ASHLEY: A New Empirical Model for the High‐Latitude Electron Precipitation and Electric Field

In this study, a new high‐latitude empirical model is introduced, named for Auroral energy Spectrum and High‐Latitude Electric field variabilitY (ASHLEY). This model improves specifications of soft electron precipitations and electric field variability that are not well represented in existing high‐...

Full description

Saved in:
Bibliographic Details
Published inSpace Weather Vol. 19; no. 5
Main Authors Zhu, Qingyu, Deng, Yue, Maute, Astrid, Kilcommons, Liam M., Knipp, Delores J., Hairston, Marc
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, a new high‐latitude empirical model is introduced, named for Auroral energy Spectrum and High‐Latitude Electric field variabilitY (ASHLEY). This model improves specifications of soft electron precipitations and electric field variability that are not well represented in existing high‐latitude empirical models. ASHLEY consists of three components, ASHLEY‐A, ASHLEY‐E, and ASHLEY‐Evar, which are developed based on the electron precipitation and bulk ion drift measurements from the Defense Meteorological Satellite Program (DMSP) satellites during the most recent solar cycle. On the one hand, unlike most existing high‐latitude electron precipitation models, which have assumptions about the energy spectrum of incident electrons, the electron precipitation component of ASHLEY, ASHLEY‐A, provides the differential energy fluxes in the 19 DMSP energy channels under different geophysical conditions without making any assumptions about the energy spectrum. It has been found that the relaxation of spectral assumptions significantly improves soft electron precipitation specifications with respect to a Maxwellian spectrum (up to several orders of magnitude). On the other hand, ASHLEY provides consistent mean electric field and electric field variability under different geophysical conditions by ASHLEY‐E and ASHLEY‐Evar components, respectively. This is different from most existing electric field models which only focus on the large‐scale mean electric field and ignore the electric field variability. Furthermore, the consistency between the electric field and electron precipitation is better taken into account in ASHLEY. Key Points ASHLEY better considers the consistency between the electric field and electron precipitation than existing models ASHLEY better incorporates IMF By polarity impacts on the electron precipitation and improves soft electron precipitation specifications ASHLEY provides consistent mean electric field and electric field variability
AbstractList In this study, a new high‐latitude empirical model is introduced, named for Auroral energy Spectrum and High‐Latitude Electric field variabilitY (ASHLEY). This model improves specifications of soft electron precipitations and electric field variability that are not well represented in existing high‐latitude empirical models. ASHLEY consists of three components, ASHLEY‐A, ASHLEY‐E, and ASHLEY‐Evar, which are developed based on the electron precipitation and bulk ion drift measurements from the Defense Meteorological Satellite Program (DMSP) satellites during the most recent solar cycle. On the one hand, unlike most existing high‐latitude electron precipitation models, which have assumptions about the energy spectrum of incident electrons, the electron precipitation component of ASHLEY, ASHLEY‐A, provides the differential energy fluxes in the 19 DMSP energy channels under different geophysical conditions without making any assumptions about the energy spectrum. It has been found that the relaxation of spectral assumptions significantly improves soft electron precipitation specifications with respect to a Maxwellian spectrum (up to several orders of magnitude). On the other hand, ASHLEY provides consistent mean electric field and electric field variability under different geophysical conditions by ASHLEY‐E and ASHLEY‐Evar components, respectively. This is different from most existing electric field models which only focus on the large‐scale mean electric field and ignore the electric field variability. Furthermore, the consistency between the electric field and electron precipitation is better taken into account in ASHLEY. Key Points ASHLEY better considers the consistency between the electric field and electron precipitation than existing models ASHLEY better incorporates IMF By polarity impacts on the electron precipitation and improves soft electron precipitation specifications ASHLEY provides consistent mean electric field and electric field variability
Abstract In this study, a new high‐latitude empirical model is introduced, named for Auroral energy Spectrum and High‐Latitude Electric field variabilitY (ASHLEY). This model improves specifications of soft electron precipitations and electric field variability that are not well represented in existing high‐latitude empirical models. ASHLEY consists of three components, ASHLEY‐A, ASHLEY‐E, and ASHLEY‐Evar, which are developed based on the electron precipitation and bulk ion drift measurements from the Defense Meteorological Satellite Program (DMSP) satellites during the most recent solar cycle. On the one hand, unlike most existing high‐latitude electron precipitation models, which have assumptions about the energy spectrum of incident electrons, the electron precipitation component of ASHLEY, ASHLEY‐A, provides the differential energy fluxes in the 19 DMSP energy channels under different geophysical conditions without making any assumptions about the energy spectrum. It has been found that the relaxation of spectral assumptions significantly improves soft electron precipitation specifications with respect to a Maxwellian spectrum (up to several orders of magnitude). On the other hand, ASHLEY provides consistent mean electric field and electric field variability under different geophysical conditions by ASHLEY‐E and ASHLEY‐Evar components, respectively. This is different from most existing electric field models which only focus on the large‐scale mean electric field and ignore the electric field variability. Furthermore, the consistency between the electric field and electron precipitation is better taken into account in ASHLEY. Key Points ASHLEY better considers the consistency between the electric field and electron precipitation than existing models ASHLEY better incorporates IMF B y polarity impacts on the electron precipitation and improves soft electron precipitation specifications ASHLEY provides consistent mean electric field and electric field variability
In this study, a new high‐latitude empirical model is introduced, named for Auroral energy Spectrum and High‐Latitude Electric field variabilitY (ASHLEY). This model improves specifications of soft electron precipitations and electric field variability that are not well represented in existing high‐latitude empirical models. ASHLEY consists of three components, ASHLEY‐A, ASHLEY‐E, and ASHLEY‐Evar, which are developed based on the electron precipitation and bulk ion drift measurements from the Defense Meteorological Satellite Program (DMSP) satellites during the most recent solar cycle. On the one hand, unlike most existing high‐latitude electron precipitation models, which have assumptions about the energy spectrum of incident electrons, the electron precipitation component of ASHLEY, ASHLEY‐A, provides the differential energy fluxes in the 19 DMSP energy channels under different geophysical conditions without making any assumptions about the energy spectrum. It has been found that the relaxation of spectral assumptions significantly improves soft electron precipitation specifications with respect to a Maxwellian spectrum (up to several orders of magnitude). On the other hand, ASHLEY provides consistent mean electric field and electric field variability under different geophysical conditions by ASHLEY‐E and ASHLEY‐Evar components, respectively. This is different from most existing electric field models which only focus on the large‐scale mean electric field and ignore the electric field variability. Furthermore, the consistency between the electric field and electron precipitation is better taken into account in ASHLEY.
