Derivation and dynamics of discrete population models with distributed delay in reproduction
We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that accounts for survival pressure during that delay period. These delay recurrences track the mature population for species in which individuals reach...
Saved in:
Published in | Mathematical biosciences Vol. 376; p. 109279 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0025-5564 1879-3134 1879-3134 |
DOI | 10.1016/j.mbs.2024.109279 |
Cover
Abstract | We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that accounts for survival pressure during that delay period. These delay recurrences track the mature population for species in which individuals reach maturity after at least τ and at most τ+τM breeding cycles. Under realistic model assumptions, we prove the existence of a critical delay threshold, τ˜c. For given delay kernel length τM, if each individual takes at least τ˜c time units to reach maturity, then the population is predicted to go extinct. We show that the positive equilibrium is decreasing in both τ and τM. In the case of a constant reproductive rate, we provide an equation to determine τ˜c for fixed τM, and similarly, provide a lower bound on the kernel length, τ˜M for fixed τ such that the population goes extinct if τM≥τ˜M. We compare these critical thresholds for different maturation distributions and show that if all else is the same, to avoid extinction it is best if all individuals in the population have the shortest delay possible. We apply the model derivation to a Beverton–Holt model and discuss its global dynamics. For this model with kernels that share the same mean delay, we show that populations with the largest variance in the time required to reach maturity have higher population levels and lower chances of extinction.
•Formulation of distributed delay population models in discrete time.•Derivation of a critical delay threshold for extinction.•Comparison of dynamics based on kernel distributions.•Application to a Beverton–Holt delay model. |
---|---|
AbstractList | We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that accounts for survival pressure during that delay period. These delay recurrences track the mature population for species in which individuals reach maturity after at least τ and at most τ+τM breeding cycles. Under realistic model assumptions, we prove the existence of a critical delay threshold, τ˜c. For given delay kernel length τM, if each individual takes at least τ˜c time units to reach maturity, then the population is predicted to go extinct. We show that the positive equilibrium is decreasing in both τ and τM. In the case of a constant reproductive rate, we provide an equation to determine τ˜c for fixed τM, and similarly, provide a lower bound on the kernel length, τ˜M for fixed τ such that the population goes extinct if τM≥τ˜M. We compare these critical thresholds for different maturation distributions and show that if all else is the same, to avoid extinction it is best if all individuals in the population have the shortest delay possible. We apply the model derivation to a Beverton–Holt model and discuss its global dynamics. For this model with kernels that share the same mean delay, we show that populations with the largest variance in the time required to reach maturity have higher population levels and lower chances of extinction.
•Formulation of distributed delay population models in discrete time.•Derivation of a critical delay threshold for extinction.•Comparison of dynamics based on kernel distributions.•Application to a Beverton–Holt delay model. We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that accounts for survival pressure during that delay period. These delay recurrences track the mature population for species in which individuals reach maturity after at least τ and at most τ+τ breeding cycles. Under realistic model assumptions, we prove the existence of a critical delay threshold, τ˜ . For given delay kernel length τ , if each individual takes at least τ˜ time units to reach maturity, then the population is predicted to go extinct. We show that the positive equilibrium is decreasing in both τ and τ . In the case of a constant reproductive rate, we provide an equation to determine τ˜ for fixed τ , and similarly, provide a lower bound on the kernel length, τ˜ for fixed τ such that the population goes extinct if τ ≥τ˜ . We compare these critical thresholds for different maturation distributions and show that if all else is the same, to avoid extinction it is best if all individuals in the population have the shortest delay possible. We apply the model derivation to a Beverton-Holt model and discuss its global dynamics. For this model with kernels that share the same mean delay, we show that populations with the largest variance in the time required to reach maturity have higher population levels and lower chances of extinction. We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that accounts for survival pressure during that delay period. These delay recurrences track the mature population for species in which individuals reach maturity after at least τ and at most τ+τM breeding cycles. Under realistic model assumptions, we prove the existence of a critical delay threshold, τ˜c. For given delay kernel length τM, if each individual takes at least τ˜c time units to reach maturity, then the population is predicted to go extinct. We show