Packing topological entropy for amenable group actions
Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present paper we give a systematic study of the packing topological entropy for a continuous G-action dynamical system $(X,G)$ , where X is a compact...
Saved in:
Published in | Ergodic theory and dynamical systems Vol. 43; no. 2; pp. 480 - 514 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present paper we give a systematic study of the packing topological entropy for a continuous G-action dynamical system
$(X,G)$
, where X is a compact metric space and G is a countable infinite discrete amenable group. We first prove a variational principle for amenable packing topological entropy: for any Borel subset Z of X, the packing topological entropy of Z equals the supremum of upper local entropy over all Borel probability measures for which the subset Z has full measure. Then we obtain an entropy inequality concerning amenable packing entropy. Finally, we show that the packing topological entropy of the set of generic points for any invariant Borel probability measure
$\mu $
coincides with the metric entropy if either
$\mu $
is ergodic or the system satisfies a kind of specification property. |
---|---|
AbstractList | Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present paper we give a systematic study of the packing topological entropy for a continuous G-action dynamical system $(X,G)$, where X is a compact metric space and G is a countable infinite discrete amenable group. We first prove a variational principle for amenable packing topological entropy: for any Borel subset Z of X, the packing topological entropy of Z equals the supremum of upper local entropy over all Borel probability measures for which the subset Z has full measure. Then we obtain an entropy inequality concerning amenable packing entropy. Finally, we show that the packing topological entropy of the set of generic points for any invariant Borel probability measure $\mu $ coincides with the metric entropy if either $\mu $ is ergodic or the system satisfies a kind of specification property. Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present paper we give a systematic study of the packing topological entropy for a continuous G-action dynamical system $(X,G)$ , where X is a compact metric space and G is a countable infinite discrete amenable group. We first prove a variational principle for amenable packing topological entropy: for any Borel subset Z of X, the packing topological entropy of Z equals the supremum of upper local entropy over all Borel probability measures for which the subset Z has full measure. Then we obtain an entropy inequality concerning amenable packing entropy. Finally, we show that the packing topological entropy of the set of generic points for any invariant Borel probability measure $\mu $ coincides with the metric entropy if either $\mu $ is ergodic or the system satisfies a kind of specification property. Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present paper we give a systematic study of the packing topological entropy for a continuous G -action dynamical system $(X,G)$ , where X is a compact metric space and G is a countable infinite discrete amenable group. We first prove a variational principle for amenable packing topological entropy: for any Borel subset Z of X , the packing topological entropy of Z equals the supremum of upper local entropy over all Borel probability measures for which the subset Z has full measure. Then we obtain an entropy inequality concerning amenable packing entropy. Finally, we show that the packing topological entropy of the set of generic points for any invariant Borel probability measure $\mu $ coincides with the metric entropy if either $\mu $ is ergodic or the system satisfies a kind of specification property. |
Author | ZHENG, DONGMEI DOU, DOU ZHOU, XIAOMIN |
