Epileptic-seizure onset detection using PARAFAC model with cross-wavelet transformation on multi-channel EEG

Finding components from multi-channel EEG signal for localizing and detection of onset of seizure, is a new approach in biomedical signal analysis. Tensor-based approaches are utilized to fit the components into multi-dimensional arrays in recent works. We initially decompose EEG signals into Beta b...

Full description

Saved in:
Bibliographic Details
Published inAustralasian physical & engineering sciences in medicine Vol. 45; no. 2; pp. 601 - 612
Main Authors Ghosh, Arijit, Pahari, Purbanka, Basak, Piyali, Maulik, Ujjwal, Sarkar, Anasua
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Finding components from multi-channel EEG signal for localizing and detection of onset of seizure, is a new approach in biomedical signal analysis. Tensor-based approaches are utilized to fit the components into multi-dimensional arrays in recent works. We initially decompose EEG signals into Beta band using discrete wavelet transform (DWT). We compare patient templates with normal template for cross-wavelet analysis to obtain Wavelet cross spectrum (WCS) and Wavelet cross coherence coefficients. Next we apply parallel factorization (PARAFAC) modeling, a three-way tensor-based representation in channel, frequency and time-points dimensions on features. Finally, we utilize the ensemble classifier for detecting seizure-free, onset and seizure classes. The clinical dataset for this work comprises of 5 normal subjects and 6 epileptiform patients. The classification performances of WCS features on PARAFAC model for Seizure detection using Ensemble Bagged-Trees classifier obtains 82.21% accuracy, while for Wavelet Coherence features, it provides higher 84.76% accuracy. The results have been compared with well-known Fine Gaussian SVM, Weighted KNN and Ensemble Subspace KNN classifiers. The aim is to analyze data over three dimensions namely, time, frequency and space (channels). This EEG based analysis is significant and effective as an automatic method for detection of seizure before its actual manifestation.
AbstractList Finding components from multi-channel EEG signal for localizing and detection of onset of seizure, is a new approach in biomedical signal analysis. Tensor-based approaches are utilized to fit the components into multi-dimensional arrays in recent works. We initially decompose EEG signals into Beta band using discrete wavelet transform (DWT). We compare patient templates with normal template for cross-wavelet analysis to obtain Wavelet cross spectrum (WCS) and Wavelet cross coherence coefficients. Next we apply parallel factorization (PARAFAC) modeling, a three-way tensor-based representation in channel, frequency and time-points dimensions on features. Finally, we utilize the ensemble classifier for detecting seizure-free, onset and seizure classes. The clinical dataset for this work comprises of 5 normal subjects and 6 epileptiform patients. The classification performances of WCS features on PARAFAC model for Seizure detection using Ensemble Bagged-Trees classifier obtains 82.21% accuracy, while for Wavelet Coherence features, it provides higher 84.76% accuracy. The results have been compared with well-known Fine Gaussian SVM, Weighted KNN and Ensemble Subspace KNN classifiers. The aim is to analyze data over three dimensions namely, time, frequency and space (channels). This EEG based analysis is significant and effective as an automatic method for detection of seizure before its actual manifestation.
