Derivation and dynamics of discrete population models with distributed delay in reproduction

We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that accounts for survival pressure during that delay period. These delay recurrences track the mature population for species in which individuals reach...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences Vol. 376; p. 109279
Main Authors Streipert, Sabrina H., Wolkowicz, Gail S.K.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2024
Subjects
Online AccessGet full text
ISSN0025-5564
1879-3134
1879-3134
DOI10.1016/j.mbs.2024.109279

Cover

Abstract We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that accounts for survival pressure during that delay period. These delay recurrences track the mature population for species in which individuals reach maturity after at least τ and at most τ+τM breeding cycles. Under realistic model assumptions, we prove the existence of a critical delay threshold, τ˜c. For given delay kernel length τM, if each individual takes at least τ˜c time units to reach maturity, then the population is predicted to go extinct. We show that the positive equilibrium is decreasing in both τ and τM. In the case of a constant reproductive rate, we provide an equation to determine τ˜c for fixed τM, and similarly, provide a lower bound on the kernel length, τ˜M for fixed τ such that the population goes extinct if τM≥τ˜M. We compare these critical thresholds for different maturation distributions and show that if all else is the same, to avoid extinction it is best if all individuals in the population have the shortest delay possible. We apply the model derivation to a Beverton–Holt model and discuss its global dynamics. For this model with kernels that share the same mean delay, we show that populations with the largest variance in the time required to reach maturity have higher population levels and lower chances of extinction. •Formulation of distributed delay population models in discrete time.•Derivation of a critical delay threshold for extinction.•Comparison of dynamics based on kernel distributions.•Application to a Beverton–Holt delay model.
AbstractList We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that accounts for survival pressure during that delay period. These delay recurrences track the mature population for species in which individuals reach maturity after at least τ and at most τ+τM breeding cycles. Under realistic model assumptions, we prove the existence of a critical delay threshold, τ˜c. For given delay kernel length τM, if each individual takes at least τ˜c time units to reach maturity, then the population is predicted to go extinct. We show that the positive equilibrium is decreasing in both τ and τM. In the case of a constant reproductive rate, we provide an equation to determine τ˜c for fixed τM, and similarly, provide a lower bound on the kernel length, τ˜M for fixed τ such that the population goes extinct if τM≥τ˜M. We compare these critical thresholds for different maturation distributions and show that if all else is the same, to avoid extinction it is best if all individuals in the population have the shortest delay possible. We apply the model derivation to a Beverton–Holt model and discuss its global dynamics. For this model with kernels that share the same mean delay, we show that populations with the largest variance in the time required to reach maturity have higher population levels and lower chances of extinction. •Formulation of distributed delay population models in discrete time.•Derivation of a critical delay threshold for extinction.•Comparison of dynamics based on kernel distributions.•Application to a Beverton–Holt delay model.
We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that accounts for survival pressure during that delay period. These delay recurrences track the mature population for species in which individuals reach maturity after at least τ and at most τ+τ breeding cycles. Under realistic model assumptions, we prove the existence of a critical delay threshold, τ˜ . For given delay kernel length τ , if each individual takes at least τ˜ time units to reach maturity, then the population is predicted to go extinct. We show that the positive equilibrium is decreasing in both τ and τ . In the case of a constant reproductive rate, we provide an equation to determine τ˜ for fixed τ , and similarly, provide a lower bound on the kernel length, τ˜ for fixed τ such that the population goes extinct if τ ≥τ˜ . We compare these critical thresholds for different maturation distributions and show that if all else is the same, to avoid extinction it is best if all individuals in the population have the shortest delay possible. We apply the model derivation to a Beverton-Holt model and discuss its global dynamics. For this model with kernels that share the same mean delay, we show that populations with the largest variance in the time required to reach maturity have higher population levels and lower chances of extinction.
We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that accounts for survival pressure during that delay period. These delay recurrences track the mature population for species in which individuals reach maturity after at least τ and at most τ+τM breeding cycles. Under realistic model assumptions, we prove the existence of a critical delay threshold, τ˜c. For given delay kernel length τM, if each individual takes at least τ˜c time units to reach maturity, then the population is predicted to go extinct. We show that the positive equilibrium is decreasing in both τ and τM. In the case of a constant reproductive rate, we provide an equation to determine τ˜c for fixed τM, and similarly, provide a lower bound on the kernel length, τ˜M for fixed τ such that the population goes extinct if τM≥τ˜M. We compare these critical thresholds for different maturation distributions and show that if all else is the same, to avoid extinction it is best if all individuals in the population have the shortest delay possible. We apply the model derivation to a Beverton-Holt model and discuss its global dynamics. For this model with kernels that share the same mean delay, we show that populations with the largest variance in the time required to reach maturity have higher population levels and lower chances of extinction.We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that accounts for survival pressure during that delay period. These delay recurrences track the mature population for species in which individuals reach maturity after at least τ and at most τ+τM breeding cycles. Under realistic model assumptions, we prove the existence of a critical delay threshold, τ˜c. For given delay kernel length τM, if each individual takes at least τ˜c time units to reach maturity, then the population is predicted to go extinct. We show that the positive equilibrium is decreasing in both τ and τM. In the case of a constant reproductive rate, we provide an equation to determine τ˜c for fixed τM, and similarly, provide a lower bound on the kernel length, τ˜M for fixed τ such that the population goes extinct if τM≥τ˜M. We compare these critical thresholds for different maturation distributions and show that if all else is the same, to avoid extinction it is best if all individuals in the population have the shortest delay possible. We apply the model derivation to a Beverton-Holt model and discuss its global dynamics. For this model with kernels that share the same mean delay, we show that populations with the largest variance in the time required to reach maturity have higher population levels and lower chances of extinction.
ArticleNumber 109279
Author Streipert, Sabrina H.
Wolkowicz, Gail S.K.