Author_xml | – sequence: 1 givenname: DOU surname: DOU fullname: DOU, DOU email: doumath@163.com organization: †Department of Mathematics, Nanjing University, Nanjing, Jiangsu 210093, P. R. China – sequence: 2 givenname: DONGMEI surname: ZHENG fullname: ZHENG, DONGMEI email: dongmzheng@163.com organization: ‡School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China (e-mail: dongmzheng@163.com) – sequence: 3 givenname: XIAOMIN orcidid: 0000-0002-4019-1345 surname: ZHOU fullname: ZHOU, XIAOMIN email: zxm12@mail.ustc.edu.cn organization: §School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China (e-mail: zxm12@mail.ustc.edu.cn) |
BookMark | eNp1kD1rwzAQhkVJoU7asbuhsxOdZFnRWEK_INAO7Sz0ZePUsVxJGfLva5NAobTTLc_73t0zR7Pe9w6hW8BLwMBXLtm4JJjAEkh1gTIoK1GUJfAZyjCUtKBrxq_QPMYdxpgCZxmq3pT5bPsmT37wnW9ao7rc9Sn44ZjXPuRq73qlO5c3wR-GXJnU-j5eo8taddHdnOcCfTw-vG-ei-3r08vmflsYilkqtAGwldZGCBCMCbu2tS2pYFqpGrBhJdc1rkpONNeKMEeIZRg0IxWrjBJ0ge5OvUPwXwcXk9z5Q-jHlZLwkRGMEDZSxYkywccYXC2H0O5VOErAclIjJzVyUiNHNSNPf_GmTWp6LAXVdv-mVueU2uvQ2sb9HPN34hvfI3mE |
CitedBy_id | crossref_primary_10_1007_s10473_023_0322_1 crossref_primary_10_1007_s10473_023_0426_7 crossref_primary_10_1088_1361_6544_acadca crossref_primary_10_1007_s11464_022_0047_9 crossref_primary_10_3934_dcdss_2025001 crossref_primary_10_4153_S0008414X24001056 crossref_primary_10_1007_s43037_023_00276_z crossref_primary_10_1007_s12346_024_01217_3 |
Cites_doi | 10.1007/s11425-016-9050-0 10.1112/S002557930001130X 10.1007/s11856-016-1312-y 10.1007/s002220100162 10.3390/e19100526 10.1016/j.jfa.2012.07.010 10.1007/BF02790325 10.1007/978-3-642-14034-1 10.1007/978-3-319-49847-8 10.1214/lnms/1196285808 10.4064/sm-72-2-151-159 10.1017/S0143385706000824 10.1090/S0002-9947-1973-0338317-X 10.1080/14689367.2012.701605 10.1007/s00222-014-0524-1 10.2307/1971397 10.1214/11-AOP688 10.1017/CBO9780511623813 10.1007/s10884-017-9610-6 10.1090/S0002-9947-1971-0274707-X 10.1017/S0305004100059119 10.7208/chicago/9780226662237.001.0001 10.1006/aima.1995.1050 10.1007/BFb0061408 |
ContentType | Journal Article |
Copyright | The Author(s), 2021. Published by Cambridge University Press |
Copyright_xml | – notice: The Author(s), 2021. Published by Cambridge University Press |
DBID | AAYXX CITATION 3V. 7SC 7U5 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ H8D HCIFZ JQ2 K7- L6V L7M L~C L~D M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1017/etds.2021.126 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student Aerospace Database ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Science Database Engineering Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1469-4417 |
EndPage | 514 |
ExternalDocumentID | 10_1017_etds_2021_126 |
GroupedDBID | --Z -1D -1F -2P -2V -DZ -E. -~6 -~N -~X .FH 09C 09E 0E1 0R~ 29G 3V. 4.4 5GY 5VS 6TJ 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABXAU ABZCX ACBMC ACCHT ACETC ACGFS ACGOD ACIMK ACIWK ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AETEA AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KC5 KCGVB KFECR L6V L98 LHUNA LW7 M-V M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S6- S6U SAAAG T9M TN5 UT1 VH1 WFFJZ WQ3 WXU WXY WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 AAKNA AAYXX ABGDZ ABHFL ABVKB ABVZP ABXHF ACDLN ACEJA ACOZI AFZFC AKMAY ANOYL CITATION PHGZM PHGZT 7SC 7U5 7XB 8FD 8FK H8D JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c305t-bc11d6bbc9919559d8dfd4395baaf10c547bf06472b7ba25e22d501b52656ca93 |
IEDL.DBID | BENPR |
ISSN | 0143-3857 |
IngestDate | Fri Jul 25 19:43:58 EDT 2025 Thu Apr 24 22:51:07 EDT 2025 Tue Jul 01 00:22:28 EDT 2025 Wed Mar 13 05:49:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | packing topological entropy variational principle 37B40 generic point 28D20 37A15 amenable group |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c305t-bc11d6bbc9919559d8dfd4395baaf10c547bf06472b7ba25e22d501b52656ca93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4019-1345 |
PQID | 2765695225 |
PQPubID | 36706 |
PageCount | 35 |
ParticipantIDs | proquest_journals_2765695225 crossref_primary_10_1017_etds_2021_126 crossref_citationtrail_10_1017_etds_2021_126 cambridge_journals_10_1017_etds_2021_126 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Ergodic theory and dynamical systems |
PublicationTitleAlternate | Ergod. Th. Dynam. Sys |
