aurora publication-title: Journal of Geophysical Research: Space Physics contributor: fullname: Newell P. T. – ident: e_1_2_11_15_1 doi: 10.1029/2000GL012624 – ident: e_1_2_11_8_1 doi: 10.1029/2007SW000364 – ident: e_1_2_11_22_1 doi: 10.1029/JA084iA11p06451 – ident: e_1_2_11_73_1 doi: 10.1029/2003GL019113 – ident: e_1_2_11_13_1 doi: 10.1029/2010JA016017 |
SSID | ssj0024524 ssj0000866621 |
Score | 2.3748145 |
Snippet | In this study, a new high‐latitude empirical model is introduced, named for Auroral energy Spectrum and High‐Latitude Electric field variabilitY (ASHLEY). This... Abstract In this study, a new high‐latitude empirical model is introduced, named for Auroral energy Spectrum and High‐Latitude Electric field variabilitY... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Defense programs DMSP satellites electric field variability Electric fields electric potential Electron precipitation Electrons empirical modeling Empirical models Energy Energy spectra Fluxes Geophysics high latitudes Joule heating Latitude Meteorological satellite program Meteorological satellites Precipitation models Solar cycle Specifications |
Title | ASHLEY: A New Empirical Model for the High‐Latitude Electron Precipitation and Electric Field |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020SW002671 https://www.proquest.com/docview/2553332693 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yL17En2w6JQf1IsWlTdrGW5GOISqDObZbSZoEBroNux28-Sf4N_qX-JJmbl4Eb4UmLby-l3zf68v3ELqIlTZJrHUQh6kOqDIskDxhgWGalCZNY-aKaB6f4t6Q3o_Z2Cfc7FmYWh_iJ-FmI8Ot1zbAhay82IDVyATW3hmMLIewR8i3rWiM9fCQ9tdae6xuassooEgg977wHebfbM7-vSWtceYmWnXbTXcP7XqciLP6w-6jLT09QM2sspnr2es7vsLuuk5MVIeoyAY9wJq3OMOwbuH8dT5x4h_YNjt7wQBNMUA9bMs6vj4-H6yTLJXGue-Cg_tW5WLuBbuxmCp_a1Liri1yO0LDbv581wt884SgBBYQgbEVcJOSa0LL2EgmUk4EkcIIysNOGRERhkYxI2WqFGza1AhFLZjTgBA5TaJj1JjOprqJsJSSKKF1QgwMEYQnvKRUUg3onJIybqHLlf2Kea2RUbh_2yEvNu3cQu2VcQsfKVUBlCaK4LU8aqFrZ_A_n1EMRjlw1ig6-dfoU7QT2mIUV6nYRo3F21KfAZpYyHPnMt8Bh8Fn |
link.rule.ids | 315,783,787,11576,27938,27939,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQDLAgPtVCAQ_AgiLqxE5itgilKlAQUlu1W2THtlSJfojCwMZP4DfySzg7hpYFiS1S7ES6-HzvXc7vEDqNlTZJrHUQh6kOqDIskDxhgWGalCZNY-aKaO4f4naf3g7Z0Pc5tWdhKn2In4Sb9Qy3X1sHtwlprzZgRTKBtje7A0si7BnyNRpTbns3hPRxIbbHqq62jAKMBHbvK99h_uXy7N8xaQE0l-GqizetLbTpgSLOqi-7jVb0ZAfVsrlNXU_Hb_gcu-sqMzHfRUXWbQPYvMIZho0L5-PZyKl_YNvt7AkDNsWA9bCt6_h8_-jYVfKqNM59Gxz8aGUuZl6xG4uJ8rdGJW7ZKrc91G_lvet24LsnBCXQgAisrYCclFwTWsZGMpFyIogURlAeNsuIiDA0ihkpU6UgalMjFLVoTgNE5DSJ9tHqZDrRNYSllEQJrRNiYIggPOElpZJqgOeUlHEdnX3br5hVIhmF-7kd8mLZznXU-DZu4V1lXgCniSJ4LY_q6MIZ_M9nFN1BDqQ1ig7-NfoErbd7952ic_Nwd4g2QluZ4soWG2j15flVHwG0eJHHbvl8AYaqxNI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iIF7En2w6NQf1IkXTJm3jbWjL_MlgynYrSZPAwNXh3MGbf4J_o3-JL2l08yJ4KzRp4TUv73uvX76H0GGstElirYM4THVAlWGB5AkLDNOkNGkaM0eiubuPO4_0esAGvuBmz8LU-hA_BTfrGW6_tg4-VsaLDViNTMjaz3p9m0PYI-RL1CJxq-xMuzOtPVY3tWUUUCQk9574DvNP52f_DkkznDmPVl24ydfQqseJuF1_2HW0oKsN1GhPbOX6efSGj7G7rgsTk01UtHsdwJrnuI1h38LZaDx04h_YNjt7wgBNMUA9bGkdn-8ft3aRTJXGme-Cg7tW5WLsBbuxqJS_NSxxbkluW-gxzx4uOoFvnhCUkAVEYGwFFim5JrSMjWQi5UQQKYygPDwrIyLC0ChmpEyVgqBNjVDUgjkNCJHTJNpGi9VzpRsISymJElonxMAQQXjCS0ol1YDOKSnjJjr6tl8xrjUyCvdvO-TFvJ2bqPVt3MJ7yqSAlCaK4LU8aqITZ_A_n1H0-hnkrFG086_RB2i5e5kXt1f3N7toJbS8FEdabKHF15ep3gNg8Sr33er5Ann8w_s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASHLEY%3A+A+New+Empirical+Model+for+the+High%E2%80%90Latitude+Electron+Precipitation+and+Electric+Field&rft.jtitle=Space+weather&rft.au=Zhu%2C+Qingyu&rft.au=Deng%2C+Yue&rft.au=Maute%2C+Astrid&rft.au=Kilcommons%2C+Liam+M.&rft.date=2021-05-01&rft.issn=1542-7390&rft.eissn=1542-7390&rft.volume=19&rft.issue=5&rft_id=info:doi/10.1029%2F2020SW002671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2020SW002671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1542-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1542-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1542-7390&client=summon |