Packing topological entropy for amenable group actions

Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present paper we give a systematic study of the packing topological entropy for a continuous G-action dynamical system $(X,G)$ , where X is a compact...

Full description

Saved in:
Bibliographic Details
Published inErgodic theory and dynamical systems Vol. 43; no. 2; pp. 480 - 514
Main Authors DOU, DOU, ZHENG, DONGMEI, ZHOU, XIAOMIN
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present paper we give a systematic study of the packing topological entropy for a continuous G-action dynamical system $(X,G)$ , where X is a compact metric space and G is a countable infinite discrete amenable group. We first prove a variational principle for amenable packing topological entropy: for any Borel subset Z of X, the packing topological entropy of Z equals the supremum of upper local entropy over all Borel probability measures for which the subset Z has full measure. Then we obtain an entropy inequality concerning amenable packing entropy. Finally, we show that the packing topological entropy of the set of generic points for any invariant Borel probability measure $\mu $ coincides with the metric entropy if either $\mu $ is ergodic or the system satisfies a kind of specification property.
AbstractList Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present paper we give a systematic study of the packing topological entropy for a continuous G-action dynamical system $(X,G)$, where X is a compact metric space and G is a countable infinite discrete amenable group. We first prove a variational principle for amenable packing topological entropy: for any Borel subset Z of X, the packing topological entropy of Z equals the supremum of upper local entropy over all Borel probability measures for which the subset Z has full measure. Then we obtain an entropy inequality concerning amenable packing entropy. Finally, we show that the packing topological entropy of the set of generic points for any invariant Borel probability measure $\mu $ coincides with the metric entropy if either $\mu $ is ergodic or the system satisfies a kind of specification property.
Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present paper we give a systematic study of the packing topological entropy for a continuous G-action dynamical system $(X,G)$ , where X is a compact metric space and G is a countable infinite discrete amenable group. We first prove a variational principle for amenable packing topological entropy: for any Borel subset Z of X, the packing topological entropy of Z equals the supremum of upper local entropy over all Borel probability measures for which the subset Z has full measure. Then we obtain an entropy inequality concerning amenable packing entropy. Finally, we show that the packing topological entropy of the set of generic points for any invariant Borel probability measure $\mu $ coincides with the metric entropy if either $\mu $ is ergodic or the system satisfies a kind of specification property.
Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present paper we give a systematic study of the packing topological entropy for a continuous G -action dynamical system $(X,G)$ , where X is a compact metric space and G is a countable infinite discrete amenable group. We first prove a variational principle for amenable packing topological entropy: for any Borel subset Z of X , the packing topological entropy of Z equals the supremum of upper local entropy over all Borel probability measures for which the subset Z has full measure. Then we obtain an entropy inequality concerning amenable packing entropy. Finally, we show that the packing topological entropy of the set of generic points for any invariant Borel probability measure $\mu $ coincides with the metric entropy if either $\mu $ is ergodic or the system satisfies a kind of specification property.
Author ZHENG, DONGMEI
DOU, DOU
ZHOU, XIAOMIN
Author_xml – sequence: 1
  givenname: DOU
  surname: DOU
  fullname: DOU, DOU
  email: doumath@163.com
  organization: †Department of Mathematics, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
– sequence: 2
  givenname: DONGMEI
  surname: ZHENG
  fullname: ZHENG, DONGMEI
  email: dongmzheng@163.com
  organization: ‡School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China (e-mail: dongmzheng@163.com)
– sequence: 3
  givenname: XIAOMIN
  orcidid: 0000-0002-4019-1345
  surname: ZHOU
  fullname: ZHOU, XIAOMIN
  email: zxm12@mail.ustc.edu.cn
  organization: §School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China (e-mail: zxm12@mail.ustc.edu.cn)