Author_xml – sequence: 1
  givenname: Sabrina H.
  orcidid: 0000-0002-5380-8818
  surname: Streipert
  fullname: Streipert, Sabrina H.
  email: streipert@pitt.edu
  organization: Department of Mathematics, University of Pittsburgh, 4200 5th Avenue, Pittsburgh, 15260, PA, USA
– sequence: 2
  givenname: Gail S.K.
  surname: Wolkowicz
  fullname: Wolkowicz, Gail S.K.
  organization: Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39147015$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1PwzAMhiMEgg34AVxQj1w64ibpFnFCfEuTuMANKUoTV2Rqm5G0Q_v3ZOrgyMmy_Ly29UzJYec7JOQC6AwolNerWVvFWUELnnpZzOUBmcBiLnMGjB-SCaWFyIUo-QmZxriiFOYA5TE5YRL4nIKYkI97DG6je-e7THc2s9tOt87EzNeZddEE7DFb-_XQjEzrLTYx-3b9527eB1cNPaYcNnqbuS4LuA7eDmZHn5GjWjcRz_f1lLw_PrzdPefL16eXu9tlbhgVfW4AF4WuGMUaZGUtT63UWJeFRi4sL6AuoeQgseLVgkvBJSTISAN0wRhlp-Rq3JtOfw0Ye9Wm17FpdId-iIpRyYRkwEVCL_foULVo1Tq4Voet-jWSABgBE3yMAes_BKjaWVcrlayrnXU1Wk-ZmzGT1ODGYVDROOwMWhfQ9Mp690_6B3-6imE
Cites_doi 10.1007/s00285-023-02031-2
10.1155/2013/463059
10.1201/9781420037722
10.1137/1.9781611970005
10.1146/annurev.es.15.110184.002141
10.1007/BF02832361
10.1007/BF00275067
10.1016/0040-5809(83)90008-4
10.1007/s00285-022-01741-3
10.1007/s00442-012-2248-5
10.1007/s002850050150
10.2478/s12175-007-0020-9
10.1006/jmaa.2001.7666
10.1139/f80-034
10.3934/mbe.2016.13.19
10.3934/mbe.2022355
10.1111/nrm.12160
10.1155/2012/482459
10.1016/S0898-1221(03)00035-X
10.1086/283092
10.1016/j.ecolmodel.2016.09.005
10.1016/S0893-9659(02)00024-1
10.1080/10236198.2015.1135910
10.1016/j.jtbi.2005.11.007
10.1155/2009/976865
10.1080/17513758.2023.2244987
10.1137/S0036139995289842
10.1006/tpbi.1997.1309
10.1007/s11538-018-0432-4
10.1016/j.mbs.2005.03.016
10.1139/z99-189
10.1080/10236190512331319334
10.1016/0040-5809(84)90011-X
10.1142/S0219525907001197
10.1017/S0956792515000418
10.1046/j.1439-0310.2000.00622.x
10.1080/10236198.2017.1397645
10.1016/j.fishres.2018.03.010
10.1080/10236198.2021.1887159
10.1038/287017a0
10.1007/s12591-020-00546-4
10.1038/344660a0
10.2307/4567
10.1007/s00285-019-01415-7
10.1071/MF08283
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024. Published by Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024. Published by Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.mbs.2024.109279
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1879-3134
ExternalDocumentID 39147015
10_1016_j_mbs_2024_109279
S0025556424001391
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.GJ
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABTAH
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AETEA
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMJ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LW9
M26
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SME
SPCBC
SSA
SSZ
T5K
TN5
UNMZH
WH7
WUQ
XOL
XSW
YQT
ZCG
ZGI
ZXP
ZY4
~G-
~KM
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7X8
EFLBG
ID FETCH-LOGICAL-c305t-c1e82ab30ef19bdd4e829aef62ae45d421f616419eb4b8495491d4ec9c1083303
IEDL.DBID AIKHN
ISSN 0025-5564
1879-3134
IngestDate Fri Sep 05 04:22:36 EDT 2025
Mon Jul 21 06:05:01 EDT 2025
Tue Jul 01 03:34:41 EDT 2025
Sat Sep 14 18:00:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Binomial kernel
Global stability
Discrete population model
Uniform kernel
39A05
Beverton–Holt model
Distributed delay
Persistence
39A30
92D25
Dirac kernel
Critical threshold
39A60
92D40
Linear kernels
Dirac
Uniform
Binomial
Language English
License Copyright © 2024. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c305t-c1e82ab30ef19bdd4e829aef62ae45d421f616419eb4b8495491d4ec9c1083303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5380-8818
PMID 39147015
PQID 3093593145
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3093593145
pubmed_primary_39147015
crossref_primary_10_1016_j_mbs_2024_109279
elsevier_sciencedirect_doi_10_1016_j_mbs_2024_109279
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Mathematical biosciences
PublicationTitleAlternate Math Biosci
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liz, Ferreiro (b55) 2002; 15
Gurney, Nisbet (b5) 1998
Robertson, Henson, Robertson, Cushing (b40) 2018; 31
Grove, Ladas (b57) 2004
Mathematica (b56) 2014
Gurney, Nisbet, Lawton (b60) 1983; 52
Crone (b41) 1997; 51
Liz (b15) 2007; 7
Beretta, Breda (b39) 2016; 13
Fang, Chen (b45) 2007; 10
Saker (b12) 2007; 25
Streipert, Wolkowicz (b21) 2021; 83
MATLAB (b58) 2023
Bohner, Peterson (b62) 2001
Sol, Santos, Cuadrado (b51) 2000; 78
Clark (b8) 1976; 3
Li, Zhao, Liang (b10) 2012
Wolkowicz, Xia, Ruan (b36) 1997; 57
Pielou (b11) 1969
Arino, Wang, Wolkowicz (b26) 2006; 241
Elabbasy, Saker, El-Metwally (b44) 2007; 57
Cushing (b30) 1977; vol. 20
Ma, Lu, Mei (b31) 2005; 5
Wendi, Mulone, Salemi, Salone (b43) 2001; 264