that the positive equilibrium is decreasing in both τ and τM. In the case of a constant reproductive rate, we provide an equation to determine τ˜c for fixed τM, and similarly, provide a lower bound on the kernel length, τ˜M for fixed τ such that the population goes extinct if τM≥τ˜M. We compare these critical thresholds for different maturation distributions and show that if all else is the same, to avoid extinction it is best if all individuals in the population have the shortest delay possible. We apply the model derivation to a Beverton-Holt model and discuss its global dynamics. For this model with kernels that share the same mean delay, we show that populations with the largest variance in the time required to reach maturity have higher population levels and lower chances of extinction.We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that accounts for survival pressure during that delay period. These delay recurrences track the mature population for species in which individuals reach maturity after at least τ and at most τ+τM breeding cycles. Under realistic model assumptions, we prove the existence of a critical delay threshold, τ˜c. For given delay kernel length τM, if each individual takes at least τ˜c time units to reach maturity, then the population is predicted to go extinct. We show that the positive equilibrium is decreasing in both τ and τM. In the case of a constant reproductive rate, we provide an equation to determine τ˜c for fixed τM, and similarly, provide a lower bound on the kernel length, τ˜M for fixed τ such that the population goes extinct if τM≥τ˜M. We compare these critical thresholds for different maturation distributions and show that if all else is the same, to avoid extinction it is best if all individuals in the population have the shortest delay possible. We apply the model derivation to a Beverton-Holt model and discuss its global dynamics. For this model with kernels that share the same mean delay, we show that populations with the largest variance in the time required to reach maturity have higher population levels and lower chances of extinction. |
ArticleNumber | 109279 |
Author | Streipert, Sabrina H. Wolkowicz, Gail S.K. |
Author_xml | – sequence: 1 givenname: Sabrina H. orcidid: 0000-0002-5380-8818 surname: Streipert fullname: Streipert, Sabrina H. email: streipert@pitt.edu organization: Department of Mathematics, University of Pittsburgh, 4200 5th Avenue, Pittsburgh, 15260, PA, USA – sequence: 2 givenname: Gail S.K. surname: Wolkowicz fullname: Wolkowicz, Gail S.K. organization: Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39147015$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1PwzAMhiMEgg34AVxQj1w64ibpFnFCfEuTuMANKUoTV2Rqm5G0Q_v3ZOrgyMmy_Ly29UzJYec7JOQC6AwolNerWVvFWUELnnpZzOUBmcBiLnMGjB-SCaWFyIUo-QmZxriiFOYA5TE5YRL4nIKYkI97DG6je-e7THc2s9tOt87EzNeZddEE7DFb-_XQjEzrLTYx-3b9527eB1cNPaYcNnqbuS4LuA7eDmZHn5GjWjcRz_f1lLw_PrzdPefL16eXu9tlbhgVfW4AF4WuGMUaZGUtT63UWJeFRi4sL6AuoeQgseLVgkvBJSTISAN0wRhlp-Rq3JtOfw0Ye9Wm17FpdId-iIpRyYRkwEVCL_foULVo1Tq4Voet-jWSABgBE3yMAes_BKjaWVcrlayrnXU1Wk-ZmzGT1ODGYVDROOwMWhfQ9Mp690_6B3-6imE |
Cites_doi | 10.1007/s00285-023-02031-2 10.1155/2013/463059 10.1201/9781420037722 10.1137/1.9781611970005 10.1146/annurev.es.15.110184.002141 10.1007/BF02832361 10.1007/BF00275067 10.1016/0040-5809(83)90008-4 10.1007/s00285-022-01741-3 10.1007/s00442-012-2248-5 10.1007/s002850050150 10.2478/s12175-007-0020-9 10.1006/jmaa.2001.7666 10.1139/f80-034 10.3934/mbe.2016.13.19 10.3934/mbe.2022355 10.1111/nrm.12160 10.1155/2012/482459 10.1016/S0898-1221(03)00035-X 10.1086/283092 10.1016/j.ecolmodel.2016.09.005 10.1016/S0893-9659(02)00024-1 10.1080/10236198.2015.1135910 10.1016/j.jtbi.2005.11.007 10.1155/2009/976865 10.1080/17513758.2023.2244987 10.1137/S0036139995289842 10.1006/tpbi.1997.1309 10.1007/s11538-018-0432-4 10.1016/j.mbs.2005.03.016 10.1139/z99-189 10.1080/10236190512331319334 10.1016/0040-5809(84)90011-X 10.1142/S0219525907001197 10.1017/S0956792515000418 10.1046/j.1439-0310.2000.00622.x 10.1080/10236198.2017.1397645 10.1016/j.fishres.2018.03.010 10.1080/10236198.2021.1887159 10.1038/287017a0 10.1007/s12591-020-00546-4 10.1038/344660a0 10.2307/4567 10.1007/s00285-019-01415-7 10.1071/MF08283 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. Copyright © 2024. Published by Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024. Published by Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.mbs.2024.109279 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1879-3134 |
ExternalDocumentID | 39147015 10_1016_j_mbs_2024_109279 S0025556424001391 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .GJ .~1 0R~ 0SF 186 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXKI AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABTAH ABXDB ACDAQ ACGFO ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AETEA AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMJ HVGLF HZ~ H~9 IHE J1W KOM LW9 M26 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SME SPCBC SSA SSZ T5K TN5 UNMZH WH7 WUQ XOL XSW YQT ZCG ZGI ZXP ZY4 ~G- ~KM AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 EFLBG |
ID | FETCH-LOGICAL-c305t-c1e82ab30ef19bdd4e829aef62ae45d421f616419eb4b8495491d4ec9c1083303 |
IEDL.DBID | AIKHN |
ISSN | 0025-5564 1879-3134 |
