EHPE: Skeleton Cues-Based Gaussian Coordinate Encoding for Efficient Human Pose Estimation

Human pose estimation (HPE) has many wide applications such as multimedia processing, behavior understanding and human-computer interaction. Most previous studies have encountered many constraints, such as restricted scenarios and RGB inputs. To mitigate constraints to estimating the human poses in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 26; pp. 8464 - 8475
Main Authors Liu, Hai, Liu, Tingting, Chen, Yu, Zhang, Zhaoli, Li, You-Fu
Format Journal Article
LanguageEnglish
Published IEEE 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human pose estimation (HPE) has many wide applications such as multimedia processing, behavior understanding and human-computer interaction. Most previous studies have encountered many constraints, such as restricted scenarios and RGB inputs. To mitigate constraints to estimating the human poses in general scenarios, we present an efficient human pose estimation model (i.e., EHPE) with joint direction cues and Gaussian coordinate encoding. Specifically, we propose an anisotropic Gaussian coordinate coding method to describe the skeleton direction cues among adjacent keypoints. To the best of our knowledge, this is the first time that the skeleton direction cues is introduced to the heatmap encoding in HPE task. Then, a multi-loss function is proposed to constrain the output to prevent the overfitting. The Kullback-Leibler divergence is introduced to measure the predication label and its ground truth one. The performance of EHPE is evaluated on two HPE datasets: MS COCO and MPII. Experimental results demonstrate that EHPE can obtain robust results, and it significantly outperforms existing state-of-the-art HPE methods. Lastly, we extend the experiments on infrared images captured by our research group. The experiments achieved the impressive results regardless of insufficient color and texture information.
AbstractList Human pose estimation (HPE) has many wide applications such as multimedia processing, behavior understanding and human-computer interaction. Most previous studies have encountered many constraints, such as restricted scenarios and RGB inputs. To mitigate constraints to estimating the human poses in general scenarios, we present an efficient human pose estimation model (i.e., EHPE) with joint direction cues and Gaussian coordinate encoding. Specifically, we propose an anisotropic Gaussian coordinate coding method to describe the skeleton direction cues among adjacent keypoints. To the best of our knowledge, this is the first time that the skeleton direction cues is introduced to the heatmap encoding in HPE task. Then, a multi-loss function is proposed to constrain the output to prevent the overfitting. The Kullback-Leibler divergence is introduced to measure the predication label and its ground truth one. The performance of EHPE is evaluated on two HPE datasets: MS COCO and MPII. Experimental results demonstrate that EHPE can obtain robust results, and it significantly outperforms existing state-of-the-art HPE methods. Lastly, we extend the experiments on infrared images captured by our research group. The experiments achieved the impressive results regardless of insufficient color and texture information.
Author Zhang, Zhaoli
Chen, Yu
Liu, Tingting
Li, You-Fu
Liu, Hai
Author_xml – sequence: 1
  givenname: Hai
  orcidid: 0000-0003-3446-9301
  surname: Liu
  fullname: Liu, Hai
  email: hailiu0204@ccnu.edu.cn
– sequence: 2
  givenname: Tingting
  orcidid: 0000-0002-9347-5974
  surname: Liu
  fullname: Liu, Tingting
  email: tliu@hubu.edu.cn
– sequence: 3
  givenname: Yu
  orcidid: 0000-0003-1824-5105
  surname: Chen
  fullname: Chen, Yu
  email: cxxx912@mails.ccnu.edu.cn
– sequence: 4
  givenname: Zhaoli
  orcidid: 0000-0002-0844-0719
  surname: Zhang
  fullname: Zhang, Zhaoli
  email: zl.zhang@ccnu.edu.cn
– sequence: 5
  givenname: You-Fu
  orcidid: 0000-0002-5227-1326
  surname: Li
  fullname: Li, You-Fu
  email: meyfli@cityu.edu.hk