Author Knipp, Delores J.
Zhu, Qingyu
Deng, Yue
Hairston, Marc
Kilcommons, Liam M.
Maute, Astrid
Author_xml – sequence: 1
  givenname: Qingyu
  orcidid: 0000-0002-4003-4104
  surname: Zhu
  fullname: Zhu, Qingyu
  organization: University of Texas at Arlington
– sequence: 2
  givenname: Yue
  orcidid: 0000-0002-8508-1588
  surname: Deng
  fullname: Deng, Yue
  email: yuedeng@uta.edu
  organization: University of Texas at Arlington
– sequence: 3
  givenname: Astrid
  orcidid: 0000-0003-3393-0987
  surname: Maute
  fullname: Maute, Astrid
  organization: National Center for Atmosphere Research
– sequence: 4
  givenname: Liam M.
  orcidid: 0000-0002-4980-3045
  surname: Kilcommons
  fullname: Kilcommons, Liam M.
  organization: University of Colorado Boulder
– sequence: 5
  givenname: Delores J.
  orcidid: 0000-0002-2047-5754
  surname: Knipp
  fullname: Knipp, Delores J.
  organization: University of Colorado Boulder
– sequence: 6
  givenname: Marc
  orcidid: 0000-0003-4524-4837
  surname: Hairston
  fullname: Hairston, Marc
  organization: University of Texas at Dallas
BookMark eNp90M1Kw0AQB_BFKthWbz7Aglej-5FNut5KSa0QP6BK8bRs9sNuSZO4SSm9-Qg-o0_iSnvoydPM8P8xAzMAvaquDACXGN1gRPgtQQTNFwiRJMUnoI9ZTKKUctQ76s_AoG1XwcSMxH0gxvNZnr3fwTF8MluYrRvnnZIlfKy1KaGtPeyWBs7cx_Ln6zuXnes22sCsNKrzdQVfvFGucV0IwiQrfYicglNnSn0OTq0sW3NxqEPwNs1eJ7Mof75_mIzzSFGU0MgynaBEcYNjldiCyRHHEhfSypgTpCiWhFjNbFGMtMYjFlupY05JYhhKeZzSIbja7218_bkxbSdW9cZX4aQgjFEaKKdBXe-V8nXbemNF491a-p3ASPy9UBy_MHCy51tXmt2_VswXGcE4HPoFcWxzSQ
CitedBy_id crossref_primary_10_1029_2021GL097260
crossref_primary_10_1029_2022SW003170
crossref_primary_10_1029_2023JA032040
crossref_primary_10_5194_angeo_42_229_2024
crossref_primary_10_1029_2023JA031598
crossref_primary_10_1029_2021GL094781
crossref_primary_10_3389_fphy_2021_744298
crossref_primary_10_1029_2023JA032232
crossref_primary_10_1029_2023JA032002
crossref_primary_10_1029_2023JA032079
crossref_primary_10_3389_fspas_2022_916739
crossref_primary_10_1051_e3sconf_202453104011
crossref_primary_10_3389_fspas_2023_1062265
crossref_primary_10_1029_2021JA029816
crossref_primary_10_3389_fspas_2022_958977
crossref_primary_10_1029_2022SW003146
crossref_primary_10_1029_2021SW002856
crossref_primary_10_1029_2022SW003301
Cites_doi 10.5636/jgg.47.191
10.1007/s00585-000-0766-7
10.1029/93JA01645
10.1002/9781119815631.ch1
10.1016/j.jastp.2008.03.008
10.1029/2020JA028057
10.1002/2017JA025141
10.1029/2006JA011658
10.1029/JA079i019p02853
10.1029/2007JA012825
10.1002/2017JA024683
10.1002/2015JA022294
10.1029/2006JA012015
10.1002/essoar.10506300.1
10.1029/2012JA017929
10.1029/2012JA017885
10.1029/JA092iA07p07606
10.1029/JA094iA10p13541
10.1029/2019JA027270
10.1029/95GL01909
10.1029/JA092iA11p12275
10.1029/2000JA000604
10.1002/2018JA025280
10.1016/0032-0633(83)90040-5
10.1016/j.asr.2011.09.004
10.1029/93JA02015
10.1029/2010JA016019
10.1029/1999JA000409
10.1029/2011SW000724
10.1016/0273-1177(92)90040-5
10.1007/s11214-016-0275-y
10.1186/s40623-015-0228-9
10.1029/2018JA025771
10.1029/2004JA010884
10.1029/1999JA900463
10.1002/2014JA020080
10.1029/2020JA028059
10.1029/JA094iA07p08921
10.1002/2016JA023339
10.1029/2002JA009429
10.1029/95JA00766
10.1029/2018JA026446
10.1023/A:1005107532631
10.1029/95JA01755
10.1029/JA093iA12p14549
10.1029/2007JA012840
10.1007/s10712-010-9104-0
10.1038/s41586-020-2649-2
10.1029/2019JA027726
10.1029/JA092iA03p02565
10.1029/JA093iA06p05741
10.1016/j.jastp.2006.07.022
10.1029/2001JA000264
10.1029/2018JA025749
10.1002/2014SW001056
10.1016/0032-0633(67)90190-0
10.1029/2004JA010732
10.1029/2008GL034040
10.1029/JA090iA05p04229
10.1029/2019GL082383
10.1029/2017JA025097
10.1071/PH620223
10.1029/2008GL036916
10.1016/S1364-6826(98)00137-0
10.1029/2018GL081886
10.1029/2011JA016665
10.1002/2016JA023342
10.1029/JA087iA08p06339
10.1029/JA086iA01p00065
10.1029/2020JA028332
10.1029/2009JA014326
10.5194/angeo-19-773-2001
10.1029/JA093iA04p02715
10.1029/2007GL029357
10.1002/2014JA020615
10.1029/2009JA015119
10.1002/2013JA019325
10.1029/93JA02273
10.1029/2000GL012624
10.1029/2007SW000364
10.1029/JA084iA11p06451
10.1029/2003GL019113
10.1029/2010JA016017
ContentType Journal Article
Copyright 2021. The Authors.