IngestDate | Fri Sep 05 04:22:36 EDT 2025 Mon Jul 21 06:05:01 EDT 2025 Tue Jul 01 03:34:41 EDT 2025 Sat Sep 14 18:00:29 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Binomial kernel Global stability Discrete population model Uniform kernel 39A05 Beverton–Holt model Distributed delay Persistence 39A30 92D25 Dirac kernel Critical threshold 39A60 92D40 Linear kernels Dirac Uniform Binomial |
Language | English |
License | Copyright © 2024. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c305t-c1e82ab30ef19bdd4e829aef62ae45d421f616419eb4b8495491d4ec9c1083303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5380-8818 |
PMID | 39147015 |
PQID | 3093593145 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3093593145 pubmed_primary_39147015 crossref_primary_10_1016_j_mbs_2024_109279 elsevier_sciencedirect_doi_10_1016_j_mbs_2024_109279 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Mathematical biosciences |
PublicationTitleAlternate | Math Biosci |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Liz, Ferreiro (b55) 2002; 15 Gurney, Nisbet (b5) 1998 Robertson, Henson, Robertson, Cushing (b40) 2018; 31 Grove, Ladas (b57) 2004 Mathematica (b56) 2014 Gurney, Nisbet, Lawton (b60) 1983; 52 Crone (b41) 1997; 51 Liz (b15) 2007; 7 Beretta, Breda (b39) 2016; 13 Fang, Chen (b45) 2007; 10 Saker (b12) 2007; 25 Streipert, Wolkowicz (b21) 2021; 83 MATLAB (b58) 2023 Bohner, Peterson (b62) 2001 Sol, Santos, Cuadrado (b51) 2000; 78 Clark (b8) 1976; 3 Li, Zhao, Liang (b10) 2012 Wolkowicz, Xia, Ruan (b36) 1997; 57 Pielou (b11) 1969 Arino, Wang, Wolkowicz (b26) 2006; 241 Elabbasy, Saker, El-Metwally (b44) 2007; 57 Cushing (b30) 1977; vol. 20 Ma, Lu, Mei (b31) 2005; 5 Wendi, Mulone, Salemi, Salone (b43) 2001; 264 Cushing (b7) 1998 May, Oster (b4) 1976; 110 Blythe, Nisbet, Gurney (b29) 1984; 25 Turchin (b42) 1990; 344 LaSalle (b63) 1986; vol. 82 Nisbet, Gurney (b19) 1982 Kaspersson, Höjesjö, Bohlin (b52) 2012; 169 Mazrooei-Sebdani (b17) 2018; 24 Allen (b18) 1963; 164 El-Hachem, Beeton (b59) 2023; 88 Lin, Hsu, Wolkowicz (b27) 2022; 84 Teslya, Wolkowicz (b35) 2023; 31 Balston (b48) 2009; 60 Werner, Gilliam (b49) 1984; 15 Gurney, Blythe, Nisbet (b25) 1980; 287 Caswell (b6) 2006 Itokazu, Hamaya (b46) 2009 Neverova, Yarovenko, Frisman (b47) 2016; 340 Hilker, Liz (b1) 2019; 79 El-Morshedy, Liz (b24) 2005; 11 Kang (b2) 2016; 22 Pan, Li (b20) 2021; 27 Lin, Wang, Wolkowicz (b28) 2018; 80 Nisbet, Gurney (b61) 1983; 23 Lou, Sun (b33) 2022; 19 Streipert, Wolkowicz (b22) 2023; 17 Brotons, Orell, Lahti, Koivula (b50) 2000; 106 Liu, Röst, Gourley (b38) 2016; 27 MacDonald (b32) 1978; vol. 27 Deriso (b9) 1980; 37 Wolkowicz, Xia, Wu (b37) 1999; 38 Mäki-Petäys, Muotka, Huusko, Tikkanen, Kreivi (b53) 1997; 54 El-Morshedy (b23) 2003; 45 Hofbauer, So (b54) 1989 Wu, Zhang, Cao, Hayat (b13) 2013 Kocić, Ladas (b14) 1993 Xu, Li, Yuan (b34) 2019; 358 Liz, Tkachenko, Trofımchuk (b16) 2006; 199 Winker, Carvalho, Kapur (b3) 2018; 204 Winker (10.1016/j.mbs.2024.109279_b3) 2018; 204 Streipert (10.1016/j.mbs.2024.109279_b22) 2023; 17 Xu (10.1016/j.mbs.2024.109279_b34) 2019; 358 Gurney (10.1016/j.mbs.2024.109279_b25) 1980; 287 Hilker (10.1016/j.mbs.2024.109279_b1) 2019; 79 LaSalle (10.1016/j.mbs.2024.109279_b63) 1986; vol. 82 Liu (10.1016/j.mbs.2024.109279_b38) 2016; 27 MATLAB (10.1016/j.mbs.2024.109279_b58) 2023 Deriso (10.1016/j.mbs.2024.109279_b9) 1980; 37 Kaspersson (10.1016/j.mbs.2024.109279_b52) 2012; 169 Kang (10.1016/j.mbs.2024.109279_b2) 2016; 22 Streipert (10.1016/j.mbs.2024.109279_b21) 2021; 83 Saker (10.1016/j.mbs.2024.109279_b12) 2007; 25 Clark (10.1016/j.mbs.2024.109279_b8) 1976; 3 Blythe (10.1016/j.mbs.2024.109279_b29) 1984; 25 El-Hachem (10.1016/j.mbs.2024.109279_b59) 2023; 88 Elabbasy (10.1016/j.mbs.2024.109279_b44) 2007; 57 Liz (10.1016/j.mbs.2024.109279_b55) 2002; 15 Itokazu (10.1016/j.mbs.2024.109279_b46) 2009 MacDonald (10.1016/j.mbs.2024.109279_b32) 1978; vol. 27 Nisbet (10.1016/j.mbs.2024.109279_b61) 1983; 23 Lin (10.1016/j.mbs.2024.109279_b28) 2018; 80 Pielou (10.1016/j.mbs.2024.109279_b11) 1969 Turchin (10.1016/j.mbs.2024.109279_b42) 1990; 344 Neverova (10.1016/j.mbs.2024.109279_b47) 2016; 340 Cushing (10.1016/j.mbs.2024.109279_b7) 1998 Crone (10.1016/j.mbs.2024.109279_b41) 1997; 51 Brotons (10.1016/j.mbs.2024.109279_b50) 2000; 106 Hofbauer (10.1016/j.mbs.2024.109279_b54) 1989 Arino (10.1016/j.mbs.2024.109279_b26) 2006; 241 Mäki-Petäys (10.1016/j.mbs.2024.109279_b53) 1997; 54 El-Morshedy (10.1016/j.mbs.2024.109279_b23) 2003; 45 Wu (10.1016/j.mbs.2024.109279_b13) 2013 Mathematica (10.1016/j.mbs.2024.109279_b56) 2014 Pan (10.1016/j.mbs.2024.109279_b20) 2021; 27 Lou (10.1016/j.mbs.2024.109279_b33) 2022; 19 Nisbet (10.1016/j.mbs.2024.109279_b19) 1982 Allen (10.1016/j.mbs.2024.109279_b18) 1963; 164 Mazrooei-Sebdani (10.1016/j.mbs.2024.109279_b17) 2018; 24 Gurney (10.1016/j.mbs.2024.109279_b5) 1998 Li (10.1016/j.mbs.2024.109279_b10) 2012 Grove (10.1016/j.mbs.2024.109279_b57) 2004 Teslya (10.1016/j.mbs.2024.109279_b35) 2023; 31 Werner (10.1016/j.mbs.2024.109279_b49) 1984; 15 Cushing (10.1016/j.mbs.2024.109279_b30) 1977; vol. 20 El-Morshedy (10.1016/j.mbs.2024.109279_b24) 2005; 11 Sol (10.1016/j.mbs.2024.109279_b51) 2000; 78 Wolkowicz (10.1016/j.mbs.2024.109279_b36) 1997; 57 Bohner (10.1016/j.mbs.2024.109279_b62) 2001 Robertson (10.1016/j.mbs.2024.109279_b40) 2018; 31 Gurney (10.1016/j.mbs.2024.109279_b60) 1983; 52 Wolkowicz (10.1016/j.mbs.2024.109279_b37) 1999; 38 Wendi (10.1016/j.mbs.2024.109279_b43) 2001; 264 May (10.1016/j.mbs.2024.109279_b4) 1976; 110 Beretta (10.1016/j.mbs.2024.109279_b39) 2016; 13 Balston (10.1016/j.mbs.2024.109279_b48) 2009; 60 Lin (10.1016/j.mbs.2024.109279_b27) 2022; 84 Caswell (10.1016/j.mbs.2024.109279_b6) 2006 Liz (10.1016/j.mbs.2024.109279_b15) 2007; 7 Kocić (10.1016/j.mbs.2024.109279_b14) 1993 Ma (10.1016/j.mbs.2024.109279_b31) 2005; 5 Fang (10.1016/j.mbs.2024.109279_b45) 2007; 10 Liz (10.1016/j.mbs.2024.109279_b16) 2006; 199 |