Finding components from multi-channel EEG signal for localizing and detection of onset of seizure, is a new approach in biomedical signal analysis. Tensor-based approaches are utilized to fit the components into multi-dimensional arrays in recent works. We initially decompose EEG signals into Beta band using discrete wavelet transform (DWT). We compare patient templates with normal template for cross-wavelet analysis to obtain Wavelet cross spectrum (WCS) and Wavelet cross coherence coefficients. Next we apply parallel factorization (PARAFAC) modeling, a three-way tensor-based representation in channel, frequency and time-points dimensions on features. Finally, we utilize the ensemble classifier for detecting seizure-free, onset and seizure classes. The clinical dataset for this work comprises of 5 normal subjects and 6 epileptiform patients. The classification performances of WCS features on PARAFAC model for Seizure detection using Ensemble Bagged-Trees classifier obtains 82.21% accuracy, while for Wavelet Coherence features, it provides higher 84.76% accuracy. The results have been compared with well-known Fine Gaussian SVM, Weighted KNN and Ensemble Subspace KNN classifiers. The aim is to analyze data over three dimensions namely, time, frequency and space (channels). This EEG based analysis is significant and effective as an automatic method for detection of seizure before its actual manifestation.Finding components from multi-channel EEG signal for localizing and detection of onset of seizure, is a new approach in biomedical signal analysis. Tensor-based approaches are utilized to fit the components into multi-dimensional arrays in recent works. We initially decompose EEG signals into Beta band using discrete wavelet transform (DWT). We compare patient templates with normal template for cross-wavelet analysis to obtain Wavelet cross spectrum (WCS) and Wavelet cross coherence coefficients. Next we apply parallel factorization (PARAFAC) modeling, a three-way tensor-based representation in channel, frequency and time-points dimensions on features. Finally, we utilize the ensemble classifier for detecting seizure-free, onset and seizure classes. The clinical dataset for this work comprises of 5 normal subjects and 6 epileptiform patients. The classification performances of WCS features on PARAFAC model for Seizure detection using Ensemble Bagged-Trees classifier obtains 82.21% accuracy, while for Wavelet Coherence features, it provides higher 84.76% accuracy. The results have been compared with well-known Fine Gaussian SVM, Weighted KNN and Ensemble Subspace KNN classifiers. The aim is to analyze data over three dimensions namely, time, frequency and space (channels). This EEG based analysis is significant and effective as an automatic method for detection of seizure before its actual manifestation.
Author Ghosh, Arijit
Basak, Piyali
Sarkar, Anasua
Maulik, Ujjwal
Pahari, Purbanka
Author_xml – sequence: 1
  givenname: Arijit
  surname: Ghosh
  fullname: Ghosh, Arijit
  organization: Jadavpur University
– sequence: 2
  givenname: Purbanka
  surname: Pahari
  fullname: Pahari, Purbanka
  organization: Jadavpur University
– sequence: 3
  givenname: Piyali
  surname: Basak
  fullname: Basak, Piyali
  organization: Jadavpur University
– sequence: 4
  givenname: Ujjwal
  surname: Maulik
  fullname: Maulik, Ujjwal
  organization: Jadavpur University
– sequence: 5
  givenname: Anasua
  orcidid: 0000-0001-7365-3924
  surname: Sarkar
  fullname: Sarkar, Anasua
  email: ashru2006@hotmail.com
  organization: Jadavpur University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35575961$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9LHDEYh0NRqrV-gR7KQC-9pObPTDI5LstqBaEi7Tlksu9oJJNsk4zSfvpmd9WCByGQHJ4n78vv9wEdhBgAoU-UfKOEyLNMOWsFJoxhQimTmL5Dx0wIhlvJ5cHLm6kjdJrzPSGEdZRK0b1HR7zrZKcEPUZ-tXEeNsVZnMH9nRM0MWQozRoK2OJiaObswm1zvbhZnC-WzRTX4JtHV-4am2LO-NE8gK9CSSbkMabJ7Kx6ptkXh-2dCaEqq9XFR3Q4Gp_h9Ok-Qb_OVz-X3_HVj4vL5eIKW066gtVghQXVdwwIMWAFle1obWulIqoXwwCUWm4Ga5U0rB25oKJXdFQjE3ZcK36Cvu7_3aT4e4Zc9OSyBe9NgDhnXaOpUWxjrOiXV-h9nFOo21Wqp4LLXnWV-vxEzcMEa71JbjLpj37OsQJsD-wySTC-IJTo7SC970vXvvSuL72V-leSdWWXXs3S-bdVvldznRNuIf1f-w3rHyScqTk
CitedBy_id crossref_primary_10_3390_w14233937
crossref_primary_10_1007_s11571_024_10095_z
Cites_doi 10.1016/j.neucom.2021.06.048
10.1137/1.9781611970104
10.1016/j.eswa.2013.09.037
10.1016/j.eswa.2006.02.005
10.1109/10.552241
10.1016/j.neuroimage.2004.03.039
10.1111/j.0013-9580.2005.66104.x
10.1007/s11517-012-0967-8
10.1142/S012906571250027X
10.1016/j.clinph.2008.02.001
10.1177/0954411912467883
10.1109/18.53742
10.1016/j.eswa.2020.114533
10.1016/S0165-0270(02)00340-0
10.1016/0013-4694(82)90038-4
10.1109/ACCESS.2018.2853125
10.1016/j.clinph.2021.09.022
10.23919/ELINFOCOM.2018.8330671
ContentType Journal Article
Copyright Australasian College of Physical Scientists and Engineers in Medicine 2022