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. The Authors.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.1029/2020SW002671
DatabaseName Wiley Online Library
Wiley-Blackwell Open Access Backfiles
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Aerospace Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1542-7390
EndPage n/a
ExternalDocumentID 10_1029_2020SW002671
SWE21133
Genre article
GrantInformation_xml – fundername: DOD, USAF, AFMC, Air Force Office of Scientific Research (AFOSR)
  funderid: FA9559‐16‐1‐0364; FA9550‐17‐1‐0248; FA9550‐17‐1‐0258; FA9559‐16‐1‐0364
– fundername: National Science Foundation
– fundername: University of Texas at Arlington
– fundername: National Aeronautics and Space Administration (NASA)
  funderid: 80NSSC20K0195, 80NSSC20K1786 and 80NSSC20K0606
– fundername: National Center for Atmospheric Research
GroupedDBID 05W
0R~
123
1OC
24P
31~
50Y
6IK
8-1
8R4
8R5
AAESR
AAHHS
AAJGR
AAZKR
ABCUV
ABHFT
ACBWZ
ACCFJ
ACGFO
ACGFS
ACPOU
ACXQS
ADBBV
ADEOM
ADMGS
ADXAS
AEEZP
AEQDE
AFBPY
AFGKR
AFPWT
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
EBS
EJD
FEDTE
G-S
GODZA
HVGLF
HZ~
IAO
IGS
IPLJI
KZ1
LITHE
LMP
LOXES
LUTES
LYRES
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
ROL
SUPJJ
WBKPD
WIN
ZZTAW
~02
~OA
AAYXX
CITATION
ITC
7TG
8FD
H8D
KL.
L7M
ID FETCH-LOGICAL-c3063-f5d606c9e14c6fb5a891a1bafa4920c31a22fd5fbb8dd1854fad49326e5079473
IEDL.DBID 24P
ISSN 1542-7390
1539-4964
IngestDate Thu Oct 31 10:35:59 EDT 2024
Thu Sep 26 16:32:01 EDT 2024
Sat Aug 24 01:00:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3063-f5d606c9e14c6fb5a891a1bafa4920c31a22fd5fbb8dd1854fad49326e5079473
ORCID 0000-0002-2047-5754
0000-0002-4003-4104
0000-0002-8508-1588
0000-0003-3393-0987
0000-0003-4524-4837
0000-0002-4980-3045
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020SW002671
PQID 2553332693
PQPubID 54316
PageCount 25
ParticipantIDs proquest_journals_2553332693
crossref_primary_10_1029_2020SW002671
wiley_primary_10_1029_2020SW002671_SWE21133
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Space Weather
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2011; 116
2018; 123
1987; 5
1999; 88
2019; 124
2008; 35
2008; 6
2020; 125
2008; 70
2007; 34
1992; 12
2009; 114
2012; 10
1981; 86
2001; 106
2004; 31
2000; 18
2013; 51
2010; 115
1995; 22
2001; 19
2002; 107
2020b
2020a
1985; 90
1967; 15
2008; 113
2017; 122
2014; 12
2007; 69
2017; 206
2014; 119
1974; 79
1989; 1
2005; 110
1987; 92
2015; 120
1983; 31
2007
2021; 261
1962; 15
2016; 121
2011; 32
2020; 585
2001; 28
1999; 61
2004; 109
1988; 93
2006; 111
2015; 67
2009; 36
2007; 112
1989; 94
2003; 108
2000; 105
1995; 47
2019; 46
1993; 98
1982; 87
1994; 99
2019
2018
1995; 100
2012; 117
1979; 84
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_2_1
Cosgrove R. B. (e_1_2_11_11_1) 2009; 114
Lotko W. (e_1_2_11_44_1) 2018; 123
Jackson J. D. (e_1_2_11_37_1) 2007
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
Matsuo T. (e_1_2_11_48_1) 2008; 113
Roble R. G. (e_1_2_11_75_1) 1987; 5
e_1_2_11_94_1
e_1_2_11_50_1
e_1_2_11_71_1
e_1_2_11_92_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_31_1
Hardy D. A. (e_1_2_11_32_1) 2008; 113
e_1_2_11_56_1
Newell P. T. (e_1_2_11_58_1) 2004; 109
e_1_2_11_77_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
Hairston M. R. (e_1_2_11_29_1) 2005; 110
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_82_1
e_1_2_11_61_1
e_1_2_11_80_1
Newell P. T. (e_1_2_11_62_1) 2010; 115
e_1_2_11_21_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_25_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_18_1
e_1_2_11_16_1
Rees M. H. (e_1_2_11_67_1) 1989
e_1_2_11_39_1
Kilcommons L. M. (e_1_2_11_40_1) 2019
References_xml – volume: 125
  issue: 8
  year: 2020
  article-title: How magnetically conjugate atmospheres and the magnetosphere participate in the formation of low‐energy electron precipitation in the region of diffuse aurora
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 22
  start-page: 2393
  year: 1995
  end-page: 2396
  article-title: On the importance of E‐field variability for Joule heating in the high‐latitude thermosphere
  publication-title: Geophysical Research Letters
– year: 2018
  article-title: Identification of auroral electron precipitation mechanism combinations and their relationships to net downgoing energy and number flux'
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 90
  start-page: 4229
  issue: A5
  year: 1985
  end-page: 4248
  article-title: A statistical model of auroral electron precipitation
  publication-title: Journal of Geophysical Research
– volume: 15
  start-page: 209
  year: 1967
  end-page: 229
  article-title: Dynamics of auroral belt and polar geomagnetic disturbances
  publication-title: Planetary and Space Science
– volume: 61
  start-page: 329
  issue: 3–4
  year: 1999
  end-page: 350
  article-title: Time dependent thermospheric neutral response to the 2–11 November 1993 storm period
  publication-title: Journal of Atmospheric and Terrestrial Physics
– volume: 115
  issue: A6
  year: 2010
  article-title: Saturation of transpolar potential for large Y component interplanetary magnetic field
  publication-title: Journal of Geophysical Research
– volume: 121
  start-page: 7108
  issue: 7
  year: 2016
  end-page: 7124
  article-title: High‐latitude energy input and its impact on the thermosphere
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 120
  start-page: 1035
  issue: 2
  year: 2015
  end-page: 1056
  article-title: Electron precipitation models in global magnetosphere simulations
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 69
  start-page: 234
  issue: 3
  year: 2007
  end-page: 248
  article-title: Polar cap potential saturation: Observations, theory, and modeling
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– volume: 111
  issue: A10
  year: 2006
  article-title: Parametric dependence of electric field variability in the Sondrestrom database: A linear relation with Kp
  publication-title: Journal of Geophysical Research