Cushing (b7) 1998
May, Oster (b4) 1976; 110
Blythe, Nisbet, Gurney (b29) 1984; 25
Turchin (b42) 1990; 344
LaSalle (b63) 1986; vol. 82
Nisbet, Gurney (b19) 1982
Kaspersson, Höjesjö, Bohlin (b52) 2012; 169
Mazrooei-Sebdani (b17) 2018; 24
Allen (b18) 1963; 164
El-Hachem, Beeton (b59) 2023; 88
Lin, Hsu, Wolkowicz (b27) 2022; 84
Teslya, Wolkowicz (b35) 2023; 31
Balston (b48) 2009; 60
Werner, Gilliam (b49) 1984; 15
Gurney, Blythe, Nisbet (b25) 1980; 287
Caswell (b6) 2006
Itokazu, Hamaya (b46) 2009
Neverova, Yarovenko, Frisman (b47) 2016; 340
Hilker, Liz (b1) 2019; 79
El-Morshedy, Liz (b24) 2005; 11
Kang (b2) 2016; 22
Pan, Li (b20) 2021; 27
Lin, Wang, Wolkowicz (b28) 2018; 80
Nisbet, Gurney (b61) 1983; 23
Lou, Sun (b33) 2022; 19
Streipert, Wolkowicz (b22) 2023; 17
Brotons, Orell, Lahti, Koivula (b50) 2000; 106
Liu, Röst, Gourley (b38) 2016; 27
MacDonald (b32) 1978; vol. 27
Deriso (b9) 1980; 37
Wolkowicz, Xia, Wu (b37) 1999; 38
Mäki-Petäys, Muotka, Huusko, Tikkanen, Kreivi (b53) 1997; 54
El-Morshedy (b23) 2003; 45
Hofbauer, So (b54) 1989
Wu, Zhang, Cao, Hayat (b13) 2013
Kocić, Ladas (b14) 1993
Xu, Li, Yuan (b34) 2019; 358
Liz, Tkachenko, Trofımchuk (b16) 2006; 199
Winker, Carvalho, Kapur (b3) 2018; 204
Winker (10.1016/j.mbs.2024.109279_b3) 2018; 204
Streipert (10.1016/j.mbs.2024.109279_b22) 2023; 17
Xu (10.1016/j.mbs.2024.109279_b34) 2019; 358
Gurney (10.1016/j.mbs.2024.109279_b25) 1980; 287
Hilker (10.1016/j.mbs.2024.109279_b1) 2019; 79
LaSalle (10.1016/j.mbs.2024.109279_b63) 1986; vol. 82
Liu (10.1016/j.mbs.2024.109279_b38) 2016; 27
MATLAB (10.1016/j.mbs.2024.109279_b58) 2023
Deriso (10.1016/j.mbs.2024.109279_b9) 1980; 37
Kaspersson (10.1016/j.mbs.2024.109279_b52) 2012; 169
Kang (10.1016/j.mbs.2024.109279_b2) 2016; 22
Streipert (10.1016/j.mbs.2024.109279_b21) 2021; 83
Saker (10.1016/j.mbs.2024.109279_b12) 2007; 25
Clark (10.1016/j.mbs.2024.109279_b8) 1976; 3
Blythe (10.1016/j.mbs.2024.109279_b29) 1984; 25
El-Hachem (10.1016/j.mbs.2024.109279_b59) 2023; 88
Elabbasy (10.1016/j.mbs.2024.109279_b44) 2007; 57
Liz (10.1016/j.mbs.2024.109279_b55) 2002; 15
Itokazu (10.1016/j.mbs.2024.109279_b46) 2009
MacDonald (10.1016/j.mbs.2024.109279_b32) 1978; vol. 27
Nisbet (10.1016/j.mbs.2024.109279_b61) 1983; 23
Lin (10.1016/j.mbs.2024.109279_b28) 2018; 80
Pielou (10.1016/j.mbs.2024.109279_b11) 1969
Turchin (10.1016/j.mbs.2024.109279_b42) 1990; 344
Neverova (10.1016/j.mbs.2024.109279_b47) 2016; 340
Cushing (10.1016/j.mbs.2024.109279_b7) 1998
Crone (10.1016/j.mbs.2024.109279_b41) 1997; 51
Brotons (10.1016/j.mbs.2024.109279_b50) 2000; 106
Hofbauer (10.1016/j.mbs.2024.109279_b54) 1989
Arino (10.1016/j.mbs.2024.109279_b26) 2006; 241
Mäki-Petäys (10.1016/j.mbs.2024.109279_b53) 1997; 54
El-Morshedy (10.1016/j.mbs.2024.109279_b23) 2003; 45
Wu (10.1016/j.mbs.2024.109279_b13) 2013
Mathematica (10.1016/j.mbs.2024.109279_b56) 2014
Pan (10.1016/j.mbs.2024.109279_b20) 2021; 27
Lou (10.1016/j.mbs.2024.109279_b33) 2022; 19
Nisbet (10.1016/j.mbs.2024.109279_b19) 1982
Allen (10.1016/j.mbs.2024.109279_b18) 1963; 164
Mazrooei-Sebdani (10.1016/j.mbs.2024.109279_b17) 2018; 24
Gurney (10.1016/j.mbs.2024.109279_b5) 1998
Li (10.1016/j.mbs.2024.109279_b10) 2012
Grove (10.1016/j.mbs.2024.109279_b57) 2004
Teslya (10.1016/j.mbs.2024.109279_b35) 2023; 31
Werner (10.1016/j.mbs.2024.109279_b49) 1984; 15
Cushing (10.1016/j.mbs.2024.109279_b30) 1977; vol. 20
El-Morshedy (10.1016/j.mbs.2024.109279_b24) 2005; 11
Sol (10.1016/j.mbs.2024.109279_b51) 2000; 78
Wolkowicz (10.1016/j.mbs.2024.109279_b36) 1997; 57
Bohner (10.1016/j.mbs.2024.109279_b62) 2001
Robertson (10.1016/j.mbs.2024.109279_b40) 2018; 31
Gurney (10.1016/j.mbs.2024.109279_b60) 1983; 52
Wolkowicz (10.1016/j.mbs.2024.109279_b37) 1999; 38
Wendi (10.1016/j.mbs.2024.109279_b43) 2001; 264
May (10.1016/j.mbs.2024.109279_b4) 1976; 110
Beretta (10.1016/j.mbs.2024.109279_b39) 2016; 13
Balston (10.1016/j.mbs.2024.109279_b48) 2009; 60
Lin (10.1016/j.mbs.2024.109279_b27) 2022; 84
Caswell (10.1016/j.mbs.2024.109279_b6) 2006
Liz (10.1016/j.mbs.2024.109279_b15) 2007; 7
Kocić (10.1016/j.mbs.2024.109279_b14) 1993
Ma (10.1016/j.mbs.2024.109279_b31) 2005; 5
Fang (10.1016/j.mbs.2024.109279_b45) 2007; 10
Liz (10.1016/j.mbs.2024.109279_b16) 2006; 199
References_xml – volume: 7
  start-page: 191
  year: 2007
  end-page: 199
  ident: b15
  article-title: Local stability implies global stability in some one-dimensional discrete single-species models
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 264
  start-page: 147
  year: 2001
  end-page: 167
  ident: b43
  article-title: Global stability of discrete population models with time delays and fluctuating environment
  publication-title: J. Math. Anal. Appl.