2022. Australasian College of Physical Scientists and Engineers in Medicine.
Australasian College of Physical Scientists and Engineers in Medicine 2022.
Copyright_xml – notice: Australasian College of Physical Scientists and Engineers in Medicine 2022
– notice: 2022. Australasian College of Physical Scientists and Engineers in Medicine.
– notice: Australasian College of Physical Scientists and Engineers in Medicine 2022.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
88I
8AO
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
M0S
M1P
M2P
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s13246-022-01127-1
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2662-4737
1879-5447
EndPage 612
ExternalDocumentID 35575961
10_1007_s13246_022_01127_1
Genre Journal Article
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AANZL
AASML
AATNV
AAUYE
AAYZH
ABAKF
ABDZT
ABECU
ABJNI
ABMQK
ABSXP
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACMDZ
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AEVLU
AFBBN
AFLOW
AFQWF
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
BGNMA
DDRTE
DNIVK
DPUIP
EBLON
EBS
EMB
EMOBN
FERAY
FIGPU
FNLPD
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SRMVM
SSLCW
SV3
UOJIU
UTJUX
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
..I
06D
0VY
1N0
203
23N
29~
2KG
30V
36B
3V.
4.4
408
40D
53G
5GY
67N
7X7
7XB
88E
88I
8AO
8FE
8FG
8FI
8FJ
8FK
8WZ
96X
A6W
AAIAL
AAJKR
AARTL
AATVU
AAWCG
AAYIU
AAYQN
AAZMS
ABFTV
ABJOX
ABKCH
ABPLI
ABQBU
ABTHY
ABTMW
ABUWG
ABXPI
ACGFS
ACGOD
ACKNC
ACMLO
ADBBV
ADHHG
ADHIR
ADKPE
ADRFC
ADURQ
ADZKW
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AETCA
AEXYK
AFKRA
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHYZX
AIIXL
AITGF
AJRNO
AJZVZ
AKMHD
ALFXC
ALIPV
AMKLP
AMYQR
ANMIH
ARAPS
AXYYD
AZQEC
BENPR
BGLVJ
BPHCQ
BVXVI
CCPQU
CSCUP
DWQXO
EIOEI
EN4
ESBYG
FRRFC
FYJPI
FYUFA
GGRSB
GJIRD
GNUQQ
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
ITM
J0Z
JBSCW
K9.