BookMark eNo9kE9LAzEUxINUsK3eBS_5Altf_m2MNy3bVmixYL14WdLsi0TbjWy2B7-9KS2eZnjMPIbfiAza2CIhtwwmjIG536xWEw6cTwQzWpTyggyZkawA0HqQveJQGM7gioxS-gJgUoEeko9qsa4e6ds37rCPLZ0eMBXPNmFD5_aQUrD5FmPXhNb2SKvWxWw_qY8drbwPLmDb08Vhn3PrmHIi9WFv-xDba3Lp7S7hzVnH5H1WbaaLYvk6f5k-LQsnQPUFct9oyaTQZZMXGyiZBMdkKYVRjTboOCihlNx6AJR-yyzz1oJwZaNF1jGB01_XxZQ69PVPlyd0vzWD-simzmzqI5v6zCZX7k6VgIj_cfOgODdG_AF8LmCn
CODEN ITMUF8
CitedBy_id crossref_primary_10_3390_s23229102
crossref_primary_10_1007_s00607_023_01247_w
crossref_primary_10_1016_j_inffus_2023_102155
crossref_primary_10_1007_s10489_023_04614_4
crossref_primary_10_3390_app14114863
crossref_primary_10_1016_j_infrared_2022_104348
crossref_primary_10_1007_s10489_023_04658_6
crossref_primary_10_1007_s10489_023_05140_z
crossref_primary_10_3390_s24103036
crossref_primary_10_1007_s00500_023_09295_2
crossref_primary_10_1007_s10489_023_04734_x
crossref_primary_10_1016_j_jnlest_2024_100260
crossref_primary_10_1007_s10489_023_04714_1
crossref_primary_10_1007_s10489_023_04795_y
crossref_primary_10_1007_s00371_023_03184_3
crossref_primary_10_3390_electronics11203403
crossref_primary_10_1007_s10489_023_04870_4
crossref_primary_10_3390_s24010197
crossref_primary_10_1007_s10489_023_04587_4
crossref_primary_10_1007_s10489_023_04589_2
crossref_primary_10_1007_s10489_023_04750_x
crossref_primary_10_3390_computers12080151
crossref_primary_10_1016_j_displa_2023_102583
crossref_primary_10_1016_j_neucom_2022_10_031
crossref_primary_10_3390_bdcc7010037
crossref_primary_10_1007_s10489_023_04689_z
crossref_primary_10_3233_JIFS_230165
crossref_primary_10_3390_en17020349
crossref_primary_10_1016_j_displa_2023_102622
crossref_primary_10_1007_s10489_023_04695_1
crossref_primary_10_1142_S0218001423540186
crossref_primary_10_3390_s23052613
crossref_primary_10_1109_TKDE_2022_3221873
crossref_primary_10_3390_s23208605
crossref_primary_10_1016_j_patcog_2023_110084
crossref_primary_10_1007_s10489_023_04726_x
crossref_primary_10_1016_j_infrared_2022_104482
crossref_primary_10_3390_electronics12102265
crossref_primary_10_3390_app13085025
crossref_primary_10_1109_TIP_2023_3340604
crossref_primary_10_1016_j_ipm_2023_103351
crossref_primary_10_1016_j_infrared_2023_104723
crossref_primary_10_1007_s10489_023_04760_9
crossref_primary_10_1007_s10489_023_04952_3
crossref_primary_10_1016_j_eswa_2023_119890
crossref_primary_10_1007_s10489_023_04499_3
crossref_primary_10_1007_s10489_023_04687_1
crossref_primary_10_1007_s10489_023_05067_5
crossref_primary_10_3390_rs15051267
crossref_primary_10_3934_era_2024098
crossref_primary_10_1016_j_engappai_2023_107440
crossref_primary_10_3390_s23239532
crossref_primary_10_3934_math_20231075
crossref_primary_10_1007_s10489_023_05023_3
crossref_primary_10_1016_j_dsp_2023_104272
crossref_primary_10_3390_s22197123
crossref_primary_10_1007_s10489_023_04731_0
crossref_primary_10_1016_j_infrared_2023_104850
crossref_primary_10_3390_app14104259
crossref_primary_10_1007_s10489_023_05125_y
crossref_primary_10_1007_s10489_023_04740_z
crossref_primary_10_3390_sci5010010
crossref_primary_10_1007_s10489_023_04633_1
crossref_primary_10_1007_s13735_023_00283_8
crossref_primary_10_1016_j_engappai_2023_106360
crossref_primary_10_1016_j_knosys_2023_111243
Cites_doi 10.1007/s11263-021-01482-8
10.1109/ICCV.2017.256
10.1109/ICHMS49158.2020.9209510
10.1007/978-3-030-01231-1_29
10.1109/TMM.2020.2999181
10.1109/TIP.2015.2507445
10.1109/TCSVT.2020.2965574
10.1109/ICCV.2017.228
10.1007/11744047_45
10.1109/CVPR.2017.395
10.1109/CVPR42600.2020.00574
10.1109/TPAMI.2018.2885472
10.1109/CVPR46437.2021.01306
10.1109/CVPR.2014.214
10.1109/CVPR42600.2020.00706
10.1609/aaai.v34i03.5652
10.1016/j.neucom.2020.09.068
10.1109/TCSVT.2021.3071621
10.1109/TPAMI.2019.2929257
10.1109/TMM.2019.2903455
10.1109/CVPR.2017.601
10.1109/CVPR.2018.00224
10.1109/TIP.2023.3331309
10.1007/978-3-030-01216-8_44
10.1109/CVPR.2018.00742
10.1109/TII.2022.3143605
10.1016/j.neucom.2020.12.090
10.1109/CVPR.2016.511
10.1109/CVPR.2019.01112
10.1109/ICCV.2017.322
10.1109/CVPR.2016.512
10.1109/ICCV.2017.329
10.1109/CVPR.2019.00584
10.1007/978-3-319-46466-4_3
10.1109/CVPR42600.2020.00046