– volume: 27
  start-page: 250
  year: 2021
  end-page: 260
  ident: b20
  article-title: Stability and Neimark–Sacker bifurcation for a discrete Nicholson’s blowflies model with proportional delay
  publication-title: J. Difference Equ. Appl.
– volume: 287
  start-page: 17
  year: 1980
  end-page: 21
  ident: b25
  article-title: Nicholson’s blowflies revisited
  publication-title: Nature
– volume: 31
  year: 2018
  ident: b40
  article-title: A matter of maturity: To delay or not to delay? Continuous-time compartmental models of structured populations in the literature 2000–2016
  publication-title: Nat. Resour. Model.
– volume: vol. 82
  year: 1986
  ident: b63
  article-title: The stability and control of discrete process
  publication-title: Applied Mathematical Sciences
– volume: 25
  start-page: 363
  year: 2007
  end-page: 374
  ident: b12
  article-title: Oscillation and attractivity of discrete nonlinear delay population model
  publication-title: J. Appl. Math. Comput.
– volume: 19
  start-page: 7543
  year: 2022
  end-page: 7569
  ident: b33
  article-title: Stage duration distributions and intraspecific competition: A review of continuous stage-structured models
  publication-title: Math. Biosci. Eng.
– volume: 88
  start-page: 11
  year: 2023
  ident: b59
  article-title: Coexistence in two-species competition with delayed maturation
  publication-title: J. Math. Biol.
– volume: 10
  start-page: 315
  year: 2007
  end-page: 333
  ident: b45
  article-title: Global stability of a nonlinear discrete population model with time delays
  publication-title: Adv. Complex Syst.
– year: 2013
  ident: b13
  article-title: Stability and bifurcation analysis of a nonlinear discrete logistic model with delay
  publication-title: Discrete Dyn. Nat. Soc.
– volume: 358
  year: 2019
  ident: b34
  article-title: New findings on exponential convergence of a Nicholson’s blowflies model with proportional delay
  publication-title: Adv. Differential Equations
– volume: 13
  start-page: 19
  year: 2016
  end-page: 41
  ident: b39
  article-title: Discrete or distributed delay? Effects on stability of population growth
  publication-title: Math. Biosci. Eng.
– volume: 80
  start-page: 1713
  year: 2018
  end-page: 1735
  ident: b28
  article-title: An alternative formulation of a distributed delayed logistic equation
  publication-title: Bull. Math. Biol.
– year: 1998
  ident: b5
  article-title: Ecological Dynamics
– volume: 106
  start-page: 993
  year: 2000
  end-page: 1005
  ident: b50
  article-title: Age-related microhabitat segregation in willow tit Parus montanus winter flocks
  publication-title: Ethology
– volume: 57
  start-page: 1281
  year: 1997
  end-page: 1310
  ident: b36
  article-title: Competition in the chemostat: A distributed delay model and its global asymptotic behavior
  publication-title: SIAM J. Appl. Math.
– volume: 38
  start-page: 285
  year: 1999
  end-page: 316
  ident: b37
  article-title: Global dynamics of a chemostat competition model with distributed delay
  publication-title: J. Math. Biol.
– volume: 25
  start-page: 289
  year: 1984
  end-page: 311
  ident: b29
  article-title: The dynamics of population models with distributed maturation periods
  publication-title: Theor. Popul. Biol.
– volume: vol. 27
  year: 1978
  ident: b32
  article-title: Time lags in biological models
  publication-title: Lecture Notes in Biomathematics
– start-page: x+358
  year: 2001
  ident: b62
  article-title: Dynamic equations on time scales
– volume: 3
  start-page: 381
  year: 1976
  end-page: 391
  ident: b8
  article-title: A delayed-recruitment model of population dynamics, with an application to baleen whale populations
  publication-title: J. Math. Biol.
– volume: 83
  start-page: 1
  year: 2021
  end-page: 25
  ident: b21
  article-title: An alternative delayed population growth difference equation model
  publication-title: J. Math. Biol.
– volume: 5
  start-page: 735
  year: 2005
  end-page: 752
  ident: b31
  article-title: Dynamics of a logistic population model with maturation delay and nonlinear birth rate
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– year: 2004
  ident: b57
  article-title: Periodicities in nonlinear difference equations
  publication-title: Advances in Discrete Mathematics and Applications
– volume: 204
  start-page: 275
  year: 2018
  end-page: 288
  ident: b3
  article-title: JABBA: Just another Bayesian biomass assessment
  publication-title: Fish. Res.
– volume: 344
  start-page: 660
  year: 1990
  end-page: 663
  ident: b42
  article-title: Rarity of density dependence or population regulation with lags?
  publication-title: Nature
– volume: 52
  start-page: 479
  year: 1983
  end-page: 495
  ident: b60
  article-title: The systematic formulation of tractable single-species population models incorporating age structure
  publication-title: J. Anim. Ecol.