– volume: 119
  start-page: 171
  issue: 1
  year: 2014
  end-page: 184
  article-title: Magnetosphere‐ionosphere energy interchange in the electron diffuse aurora
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 32
  start-page: 101
  issue: 2
  year: 2011
  end-page: 195
  article-title: Density perturbations in the upper atmosphere caused by the dissipation of solar wind energy
  publication-title: Surveys in Geophysics
– volume: 46
  start-page: 3582
  issue: 7
  year: 2019
  end-page: 3589
  article-title: Low energy precipitating electrons in the diffuse aurorae
  publication-title: Geophysical Research Letters
– volume: 88
  start-page: 563
  issue: 3
  year: 1999
  end-page: 601
  article-title: Ionospheric storms—A review
  publication-title: Space Science Reviews
– volume: 113
  year: 2008
  article-title: Analysis of thermospheric response to magnetospheric inputs
  publication-title: Journal of Geophysical Research
– volume: 84
  start-page: 6451
  issue: A11
  year: 1979
  end-page: 6457
  article-title: Precipitating electrons associated with the diffuse aurora: Evidence for electrons of atmospheric origin in the plasma sheet
  publication-title: Journal of Geophysical Research
– volume: 122
  start-page: 9068
  year: 2017
  end-page: 9079
  article-title: A new DMSP magnetometer and auroral boundary data set and estimates of field‐aligned currents in dynamic auroral boundary coordinates
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 117
  issue: A12
  year: 2012
  article-title: Statistical maps of small‐scale electric field variability in the high‐latitude ionosphere
  publication-title: Journal of Geophysical Research
– volume: 99
  start-page: 273
  issue: A1
  year: 1994
  end-page: 286
  article-title: Ionospheric projections of magnetospheric regions under low and high solar wind pressure conditions
  publication-title: Journal of Geophysical Research
– volume: 116
  year: 2011
  article-title: Impact of the altitudinal Joule heating distribution on the thermosphere
  publication-title: Journal of Geophysical Research
– volume: 113
  issue: A7
  year: 2008
  article-title: Effects of high‐latitude ionospheric electric field variability on global thermospheric Joule heating and mechanical energy transfer rate
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 94
  start-page: 8921
  issue: A7
  year: 1989
  end-page: 8927
  article-title: Some low‐altitude cusp dependencies on the interplanetary magnetic field
  publication-title: Journal of Geophysical Research
– volume: 125
  issue: 1
  year: 2020
  article-title: Impacts of binning methods on high‐latitude electrodynamic forcing: Static versus boundary‐oriented binning methods
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 116
  issue: A9
  year: 2011
  article-title: The bias on the joule heating estimate: Small‐scale variability versus resolved‐scale model uncertainty and the correlation of electric field and conductance
  publication-title: Journal of Geophysical Research
– volume: 36
  year: 2009
  article-title: Impact of electric field variability on Joule heating and thermospheric temperature and density
  publication-title: Geophysical Research Letters
– volume: 47
  start-page: 191
  issue: 2
  year: 1995
  end-page: 212
  article-title: Ionospheric electrodynamics using magnetic apex coordinates
  publication-title: Journal of Geomagnetism and Geoelectricity
– volume: 31
  issue: 7
  year: 2004
  article-title: Polar cap index comparisons with AMIE cross polar cap potential, electric field, and polar cap area
  publication-title: Geophysical Research Letters
– volume: 122
  start-page: 9056
  year: 2017
  end-page: 9067
  article-title: New DMSP database of precipitating auroral electrons and ions
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 108
  start-page: 1005
  year: 2003
  article-title: High‐latitude ionospheric electric field variability and electric potential derived from DE‐2 plasma drift measurements: Dependence on IMF and dipole tilt
  publication-title: Journal of Geophysical Research
– volume: 100
  start-page: 19643
  year: 1995
  end-page: 19660
  article-title: Magnetosphere‐ionosphere‐thermosphere coupling: Effect of neutral winds on energy transfer and field‐aligned current
  publication-title: Journal of Geophysical Research
– volume: 94
  start-page: 13541
  issue: A10
  year: 1989
  end-page: 13552
  article-title: Deducing composition and incident electron spectra from ground‐based auroral optical measurements: A study of auroral red line processes
  publication-title: Journal of Geophysical Research
– volume: 123
  start-page: 5210
  issue: 6
  year: 2018
  end-page: 5222
  article-title: Semianalytical estimation of energy deposition in the ionosphere by monochromatic Alfvén waves
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 106
  start-page: 407
  issue: A1
  year: 2001
  end-page: 416
  article-title: An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event
  publication-title: Journal of Geophysical Research
– volume: 67
  start-page: 79
  issue: 1
  year: 2015
  article-title: International Geomagnetic Reference Field: The 12th generation
  publication-title: Earth Planets and Space
– volume: 123
  start-page: 2398
  year: 2018
  end-page: 2411
  article-title: Diurnal variations in global Joule heating morphology and magnitude due to neutral winds
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 46
  start-page: 6297
  issue: 12
  year: 2019
  end-page: 6305
  article-title: Transient ionospheric upflow driven by poleward moving auroral forms observed during the Rocket Experiment for Neutral Upwelling 2 (RENU2) campaign
  publication-title: Geophysical Research Letters
– volume: 12
  start-page: 368
  issue: 6
  year: 2014
  end-page: 379
  article-title: OVATION Prime‐2013: Extension of auroral precipitation model to higher disturbance levels
  publication-title: Space Weather
– volume: 86
  start-page: 65
  issue: A1
  year: 1981