BookMark eNp1kD1rwzAQhkVJoU7asbuhsxOdZFnRWEK_INAO7Sz0ZePUsVxJGfLva5NAobTTLc_73t0zR7Pe9w6hW8BLwMBXLtm4JJjAEkh1gTIoK1GUJfAZyjCUtKBrxq_QPMYdxpgCZxmq3pT5bPsmT37wnW9ao7rc9Sn44ZjXPuRq73qlO5c3wR-GXJnU-j5eo8taddHdnOcCfTw-vG-ei-3r08vmflsYilkqtAGwldZGCBCMCbu2tS2pYFqpGrBhJdc1rkpONNeKMEeIZRg0IxWrjBJ0ge5OvUPwXwcXk9z5Q-jHlZLwkRGMEDZSxYkywccYXC2H0O5VOErAclIjJzVyUiNHNSNPf_GmTWp6LAXVdv-mVueU2uvQ2sb9HPN34hvfI3mE
CitedBy_id crossref_primary_10_1007_s10473_023_0322_1
crossref_primary_10_1007_s10473_023_0426_7
crossref_primary_10_1088_1361_6544_acadca
crossref_primary_10_1007_s11464_022_0047_9
crossref_primary_10_3934_dcdss_2025001
crossref_primary_10_4153_S0008414X24001056
crossref_primary_10_1007_s43037_023_00276_z
crossref_primary_10_1007_s12346_024_01217_3
Cites_doi 10.1007/s11425-016-9050-0
10.1112/S002557930001130X
10.1007/s11856-016-1312-y
10.1007/s002220100162
10.3390/e19100526
10.1016/j.jfa.2012.07.010
10.1007/BF02790325
10.1007/978-3-642-14034-1
10.1007/978-3-319-49847-8
10.1214/lnms/1196285808
10.4064/sm-72-2-151-159
10.1017/S0143385706000824
10.1090/S0002-9947-1973-0338317-X
10.1080/14689367.2012.701605
10.1007/s00222-014-0524-1
10.2307/1971397
10.1214/11-AOP688
10.1017/CBO9780511623813
10.1007/s10884-017-9610-6
10.1090/S0002-9947-1971-0274707-X
10.1017/S0305004100059119
10.7208/chicago/9780226662237.001.0001
10.1006/aima.1995.1050
10.1007/BFb0061408
ContentType Journal Article
Copyright The Author(s), 2021. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2021. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7SC
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
H8D
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/etds.2021.126
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
Aerospace Database
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Science Database
Engineering Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-4417
EndPage 514
ExternalDocumentID 10_1017_etds_2021_126
GroupedDBID --Z
-1D
-1F
-2P
-2V
-DZ
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
29G
3V.
4.4
5GY
5VS
6TJ
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ACBMC
ACCHT
ACETC
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AETEA
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
T9M
TN5
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AAYXX
ABGDZ
ABHFL
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACOZI
AFZFC
AKMAY
ANOYL
CITATION
PHGZM
PHGZT
7SC
7U5
7XB
8FD
8FK
H8D
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c305t-bc11d6bbc9919559d8dfd4395baaf10c547bf06472b7ba25e22d501b52656ca93
IEDL.DBID BENPR
ISSN 0143-3857
IngestDate Fri Jul 25 19:43:58 EDT 2025
Thu Apr 24 22:51:07 EDT 2025
Tue Jul 01 00:22:28 EDT 2025
Wed Mar 13 05:49:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords packing topological entropy
variational principle
37B40
generic point
28D20
37A15
amenable group
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c305t-bc11d6bbc9919559d8dfd4395baaf10c547bf06472b7ba25e22d501b52656ca93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4019-1345
PQID 2765695225
PQPubID 36706
PageCount 35
ParticipantIDs proquest_journals_2765695225
crossref_primary_10_1017_etds_2021_126
crossref_citationtrail_10_1017_etds_2021_126
cambridge_journals_10_1017_etds_2021_126
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Ergodic theory and dynamical systems
PublicationTitleAlternate Ergod. Th. Dynam. Sys
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 1995; 42
2001; 146
2012; 263
1982; 72
1973; 184
2015; 199
2016; 212
1995; 115
1982; 115
2018; 30
2017; 19
2018; 51
2018; 61
2012; 27
1971; 153
1982; 91
1980; 254
1987; 48
2012; 40
2007; 27
Stepin (S0143385721001267_r21) 1980; 254
S0143385721001267_r22
S0143385721001267_r23
S0143385721001267_r20
S0143385721001267_r26
S0143385721001267_r27
S0143385721001267_r24
S0143385721001267_r25
Jech (S0143385721001267_r11) 2003
S0143385721001267_r9
S0143385721001267_r6
S0143385721001267_r7
S0143385721001267_r1
S0143385721001267_r4
S0143385721001267_r5
S0143385721001267_r12
S0143385721001267_r2
S0143385721001267_r3
S0143385721001267_r10
S0143385721001267_r15
Dou (S0143385721001267_r8) 2018; 51
S0143385721001267_r16
S0143385721001267_r13
S0143385721001267_r14
S0143385721001267_r19
S0143385721001267_r17
S0143385721001267_r18
References_xml – volume: 40
  start-page: 2460
  issue: 6
  year: 2012
  end-page: 2482
  article-title: Relative complexity of random walks in random sceneries
  publication-title: Ann. Probab.
– volume: 27
  start-page: 929
  issue: 3
  year: 2007
  end-page: 956
  article-title: On the topological entropy of saturated sets
  publication-title: Ergod. Th. & Dynam. Sys.