– volume: 164
  start-page: 132
  year: 1963
  end-page: 137
  ident: b18
  article-title: Analysis of stock-recruitment relations in Antarctic fin whales
  publication-title: Cons. Int. pour l’Exptor. Mer
– volume: 37
  start-page: 268
  year: 1980
  end-page: 282
  ident: b9
  article-title: Harvesting strategies and parameter estimation for an age-structured model
  publication-title: Can. J. Fish. Aquat. Sci.
– volume: 84
  start-page: ID 39
  year: 2022
  ident: b27
  article-title: Population growth and competition models with decay and competition consistent delay
  publication-title: J. Math. Biol.
– volume: 60
  start-page: 912
  year: 2009
  end-page: 923
  ident: b48
  article-title: Short-term climate variability and the commercial barramundi (Lates calcarifer) fishery of north-east Queensland, Australia
  publication-title: Mar. Freshw. Res.
– volume: 199
  start-page: 26
  year: 2006
  end-page: 37
  ident: b16
  article-title: Global stability in discrete population models with delayed-density dependence
  publication-title: Math. Biosci.
– year: 1989
  ident: b54
  article-title: Uniform persistence and repellors for maps
  publication-title: Proceedings of the American Mathematics Society
– volume: 17
  year: 2023
  ident: b22
  article-title: Technique to derive discrete population models with delayed growth
  publication-title: J. Biol. Dyn.
– volume: 78
  start-page: 144
  year: 2000
  end-page: 149
  ident: b51
  article-title: Age-related feeding site selection in urban pigeons (Columba livia): experimental evidence of the competition hypothesis
  publication-title: Can. J. Zool.
– volume: 15
  start-page: 655
  year: 2002
  end-page: 659
  ident: b55
  article-title: A note on the global stability of generalized difference equations
  publication-title: Appl. Math. Lett.
– volume: 23
  start-page: 114
  year: 1983
  end-page: 135
  ident: b61
  article-title: The systematic formulation of population models for insects with dynamically varying instar duration
  publication-title: Theor. Popul. Biol.
– volume: 110
  start-page: 573
  year: 1976
  end-page: 599
  ident: b4
  article-title: Bifurcations and dynamic complexity in simple ecological models
  publication-title: Amer. Nat.
– volume: 241
  start-page: 109
  year: 2006
  end-page: 119
  ident: b26
  article-title: An alternative formulation for a delayed logistic equation
  publication-title: J. Theoret. Biol.
– year: 2012
  ident: b10
  article-title: Chaos in a discrete delay population model
  publication-title: Discrete Dyn. Nat. Soc.
– volume: 340
  start-page: 64
  year: 2016
  end-page: 73
  ident: b47
  article-title: Dynamics of populations with delayed density dependent birth rate regulation
  publication-title: Ecol. Model.
– volume: 51
  start-page: 67
  year: 1997
  end-page: 76
  ident: b41
  article-title: Delayed density dependence and the stability of interacting populations and subpopulations
  publication-title: Theor. Popul. Biol.
– year: 1982
  ident: b19
  article-title: Modelling Fluctuating Populations
– year: 1993
  ident: b14
  article-title: Global behavior of nonlinear difference equations of higher order with applications
  publication-title: Mathematics and Its Applications
– volume: 169
  start-page: 733
  year: 2012
  end-page: 742
  ident: b52
  article-title: Habitat exclusion and reduced growth: A field experiment on the effects of inter-cohort competition in young-of-the-year brown trout
  publication-title: Oecologia
– volume: 45
  start-page: 749
  year: 2003
  end-page: 758
  ident: b23
  article-title: The global attractivity of difference equations of nonincreasing nonlinearities with applications
  publication-title: Comput. Math. Appl.
– volume: 31
  start-page: 613
  year: 2023
  end-page: 649
  ident: b35
  article-title: Dynamics of a predator-prey model with distributed delay to represent the conversion process or maturation
  publication-title: Differ. Equ. Dyn. Syst.
– year: 2014
  ident: b56
  article-title: Version 10.0.0.0
– volume: 27
  start-page: 131
  year: 2016
  end-page: 156
  ident: b38
  article-title: Age-dependent intra-specific competition in pre-adult life stages and its effects on adult population dynamics
  publication-title: European J. Appl. Math.
– volume: 22
  start-page: 687
  year: 2016
  end-page: 723
  ident: b2
  article-title: Dynamics of a generalized ricker-beverton-holt competition model subject to allee effects
  publication-title: J. Difference Equ. Appl.
– year: 1998
  ident: b7
  article-title: An introduction to structured population dynamics
  publication-title: CBMS-NSF Regional Conference Series in Applied Mathematics
– volume: 24
  start-page: 192
  year: 2018
  end-page: 219
  ident: b17
  article-title: On bifurcations of delay single species discrete time population models
  publication-title: J. Difference Equ. Appl.
– year: 2023
  ident: b58
  article-title: Version R2023a
– year: 1969
  ident: b11
  article-title: An Introduction to Mathematical Ecology
– volume: 54
  start-page: 520
  year: 1997
  end-page: 530
  ident: b53
  article-title: Seasonal changes in habitat use and preference by juvenile brown trout, Salmo trutta, in a northern boreal river
  publication-title: Can. J. Fish. Aquat. Sci.
– volume: 11
  start-page: 117
  year: 2005
  end-page: 131
  ident: b24
  article-title: Convergence to equilibria in discrete population models
  publication-title: J. Difference Equ. Appl.
– volume: 15
  start-page: 393
  year: 1984
  end-page: 425
  ident: b49
  article-title: The ontogenetic niche and species interactions in size-structured populations
  publication-title: Annu. Rev. Ecol. Syst.
– volume: vol. 20
  year: 1977
  ident: b30
  article-title: Integrodifferential equations and delay models in population dynamics
  publication-title: Lecture Notes in Biomathematics
– volume: 57
  start-page: 243
  year: 2007
  end-page: 258
  ident: b44
  article-title: Oscillation and stability of nonlinear discrete models exhibiting the allee effect
  publication-title: Math. Slovaca
– year: 2009
  ident: b46
  article-title: Almost periodic solutions of prey-predator discrete models with delay
  publication-title: Adv. Difference Equ.