10.1609/aaai.v32i1.12328
10.1007/978-3-319-46484-8_29
10.1109/CVPR42600.2020.00712
10.1109/CVPR.2014.471
10.1109/TMM.2017.2762010
10.1007/978-3-319-10602-1_48
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TMM.2022.3197364
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 8475
ExternalDocumentID 10_1109_TMM_2022_3197364
9852299
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2021YFC3340802
– fundername: University Teaching Reform Research Project of Jiangxi Province
  grantid: JXJG-23-27-6
– fundername: National Natural Science Foundation of Hubei Province
  grantid: 2022CFB971
– fundername: Jiangxi Provincial Natural Science Foundation
  grantid: 20232BAB212026
– fundername: Research Grants Council of Hong Kong
  grantid: 9043323; CityU 11213420
– fundername: Science and Technology Development Fund, Macau
  grantid: 0022/2019/AKP
– fundername: Shenzhen Science and Technology Program
  grantid: JCYJ20230807152900001
– fundername: National Natural Science Foundation of China
  grantid: 62277041; 62077020; 62173286; 62211530433; 62177018
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABTAH
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
AGSQL
CITATION
ID FETCH-LOGICAL-c305t-e2fd7414376d194906140c1464395d79ec2053554bf00e4fb1a1faa03c6d73a03
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Fri Dec 06 08:57:15 EST 2024
Mon Nov 04 11:48:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c305t-e2fd7414376d194906140c1464395d79ec2053554bf00e4fb1a1faa03c6d73a03
ORCID 0000-0002-5227-1326
0000-0003-3446-9301
0000-0002-9347-5974
0000-0003-1824-5105
0000-0002-0844-0719
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9852299
PageCount 12
ParticipantIDs crossref_primary_10_1109_TMM_2022_3197364
ieee_primary_9852299
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
Simonyan (ref36) 2015
ref18
Tompson (ref20)
ref24
ref26
ref25
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Tompson (ref23)
References_xml – ident: ref17
  doi: 10.1007/s11263-021-01482-8
– ident: ref24
  doi: 10.1109/ICCV.2017.256
– ident: ref5
  doi: 10.1109/ICHMS49158.2020.9209510
– ident: ref27
  doi: 10.1007/978-3-030-01231-1_29
– year: 2015
  ident: ref36
  article-title: Very deep
  contributor:
    fullname: Simonyan
– ident: ref1
  doi: 10.1109/TMM.2020.2999181
– ident: ref13
  doi: 10.1109/TIP.2015.2507445
– ident: ref16
  doi: 10.1109/TCSVT.2020.2965574
– ident: ref38
  doi: 10.1109/ICCV.2017.228
– ident: ref37
  doi: 10.1007/11744047_45
– ident: ref11
  doi: 10.1109/CVPR.2017.395
– ident: ref35
  doi: 10.1109/CVPR42600.2020.00574
– ident: ref18
  doi: 10.1109/TPAMI.2018.2885472
– start-page: 1799
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref23
  article-title: Joint training of a convolutional network and a graphical model for human pose estimation
  contributor:
    fullname: Tompson
– ident: ref6
  doi: 10.1109/CVPR46437.2021.01306
– ident: ref19
  doi: 10.1109/CVPR.2014.214
– ident: ref30
  doi: 10.1109/CVPR42600.2020.00706
– ident: ref8
  doi: 10.1609/aaai.v34i03.5652
– ident: ref7
  doi: 10.1016/j.neucom.2020.09.068
– ident: ref10
  doi: 10.1109/TCSVT.2021.3071621
– ident: ref42
  doi: 10.1109/TPAMI.2019.2929257
– ident: ref2
  doi: 10.1109/TMM.2019.2903455
– ident: ref21
  doi: 10.1109/CVPR.2017.601
– ident: ref26
  doi: 10.1109/CVPR.2018.00224
– ident: ref44
  doi: 10.1109/TIP.2023.3331309
– ident: ref22
  doi: 10.1007/978-3-030-01216-8_44
– ident: ref14
  doi: 10.1109/CVPR.2018.00742
– ident: ref29
  doi: 10.1109/TII.2022.3143605
– ident: ref32
  doi: 10.1016/j.neucom.2020.12.090
– ident: ref33
  doi: 10.1109/CVPR.2016.511
– ident: ref25
  doi: 10.1109/CVPR.2019.01112
– ident: ref41
  doi: 10.1109/ICCV.2017.322
– ident: ref31
  doi: 10.1109/CVPR.2016.512
– ident: ref43
  doi: 10.1109/ICCV.2017.329
– ident: ref15
  doi: 10.1109/CVPR.2019.00584
– ident: ref12
  doi: 10.1007/978-3-319-46466-4_3
– ident: ref4
  doi: 10.1109/CVPR42600.2020.00046
– ident: ref9
  doi: 10.1609/aaai.v32i1.12328
– ident: ref28
  doi: 10.1007/978-3-319-46484-8_29
– volume-title: Proc. 27th Int. Conf. Neural Inf. Process. Syst.