PublicationYear | 2023 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 1995; 42 2001; 146 2012; 263 1982; 72 1973; 184 2015; 199 2016; 212 1995; 115 1982; 115 2018; 30 2017; 19 2018; 51 2018; 61 2012; 27 1971; 153 1982; 91 1980; 254 1987; 48 2012; 40 2007; 27 Stepin (S0143385721001267_r21) 1980; 254 S0143385721001267_r22 S0143385721001267_r23 S0143385721001267_r20 S0143385721001267_r26 S0143385721001267_r27 S0143385721001267_r24 S0143385721001267_r25 Jech (S0143385721001267_r11) 2003 S0143385721001267_r9 S0143385721001267_r6 S0143385721001267_r7 S0143385721001267_r1 S0143385721001267_r4 S0143385721001267_r5 S0143385721001267_r12 S0143385721001267_r2 S0143385721001267_r3 S0143385721001267_r10 S0143385721001267_r15 Dou (S0143385721001267_r8) 2018; 51 S0143385721001267_r16 S0143385721001267_r13 S0143385721001267_r14 S0143385721001267_r19 S0143385721001267_r17 S0143385721001267_r18 |
References_xml | – volume: 40 start-page: 2460 issue: 6 year: 2012 end-page: 2482 article-title: Relative complexity of random walks in random sceneries publication-title: Ann. Probab. – volume: 27 start-page: 929 issue: 3 year: 2007 end-page: 956 article-title: On the topological entropy of saturated sets publication-title: Ergod. Th. & Dynam. Sys. – volume: 30 start-page: 1583 issue: 4 year: 2018 end-page: 1606 article-title: Topological pressure of generic points for amenable group actions publication-title: J. Dynam. Differential Equations – volume: 254 start-page: 545 issue: 3 year: 1980 end-page: 549 article-title: Variational characterization of topological pressure of the amenable groups of transformations publication-title: Dokl. Akad. Nauk – volume: 27 start-page: 387 issue: 3 year: 2012 end-page: 402 article-title: Packing entropy and divergence points publication-title: Dyn. Syst. – volume: 72 start-page: 151 issue: 2 year: 1982 end-page: 159 article-title: The variational principle publication-title: Studia Math. – volume: 48 start-page: 1 year: 1987 end-page: 141 article-title: Entropy and isomorphism theorems for actions of amenable groups publication-title: J. Anal. Math. – volume: 263 start-page: 2228 issue: 8 year: 2012 end-page: 2254 article-title: Variational principles for topological entropies of subsets publication-title: J. Funct. Anal. – volume: 199 start-page: 805 issue: 3 year: 2015 end-page: 858 article-title: Homoclinic groups, IE groups, and expansive algebraic actions publication-title: Invent. Math. – volume: 146 start-page: 259 year: 2001 end-page: 295 article-title: Pointwise theorems for amenable groups publication-title: Invent. Math. – volume: 61 start-page: 869 issue: 5 year: 2018 end-page: 880 article-title: Topological entropy of sets of generic points for actions of amenable groups publication-title: Sci. China Math. – volume: 51 start-page: 599 issue: 2 year: 2018 end-page: 608 article-title: A note on dimensional entropy for amenable group actions publication-title: Topol. Methods Nonlinear Anal. – volume: 91 start-page: 57 issue: 1 year: 1982 end-page: 74 article-title: Two definitions of fractional dimension publication-title: Math. Proc. Cambridge Philos. Soc. – volume: 19 issue: 10 year: 2017 article-title: A formula of packing pressure of a factor map publication-title: Entropy – volume: 153 start-page: 401 year: 1971 end-page: 414 article-title: Entropy for group endomorphisms and homogeneous spaces publication-title: Trans. Amer. Math. Soc. – volume: 184 start-page: 125 year: 1973 end-page: 136 article-title: Topological entropy for noncompact sets publication-title: Trans. Amer. Math. Soc. – volume: 42 start-page: 15 year: 1995 end-page: 24 article-title: On the existence of subsets of finite positive packing measure publication-title: Mathematika – volume: 115 start-page: 393 year: 1982 end-page: 409 article-title: $T,{T}^{-1}$ transformation is not loosely Bernoulli publication-title: Ann. of Math. (2) – volume: 115 start-page: 54 year: 1995 end-page: 98 article-title: Topological entropy of group and semigroup actions publication-title: Adv. Math. – volume: 212 start-page: 895 year: 2016 end-page: 911 article-title: Bowen entropy for actions of amenable groups publication-title: Israel J. Math. – ident: S0143385721001267_r26 doi: 10.1007/s11425-016-9050-0 – ident: S0143385721001267_r12 doi: 10.1112/S002557930001130X – ident: S0143385721001267_r25 doi: 10.1007/s11856-016-1312-y – ident: S0143385721001267_r15 doi: 10.1007/s002220100162 – ident: S0143385721001267_r24 doi: 10.3390/e19100526 – ident: S0143385721001267_r9 doi: 10.1016/j.jfa.2012.07.010 – volume-title: Set Theory year: 2003 ident: S0143385721001267_r11 – ident: S0143385721001267_r18 doi: 10.1007/BF02790325 – ident: S0143385721001267_r5 doi: 10.1007/978-3-642-14034-1 – ident: S0143385721001267_r14 doi: 10.1007/978-3-319-49847-8 – ident: S0143385721001267_r7 doi: 10.1214/lnms/1196285808 – ident: S0143385721001267_r17 doi: 10.4064/sm-72-2-151-159 – ident: S0143385721001267_r20 doi: 10.1017/S0143385706000824 – ident: S0143385721001267_r3 doi: 10.1090/S0002-9947-1973-0338317-X – ident: S0143385721001267_r27 doi: 10.1080/14689367.2012.701605 – volume: 254 start-page: 545 year: 1980 ident: S0143385721001267_r21 article-title: Variational characterization of topological pressure of the amenable groups of transformations publication-title: Dokl. Akad. Nauk – ident: S0143385721001267_r6 doi: 10.1007/s00222-014-0524-1 – volume: 51 start-page: 599 year: 2018 ident: S0143385721001267_r8 article-title: A note on dimensional entropy for amenable group actions publication-title: Topol. Methods Nonlinear Anal. – ident: S0143385721001267_r13 doi: 10.2307/1971397 – ident: S0143385721001267_r1 doi: 10.1214/11-AOP688 – ident: S0143385721001267_r16 doi: 10.1017/CBO9780511623813 – ident: S0143385721001267_r23 doi: 10.1007/s10884-017-9610-6 – ident: S0143385721001267_r2 doi: 10.1090/S0002-9947-1971-0274707-X – ident: S0143385721001267_r22 doi: 10.1017/S0305004100059119 – ident: S0143385721001267_r19 doi: 10.7208/chicago/9780226662237.001.0001 – ident: S0143385721001267_r10 doi: 10.1006/aima.1995.1050 – ident: S0143385721001267_r4 doi: 10.1007/BFb0061408 |
SSID | ssj0003175 |
Score | 2.403709 |
Snippet | Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 480 |
SubjectTerms | Dynamical systems Entropy Metric space Original Article Topology |
Title | Packing topological entropy for amenable group actions |
URI | https://www.cambridge.org/core/product/identifier/S0143385721001267/type/journal_article https://www.proquest.com/docview/2765695225 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXWBAfIpCqTwgxIAhieN8TAhQS4VEVSEqdYt8tjNBW0gY-Pf4EjdVh7JFyg3Ry_nu5XL3jpBLgQokgucMYmVYmGjDQArBjKfBRMZS1Lzq8h1Fw0n4MhVTV3ArXFvlMiZWgVrPFdbI74LYMo_UsgVxv_hiuDUK_666FRrbpG1DcGI_vtqP_dH4rYnFmB3rJkbOeCJip7KJotGm1CjXHfi3_rqywnqGWg_QVdYZ7JM9RxfpQ_1-D8iWmR2S3ddGa7U4ItFYKqx307Led4CoU6zZzhe_1FJSKj9NNSBFqwkOWk8yFMdkMui_Pw2Z24bAlD2TJQPl-zoCUJbRoWycTnSuLZ0QIGXue0qEMeQ4OhpADDIQJgi08HxA_ftIyZSfkNZsPjOnhApfJSlwkabghfZSxlxxLlQOEkLBgw65btDInE8XWd0PFmcIXIbAZRa4DrlZgpUppyqOyy0-NplfNeaLWk5jk2F3ifzqCVY-cPb_7XOyg2vh6-7qLmmV3z_mwpKHEnpkOxk895yf_AHyzcP6 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELYqGIAB8RSFAh4AMWBo7DiPASEElJY-xNBK3YJfmaAtNAj1T_Eb8eXRqkPZukWKB-vz-e7L5e47hM44KJBwFhPpK0PcQBsiBefEVLU0nrEUNU6rfDtevee-9Hm_hH6LXhgoqyx8Yuqo9VBBjvyG-pZ5hJYt8LvRJ4GpUfB3tRihkZlF00x-7Cfb-LbxaM_3nNLaU_ehTvKpAkRZ206IVI6jPSmVZUYgv6YDHWsblrkUInaqiru-jKEFk0pfCsoNpZpXHQk68p4SIL5kXf6qy1gINyqoPU89P8TirGSSERZwP9f0BIlqk2gQB6fOtTOv4zAfD-fDQRrjaltoMyen-D6zpm1UMoMdtNGeKruOd5H3KhRk13GSTVeAM8aQIR6OJtgSYCw-TNqOhdN-EZz1TYz3UG8pKO2jlcFwYA4Q5o4KQsl4GMqqax-FzxRjXMVSSJczWkaXUzSi_AaNo6z6zI8AuAiAiyxwZXRVgBWpXMMcRmm8L1p-MV0-ysQ7Fi2sFMjPdjCzuMP_X5-itXq33YpajU7zCK3DQPqsrruCVpKvb3NsaUsiT1Jbweht2cb5B2K5_qA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Packing+topological+entropy+for+amenable+group+actions&rft.jtitle=Ergodic+theory+and+dynamical+systems&rft.au=Dou%2C+Dou&rft.au=Zheng%2C+Dongmei&rft.au=Zhou%2C+Xiaomin&rft.date=2023-02-01&rft.pub=Cambridge+University+Press&rft.issn=0143-3857&rft.eissn=1469-4417&rft.volume=43&rft.issue=2&rft.spage=480&rft.epage=514&rft_id=info:doi/10.1017%2Fetds.2021.126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-3857&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-3857&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-3857&client=summon |