– volume: 79
  start-page: 1927
  year: 2019
  end-page: 1951
  ident: b1
  article-title: Proportional threshold harvesting in discrete-time population models
  publication-title: J. Math. Biol.
– year: 2006
  ident: b6
  article-title: Matrix Population Models
– volume: vol. 20
  year: 1977
  ident: 10.1016/j.mbs.2024.109279_b30
  article-title: Integrodifferential equations and delay models in population dynamics
– volume: 88
  start-page: 11
  issue: 1
  year: 2023
  ident: 10.1016/j.mbs.2024.109279_b59
  article-title: Coexistence in two-species competition with delayed maturation
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-023-02031-2
– year: 2013
  ident: 10.1016/j.mbs.2024.109279_b13
  article-title: Stability and bifurcation analysis of a nonlinear discrete logistic model with delay
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2013/463059
– year: 2004
  ident: 10.1016/j.mbs.2024.109279_b57
  article-title: Periodicities in nonlinear difference equations
  doi: 10.1201/9781420037722
– year: 1998
  ident: 10.1016/j.mbs.2024.109279_b7
  article-title: An introduction to structured population dynamics
  doi: 10.1137/1.9781611970005
– volume: 15
  start-page: 393
  year: 1984
  ident: 10.1016/j.mbs.2024.109279_b49
  article-title: The ontogenetic niche and species interactions in size-structured populations
  publication-title: Annu. Rev. Ecol. Syst.
  doi: 10.1146/annurev.es.15.110184.002141
– volume: 25
  start-page: 363
  issue: 1–2
  year: 2007
  ident: 10.1016/j.mbs.2024.109279_b12
  article-title: Oscillation and attractivity of discrete nonlinear delay population model
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/BF02832361
– volume: 83
  start-page: 1
  issue: 25
  year: 2021
  ident: 10.1016/j.mbs.2024.109279_b21
  article-title: An alternative delayed population growth difference equation model
  publication-title: J. Math. Biol.
– volume: 3
  start-page: 381
  year: 1976
  ident: 10.1016/j.mbs.2024.109279_b8
  article-title: A delayed-recruitment model of population dynamics, with an application to baleen whale populations
  publication-title: J. Math. Biol.
  doi: 10.1007/BF00275067
– year: 1969
  ident: 10.1016/j.mbs.2024.109279_b11
– volume: 23
  start-page: 114
  issue: 1
  year: 1983
  ident: 10.1016/j.mbs.2024.109279_b61
  article-title: The systematic formulation of population models for insects with dynamically varying instar duration
  publication-title: Theor. Popul. Biol.
  doi: 10.1016/0040-5809(83)90008-4
– volume: 84
  start-page: ID 39
  issue: 5
  year: 2022
  ident: 10.1016/j.mbs.2024.109279_b27
  article-title: Population growth and competition models with decay and competition consistent delay
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-022-01741-3
– volume: 169
  start-page: 733
  year: 2012
  ident: 10.1016/j.mbs.2024.109279_b52
  article-title: Habitat exclusion and reduced growth: A field experiment on the effects of inter-cohort competition in young-of-the-year brown trout
  publication-title: Oecologia
  doi: 10.1007/s00442-012-2248-5
– year: 2023
  ident: 10.1016/j.mbs.2024.109279_b58
– volume: 38
  start-page: 285
  year: 1999
  ident: 10.1016/j.mbs.2024.109279_b37
  article-title: Global dynamics of a chemostat competition model with distributed delay
  publication-title: J. Math. Biol.
  doi: 10.1007/s002850050150
– volume: 57
  start-page: 243
  issue: 3
  year: 2007
  ident: 10.1016/j.mbs.2024.109279_b44
  article-title: Oscillation and stability of nonlinear discrete models exhibiting the allee effect
  publication-title: Math. Slovaca
  doi: 10.2478/s12175-007-0020-9
– volume: 264
  start-page: 147
  issue: 1
  year: 2001
  ident: 10.1016/j.mbs.2024.109279_b43
  article-title: Global stability of discrete population models with time delays and fluctuating environment
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.2001.7666
– volume: 37
  start-page: 268
  year: 1980
  ident: 10.1016/j.mbs.2024.109279_b9
  article-title: Harvesting strategies and parameter estimation for an age-structured model
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f80-034
– volume: 5
  start-page: 735
  issue: 3
  year: 2005
  ident: 10.1016/j.mbs.2024.109279_b31
  article-title: Dynamics of a logistic population model with maturation delay and nonlinear birth rate
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 13
  start-page: 19
  issue: 1
  year: 2016
  ident: 10.1016/j.mbs.2024.109279_b39
  article-title: Discrete or distributed delay? Effects on stability of population growth
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2016.13.19
– volume: 19
  start-page: 7543
  issue: 8
  year: 2022
  ident: 10.1016/j.mbs.2024.109279_b33
  article-title: Stage duration distributions and intraspecific competition: A review of continuous stage-structured models
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2022355
– volume: 31
  issue: 1
  year: 2018
  ident: 10.1016/j.mbs.2024.109279_b40
  article-title: A matter of maturity: To delay or not to delay? Continuous-time compartmental models of structured populations in the literature 2000–2016
  publication-title: Nat. Resour. Model.
  doi: 10.1111/nrm.12160
– year: 2012
  ident: 10.1016/j.mbs.2024.109279_b10
  article-title: Chaos in a discrete delay population model
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2012/482459
– volume: vol. 82
  year: 1986
  ident: 10.1016/j.mbs.2024.109279_b63
  article-title: The stability and control of discrete process
– volume: 45
  start-page: 749
  issue: 4
  year: 2003
  ident: 10.1016/j.mbs.2024.109279_b23
  article-title: The global attractivity of difference equations of nonincreasing nonlinearities with applications
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(03)00035-X
– volume: 110
  start-page: 573
  year: 1976
  ident: 10.1016/j.mbs.2024.109279_b4
  article-title: Bifurcations and dynamic complexity in simple ecological models
  publication-title: Amer. Nat.
  doi: 10.1086/283092
– volume: 340
  start-page: 64
  year: 2016
  ident: 10.1016/j.mbs.2024.109279_b47
  article-title: Dynamics of populations with delayed density dependent birth rate regulation
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2016.09.005
– volume: 15
  start-page: 655
  issue: 6
  year: 2002
  ident: 10.1016/j.mbs.2024.109279_b55
  article-title: A note on the global stability of generalized difference equations
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(02)00024-1
– volume: 22
  start-page: 687
  issue: 5
  year: 2016
  ident: 10.1016/j.mbs.2024.109279_b2
  article-title: Dynamics of a generalized ricker-beverton-holt competition model subject to allee effects
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236198.2015.1135910
– volume: 241
  start-page: 109
  issue: 1
  year: 2006
  ident: 10.1016/j.mbs.2024.109279_b26
  article-title: An alternative formulation for a delayed logistic equation
  publication-title: J. Theoret. Biol.
  doi: 10.1016/j.jtbi.2005.11.007
– year: 2009
  ident: 10.1016/j.mbs.2024.109279_b46
  article-title: Almost periodic solutions of prey-predator discrete models with delay
  publication-title: Adv. Difference Equ.
  doi: 10.1155/2009/976865
– volume: 358
  issue: 2019
  year: 2019
  ident: 10.1016/j.mbs.2024.109279_b34
  article-title: New findings on exponential convergence of a Nicholson’s blowflies model with proportional delay
  publication-title: Adv. Differential Equations
– year: 1989
  ident: 10.1016/j.mbs.2024.109279_b54
  article-title: Uniform persistence and repellors for maps
– year: 2014
  ident: 10.1016/j.mbs.2024.109279_b56
– volume: 17
  issue: 1
  year: 2023
  ident: 10.1016/j.mbs.2024.109279_b22
  article-title: Technique to derive discrete population models with delayed growth
  publication-title: J. Biol. Dyn.
  doi: 10.1080/17513758.2023.2244987
– year: 1993
  ident: 10.1016/j.mbs.2024.109279_b14
  article-title: Global behavior of nonlinear difference equations of higher order with applications
– year: 1998
  ident: 10.1016/j.mbs.2024.109279_b5
– volume: 57
  start-page: 1281
  year: 1997
  ident: 10.1016/j.mbs.2024.109279_b36
  article-title: Competition in the chemostat: A distributed delay model and its global asymptotic behavior
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139995289842
– volume: 51
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.mbs.2024.109279_b41
  article-title: Delayed density dependence and the stability of interacting populations and subpopulations
  publication-title: Theor. Popul. Biol.
  doi: 10.1006/tpbi.1997.1309
– volume: 164
  start-page: 132
  year: 1963
  ident: 10.1016/j.mbs.2024.109279_b18
  article-title: Analysis of stock-recruitment relations in Antarctic fin whales
  publication-title: Cons. Int. pour l’Exptor. Mer
– volume: 80
  start-page: 1713
  issue: 7
  year: 2018
  ident: 10.1016/j.mbs.2024.109279_b28
  article-title: An alternative formulation of a distributed delayed logistic equation
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-018-0432-4
– volume: 199
  start-page: 26
  issue: 1
  year: 2006
  ident: 10.1016/j.mbs.2024.109279_b16
  article-title: Global stability in discrete population models with delayed-density dependence
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2005.03.016
– volume: 78
  start-page: 144
  year: 2000
  ident: 10.1016/j.mbs.2024.109279_b51
  article-title: Age-related feeding site selection in urban pigeons (Columba livia): experimental evidence of the competition hypothesis
  publication-title: Can. J. Zool.
  doi: 10.1139/z99-189
– volume: 7
  start-page: 191
  issue: 1
  year: 2007
  ident: 10.1016/j.mbs.2024.109279_b15
  article-title: Local stability implies global stability in some one-dimensional discrete single-species models
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 11
  start-page: 117
  issue: 2
  year: 2005
  ident: 10.1016/j.mbs.2024.109279_b24
  article-title: Convergence to equilibria in discrete population models
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236190512331319334
– volume: vol. 27
  year: 1978
  ident: 10.1016/j.mbs.2024.109279_b32
  article-title: Time lags in biological models
– volume: 25
  start-page: 289
  issue: 3
  year: 1984
  ident: 10.1016/j.mbs.2024.109279_b29
  article-title: The dynamics of population models with distributed maturation periods
  publication-title: Theor. Popul. Biol.
  doi: 10.1016/0040-5809(84)90011-X
– volume: 10
  start-page: 315
  issue: 3
  year: 2007
  ident: 10.1016/j.mbs.2024.109279_b45
  article-title: Global stability of a nonlinear discrete population model with time delays
  publication-title: Adv. Complex Syst.
  doi: 10.1142/S0219525907001197
– start-page: x+358
  year: 2001
  ident: 10.1016/j.mbs.2024.109279_b62
– volume: 27
  start-page: 131
  issue: 1
  year: 2016
  ident: 10.1016/j.mbs.2024.109279_b38
  article-title: Age-dependent intra-specific competition in pre-adult life stages and its effects on adult population dynamics
  publication-title: European J. Appl. Math.
  doi: 10.1017/S0956792515000418
– volume: 106
  start-page: 993
  year: 2000
  ident: 10.1016/j.mbs.2024.109279_b50
  article-title: Age-related microhabitat segregation in willow tit Parus montanus winter flocks
  publication-title: Ethology
  doi: 10.1046/j.1439-0310.2000.00622.x
– volume: 24
  start-page: 192
  issue: 2
  year: 2018
  ident: 10.1016/j.mbs.2024.109279_b17
  article-title: On bifurcations of delay single species discrete time population models
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236198.2017.1397645
– volume: 204
  start-page: 275
  year: 2018
  ident: 10.1016/j.mbs.2024.109279_b3
  article-title: JABBA: Just another Bayesian biomass assessment
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2018.03.010
– volume: 27
  start-page: 250
  issue: 2
  year: 2021
  ident: 10.1016/j.mbs.2024.109279_b20
  article-title: Stability and Neimark–Sacker bifurcation for a discrete Nicholson’s blowflies model with proportional delay
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236198.2021.1887159
– volume: 287
  start-page: 17
  year: 1980
  ident: 10.1016/j.mbs.2024.109279_b25
  article-title: Nicholson’s blowflies revisited
  publication-title: Nature
  doi: 10.1038/287017a0
– volume: 54
  start-page: 520
  year: 1997
  ident: 10.1016/j.mbs.2024.109279_b53
  article-title: Seasonal changes in habitat use and preference by juvenile brown trout, Salmo trutta, in a northern boreal river
  publication-title: Can. J. Fish. Aquat. Sci.
– year: 2006
  ident: 10.1016/j.mbs.2024.109279_b6
– volume: 31
  start-page: 613
  issue: 3
  year: 2023
  ident: 10.1016/j.mbs.2024.109279_b35
  article-title: Dynamics of a predator-prey model with distributed delay to represent the conversion process or maturation
  publication-title: Differ. Equ. Dyn. Syst.
  doi: 10.1007/s12591-020-00546-4
– volume: 344
  start-page: 660
  year: 1990
  ident: 10.1016/j.mbs.2024.109279_b42
  article-title: Rarity of density dependence or population regulation with lags?
  publication-title: Nature
  doi: 10.1038/344660a0
– year: 1982
  ident: 10.1016/j.mbs.2024.109279_b19
– volume: 52
  start-page: 479
  issue: 2
  year: 1983
  ident: 10.1016/j.mbs.2024.109279_b60
  article-title: The systematic formulation of tractable single-species population models incorporating age structure
  publication-title: J. Anim. Ecol.
  doi: 10.2307/4567
– volume: 79
  start-page: 1927
  issue: 5
  year: 2019
  ident: 10.1016/j.mbs.2024.109279_b1
  article-title: Proportional threshold harvesting in discrete-time population models
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-019-01415-7
– volume: 60
  start-page: 912
  year: 2009
  ident: 10.1016/j.mbs.2024.109279_b48
  article-title: Short-term climate variability and the commercial barramundi (Lates calcarifer) fishery of north-east Queensland, Australia
  publication-title: Mar. Freshw. Res.
  doi: 10.1071/MF08283
SSID ssj0017116
Score 2.419255
Snippet We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 109279
SubjectTerms Beverton–Holt model
Binomial kernel
Critical threshold
Dirac kernel
Discrete population model
Distributed delay
Global stability
Linear kernels
Persistence
Uniform kernel
Title Derivation and dynamics of discrete population models with distributed delay in reproduction
URI https://dx.doi.org/10.1016/j.mbs.2024.109279
https://www.ncbi.nlm.nih.gov/pubmed/39147015
https://www.proquest.com/docview/3093593145
Volume 376
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_MiaAH0fk1v4jgSahb0rRdjzKV6dCDOPQghKZNYaLd2MfBi3-77yXtQFAPnkrahIb3kpffy_sCOPURYss056iWxJFHfoReB_lM-wrnHbR1buPW7u7D3kDePgfPNehWsTDkVlnKfifTrbQu37RKarbGwyHF-CIcDhA_S4tjUAVaFn4cBnVYvrjp9-4XxoSI2wqotnIrDaiMm9bN611T0m4hKa-SIIeun4-n3-CnPYauN2C9xI_swk1xE2qmaMCKqyj50YC1u0Ua1ukWvFzi-nJ3riwpMpa58vNTNsoZheNOEDGz8aKEF7NlcaaM7mbpuyuGZXCceUs-2LBglALTZojF3tswuL567Pa8spyCl-KmnnkpNx2RaL9tch7rLJPYjBOThyIxMsik4HmIyhOPjZa6I8n-x7FTGqcccRoedTtQL0aF2QOWJ36g_cTPQlRH_Czo6FCINEoNyotY6LwJZxUV1dhlzVCVO9mrQpIrIrlyJG-CrOisvrFeoVT_a9hJxROFW4LsHElhRvOpssbdGFdh0IRdx6zFLHCdyAgh0P7_fnoAq9Ry3nyHUJ9N5uYIUclMH8PS-Sc_LtcePfsPT_0v4YjhGA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kRdSD6PpanxE8CdVNm76O4oP1sXvahT0IoWlTWNHuso-DF3-7M0lbENSDx7YJDTOTyTeZF8C5hxBbpDlHsyQOHYojdCLkM-0rXLffVrnJW-v2gs5APA794RLcVLkwFFZZ6n6r0422Lt9cldS8moxGlOOLcNhH_CwMjkETaFn4XkhxfZefdZwHD7npf2r6ttLwyrVpgrzeFZXsdgVVVXIpnOvnw-k38GkOoftN2CjRI7u2C9yCJV00YcX2k_xownq3LsI624aXW5Que-PKkiJjmW0-P2PjnFEy7hTxMpvUDbyYaYozY3QzS99tKyyN8_Rb8sFGBaMCmKY-LI7egcH9Xf-m45TNFJwUt_TcSbmO3ER5bZ3zWGWZwMc40XngJlr4mXB5HqDpxGOthIoEef84DkrjlCNKw4NuFxrFuND7wPLE85WXeFmAxoiX-ZEKXDcNU43aInZV3oKLiopyYmtmyCqY7FUiySWRXFqSt0BUdJbfGC9Rp_817aziicQNQV6OpNDjxUwa126MMui3YM8yq14FSokIEQAd_O-np7Da6Xef5fND7-kQ1uiLjes7gsZ8utDHiE_m6sTI3xfAIuBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Derivation+and+dynamics+of+discrete+population+models+with+distributed+delay+in+reproduction&rft.jtitle=Mathematical+biosciences&rft.au=Streipert%2C+Sabrina+H.&rft.au=Wolkowicz%2C+Gail+S.K.&rft.date=2024-10-01&rft.issn=0025-5564&rft.volume=376&rft.spage=109279&rft_id=info:doi/10.1016%2Fj.mbs.2024.109279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mbs_2024_109279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5564&client=summon