  ident: ref20
  article-title: Joint training of a convolutional network and a graphical model for human pose estimation
  contributor:
    fullname: Tompson
– ident: ref34
  doi: 10.1109/CVPR42600.2020.00712
– ident: ref40
  doi: 10.1109/CVPR.2014.471
– ident: ref3
  doi: 10.1109/TMM.2017.2762010
– ident: ref39
  doi: 10.1007/978-3-319-10602-1_48
SSID ssj0014507
Score 2.6399918
Snippet Human pose estimation (HPE) has many wide applications such as multimedia processing, behavior understanding and human-computer interaction. Most previous...
SourceID crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 8464
SubjectTerms Biological system modeling
Deep learning
Encoding
Feature extraction
gaussian coordinate encoding
Heating systems
human pose estimation
Pose estimation
regularization
Skeleton
skeleton direction
Task analysis
Title EHPE: Skeleton Cues-Based Gaussian Coordinate Encoding for Efficient Human Pose Estimation
URI https://ieeexplore.ieee.org/document/9852299
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO-nB6aY4f5GDF8FuaZeuxpuOziFUBm4wvJQ0SUEGrbj24l_vS9qNKR48tZQUQl7yvu_Ly3sBuJY4BxSXgSNQXqBAUdRB3kwdpLbCDYQSwje5w9HLaLpgz0t_2YDbbS6M1toePtN982pj-SqXpdkqG_A7ZAucN6EZ8KDK1dpGDJhvU6MRjqjDUcdsQpKUD-ZRhELQ81Cf8mA4Yj8gaOdOFQspkzZEm85UJ0lW_bJI-vLrV53G__b2EA5qbkkeqslwBA2ddaC9ubeB1Mu4A_s7RQi78BZOZ-E9eV0hACERJGMECucRwU2RJ1GuTZIlGeeoUd8z5KUkzGRu8I4g2yWhLUCB3SA2GEBm-RpboNeoEiKPYTEJ5-OpU9-44Ehc94WjvVQhxWDodZTLGTdykUp0pkhbfBVwLT1TD8ZnSUqpZmniCjcVgg7lSAVDfJ5AK8szfQrEk0nqu4opmros8VPDgzSSJTewXoT34GZjhPijKqwRW0FCeYwGi43B4tpgPeia4d22q0f27O_P57CHP7Nqn-QCWsVnqS-RORTJlZ0y3-hjvhE
link.rule.ids 315,781,785,797,27929,27930,54763
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7MeVAPzp84f-bgRbAz7dLVeNPROXUVwQnipaRJCjJoxa0X_3pf0nZM8eCppYQS8pL3fV9e3gvAqcQ5oLgMHIHyAgWKog7yZuogtRVuIJQQvskdjh57wxd2_-q_NuB8ngujtbaHz3THvNpYvsplYbbKLvglsgXOl2DZZ7guymytecyA-TY5GgGJOhyVTB2UpPxiHEUoBT0PFSoPuj32A4QWblWxoDJoQVR3pzxLMukUs6Qjv35VavxvfzdgvWKX5LqcDpvQ0NkWtOqbG0i1kLdgbaEM4Ta8hcOn8Io8TxCCkAqSPkKFc4PwpsitKKYmzZL0c1Sp7xkyUxJmMjeIR5DvktCWoMBuEBsOIE_5FFug3yhTInfgZRCO-0OnunPBkbjyZ472UoUkg6HfUS5n3AhGKtGdInHxVcC19ExFGJ8lKaWapYkr3FQI2pU9FXTxuQvNLM_0HhBPJqnvKqZo6rLETw0T0kiX3MD6Ed6Gs9oI8UdZWiO2koTyGA0WG4PFlcHasG2Gd96uGtn9vz-fwMpwHI3i0d3jwwGs4o9YuWtyCM3ZZ6GPkEfMkmM7fb4BD0vBXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EHPE%3A+Skeleton+Cues-Based+Gaussian+Coordinate+Encoding+for+Efficient+Human+Pose+Estimation&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Liu%2C+Hai&rft.au=Liu%2C+Tingting&rft.au=Chen%2C+Yu&rft.au=Zhang%2C+Zhaoli&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=1520-9210&rft.volume=26&rft.spage=8464&rft.epage=8475&rft_id=info:doi/10.1109%2FTMM.2022.3197364&rft.externalDocID=9852299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon