Epileptic-seizure onset detection using PARAFAC model with cross-wavelet transformation on multi-channel EEG
Finding components from multi-channel EEG signal for localizing and detection of onset of seizure, is a new approach in biomedical signal analysis. Tensor-based approaches are utilized to fit the components into multi-dimensional arrays in recent works. We initially decompose EEG signals into Beta b...
Saved in:
Published in | Australasian physical & engineering sciences in medicine Vol. 45; no. 2; pp. 601 - 612 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Finding components from multi-channel EEG signal for localizing and detection of onset of seizure, is a new approach in biomedical signal analysis. Tensor-based approaches are utilized to fit the components into multi-dimensional arrays in recent works. We initially decompose EEG signals into Beta band using discrete wavelet transform (DWT). We compare patient templates with normal template for cross-wavelet analysis to obtain Wavelet cross spectrum (WCS) and Wavelet cross coherence coefficients. Next we apply parallel factorization (PARAFAC) modeling, a three-way tensor-based representation in channel, frequency and time-points dimensions on features. Finally, we utilize the ensemble classifier for detecting seizure-free, onset and seizure classes. The clinical dataset for this work comprises of 5 normal subjects and 6 epileptiform patients. The classification performances of WCS features on PARAFAC model for Seizure detection using Ensemble Bagged-Trees classifier obtains 82.21% accuracy, while for Wavelet Coherence features, it provides higher 84.76% accuracy. The results have been compared with well-known Fine Gaussian SVM, Weighted KNN and Ensemble Subspace KNN classifiers. The aim is to analyze data over three dimensions namely, time, frequency and space (channels). This EEG based analysis is significant and effective as an automatic method for detection of seizure before its actual manifestation. |
---|---|
AbstractList | Finding components from multi-channel EEG signal for localizing and detection of onset of seizure, is a new approach in biomedical signal analysis. Tensor-based approaches are utilized to fit the components into multi-dimensional arrays in recent works. We initially decompose EEG signals into Beta band using discrete wavelet transform (DWT). We compare patient templates with normal template for cross-wavelet analysis to obtain Wavelet cross spectrum (WCS) and Wavelet cross coherence coefficients. Next we apply parallel factorization (PARAFAC) modeling, a three-way tensor-based representation in channel, frequency and time-points dimensions on features. Finally, we utilize the ensemble classifier for detecting seizure-free, onset and seizure classes. The clinical dataset for this work comprises of 5 normal subjects and 6 epileptiform patients. The classification performances of WCS features on PARAFAC model for Seizure detection using Ensemble Bagged-Trees classifier obtains 82.21% accuracy, while for Wavelet Coherence features, it provides higher 84.76% accuracy. The results have been compared with well-known Fine Gaussian SVM, Weighted KNN and Ensemble Subspace KNN classifiers. The aim is to analyze data over three dimensions namely, time, frequency and space (channels). This EEG based analysis is significant and effective as an automatic method for detection of seizure before its actual manifestation. Finding components from multi-channel EEG signal for localizing and detection of onset of seizure, is a new approach in biomedical signal analysis. Tensor-based approaches are utilized to fit the components into multi-dimensional arrays in recent works. We initially decompose EEG signals into Beta band using discrete wavelet transform (DWT). We compare patient templates with normal template for cross-wavelet analysis to obtain Wavelet cross spectrum (WCS) and Wavelet cross coherence coefficients. Next we apply parallel factorization (PARAFAC) modeling, a three-way tensor-based representation in channel, frequency and time-points dimensions on features. Finally, we utilize the ensemble classifier for detecting seizure-free, onset and seizure classes. The clinical dataset for this work comprises of 5 normal subjects and 6 epileptiform patients. The classification performances of WCS features on PARAFAC model for Seizure detection using Ensemble Bagged-Trees classifier obtains 82.21% accuracy, while for Wavelet Coherence features, it provides higher 84.76% accuracy. The results have been compared with well-known Fine Gaussian SVM, Weighted KNN and Ensemble Subspace KNN classifiers. The aim is to analyze data over three dimensions namely, time, frequency and space (channels). This EEG based analysis is significant and effective as an automatic method for detection of seizure before its actual manifestation.Finding components from multi-channel EEG signal for localizing and detection of onset of seizure, is a new approach in biomedical signal analysis. Tensor-based approaches are utilized to fit the components into multi-dimensional arrays in recent works. We initially decompose EEG signals into Beta band using discrete wavelet transform (DWT). We compare patient templates with normal template for cross-wavelet analysis to obtain Wavelet cross spectrum (WCS) and Wavelet cross coherence coefficients. Next we apply parallel factorization (PARAFAC) modeling, a three-way tensor-based representation in channel, frequency and time-points dimensions on features. Finally, we utilize the ensemble classifier for detecting seizure-free, onset and seizure classes. The clinical dataset for this work comprises of 5 normal subjects and 6 epileptiform patients. The classification performances of WCS features on PARAFAC model for Seizure detection using Ensemble Bagged-Trees classifier obtains 82.21% accuracy, while for Wavelet Coherence features, it provides higher 84.76% accuracy. The results have been compared with well-known Fine Gaussian SVM, Weighted KNN and Ensemble Subspace KNN classifiers. The aim is to analyze data over three dimensions namely, time, frequency and space (channels). This EEG based analysis is significant and effective as an automatic method for detection of seizure before its actual manifestation. |
Author | Ghosh, Arijit Basak, Piyali Sarkar, Anasua Maulik, Ujjwal Pahari, Purbanka |
Author_xml | – sequence: 1 givenname: Arijit surname: Ghosh fullname: Ghosh, Arijit organization: Jadavpur University – sequence: 2 givenname: Purbanka surname: Pahari fullname: Pahari, Purbanka organization: Jadavpur University – sequence: 3 givenname: Piyali surname: Basak fullname: Basak, Piyali organization: Jadavpur University – sequence: 4 givenname: Ujjwal surname: Maulik fullname: Maulik, Ujjwal organization: Jadavpur University – sequence: 5 givenname: Anasua orcidid: 0000-0001-7365-3924 surname: Sarkar fullname: Sarkar, Anasua email: ashru2006@hotmail.com organization: Jadavpur University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35575961$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9LHDEYh0NRqrV-gR7KQC-9pObPTDI5LstqBaEi7Tlksu9oJJNsk4zSfvpmd9WCByGQHJ4n78vv9wEdhBgAoU-UfKOEyLNMOWsFJoxhQimTmL5Dx0wIhlvJ5cHLm6kjdJrzPSGEdZRK0b1HR7zrZKcEPUZ-tXEeNsVZnMH9nRM0MWQozRoK2OJiaObswm1zvbhZnC-WzRTX4JtHV-4am2LO-NE8gK9CSSbkMabJ7Kx6ptkXh-2dCaEqq9XFR3Q4Gp_h9Ok-Qb_OVz-X3_HVj4vL5eIKW066gtVghQXVdwwIMWAFle1obWulIqoXwwCUWm4Ga5U0rB25oKJXdFQjE3ZcK36Cvu7_3aT4e4Zc9OSyBe9NgDhnXaOpUWxjrOiXV-h9nFOo21Wqp4LLXnWV-vxEzcMEa71JbjLpj37OsQJsD-wySTC-IJTo7SC970vXvvSuL72V-leSdWWXXs3S-bdVvldznRNuIf1f-w3rHyScqTk |
CitedBy_id | crossref_primary_10_3390_w14233937 crossref_primary_10_1007_s11571_024_10095_z |
Cites_doi | 10.1016/j.neucom.2021.06.048 10.1137/1.9781611970104 10.1016/j.eswa.2013.09.037 10.1016/j.eswa.2006.02.005 10.1109/10.552241 10.1016/j.neuroimage.2004.03.039 10.1111/j.0013-9580.2005.66104.x 10.1007/s11517-012-0967-8 10.1142/S012906571250027X 10.1016/j.clinph.2008.02.001 10.1177/0954411912467883 10.1109/18.53742 10.1016/j.eswa.2020.114533 10.1016/S0165-0270(02)00340-0 10.1016/0013-4694(82)90038-4 10.1109/ACCESS.2018.2853125 10.1016/j.clinph.2021.09.022 10.23919/ELINFOCOM.2018.8330671 |
ContentType | Journal Article |
Copyright | Australasian College of Physical Scientists and Engineers in Medicine 2022 2022. Australasian College of Physical Scientists and Engineers in Medicine. Australasian College of Physical Scientists and Engineers in Medicine 2022. |
Copyright_xml | – notice: Australasian College of Physical Scientists and Engineers in Medicine 2022 – notice: 2022. Australasian College of Physical Scientists and Engineers in Medicine. – notice: Australasian College of Physical Scientists and Engineers in Medicine 2022. |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 88I 8AO 8FE 8FG 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. M0S M1P M2P P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s13246-022-01127-1 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2662-4737 1879-5447 |
EndPage | 612 |
ExternalDocumentID | 35575961 10_1007_s13246_022_01127_1 |
Genre | Journal Article |
GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AANZL AASML AATNV AAUYE AAYZH ABAKF ABDZT ABECU ABJNI ABMQK ABSXP ABTEG ABTKH ACAOD ACDTI ACHSB ACMDZ ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AEVLU AFBBN AFLOW AFQWF AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG BGNMA DDRTE DNIVK DPUIP EBLON EBS EMB EMOBN FERAY FIGPU FNLPD GGCAI IKXTQ IWAJR J-C JZLTJ LLZTM M4Y NPVJJ NQJWS NU0 PT4 ROL RSV SJYHP SNE SNPRN SNX SOHCF SOJ SRMVM SSLCW SV3 UOJIU UTJUX ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM ..I 06D 0VY 1N0 203 23N 29~ 2KG 30V 36B 3V. 4.4 408 40D 53G 5GY 67N 7X7 7XB 88E 88I 8AO 8FE 8FG 8FI 8FJ 8FK 8WZ 96X A6W AAIAL AAJKR AARTL AATVU AAWCG AAYIU AAYQN AAZMS ABFTV ABJOX ABKCH ABPLI ABQBU ABTHY ABTMW ABUWG ABXPI ACGFS ACGOD ACKNC ACMLO ADBBV ADHHG ADHIR ADKPE ADRFC ADURQ ADZKW AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AETCA AEXYK AFKRA AFWTZ AFZKB AGAYW AGDGC AGJBK AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHYZX AIIXL AITGF AJRNO AJZVZ AKMHD ALFXC ALIPV AMKLP AMYQR ANMIH ARAPS AXYYD AZQEC BENPR BGLVJ BPHCQ BVXVI CCPQU CSCUP DWQXO EIOEI EN4 ESBYG FRRFC FYJPI FYUFA GGRSB GJIRD GNUQQ GQ7 HCIFZ HMJXF HRMNR HZ~ I0C ITM J0Z JBSCW K9. KOV KTM M1P M2P O9- O93 O9I O9J P2P P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PROAC PSQYO Q9U R9I RLLFE S27 S3A S3B SBL SHX SISQX SPISZ SSXJD STPWE T13 TSG U2A U9L UG4 UKHRP UZXMN VC2 VFIZW W48 WK8 WOQ Z45 ZOVNA ~A9 7X8 ABRTQ |
ID | FETCH-LOGICAL-c305t-9bc6ce9852e00aec6174fcc4c790986bbe11c3abcc97a24f3616891f9f26cfd93 |
IEDL.DBID | 7X7 |
ISSN | 2662-4729 0158-9938 2662-4737 |
IngestDate | Wed Jul 30 11:14:11 EDT 2025 Fri Jul 25 02:50:25 EDT 2025 Wed Feb 19 02:25:45 EST 2025 Thu Apr 24 23:03:23 EDT 2025 Tue Jul 01 02:52:56 EDT 2025 Fri Feb 21 02:46:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Onset seizure Wavelet cross spectrum Wavelet coherence Multi-channel EEG PARAFAC |
Language | English |
License | 2022. Australasian College of Physical Scientists and Engineers in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c305t-9bc6ce9852e00aec6174fcc4c790986bbe11c3abcc97a24f3616891f9f26cfd93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7365-3924 |
PMID | 35575961 |
PQID | 2681637895 |
PQPubID | 33672 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2665111007 proquest_journals_2681637895 pubmed_primary_35575961 crossref_primary_10_1007_s13246_022_01127_1 crossref_citationtrail_10_1007_s13246_022_01127_1 springer_journals_10_1007_s13246_022_01127_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland – name: Dordrecht |
PublicationSubtitle | The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine |
PublicationTitle | Australasian physical & engineering sciences in medicine |
PublicationTitleAbbrev | Phys Eng Sci Med |
PublicationTitleAlternate | Phys Eng Sci Med |
PublicationYear | 2022 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Fisch (CR4) 1999 Gotman (CR5) 1982; 54 CR2 Prathaban, Balasubramanian (CR21) 2021; 170 Daubechies (CR14) 1992 Solaija, Saleem, Khurshid, Hassan, Kamboh (CR19) 2018; 6 Wang, Wang, Liu, Chang, Kärkkäinen, Cong (CR22) 2021; 459 CR3 Subasi (CR13) 2007; 32 Fisher, Boas, Blume, Elger, Genton, Lee, Engel (CR1) 2005; 46 CR17 Müller, Yang, Eberlein, Leonhardt, Uckermann, Kuhlmann, Tetzlaff (CR18) 2022; 133 Chen (CR10) 2014; 41 Greene, Faul, Marnane, Lightbody, Korotchikova, Boylan (CR7) 2008; 119 Xie, Krishnan (CR9) 2013; 51 CR20 Qu, Gotman (CR6) 1997; 44 Martis, Acharya, Tan, Petznick, Yanti, Chua (CR11) 2012; 22 Adeli, Zhou, Dadmehr (CR12) 2003; 123 White, Boashash (CR15) 1990; 36 Miwakeichi, Martinez-Montes, Valdies-Sosa, Nishiyama, Mizuhara, Yamaguchi (CR16) 2004; 22 UR, A. (CR8) 2013; 227 X Wang (1127_CR22) 2021; 459 H Qu (1127_CR6) 1997; 44 LB White (1127_CR15) 1990; 36 MSJ Solaija (1127_CR19) 2018; 6 H Adeli (1127_CR12) 2003; 123 J Müller (1127_CR18) 2022; 133 J Gotman (1127_CR5) 1982; 54 BJ Fisch (1127_CR4) 1999 1127_CR17 BR Greene (1127_CR7) 2008; 119 G Chen (1127_CR10) 2014; 41 RJ Martis (1127_CR11) 2012; 22 UR, A. (1127_CR8) 2013; 227 F Miwakeichi (1127_CR16) 2004; 22 1127_CR20 1127_CR2 S Xie (1127_CR9) 2013; 51 BP Prathaban (1127_CR21) 2021; 170 1127_CR3 I Daubechies (1127_CR14) 1992 RS Fisher (1127_CR1) 2005; 46 A Subasi (1127_CR13) 2007; 32 |