References_xml | – volume: 7 start-page: 191 year: 2007 end-page: 199 ident: b15 article-title: Local stability implies global stability in some one-dimensional discrete single-species models publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 264 start-page: 147 year: 2001 end-page: 167 ident: b43 article-title: Global stability of discrete population models with time delays and fluctuating environment publication-title: J. Math. Anal. Appl. – volume: 27 start-page: 250 year: 2021 end-page: 260 ident: b20 article-title: Stability and Neimark–Sacker bifurcation for a discrete Nicholson’s blowflies model with proportional delay publication-title: J. Difference Equ. Appl. – volume: 287 start-page: 17 year: 1980 end-page: 21 ident: b25 article-title: Nicholson’s blowflies revisited publication-title: Nature – volume: 31 year: 2018 ident: b40 article-title: A matter of maturity: To delay or not to delay? Continuous-time compartmental models of structured populations in the literature 2000–2016 publication-title: Nat. Resour. Model. – volume: vol. 82 year: 1986 ident: b63 article-title: The stability and control of discrete process publication-title: Applied Mathematical Sciences – volume: 25 start-page: 363 year: 2007 end-page: 374 ident: b12 article-title: Oscillation and attractivity of discrete nonlinear delay population model publication-title: J. Appl. Math. Comput. – volume: 19 start-page: 7543 year: 2022 end-page: 7569 ident: b33 article-title: Stage duration distributions and intraspecific competition: A review of continuous stage-structured models publication-title: Math. Biosci. Eng. – volume: 88 start-page: 11 year: 2023 ident: b59 article-title: Coexistence in two-species competition with delayed maturation publication-title: J. Math. Biol. – volume: 10 start-page: 315 year: 2007 end-page: 333 ident: b45 article-title: Global stability of a nonlinear discrete population model with time delays publication-title: Adv. Complex Syst. – year: 2013 ident: b13 article-title: Stability and bifurcation analysis of a nonlinear discrete logistic model with delay publication-title: Discrete Dyn. Nat. Soc. – volume: 358 year: 2019 ident: b34 article-title: New findings on exponential convergence of a Nicholson’s blowflies model with proportional delay publication-title: Adv. Differential Equations – volume: 13 start-page: 19 year: 2016 end-page: 41 ident: b39 article-title: Discrete or distributed delay? Effects on stability of population growth publication-title: Math. Biosci. Eng. – volume: 80 start-page: 1713 year: 2018 end-page: 1735 ident: b28 article-title: An alternative formulation of a distributed delayed logistic equation publication-title: Bull. Math. Biol. – year: 1998 ident: b5 article-title: Ecological Dynamics – volume: 106 start-page: 993 year: 2000 end-page: 1005 ident: b50 article-title: Age-related microhabitat segregation in willow tit Parus montanus winter flocks publication-title: Ethology – volume: 57 start-page: 1281 year: 1997 end-page: 1310 ident: b36 article-title: Competition in the chemostat: A distributed delay model and its global asymptotic behavior publication-title: SIAM J. Appl. Math. – volume: 38 start-page: 285 year: 1999 end-page: 316 ident: b37 article-title: Global dynamics of a chemostat competition model with distributed delay publication-title: J. Math. Biol. – volume: 25 start-page: 289 year: 1984 end-page: 311 ident: b29 article-title: The dynamics of population models with distributed maturation periods publication-title: Theor. Popul. Biol. – volume: vol. 27 year: 1978 ident: b32 article-title: Time lags in biological models publication-title: Lecture Notes in Biomathematics – start-page: x+358 year: 2001 ident: b62 article-title: Dynamic equations on time scales – volume: 3 start-page: 381 year: 1976 end-page: 391 ident: b8 article-title: A delayed-recruitment model of population dynamics, with an application to baleen whale populations publication-title: J. Math. Biol. – volume: 83 start-page: 1 year: 2021 end-page: 25 ident: b21 article-title: An alternative delayed population growth difference equation model publication-title: J. Math. Biol. – volume: 5 start-page: 735 year: 2005 end-page: 752 ident: b31 article-title: Dynamics of a logistic population model with maturation delay and nonlinear birth rate publication-title: Discrete Contin. Dyn. Syst. Ser. B – year: 2004 ident: b57 article-title: Periodicities in nonlinear difference equations publication-title: Advances in Discrete Mathematics and Applications – volume: 204 start-page: 275 year: 2018 end-page: 288 ident: b3 article-title: JABBA: Just another Bayesian biomass assessment publication-title: Fish. Res. – volume: 344 start-page: 660 year: 1990 end-page: 663 ident: b42 article-title: Rarity of density dependence or population regulation with lags? publication-title: Nature – volume: 52 start-page: 479 year: 1983 end-page: 495 ident: b60 article-title: The systematic formulation of tractable single-species population models incorporating age structure publication-title: J. Anim. Ecol. – volume: 164 start-page: 132 year: 1963 end-page: 137 ident: b18 