  end-page: 75
  article-title: The diurnal and latitudinal variation of auroral zone ionospheric conductivity
  publication-title: Journal of Geophysical Research
– volume: 110
  issue: A9
  year: 2005
  article-title: Saturation of the ionospheric polar cap potential during the October‐November 2003 superstorms
  publication-title: Journal of Geophysical Research
– volume: 100
  start-page: 19595
  issue: A10
  year: 1995
  end-page: 19608
  article-title: Models of high‐latitude electric potentials derived with a least error fit of spherical harmonic coefficients
  publication-title: Journal of Geophysical Research
– year: 2019
– volume: 112
  issue: A1
  year: 2007
  article-title: A nearly universal solar wind‐magnetosphere coupling function inferred from 10 magnetospheric state variables
  publication-title: Journal of Geophysical Research
– volume: 119
  start-page: 10116
  issue: 12
  year: 2014
  end-page: 10132
  article-title: Maps of precipitating electron spectra characterized by Maxwellian and kappa distributions
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 93
  start-page: 2715
  issue: A4
  year: 1988
  end-page: 2724
  article-title: On the spectrum of the secondary auroral electrons
  publication-title: Journal of Geophysical Research
– volume: 18
  start-page: 766
  year: 2000
  end-page: 781
  article-title: Quantitative modeling of the ionospheric response to geomagnetic activity
  publication-title: Annales Geophysicae
– volume: 110
  year: 2005
  article-title: Improved ionospheric electrodynamic models and application to calculating Joule heating rates
  publication-title: Journal of Geophysical Research
– volume: 109
  issue: A10
  year: 2004
  article-title: Maps of precipitation by source region, binned by IMF, with inertial convection streamlines
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  article-title: Array programming with NumPy
  publication-title: Nature
– volume: 99
  start-page: 3893
  issue: A3
  year: 1994
  end-page: 3914
  article-title: Response of the thermosphere and ionosphere to geomagnetic storms
  publication-title: Journal of Geophysical Research
– volume: 98
  start-page: 21533
  issue: A12
  year: 1993
  end-page: 21548
  article-title: Transport‐theoretic model for the electron‐proton‐hydrogen atom Aurora: 2. Model results
  publication-title: Journal of Geophysical Research
– volume: 123
  start-page: 368
  issue: 12
  year: 2018
  end-page: 410
  article-title: Alfvénic heating in the cusp ionosphere‐thermosphere
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 15
  start-page: 223
  year: 1962
  article-title: Joule heating of the upper atmosphere
  publication-title: Australian Journal of Physics
– volume: 12
  start-page: 59
  issue: 6
  year: 1992
  end-page: 68
  article-title: Assimilative mapping of ionospheric electrodynamics
  publication-title: Advances in Space Research
– volume: 31
  start-page: 489
  issue: 5
  year: 1983
  end-page: 498
  article-title: Intensity distribution of dayside polar soft electron precipitation and the IMF
  publication-title: Planetary and Space Science
– volume: 117
  year: 2012
  article-title: Height distribution of Joule heating and its influence on the thermosphere
  publication-title: Journal of Geophysical Research
– volume: 34
  issue: 9
  year: 2007
  article-title: Does the polar cap area saturate?
  publication-title: Geophysical Research Letters
– year: 2007
– volume: 123
  start-page: 862
  year: 2018
  end-page: 882
  article-title: Effects of high‐latitude forcing uncertainty on the low‐latitude and midlatitude ionosphere
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 5
  start-page: 369
  year: 1987
  end-page: 382
  article-title: An auroral model for the NCAR thermospheric general circulation model (TGCM)
  publication-title: Annales Geophysicae
– volume: 6
  issue: 9
  year: 2008
  article-title: Validation of the coupled thermosphere ionosphere plasmasphere electrodynamics model: CTIPE‐mass spectrometer incoherent scatter temperature comparison
  publication-title: Space Weather
– volume: 87
  start-page: 6339
  issue: A8
  year: 1982
  end-page: 6345
  article-title: A model of the high‐latitude ionospheric convection pattern
  publication-title: Journal of Geophysical Research
– volume: 10
  issue: 3
  year: 2012
  article-title: Global Joule heating index derived from thermospheric density physics‐based modeling and observations
  publication-title: Space Weather
– volume: 92
  start-page: 2565
  issue: A3
  year: 1987
  end-page: 2569
  article-title: On calculating ionospheric conductances from the flux and energy of precipitating electrons
  publication-title: Journal of Geophysical Research
– volume: 1
  year: 1989
– volume: 113
  issue: A4
  year: 2008
  article-title: Pairs of solar wind‐magnetosphere coupling functions: Combining a merging term with a viscous term works best
  publication-title: Journal of Geophysical Research
– volume: 115
  year: 2010
  article-title: A dynamical model of high‐latitude convection derived from SuperDARN plasma drift measurements
  publication-title: Journal of Geophysical Research
– volume: 51
  start-page: 610
  issue: 4
  year: 2013
  end-page: 619
  article-title: Reevaluation of thermosphere heating by auroral electrons
  publication-title: Advances in Space Research
– year: 2020a
– volume: 107
  start-page: 17
  issue: A8
  year: 2002
  article-title: High‐latitude ionospheric convection models derived from Defense Meteorological Satellite Program ion drift observations and parameterized by the interplanetary magnetic field strength and direction
  publication-title: Journal of Geophysical Research
– volume: 123
  start-page: 9862
  issue: 11
  year: 2018
  end-page: 9872
  article-title: Small‐scale and mesoscale variabilities in the electric field and particle precipitation and their impacts on Joule heating
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 125
  issue: 10
  year: 2020
  article-title: The case for improving the Robinson Formulas
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 125
  issue: 12
  year: 2020
  article-title: Alfvénic thermospheric upwelling in a global geospace model
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 92
  start-page: 7606
  year: 1987
  end-page: 7618
  article-title: Height‐integrated Pedersen and Hall conductivity patterns inferred from the TIROS‐NOAA satellite data
  publication-title: Journal of Geophysical Research
– volume: 113
  issue: A6
  year: 2008
  article-title: Probability distributions of electron precipitation at high magnetic latitudes
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 125
  issue: 5
  year: 2020
  article-title: Large‐scale ionospheric disturbances during the 17 March 2015 Storm: A model‐data comparative study
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 124
  start-page: 4905
  issue: 6
  year: 2019
  end-page: 4915
  article-title: Effects of alignment between particle precipitation and ion convection patterns on Joule heating
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 115
  issue: A3
  year: 2010
  article-title: Seasonal variations in diffuse, monoenergetic, and broadband aurora
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 92
  start-page: 12275
  issue: A11
  year: 1987
  end-page: 12294
  article-title: Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity
  publication-title: Journal of Geophysical Research
– volume: 19
  start-page: 773
  issue: 7
  year: 2001
  end-page: 781
  article-title: The variability of Joule heating, and its effects on the ionosphere and thermosphere
  publication-title: Annales Geophysicae
– volume: 79
  start-page: 2853
  issue: 19
  year: 1974
  article-title: Precipitating electron fluxes formed by a magnetic field aligned potential difference
  publication-title: Journal of Geophysical Research
– volume: 110
  year: 2005
  article-title: Comparison of SuperDARN radar boundaries with DMSP particle precipitation boundaries
  publication-title: Journal of Geophysical Research
– volume: 93
  start-page: 14549
  issue: A12
  year: 1988
  end-page: 14556
  article-title: The cusp and the cleft/boundary layer: Low‐altitude identification and statistical local time variation
  publication-title: Journal of Geophysical Research
– volume: 123
  start-page: 3196
  issue: 4
  year: 2018
  end-page: 3216
  article-title: Statistical patterns of ionospheric convection derived from mid‐latitude, high‐latitude, and polar SuperDARN HF radar observations
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 114
  year: 2009
  article-title: Diffuse, monoenergetic, and broadband aurora: The global precipitation budget
  publication-title: Journal of Geophysical Research
– volume: 28
  start-page: 2783
  issue: 14
  year: 2001
  end-page: 2786
  article-title: Quantification of high latitude electric field variability
  publication-title: Geophysical Research Letters
– volume: 93
  start-page: 5741
  issue: A6
  year: 1988
  end-page: 5759
  article-title: Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique
  publication-title: Journal of Geophysical Research
– volume: 105
  start-page: 23015
  issue: A10
  year: 2000
  end-page: 23024
  article-title: High‐latitude currents and their energy exchange with the ionosphere‐thermosphere system
  publication-title: Journal of Geophysical Research
– volume: 114
  issue: A6
  year: 2009
  article-title: Electric field variability and model uncertainty: A classification of source terms in estimating the squared electric field from an electric field model
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 105
  start-page: 5265
  issue: A3
  year: 2000
  end-page: 5273
  article-title: Electric field variability associated with the Millstone Hill electric field model
  publication-title: Journal of Geophysical Research
– year: 2020b
– volume: 261
  year: 2021
– volume: 35
  issue: 12
  year: 2008
  article-title: Reverse convection potential saturation during northward IMF
  publication-title: Geophysical Research Letters
– volume: 206
  start-page: 27
  year: 2017
  end-page: 59
  article-title: Magnetic coordinate systems
  publication-title: Space Science Reviews
– volume: 70
  start-page: 1231
  year: 2008
  end-page: 1242
  article-title: An empirical Kp‐dependent global auroral model based on TIMED/GUVI FUV data
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– ident: e_1_2_11_70_1
  doi: 10.5636/jgg.47.191
– ident: e_1_2_11_25_1
  doi: 10.1007/s00585-000-0766-7
– ident: e_1_2_11_80_1
  doi: 10.1029/93JA01645
– ident: e_1_2_11_94_1
– ident: e_1_2_11_71_1
  doi: 10.1002/9781119815631.ch1
– ident: e_1_2_11_92_1
  doi: 10.1016/j.jastp.2008.03.008
– ident: e_1_2_11_38_1
  doi: 10.1029/2020JA028057
– ident: e_1_2_11_2_1
  doi: 10.1002/2017JA025141
– ident: e_1_2_11_12_1
  doi: 10.1029/2006JA011658
– ident: e_1_2_11_21_1
  doi: 10.1029/JA079i019p02853
– ident: e_1_2_11_60_1
  doi: 10.1029/2007JA012825
– ident: e_1_2_11_64_1
  doi: 10.1002/2017JA024683
– ident: e_1_2_11_46_1
  doi: 10.1002/2015JA022294
– ident: e_1_2_11_59_1
  doi: 10.1029/2006JA012015
– ident: e_1_2_11_93_1
  doi: 10.1002/essoar.10506300.1
– volume: 113
  issue: 7
  year: 2008
  ident: e_1_2_11_48_1
  article-title: Effects of high‐latitude ionospheric electric field variability on global thermospheric Joule heating and mechanical energy transfer rate
  publication-title: Journal of Geophysical Research: Space Physics
  contributor:
    fullname: Matsuo T.
– ident: e_1_2_11_14_1
  doi: 10.1029/2012JA017929
– ident: e_1_2_11_36_1
  doi: 10.1029/2012JA017885
– ident: e_1_2_11_27_1
  doi: 10.1029/JA092iA07p07606
– ident: e_1_2_11_51_1
  doi: 10.1029/JA094iA10p13541
– volume: 110
  start-page: A09S26
  issue: 9
  year: 2005
  ident: e_1_2_11_29_1
  article-title: Saturation of the ionospheric polar cap potential during the October‐November 2003 superstorms
  publication-title: Journal of Geophysical Research
  contributor:
    fullname: Hairston M. R.
– ident: e_1_2_11_96_1
  doi: 10.1029/2019JA027270
– ident: e_1_2_11_6_1
  doi: 10.1029/95GL01909
– ident: e_1_2_11_31_1
  doi: 10.1029/JA092iA11p12275
– ident: e_1_2_11_87_1
  doi: 10.1029/2000JA000604
– ident: e_1_2_11_83_1
  doi: 10.1002/2018JA025280
– ident: e_1_2_11_5_1
  doi: 10.1016/0032-0633(83)90040-5
– ident: e_1_2_11_68_1
  doi: 10.1016/j.asr.2011.09.004
– ident: e_1_2_11_26_1
  doi: 10.1029/93JA02015
– ident: e_1_2_11_16_1
  doi: 10.1029/2010JA016019
– ident: e_1_2_11_81_1
  doi: 10.1029/1999JA000409
– ident: e_1_2_11_23_1
  doi: 10.1029/2011SW000724
– ident: e_1_2_11_69_1
  doi: 10.1016/0273-1177(92)90040-5
– ident: e_1_2_11_42_1
  doi: 10.1007/s11214-016-0275-y
– ident: e_1_2_11_82_1
  doi: 10.1186/s40623-015-0228-9
– ident: e_1_2_11_95_1
  doi: 10.1029/2018JA025771
– ident: e_1_2_11_88_1
  doi: 10.1029/2004JA010884
– ident: e_1_2_11_7_1
  doi: 10.1029/1999JA900463
– ident: e_1_2_11_50_1
  doi: 10.1002/2014JA020080
– ident: e_1_2_11_35_1
  doi: 10.1029/2020JA028059
– volume-title: lkilcommons/ssj_auroral_boundary: Version 1 (Version v1.0.0)
  year: 2019
  ident: e_1_2_11_40_1
  contributor:
    fullname: Kilcommons L. M.
– ident: e_1_2_11_57_1
  doi: 10.1029/JA094iA07p08921
– ident: e_1_2_11_66_1
  doi: 10.1002/2016JA023339
– ident: e_1_2_11_49_1
  doi: 10.1029/2002JA009429
– ident: e_1_2_11_45_1
  doi: 10.1029/95JA00766
– ident: e_1_2_11_77_1
  doi: 10.1029/2018JA026446
– year: 1989
  ident: e_1_2_11_67_1
  contributor:
    fullname: Rees M. H.
– ident: e_1_2_11_3_1
  doi: 10.1023/A:1005107532631
– ident: e_1_2_11_86_1
  doi: 10.1029/95JA01755
– ident: e_1_2_11_55_1
  doi: 10.1029/JA093iA12p14549
– ident: e_1_2_11_17_1
  doi: 10.1029/2007JA012840
– ident: e_1_2_11_65_1
  doi: 10.1007/s10712-010-9104-0
– ident: e_1_2_11_33_1
  doi: 10.1038/s41586-020-2649-2
– volume-title: Classical electrodynamics
  year: 2007
  ident: e_1_2_11_37_1
  contributor:
    fullname: Jackson J. D.
– ident: e_1_2_11_47_1
  doi: 10.1029/2019JA027726
– ident: e_1_2_11_74_1
  doi: 10.1029/JA092iA03p02565
– ident: e_1_2_11_72_1
  doi: 10.1029/JA093iA06p05741
– ident: e_1_2_11_78_1
  doi: 10.1016/j.jastp.2006.07.022
– ident: e_1_2_11_63_1
  doi: 10.1029/2001JA000264
– ident: e_1_2_11_19_1
  doi: 10.1029/2018JA025749
– ident: e_1_2_11_54_1
  doi: 10.1002/2014SW001056
– ident: e_1_2_11_24_1
  doi: 10.1016/0032-0633(67)90190-0
– ident: e_1_2_11_79_1
  doi: 10.1029/2004JA010732
– ident: e_1_2_11_89_1
  doi: 10.1029/2008GL034040
– ident: e_1_2_11_30_1
  doi: 10.1029/JA090iA05p04229
– ident: e_1_2_11_90_1
  doi: 10.1029/2019GL082383
– ident: e_1_2_11_84_1
  doi: 10.1029/2017JA025097
– ident: e_1_2_11_9_1
  doi: 10.1071/PH620223
– volume: 5
  start-page: 369
  year: 1987
  ident: e_1_2_11_75_1
  article-title: An auroral model for the NCAR thermospheric general circulation model (TGCM)
  publication-title: Annales Geophysicae
  contributor:
    fullname: Roble R. G.
– ident: e_1_2_11_18_1
  doi: 10.1029/2008GL036916
– ident: e_1_2_11_20_1
  doi: 10.1016/S1364-6826(98)00137-0
– ident: e_1_2_11_4_1
  doi: 10.1029/2018GL081886
– volume: 123
  start-page: 368
  issue: 12
  year: 2018
  ident: e_1_2_11_44_1
  article-title: Alfvénic heating in the cusp ionosphere‐thermosphere
  publication-title: Journal of Geophysical Research: Space Physics
  contributor:
    fullname: Lotko W.
– ident: e_1_2_11_10_1
  doi: 10.1029/2011JA016665
– ident: e_1_2_11_41_1
  doi: 10.1002/2016JA023342
– ident: e_1_2_11_34_1
  doi: 10.1029/JA087iA08p06339
– ident: e_1_2_11_85_1
  doi: 10.1029/JA086iA01p00065
– ident: e_1_2_11_43_1
  doi: 10.1029/2020JA028332
– volume: 109
  issue: 10
  year: 2004
  ident: e_1_2_11_58_1
  article-title: Maps of precipitation by source region, binned by IMF, with inertial convection streamlines
  publication-title: Journal of Geophysical Research: Space Physics
  contributor:
    fullname: Newell P. T.
– ident: e_1_2_11_61_1
  doi: 10.1029/2009JA014326
– ident: e_1_2_11_76_1
  doi: 10.5194/angeo-19-773-2001
– ident: e_1_2_11_28_1
  doi: 10.1029/JA093iA04p02715
– ident: e_1_2_11_52_1
  doi: 10.1029/2007GL029357
– volume: 114
  issue: 6
  year: 2009
  ident: e_1_2_11_11_1
  article-title: Electric field variability and model uncertainty: A classification of source terms in estimating the squared electric field from an electric field model
  publication-title: Journal of Geophysical Research: Space Physics
  contributor:
    fullname: Cosgrove R. B.
– ident: e_1_2_11_91_1
  doi: 10.1002/2014JA020615
– volume: 113
  issue: 6
  year: 2008
  ident: e_1_2_11_32_1
  article-title: Probability distributions of electron precipitation at high magnetic latitudes
  publication-title: Journal of Geophysical Research: Space Physics
  contributor:
    fullname: Hardy D. A.
– ident: e_1_2_11_53_1
  doi: 10.1029/2009JA015119
– ident: e_1_2_11_39_1
  doi: 10.1002/2013JA019325
– ident: e_1_2_11_56_1
  doi: 10.1029/93JA02273
– volume: 115
  issue: 3
  year: 2010
  ident: e_1_2_11_62_1
  article-title: Seasonal variations in diffuse, monoenergetic, and broadband aurora
  publication-title: Journal of Geophysical Research: Space Physics
  contributor:
    fullname: Newell P. T.