References_xml | – volume: 459 start-page: 212 year: 2021 end-page: 222 ident: CR22 article-title: One dimensional convolutional neural networks for seizure onset detection using long-term scalp and intracranial EEG publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.06.048 – year: 1992 ident: CR14 publication-title: Ten lectures on wavelets doi: 10.1137/1.9781611970104 – volume: 41 start-page: 2391 issue: 5 year: 2014 end-page: 2394 ident: CR10 article-title: Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.09.037 – volume: 32 start-page: 1084 issue: 4 year: 2007 end-page: 1093 ident: CR13 article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2006.02.005 – ident: CR3 – ident: CR2 – volume: 44 start-page: 115 issue: 2 year: 1997 end-page: 122 ident: CR6 article-title: A patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: possible use as a warning device publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.552241 – ident: CR17 – volume: 22 start-page: 1035 issue: 3 year: 2004 end-page: 1045 ident: CR16 article-title: Decomposing eeg data into space time frequency components using parallel factor analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.039 – volume: 46 start-page: 470 issue: 4 year: 2005 end-page: 472 ident: CR1 article-title: Epileptic seizures and epilepsy: definitions proposed by the International League against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) publication-title: Epilepsia doi: 10.1111/j.0013-9580.2005.66104.x – volume: 51 start-page: 49 issue: 1–2 year: 2013 end-page: 60 ident: CR9 article-title: Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis publication-title: Med Biol Eng Comput doi: 10.1007/s11517-012-0967-8 – volume: 22 start-page: 1250027 issue: 06 year: 2012 ident: CR11 article-title: Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals publication-title: Int J Neural Syst doi: 10.1142/S012906571250027X – volume: 119 start-page: 1248 issue: 6 year: 2008 end-page: 1261 ident: CR7 article-title: A comparison of quantitative EEG features for neonatal seizure detection publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2008.02.001 – volume: 227 start-page: 234 issue: 3 year: 2013 end-page: 244 ident: CR8 article-title: Automated diagnosis of epileptic electroencephalogram using independent component analysis and discrete wavelet transform for different electroencephalogram durations publication-title: Proc Inst Mech Eng [H] doi: 10.1177/0954411912467883 – volume: 36 start-page: 830 issue: 4 year: 1990 end-page: 835 ident: CR15 article-title: Cross spectral analysis of nonstationary processes publication-title: IEEE Trans Inf Theory doi: 10.1109/18.53742 – volume: 170 start-page: 114533 year: 2021 ident: CR21 article-title: Dynamic learning framework for epileptic seizure prediction using sparsity based EEG reconstruction with optimized CNN classifier publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114533 – volume: 123 start-page: 69 issue: 1 year: 2003 end-page: 87 ident: CR12 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: J Neurosci Methods doi: 10.1016/S0165-0270(02)00340-0 – volume: 54 start-page: 530 issue: 5 year: 1982 end-page: 540 ident: CR5 article-title: Automatic recognition of epileptic seizures in the EEG publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(82)90038-4 – volume: 6 start-page: 38683 year: 2018 end-page: 38692 ident: CR19 article-title: Dynamic mode decomposition based epileptic seizure detection from scalp EEG publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2853125 – year: 1999 ident: CR4 publication-title: Fisch and Spehlmann’s EEG primer: basic principles of digital and analog EEG – volume: 133 start-page: 157 year: 2022 end-page: 164 ident: CR18 article-title: Coherent false seizure prediction in epilepsy, coincidence or providence? publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2021.09.022 – ident: CR20 – ident: 1127_CR20 doi: 10.23919/ELINFOCOM.2018.8330671 – volume: 119 start-page: 1248 issue: 6 year: 2008 ident: 1127_CR7 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2008.02.001 – ident: 1127_CR17 – volume: 6 start-page: 38683 year: 2018 ident: 1127_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2853125 – volume: 22 start-page: 1250027 issue: 06 year: 2012 ident: 1127_CR11 publication-title: Int J Neural Syst doi: 10.1142/S012906571250027X – volume: 22 start-page: 1035 issue: 3 year: 2004 ident: 1127_CR16 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.039 – volume: 46 start-page: 470 issue: 4 year: 2005 ident: 1127_CR1 publication-title: Epilepsia doi: 10.1111/j.0013-9580.2005.66104.x – volume-title: Fisch and Spehlmann’s EEG primer: basic principles of digital and analog EEG year: 1999 ident: 1127_CR4 – volume: 51 start-page: 49 issue: 1–2 year: 2013 ident: 1127_CR9 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-012-0967-8 – volume: 36 start-page: 830 issue: 4 year: 1990 ident: 1127_CR15 publication-title: IEEE Trans Inf Theory doi: 10.1109/18.53742 – volume: 133 start-page: 157 year: 2022 ident: 1127_CR18 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2021.09.022 – volume: 44 start-page: 115 issue: 2 year: 1997 ident: 1127_CR6 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.552241 – volume: 459 start-page: 212 year: 2021 ident: 1127_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.06.048 – volume: 32 start-page: 1084 issue: 4 year: 2007 ident: 1127_CR13 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2006.02.005 – volume-title: Ten lectures on wavelets year: 1992 ident: 1127_CR14 doi: 10.1137/1.9781611970104 – volume: 54 start-page: 530 issue: 5 year: 1982 ident: 1127_CR5 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(82)90038-4 – volume: 227 start-page: 234 issue: 3 year: 2013 ident: 1127_CR8 publication-title: Proc Inst Mech Eng [H] doi: 10.1177/0954411912467883 – volume: 123 start-page: 69 issue: 1 year: 2003 ident: 1127_CR12 publication-title: J Neurosci Methods doi: 10.1016/S0165-0270(02)00340-0 – ident: 1127_CR2 – ident: 1127_CR3 – volume: 170 start-page: 114533 year: 2021 ident: 1127_CR21 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114533 – volume: 41 start-page: 2391 issue: 5 year: 2014 ident: 1127_CR10 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.09.037 |
SSID | ssj0002511765 ssj0024368 |
Score | 2.258084 |
Snippet | Finding components from multi-channel EEG signal for localizing and detection of onset of seizure, is a new approach in biomedical signal analysis.... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 601 |