article-title: Analysis of stock-recruitment relations in Antarctic fin whales publication-title: Cons. Int. pour l’Exptor. Mer – volume: 37 start-page: 268 year: 1980 end-page: 282 ident: b9 article-title: Harvesting strategies and parameter estimation for an age-structured model publication-title: Can. J. Fish. Aquat. Sci. – volume: 84 start-page: ID 39 year: 2022 ident: b27 article-title: Population growth and competition models with decay and competition consistent delay publication-title: J. Math. Biol. – volume: 60 start-page: 912 year: 2009 end-page: 923 ident: b48 article-title: Short-term climate variability and the commercial barramundi (Lates calcarifer) fishery of north-east Queensland, Australia publication-title: Mar. Freshw. Res. – volume: 199 start-page: 26 year: 2006 end-page: 37 ident: b16 article-title: Global stability in discrete population models with delayed-density dependence publication-title: Math. Biosci. – year: 1989 ident: b54 article-title: Uniform persistence and repellors for maps publication-title: Proceedings of the American Mathematics Society – volume: 17 year: 2023 ident: b22 article-title: Technique to derive discrete population models with delayed growth publication-title: J. Biol. Dyn. – volume: 78 start-page: 144 year: 2000 end-page: 149 ident: b51 article-title: Age-related feeding site selection in urban pigeons (Columba livia): experimental evidence of the competition hypothesis publication-title: Can. J. Zool. – volume: 15 start-page: 655 year: 2002 end-page: 659 ident: b55 article-title: A note on the global stability of generalized difference equations publication-title: Appl. Math. Lett. – volume: 23 start-page: 114 year: 1983 end-page: 135 ident: b61 article-title: The systematic formulation of population models for insects with dynamically varying instar duration publication-title: Theor. Popul. Biol. – volume: 110 start-page: 573 year: 1976 end-page: 599 ident: b4 article-title: Bifurcations and dynamic complexity in simple ecological models publication-title: Amer. Nat. – volume: 241 start-page: 109 year: 2006 end-page: 119 ident: b26 article-title: An alternative formulation for a delayed logistic equation publication-title: J. Theoret. Biol. – year: 2012 ident: b10 article-title: Chaos in a discrete delay population model publication-title: Discrete Dyn. Nat. Soc. – volume: 340 start-page: 64 year: 2016 end-page: 73 ident: b47 article-title: Dynamics of populations with delayed density dependent birth rate regulation publication-title: Ecol. Model. – volume: 51 start-page: 67 year: 1997 end-page: 76 ident: b41 article-title: Delayed density dependence and the stability of interacting populations and subpopulations publication-title: Theor. Popul. Biol. – year: 1982 ident: b19 article-title: Modelling Fluctuating Populations – year: 1993 ident: b14 article-title: Global behavior of nonlinear difference equations of higher order with applications publication-title: Mathematics and Its Applications – volume: 169 start-page: 733 year: 2012 end-page: 742 ident: b52 article-title: Habitat exclusion and reduced growth: A field experiment on the effects of inter-cohort competition in young-of-the-year brown trout publication-title: Oecologia – volume: 45 start-page: 749 year: 2003 end-page: 758 ident: b23 article-title: The global attractivity of difference equations of nonincreasing nonlinearities with applications publication-title: Comput. Math. Appl. – volume: 31 start-page: 613 year: 2023 end-page: 649 ident: b35 article-title: Dynamics of a predator-prey model with distributed delay to represent the conversion process or maturation publication-title: Differ. Equ. Dyn. Syst. – year: 2014 ident: b56 article-title: Version 10.0.0.0 – volume: 27 start-page: 131 year: 2016 end-page: 156 ident: b38 article-title: Age-dependent intra-specific competition in pre-adult life stages and its effects on adult population dynamics publication-title: European J. Appl. Math. – volume: 22 start-page: 687 year: 2016 end-page: 723 ident: b2 article-title: Dynamics of a generalized ricker-beverton-holt competition model subject to allee effects publication-title: J. Difference Equ. Appl. – year: 1998 ident: b7 article-title: An introduction to structured population dynamics publication-title: CBMS-NSF Regional Conference Series in Applied Mathematics – volume: 24 start-page: 192 year: 2018 end-page: 219 ident: b17 article-title: On bifurcations of delay single species discrete time population models publication-title: J. Difference Equ. Appl. – year: 2023 ident: b58 article-title: Version R2023a – year: 1969 ident: b11 article-title: An Introduction to Mathematical Ecology – volume: 54 start-page: 520 year: 1997 end-page: 530 ident: b53 article-title: Seasonal changes in habitat use and preference by juvenile brown trout, Salmo trutta, in a northern boreal river publication-title: Can. J. Fish. Aquat. Sci. – volume: 11 start-page: 117 year: 2005 end-page: 131 ident: b24 article-title: Convergence to equilibria in discrete population models publication-title: J. Difference Equ. Appl. – volume: 15 start-page: 393 year: 1984 end-page: 425 ident: b49 article-title: The ontogenetic niche and species interactions in size-structured populations publication-title: Annu. Rev. Ecol. Syst. – volume: vol. 20 year: 1977 ident: b30 article-title: Integrodifferential equations and delay models in population dynamics publication-title: Lecture Notes in Biomathematics – volume: 57 start-page: 243 year: 2007 end-page: 258 ident: b44 article-title: Oscillation and stability of nonlinear discrete models exhibiting the allee effect publication-title: Math. Slovaca – year: 2009 ident: b46 article-title: Almost periodic solutions of prey-predator discrete models with delay publication-title: Adv. Difference Equ. – volume: 79 start-page: 1927 year: 2019 end-page: 1951 ident: b1 article-title: Proportional threshold harvesting in discrete-time population models publication-title: J. Math. Biol. – year: 2006 ident: b6 article-title: Matrix Population Models – volume: vol. 20 year: 1977 ident: 10.1016/j.mbs.2024.109279_b30 article-title: Integrodifferential equations and delay models in population dynamics – volume: 88 start-page: 11 issue: 1 year: 2023 ident: 10.1016/j.mbs.2024.109279_b59 article-title: Coexistence in two-species competition with delayed maturation publication-title: J. Math. Biol. doi: 10.1007/s00285-023-02031-2 – year: 2013 ident: 10.1016/j.mbs.2024.109279_b13 article-title: Stability and bifurcation analysis of a nonlinear discrete logistic model with delay publication-title: Discrete Dyn. Nat. Soc. doi: 10.1155/2013/463059 – year: 2004 ident: 10.1016/j.mbs.2024.109279_b57 article-title: Periodicities in nonlinear difference equations doi: 10.1201/9781420037722 – year: 1998 ident: 10.1016/j.mbs.2024.109279_b7 article-title: An introduction to structured population dynamics doi: 10.1137/1.9781611970005 – volume: 15 start-page: 393 year: 1984 ident: 10.1016/j.mbs.2024.109279_b49 article-title: The ontogenetic niche and species interactions in size-structured populations publication-title: Annu. Rev. Ecol. Syst. doi: 10.1146/annurev.es.15.110184.002141 – volume: 25 start-page: 363 issue: 1–2 year: 2007 ident: 10.1016/j.mbs.2024.109279_b12 article-title: Oscillation and attractivity of discrete nonlinear delay population model publication-title: J. Appl. Math. Comput. doi: 10.1007/BF02832361 – volume: 83 start-page: 1 issue: 25 year: 2021 ident: 10.1016/j.mbs.2024.109279_b21 article-title: An alternative delayed population growth difference equation model publication-title: J. Math. Biol. – volume: 3 start-page: 381 year: 1976 ident: 10.1016/j.mbs.2024.109279_b8 article-title: A delayed-recruitment model of population dynamics, with an application to baleen whale populations publication-title: J. Math. Biol. doi: 10.1007/BF00275067 – year: 1969 ident: 10.1016/j.mbs.2024.109279_b11 – volume: 23 start-page: 114 issue: 1 year: 1983 ident: 10.1016/j.mbs.2024.109279_b61 article-title: The systematic formulation of population models for insects with dynamically varying instar duration publication-title: Theor. Popul. Biol. doi: 10.1016/0040-5809(83)90008-4 – volume: 84 start-page: ID 39 issue: 5 year: 2022 ident: 10.1016/j.mbs.2024.109279_b27 article-title: Population growth and competition models with decay and competition consistent delay publication-title: J. Math. Biol. doi: 10.1007/s00285-022-01741-3 – volume: 169 start-page: 733 year: 2012 ident: 10.1016/j.mbs.2024.109279_b52 article-title: Habitat exclusion and reduced growth: A field experiment on the effects of inter-cohort competition in young-of-the-year brown trout publication-title: Oecologia doi: 10.1007/s00442-012-2248-5 – year: 2023 ident: 10.1016/j.mbs.2024.109279_b58 – volume: 38 start-page: 285 year: 1999 ident: 10.1016/j.mbs.2024.109279_b37 article-title: Global dynamics of a chemostat competition model with distributed delay publication-title: J. Math. Biol. doi: 10.1007/s002850050150 – volume: 57 start-page: 243 issue: 3 year: 2007 ident: 10.1016/j.mbs.2024.109279_b44 article-title: Oscillation and stability of nonlinear discrete models exhibiting the allee effect publication-title: Math. Slovaca doi: 10.2478/s12175-007-0020-9 – volume: 264 start-page: 147 issue: 1 year: 2001 ident: 10.1016/j.mbs.2024.109279_b43 article-title: Global stability of discrete population models with time delays and fluctuating environment publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.2001.7666 – volume: 37 start-page: 268 year: 1980 ident: 10.1016/j.mbs.2024.109279_b9 article-title: Harvesting strategies and parameter estimation for an age-structured model publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/f80-034 – volume: 5 start-page: 735 issue: 3 year: 2005 ident: 10.1016/j.mbs.2024.109279_b31 article-title: Dynamics of a logistic population model with maturation delay and nonlinear birth rate publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 13 start-page: 19 issue: 1 year: 2016 ident: 10.1016/j.mbs.2024.109279_b39 article-title: Discrete or distributed delay? Effects on stability of population growth publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2016.13.19 – volume: 19 start-page: 7543 issue: 8 year: 2022 ident: 10.1016/j.mbs.2024.109279_b33 article-title: Stage duration distributions and intraspecific competition: A review of continuous stage-structured models publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2022355 – volume: 31 issue: 1 year: 2018 ident: 10.1016/j.mbs.2024.109279_b40 article-title: A matter of maturity: To delay or not to delay? Continuous-time compartmental models of structured populations in the literature 2000–2016 publication-title: Nat. Resour. Model. doi: 10.1111/nrm.12160 – year: 2012 ident: 10.1016/j.mbs.2024.109279_b10 article-title: Chaos in a discrete delay population model publication-title: Discrete Dyn. Nat. Soc. doi: 10.1155/2012/482459 – volume: vol. 82 year: 1986 ident: 10.1016/j.mbs.2024.109279_b63 article-title: The stability and control of discrete process – volume: 45 start-page: 749 issue: 4 year: 2003 ident: 10.1016/j.mbs.2024.109279_b23 article-title: The global attractivity of difference equations of nonincreasing nonlinearities with applications publication-title: Comput. Math. Appl. doi: 10.1016/S0898-1221(03)00035-X – volume: 110 start-page: 573 year: 1976 ident: 10.1016/j.mbs.2024.109279_b4 article-title: Bifurcations and dynamic complexity in simple ecological models publication-title: Amer. Nat. doi: 10.1086/283092 – volume: 340 start-page: 64 year: 2016 ident: 10.1016/j.mbs.2024.109279_b47 article-title: Dynamics of populations with delayed density dependent birth rate regulation publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2016.09.005 – volume: 15 start-page: 655 issue: 6 year: 2002 ident: 10.1016/j.mbs.2024.109279_b55 article-title: A note on the global stability of generalized difference equations publication-title: Appl. Math. Lett. doi: 10.1016/S0893-9659(02)00024-1 – volume: 22 start-page: 687 issue: 5 year: 2016 ident: 10.1016/j.mbs.2024.109279_b2 article-title: Dynamics of a generalized ricker-beverton-holt competition model subject to allee effects publication-title: J. Difference Equ. Appl. doi: 10.1080/10236198.2015.1135910 – volume: 241 start-page: 109 issue: 1 year: 2006 ident: 10.1016/j.mbs.2024.109279_b26 article-title: An alternative formulation for a delayed logistic equation publication-title: J. Theoret. Biol. doi: 10.1016/j.jtbi.2005.11.007 – year: 2009 ident: 10.1016/j.mbs.2024.109279_b46 article-title: Almost periodic solutions of prey-predator discrete models with delay publication-title: Adv. Difference Equ. doi: 10.1155/2009/976865 – volume: 358 issue: 2019 year: 2019 ident: 10.1016/j.mbs.2024.109279_b34 article-title: New findings on exponential convergence of a Nicholson’s blowflies model with proportional delay publication-title: Adv. Differential Equations – year: 1989 ident: 10.1016/j.mbs.2024.109279_b54 article-title: Uniform persistence and repellors for maps – year: 2014 ident: 10.1016/j.mbs.2024.109279_b56 – volume: 17 issue: 1 year: 2023 ident: 10.1016/j.mbs.2024.109279_b22 article-title: Technique to derive discrete population models with delayed growth publication-title: J. Biol. Dyn. doi: 10.1080/17513758.2023.2244987 – year: 1993 ident: 10.1016/j.mbs.2024.109279_b14 article-title: Global behavior of nonlinear difference equations of higher order with applications – year: 1998 ident: 10.1016/j.mbs.2024.109279_b5 – volume: 57 start-page: 1281 year: 1997 ident: 10.1016/j.mbs.2024.109279_b36 article-title: Competition in the chemostat: A distributed delay model and its global asymptotic behavior publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139995289842 – volume: 51 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.mbs.2024.109279_b41 article-title: Delayed density dependence and the stability of interacting populations and subpopulations publication-title: Theor. Popul. Biol. doi: 10.1006/tpbi.1997.1309 – volume: 164 start-page: 132 year: 1963 ident: 10.1016/j.mbs.2024.109279_b18 article-title: Analysis of stock-recruitment relations in Antarctic fin whales publication-title: Cons. Int. pour l’Exptor. Mer – volume: 80 start-page: 1713 issue: 7 year: 2018 ident: 10.1016/j.mbs.2024.109279_b28 article-title: An alternative formulation of a distributed delayed logistic equation publication-title: Bull. Math. Biol. doi: 10.1007/s11538-018-0432-4 – volume: 199 start-page: 26 issue: 1 year: 2006 ident: 10.1016/j.mbs.2024.109279_b16 article-title: Global stability in discrete population models with delayed-density dependence publication-title: Math. Biosci. doi: 10.1016/j.mbs.2005.03.016 – volume: 78 start-page: 144 year: 2000 ident: 10.1016/j.mbs.2024.109279_b51 article-title: Age-related feeding site selection in urban pigeons (Columba livia): experimental evidence of the competition hypothesis publication-title: Can. J. Zool. doi: 10.1139/z99-189 – volume: 7 start-page: 191 issue: 1 year: 2007 ident: 10.1016/j.mbs.2024.109279_b15 article-title: Local stability implies global stability in some one-dimensional discrete single-species models publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 11 start-page: 117 issue: 2 year: 2005 ident: 10.1016/j.mbs.2024.109279_b24 article-title: Convergence to equilibria in discrete population models publication-title: J. Difference Equ. Appl. doi: 10.1080/10236190512331319334 – volume: vol. 27 year: 1978 ident: 10.1016/j.mbs.2024.109279_b32 article-title: Time lags in biological models – volume: 25 start-page: 289 issue: 3 year: 1984 ident: 10.1016/j.mbs.2024.109279_b29 article-title: The dynamics of population models with distributed maturation periods publication-title: Theor. Popul. Biol. doi: 10.1016/0040-5809(84)90011-X – volume: 10 start-page: 315 issue: 3 year: 2007 ident: 10.1016/j.mbs.2024.109279_b45 article-title: Global stability of a nonlinear discrete population model with time delays publication-title: Adv. Complex Syst. doi: 10.1142/S0219525907001197 – start-page: x+358 year: 2001 ident: 10.1016/j.mbs.2024.109279_b62 – volume: 27 start-page: 131 issue: 1 year: 2016 ident: 10.1016/j.mbs.2024.109279_b38 article-title: Age-dependent intra-specific competition in pre-adult life stages and its effects on adult population dynamics