– volume: 30
  start-page: 1583
  issue: 4
  year: 2018
  end-page: 1606
  article-title: Topological pressure of generic points for amenable group actions
  publication-title: J. Dynam. Differential Equations
– volume: 254
  start-page: 545
  issue: 3
  year: 1980
  end-page: 549
  article-title: Variational characterization of topological pressure of the amenable groups of transformations
  publication-title: Dokl. Akad. Nauk
– volume: 27
  start-page: 387
  issue: 3
  year: 2012
  end-page: 402
  article-title: Packing entropy and divergence points
  publication-title: Dyn. Syst.
– volume: 72
  start-page: 151
  issue: 2
  year: 1982
  end-page: 159
  article-title: The variational principle
  publication-title: Studia Math.
– volume: 48
  start-page: 1
  year: 1987
  end-page: 141
  article-title: Entropy and isomorphism theorems for actions of amenable groups
  publication-title: J. Anal. Math.
– volume: 263
  start-page: 2228
  issue: 8
  year: 2012
  end-page: 2254
  article-title: Variational principles for topological entropies of subsets
  publication-title: J. Funct. Anal.
– volume: 199
  start-page: 805
  issue: 3
  year: 2015
  end-page: 858
  article-title: Homoclinic groups, IE groups, and expansive algebraic actions
  publication-title: Invent. Math.
– volume: 146
  start-page: 259
  year: 2001
  end-page: 295
  article-title: Pointwise theorems for amenable groups
  publication-title: Invent. Math.
– volume: 61
  start-page: 869
  issue: 5
  year: 2018
  end-page: 880
  article-title: Topological entropy of sets of generic points for actions of amenable groups
  publication-title: Sci. China Math.
– volume: 51
  start-page: 599
  issue: 2
  year: 2018
  end-page: 608
  article-title: A note on dimensional entropy for amenable group actions
  publication-title: Topol. Methods Nonlinear Anal.
– volume: 91
  start-page: 57
  issue: 1
  year: 1982
  end-page: 74
  article-title: Two definitions of fractional dimension
  publication-title: Math. Proc. Cambridge Philos. Soc.
– volume: 19
  issue: 10
  year: 2017
  article-title: A formula of packing pressure of a factor map
  publication-title: Entropy
– volume: 153
  start-page: 401
  year: 1971
  end-page: 414
  article-title: Entropy for group endomorphisms and homogeneous spaces
  publication-title: Trans. Amer. Math. Soc.
– volume: 184
  start-page: 125
  year: 1973
  end-page: 136
  article-title: Topological entropy for noncompact sets
  publication-title: Trans. Amer. Math. Soc.
– volume: 42
  start-page: 15
  year: 1995
  end-page: 24
  article-title: On the existence of subsets of finite positive packing measure
  publication-title: Mathematika
– volume: 115
  start-page: 393
  year: 1982
  end-page: 409
  article-title: $T,{T}^{-1}$ transformation is not loosely Bernoulli
  publication-title: Ann. of Math. (2)
– volume: 115
  start-page: 54
  year: 1995
  end-page: 98
  article-title: Topological entropy of group and semigroup actions
  publication-title: Adv. Math.
– volume: 212
  start-page: 895
  year: 2016
  end-page: 911
  article-title: Bowen entropy for actions of amenable groups
  publication-title: Israel J. Math.
– ident: S0143385721001267_r26
  doi: 10.1007/s11425-016-9050-0
– ident: S0143385721001267_r12
  doi: 10.1112/S002557930001130X
– ident: S0143385721001267_r25
  doi: 10.1007/s11856-016-1312-y
– ident: S0143385721001267_r15
  doi: 10.1007/s002220100162
– ident: S0143385721001267_r24
  doi: 10.3390/e19100526
– ident: S0143385721001267_r9
  doi: 10.1016/j.jfa.2012.07.010
– volume-title: Set Theory
  year: 2003
  ident: S0143385721001267_r11
– ident: S0143385721001267_r18
  doi: 10.1007/BF02790325
– ident: S0143385721001267_r5
  doi: 10.1007/978-3-642-14034-1
– ident: S0143385721001267_r14
  doi: 10.1007/978-3-319-49847-8
– ident: S0143385721001267_r7
  doi: 10.1214/lnms/1196285808
– ident: S0143385721001267_r17
  doi: 10.4064/sm-72-2-151-159
– ident: S0143385721001267_r20
  doi: 10.1017/S0143385706000824
– ident: S0143385721001267_r3
  doi: 10.1090/S0002-9947-1973-0338317-X
– ident: S0143385721001267_r27
  doi: 10.1080/14689367.2012.701605
– volume: 254
  start-page: 545
  year: 1980
  ident: S0143385721001267_r21
  article-title: Variational characterization of topological pressure of the amenable groups of transformations
  publication-title: Dokl. Akad. Nauk
– ident: S0143385721001267_r6
  doi: 10.1007/s00222-014-0524-1
– volume: 51
  start-page: 599
  year: 2018
  ident: S0143385721001267_r8
  article-title: A note on dimensional entropy for amenable group actions
  publication-title: Topol. Methods Nonlinear Anal.