– ident: e_1_2_11_15_1
  doi: 10.1029/2000GL012624
– ident: e_1_2_11_8_1
  doi: 10.1029/2007SW000364
– ident: e_1_2_11_22_1
  doi: 10.1029/JA084iA11p06451
– ident: e_1_2_11_73_1
  doi: 10.1029/2003GL019113
– ident: e_1_2_11_13_1
  doi: 10.1029/2010JA016017
SSID ssj0024524
ssj0000866621
Score 2.3748145
Snippet In this study, a new high‐latitude empirical model is introduced, named for Auroral energy Spectrum and High‐Latitude Electric field variabilitY (ASHLEY). This...
Abstract In this study, a new high‐latitude empirical model is introduced, named for Auroral energy Spectrum and High‐Latitude Electric field variabilitY...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Defense programs
DMSP satellites
electric field variability
Electric fields
electric potential
Electron precipitation
Electrons
empirical modeling
Empirical models
Energy
Energy spectra
Fluxes
Geophysics
high latitudes
Joule heating
Latitude
Meteorological satellite program
Meteorological satellites
Precipitation models
Solar cycle
Specifications
Title ASHLEY: A New Empirical Model for the High‐Latitude Electron Precipitation and Electric Field
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020SW002671
https://www.proquest.com/docview/2553332693
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yL17En2w6JQf1IsWlTdrGW5GOISqDObZbSZoEBroNux28-Sf4N_qX-JJmbl4Eb4UmLby-l3zf68v3ELqIlTZJrHUQh6kOqDIskDxhgWGalCZNY-aKaB6f4t6Q3o_Z2Cfc7FmYWh_iJ-FmI8Ot1zbAhay82IDVyATW3hmMLIewR8i3rWiM9fCQ9tdae6xuassooEgg977wHebfbM7-vSWtceYmWnXbTXcP7XqciLP6w-6jLT09QM2sspnr2es7vsLuuk5MVIeoyAY9wJq3OMOwbuH8dT5x4h_YNjt7wQBNMUA9bMs6vj4-H6yTLJXGue-Cg_tW5WLuBbuxmCp_a1Liri1yO0LDbv581wt884SgBBYQgbEVcJOSa0LL2EgmUk4EkcIIysNOGRERhkYxI2WqFGza1AhFLZjTgBA5TaJj1JjOprqJsJSSKKF1QgwMEYQnvKRUUg3onJIybqHLlf2Kea2RUbh_2yEvNu3cQu2VcQsfKVUBlCaK4LU8aqFrZ_A_n1EMRjlw1ig6-dfoU7QT2mIUV6nYRo3F21KfAZpYyHPnMt8Bh8Fn
link.rule.ids 315,783,787,11576,27938,27939,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQDLAgPtVCAQ_AgiLqxE5itgilKlAQUlu1W2THtlSJfojCwMZP4DfySzg7hpYFiS1S7ES6-HzvXc7vEDqNlTZJrHUQh6kOqDIskDxhgWGalCZNY-aKaO4f4naf3g7Z0Pc5tWdhKn2In4Sb9Qy3X1sHtwlprzZgRTKBtje7A0si7BnyNRpTbns3hPRxIbbHqq62jAKMBHbvK99h_uXy7N8xaQE0l-GqizetLbTpgSLOqi-7jVb0ZAfVsrlNXU_Hb_gcu-sqMzHfRUXWbQPYvMIZho0L5-PZyKl_YNvt7AkDNsWA9bCt6_h8_-jYVfKqNM59Gxz8aGUuZl6xG4uJ8rdGJW7ZKrc91G_lvet24LsnBCXQgAisrYCclFwTWsZGMpFyIogURlAeNsuIiDA0ihkpU6UgalMjFLVoTgNE5DSJ9tHqZDrRNYSllEQJrRNiYIggPOElpZJqgOeUlHEdnX3br5hVIhmF-7kd8mLZznXU-DZu4V1lXgCniSJ4LY_q6MIZ_M9nFN1BDqQ1ig7-NfoErbd7952ic_Nwd4g2QluZ4soWG2j15flVHwG0eJHHbvl8AYaqxNI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iIF7En2w6NQf1IkXTJm3jbWjL_MlgynYrSZPAwNXh3MGbf4J_o3-JL2l08yJ4KzRp4TUv73uvX76H0GGstElirYM4THVAlWGB5AkLDNOkNGkaM0eiubuPO4_0esAGvuBmz8LU-hA_BTfrGW6_tg4-VsaLDViNTMjaz3p9m0PYI-RL1CJxq-xMuzOtPVY3tWUUUCQk9574DvNP52f_DkkznDmPVl24ydfQqseJuF1_2HW0oKsN1GhPbOX6efSGj7G7rgsTk01UtHsdwJrnuI1h38LZaDx04h_YNjt7wgBNMUA9bGkdn-8ft3aRTJXGme-Cg7tW5WLsBbuxqJS_NSxxbkluW-gxzx4uOoFvnhCUkAVEYGwFFim5JrSMjWQi5UQQKYygPDwrIyLC0ChmpEyVgqBNjVDUgjkNCJHTJNpGi9VzpRsISymJElonxMAQQXjCS0ol1YDOKSnjJjr6tl8xrjUyCvdvO-TFvJ2bqPVt3MJ7yqSAlCaK4LU8aqITZ_A_n1H0-hnkrFG086_RB2i5e5kXt1f3N7toJbS8FEdabKHF15ep3gNg8Sr33er5Ann8w_s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASHLEY%3A+A+New+Empirical+Model+for+the+High%E2%80%90Latitude+Electron+Precipitation+and+Electric+Field&rft.jtitle=Space+weather&rft.au=Zhu%2C+Qingyu&rft.au=Deng%2C+Yue&rft.au=Maute%2C+Astrid&rft.au=Kilcommons%2C+Liam+M.&rft.date=2021-05-01&rft.issn=1542-7390&rft.eissn=1542-7390&rft.volume=19&rft.issue=5&rft_id=info:doi/10.1029%2F2020SW002671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2020SW002671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1542-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1542-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1542-7390&client=summon