publication-title: European J. Appl. Math. doi: 10.1017/S0956792515000418 – volume: 106 start-page: 993 year: 2000 ident: 10.1016/j.mbs.2024.109279_b50 article-title: Age-related microhabitat segregation in willow tit Parus montanus winter flocks publication-title: Ethology doi: 10.1046/j.1439-0310.2000.00622.x – volume: 24 start-page: 192 issue: 2 year: 2018 ident: 10.1016/j.mbs.2024.109279_b17 article-title: On bifurcations of delay single species discrete time population models publication-title: J. Difference Equ. Appl. doi: 10.1080/10236198.2017.1397645 – volume: 204 start-page: 275 year: 2018 ident: 10.1016/j.mbs.2024.109279_b3 article-title: JABBA: Just another Bayesian biomass assessment publication-title: Fish. Res. doi: 10.1016/j.fishres.2018.03.010 – volume: 27 start-page: 250 issue: 2 year: 2021 ident: 10.1016/j.mbs.2024.109279_b20 article-title: Stability and Neimark–Sacker bifurcation for a discrete Nicholson’s blowflies model with proportional delay publication-title: J. Difference Equ. Appl. doi: 10.1080/10236198.2021.1887159 – volume: 287 start-page: 17 year: 1980 ident: 10.1016/j.mbs.2024.109279_b25 article-title: Nicholson’s blowflies revisited publication-title: Nature doi: 10.1038/287017a0 – volume: 54 start-page: 520 year: 1997 ident: 10.1016/j.mbs.2024.109279_b53 article-title: Seasonal changes in habitat use and preference by juvenile brown trout, Salmo trutta, in a northern boreal river publication-title: Can. J. Fish. Aquat. Sci. – year: 2006 ident: 10.1016/j.mbs.2024.109279_b6 – volume: 31 start-page: 613 issue: 3 year: 2023 ident: 10.1016/j.mbs.2024.109279_b35 article-title: Dynamics of a predator-prey model with distributed delay to represent the conversion process or maturation publication-title: Differ. Equ. Dyn. Syst. doi: 10.1007/s12591-020-00546-4 – volume: 344 start-page: 660 year: 1990 ident: 10.1016/j.mbs.2024.109279_b42 article-title: Rarity of density dependence or population regulation with lags? publication-title: Nature doi: 10.1038/344660a0 – year: 1982 ident: 10.1016/j.mbs.2024.109279_b19 – volume: 52 start-page: 479 issue: 2 year: 1983 ident: 10.1016/j.mbs.2024.109279_b60 article-title: The systematic formulation of tractable single-species population models incorporating age structure publication-title: J. Anim. Ecol. doi: 10.2307/4567 – volume: 79 start-page: 1927 issue: 5 year: 2019 ident: 10.1016/j.mbs.2024.109279_b1 article-title: Proportional threshold harvesting in discrete-time population models publication-title: J. Math. Biol. doi: 10.1007/s00285-019-01415-7 – volume: 60 start-page: 912 year: 2009 ident: 10.1016/j.mbs.2024.109279_b48 article-title: Short-term climate variability and the commercial barramundi (Lates calcarifer) fishery of north-east Queensland, Australia publication-title: Mar. Freshw. Res. doi: 10.1071/MF08283 |
SSID | ssj0017116 |
Score | 2.419255 |
Snippet | We introduce a class of discrete single species models with distributed delay in the reproductive process and a cohort dependent survival function that... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 109279 |
SubjectTerms | Beverton–Holt model Binomial kernel Critical threshold Dirac kernel Discrete population model Distributed delay Global stability Linear kernels Persistence Uniform kernel |
Title | Derivation and dynamics of discrete population models with distributed delay in reproduction |
URI | https://dx.doi.org/10.1016/j.mbs.2024.109279 https://www.ncbi.nlm.nih.gov/pubmed/39147015 https://www.proquest.com/docview/3093593145 |
Volume | 376 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_MiaAH0fk1v4jgSahb0rRdjzKV6dCDOPQghKZNYaLd2MfBi3-77yXtQFAPnkrahIb3kpffy_sCOPURYss056iWxJFHfoReB_lM-wrnHbR1buPW7u7D3kDePgfPNehWsTDkVlnKfifTrbQu37RKarbGwyHF-CIcDhA_S4tjUAVaFn4cBnVYvrjp9-4XxoSI2wqotnIrDaiMm9bN611T0m4hKa-SIIeun4-n3-CnPYauN2C9xI_swk1xE2qmaMCKqyj50YC1u0Ua1ukWvFzi-nJ3riwpMpa58vNTNsoZheNOEDGz8aKEF7NlcaaM7mbpuyuGZXCceUs-2LBglALTZojF3tswuL567Pa8spyCl-KmnnkpNx2RaL9tch7rLJPYjBOThyIxMsik4HmIyhOPjZa6I8n-x7FTGqcccRoedTtQL0aF2QOWJ36g_cTPQlRH_Czo6FCINEoNyotY6LwJZxUV1dhlzVCVO9mrQpIrIrlyJG-CrOisvrFeoVT_a9hJxROFW4LsHElhRvOpssbdGFdh0IRdx6zFLHCdyAgh0P7_fnoAq9Ry3nyHUJ9N5uYIUclMH8PS-Sc_LtcePfsPT_0v4YjhGA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kRdSD6PpanxE8CdVNm76O4oP1sXvahT0IoWlTWNHuso-DF3-7M0lbENSDx7YJDTOTyTeZF8C5hxBbpDlHsyQOHYojdCLkM-0rXLffVrnJW-v2gs5APA794RLcVLkwFFZZ6n6r0422Lt9cldS8moxGlOOLcNhH_CwMjkETaFn4XkhxfZefdZwHD7npf2r6ttLwyrVpgrzeFZXsdgVVVXIpnOvnw-k38GkOoftN2CjRI7u2C9yCJV00YcX2k_xownq3LsI624aXW5Que-PKkiJjmW0-P2PjnFEy7hTxMpvUDbyYaYozY3QzS99tKyyN8_Rb8sFGBaMCmKY-LI7egcH9Xf-m45TNFJwUt_TcSbmO3ER5bZ3zWGWZwMc40XngJlr4mXB5HqDpxGOthIoEef84DkrjlCNKw4NuFxrFuND7wPLE85WXeFmAxoiX-ZEKXDcNU43aInZV3oKLiopyYmtmyCqY7FUiySWRXFqSt0BUdJbfGC9Rp_817aziicQNQV6OpNDjxUwa126MMui3YM8yq14FSokIEQAd_O-np7Da6Xef5fND7-kQ1uiLjes7gsZ8utDHiE_m6sTI3xfAIuBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Derivation+and+dynamics+of+discrete+population+models+with+distributed+delay+in+reproduction&rft.jtitle=Mathematical+biosciences&rft.au=Streipert%2C+Sabrina+H.&rft.au=Wolkowicz%2C+Gail+S.K.&rft.date=2024-10-01&rft.issn=0025-5564&rft.volume=376&rft.spage=109279&rft_id=info:doi/10.1016%2Fj.mbs.2024.109279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mbs_2024_109279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5564&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5564&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5564&client=summon |