SubjectTerms | Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Classifiers Coherence Convulsions & seizures Discrete Wavelet Transform Electroencephalography Medical and Radiation Physics Scientific Paper Seizures Signal analysis Tensors Wavelet analysis Wavelet transforms |
Title | Epileptic-seizure onset detection using PARAFAC model with cross-wavelet transformation on multi-channel EEG |
URI | https://link.springer.com/article/10.1007/s13246-022-01127-1 https://www.ncbi.nlm.nih.gov/pubmed/35575961 https://www.proquest.com/docview/2681637895 https://www.proquest.com/docview/2665111007 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdb-7I9jH0vW1c02NsmFtmyPp6GU-yWwUIpC-TNSLI0CsXJGofB_vrdKc7HKCsYG2xJFjqd9OP0uztCPurcWiu1YEELy4TykYGYCyZc4WUURgaO3sjfp_JiJr7Ni_lgcFsNtMrtmpgW6nbh0Ub-JZMaoIPSpvi6_MUwaxSerg4pNB6SYwxdhpQuNVcHsfaSKxzseKDUJteD08zGdQ6QBNJvkZjAM8X4vxvTHbR556Q0bUD1U_JkQI603Ij6GXkQuufk8UE8wRfkplqCksMi4NkqXP9Z3waKZOmetqFPlKuOIs_9J70sr8q6PKMpDw5FWyxNvWK_LSai6Gl_gGehFlyJecjQT7iDKlV1_pLM6urH2QUb0ikwD0rdM-O89MHoIgvjsQ0esIuI3guvzNho6Vzg3OfWeW-UzUTMJZfa8GhiJn1sTf6KHHWLLrwh1LU65MIa63ILCMQ4LkMQ2dipVugY1Yjw7Vg2fog1jikvbpp9lGQc_wbGv0nj3_AR-bSrs9xE2ri39MlWRM2gdatmP0dG5MPuM-gLHoLYLizWWEYCxsRWR-T1RrS73wH2UoWR0Pjnraz3jf-_L2_v78s78ihL8wxNNyfkqL9dh_eAZHp3mqYr3HV9fkqOy3oymcJzUk0vr-DtLCv_An7a8wo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLam8QA8TNzpGGAkeAKL2nEc-wGharTr2EUIbdLegu04aNKUdmuqif2o_UbOcZK2aGJvk_IW27HO9Yt9LoS814m1VmnJgpaWycyXDNicMulSr0ppVOCYjXxwqMbH8vtJerJGrrtcGAyr7GxiNNTFxOMZ-WehNECHTJv06_ScYdcovF3tWmg0YrEX_lzCL9vsy-434O8HIUbDo-0xa7sKMA-yXTPjvPLB6FSEft8GDy5clt5Ln5m-0cq5wLlPrPPeZFbIMlFcacNLUwrlywKLL4HJvyeTxKBG6dHOSm2_mHoHHhaMiEl0m6TTpOoBcsFwXwyE4CJj_F9HeAPd3riZjQ5v9IhstEiVDhrRekzWQvWEPFypX_iUnA2nYFTA6Hg2C6dX84tAMTi7pkWoY4hXRTGu_jf9Mfg5GA22aey7Q_Hsl8ZdsUuLjS9qWq_gZ5gFT4x0ZJiXXMGU4XDnGTm-E0I_J-vVpAovCXWFDom0xrrEAuIxjqsQpOi7rJC6LLMe4R0tc9_WNscWG2f5sioz0j8H-ueR_jnvkY-LOdOmsseto7c6FuWtls_ypUz2yLvFa9BPvHSxVZjMcYwCTIur9siLhrWLzwHWy1KjYPFPHa-Xi_9_L5u37-UtuT8-OtjP93cP916RByLKHB4bbZH1-mIeXgOKqt2bKLqU_LprXfkLIFQsHg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA6lguiDeO_aqhH0SUM3M5lcHkSWdtfWailiYd_GJJOIUGa33VmK_jR_nedkZ3ZXin0rzNskmXCu3yTnQshrnVtrpRYsaGGZUD4yYHPBhCu8jMLIwDEb-cuxPDgVn8bFeIP86XJhMKyys4nJUFcTj2fku5nUAB2UNsVubMMiTvZHH6bnDDtI4U1r105jISJH4dcl_L7N3h_uA6_fZNlo-G3vgLUdBpgHOW-YcV76YHSRhX7fBg_uXETvhVemb7R0LnDuc-u8N8pmIuaSS214NDGTPlZYiAnM_y2VFxx1TI3VWp2_lIYH3hYMisl1m7CzSNsDFIOhvxgUwTPF-L9O8QrSvXJLm5zf6D6516JWOliI2QOyEeqH5O5aLcNH5Gw4BQMDBsizWfj5e34RKAZqN7QKTQr3qinG2P-gJ4Ovg9Fgj6YePBTPgWnaFbu02ASjoc0aloZZ8KSoR4Y5yjVMGQ4_PianN0LoJ2SzntRhi1BX6ZALa6zLLaAf47gMQWR9pyqhY1Q9wjtalr6tc47tNs7KVYVmpH8J9C8T_UveI2-Xc6aLKh_Xjt7pWFS2Gj8rV_LZI6-Wr0FX8QLG1mEyxzES8C2u2iNPF6xdfg5wnyqMhMXfdbxeLf7_vTy7fi8vyW3QkvLz4fHRNrmTJZHDE6QdstlczMNzAFSNe5Ekl5LvN60qfwEFmzBL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epileptic-seizure+onset+detection+using+PARAFAC+model+with+cross-wavelet+transformation+on+multi-channel+EEG&rft.jtitle=Australasian+physical+%26+engineering+sciences+in+medicine&rft.au=Ghosh%2C+Arijit&rft.au=Pahari%2C+Purbanka&rft.au=Basak%2C+Piyali&rft.au=Maulik%2C+Ujjwal&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0158-9938&rft.eissn=1879-5447&rft.volume=45&rft.issue=2&rft.spage=601&rft.epage=612&rft_id=info:doi/10.1007%2Fs13246-022-01127-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4729&client=summon |