– ident: S0143385721001267_r13
  doi: 10.2307/1971397
– ident: S0143385721001267_r1
  doi: 10.1214/11-AOP688
– ident: S0143385721001267_r16
  doi: 10.1017/CBO9780511623813
– ident: S0143385721001267_r23
  doi: 10.1007/s10884-017-9610-6
– ident: S0143385721001267_r2
  doi: 10.1090/S0002-9947-1971-0274707-X
– ident: S0143385721001267_r22
  doi: 10.1017/S0305004100059119
– ident: S0143385721001267_r19
  doi: 10.7208/chicago/9780226662237.001.0001
– ident: S0143385721001267_r10
  doi: 10.1006/aima.1995.1050
– ident: S0143385721001267_r4
  doi: 10.1007/BFb0061408
SSID ssj0003175
Score 2.403709
Snippet Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 480
SubjectTerms Dynamical systems
Entropy
Metric space
Original Article
Topology
Title Packing topological entropy for amenable group actions
URI https://www.cambridge.org/core/product/identifier/S0143385721001267/type/journal_article
https://www.proquest.com/docview/2765695225
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXWBAfIpCqTwgxIAhieN8TAhQS4VEVSEqdYt8tjNBW0gY-Pf4EjdVh7JFyg3Ry_nu5XL3jpBLgQokgucMYmVYmGjDQArBjKfBRMZS1Lzq8h1Fw0n4MhVTV3ArXFvlMiZWgVrPFdbI74LYMo_UsgVxv_hiuDUK_666FRrbpG1DcGI_vtqP_dH4rYnFmB3rJkbOeCJip7KJotGm1CjXHfi3_rqywnqGWg_QVdYZ7JM9RxfpQ_1-D8iWmR2S3ddGa7U4ItFYKqx307Led4CoU6zZzhe_1FJSKj9NNSBFqwkOWk8yFMdkMui_Pw2Z24bAlD2TJQPl-zoCUJbRoWycTnSuLZ0QIGXue0qEMeQ4OhpADDIQJgi08HxA_ftIyZSfkNZsPjOnhApfJSlwkabghfZSxlxxLlQOEkLBgw65btDInE8XWd0PFmcIXIbAZRa4DrlZgpUppyqOyy0-NplfNeaLWk5jk2F3ifzqCVY-cPb_7XOyg2vh6-7qLmmV3z_mwpKHEnpkOxk895yf_AHyzcP6
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELYqGIAB8RSFAh4AMWBo7DiPASEElJY-xNBK3YJfmaAtNAj1T_Eb8eXRqkPZukWKB-vz-e7L5e47hM44KJBwFhPpK0PcQBsiBefEVLU0nrEUNU6rfDtevee-9Hm_hH6LXhgoqyx8Yuqo9VBBjvyG-pZ5hJYt8LvRJ4GpUfB3tRihkZlF00x-7Cfb-LbxaM_3nNLaU_ehTvKpAkRZ206IVI6jPSmVZUYgv6YDHWsblrkUInaqiru-jKEFk0pfCsoNpZpXHQk68p4SIL5kXf6qy1gINyqoPU89P8TirGSSERZwP9f0BIlqk2gQB6fOtTOv4zAfD-fDQRrjaltoMyen-D6zpm1UMoMdtNGeKruOd5H3KhRk13GSTVeAM8aQIR6OJtgSYCw-TNqOhdN-EZz1TYz3UG8pKO2jlcFwYA4Q5o4KQsl4GMqqax-FzxRjXMVSSJczWkaXUzSi_AaNo6z6zI8AuAiAiyxwZXRVgBWpXMMcRmm8L1p-MV0-ysQ7Fi2sFMjPdjCzuMP_X5-itXq33YpajU7zCK3DQPqsrruCVpKvb3NsaUsiT1Jbweht2cb5B2K5_qA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Packing+topological+entropy+for+amenable+group+actions&rft.jtitle=Ergodic+theory+and+dynamical+systems&rft.au=Dou%2C+Dou&rft.au=Zheng%2C+Dongmei&rft.au=Zhou%2C+Xiaomin&rft.date=2023-02-01&rft.pub=Cambridge+University+Press&rft.issn=0143-3857&rft.eissn=1469-4417&rft.volume=43&rft.issue=2&rft.spage=480&rft.epage=514&rft_id=info:doi/10.1017%2Fetds.2021.126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-3857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-3857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-3857&client=summon