KOV
KTM
M1P
M2P
O9-
O93
O9I
O9J
P2P
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q9U
R9I
RLLFE
S27
S3A
S3B
SBL
SHX
SISQX
SPISZ
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UKHRP
UZXMN
VC2
VFIZW
W48
WK8
WOQ
Z45
ZOVNA
~A9
7X8
ABRTQ
ID FETCH-LOGICAL-c305t-9bc6ce9852e00aec6174fcc4c790986bbe11c3abcc97a24f3616891f9f26cfd93
IEDL.DBID 7X7
ISSN 2662-4729
0158-9938
2662-4737
IngestDate Wed Jul 30 11:14:11 EDT 2025
Fri Jul 25 02:50:25 EDT 2025
Wed Feb 19 02:25:45 EST 2025
Thu Apr 24 23:03:23 EDT 2025
Tue Jul 01 02:52:56 EDT 2025
Fri Feb 21 02:46:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Onset seizure
Wavelet cross spectrum
Wavelet coherence
Multi-channel EEG
PARAFAC
Language English
License 2022. Australasian College of Physical Scientists and Engineers in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c305t-9bc6ce9852e00aec6174fcc4c790986bbe11c3abcc97a24f3616891f9f26cfd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7365-3924
PMID 35575961
PQID 2681637895
PQPubID 33672
PageCount 12
ParticipantIDs proquest_miscellaneous_2665111007
proquest_journals_2681637895
pubmed_primary_35575961
crossref_primary_10_1007_s13246_022_01127_1
crossref_citationtrail_10_1007_s13246_022_01127_1
springer_journals_10_1007_s13246_022_01127_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: Dordrecht
PublicationSubtitle The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine
PublicationTitle Australasian physical & engineering sciences in medicine
PublicationTitleAbbrev Phys Eng Sci Med
PublicationTitleAlternate Phys Eng Sci Med
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Fisch (CR4) 1999
Gotman (CR5) 1982; 54
CR2
Prathaban, Balasubramanian (CR21) 2021; 170
Daubechies (CR14) 1992
Solaija, Saleem, Khurshid, Hassan, Kamboh (CR19) 2018; 6
Wang, Wang, Liu, Chang, Kärkkäinen, Cong (CR22) 2021; 459
CR3
Subasi (CR13) 2007; 32
Fisher, Boas, Blume, Elger, Genton, Lee, Engel (CR1) 2005; 46
CR17
Müller, Yang, Eberlein, Leonhardt, Uckermann, Kuhlmann, Tetzlaff (CR18) 2022; 133
Chen (CR10) 2014; 41
Greene, Faul, Marnane, Lightbody, Korotchikova, Boylan (CR7) 2008; 119
Xie, Krishnan (CR9) 2013; 51
CR20
Qu, Gotman (CR6) 1997; 44
Martis, Acharya, Tan, Petznick, Yanti, Chua (CR11) 2012; 22
Adeli, Zhou, Dadmehr (CR12) 2003; 123
White, Boashash (CR15) 1990; 36
Miwakeichi, Martinez-Montes, Valdies-Sosa, Nishiyama, Mizuhara, Yamaguchi (CR16) 2004; 22
UR, A. (CR8) 2013; 227
X Wang (1127_CR22) 2021; 459
H Qu (1127_CR6) 1997; 44
LB White (1127_CR15) 1990; 36
MSJ Solaija (1127_CR19) 2018; 6
H Adeli (1127_CR12) 2003; 123
J Müller (1127_CR18) 2022; 133
J Gotman (1127_CR5) 1982; 54
BJ Fisch (1127_CR4) 1999
1127_CR17
BR Greene (1127_CR7) 2008; 119
G Chen (1127_CR10) 2014; 41
RJ Martis (1127_CR11) 2012; 22
UR, A. (1127_CR8) 2013; 227
F Miwakeichi (1127_CR16) 2004; 22
1127_CR20
1127_CR2
S Xie (1127_CR9) 2013; 51
BP Prathaban (1127_CR21) 2021; 170
1127_CR3
I Daubechies (1127_CR14) 1992
RS Fisher (1127_CR1) 2005; 46
A Subasi (1127_CR13) 2007; 32
References_xml – volume: 459
  start-page: 212
  year: 2021
  end-page: 222
  ident: CR22
  article-title: One dimensional convolutional neural networks for seizure onset detection using long-term scalp and intracranial EEG
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.06.048
– year: 1992
  ident: CR14
  publication-title: Ten lectures on wavelets
  doi: 10.1137/1.9781611970104
– volume: 41
  start-page: 2391
  issue: 5
  year: 2014
  end-page: 2394
  ident: CR10
  article-title: Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.09.037
– volume: 32
  start-page: 1084
  issue: 4
  year: 2007
  end-page: 1093
  ident: CR13
  article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.02.005
– ident: CR3
– ident: CR2
– volume: 44
  start-page: 115
  issue: 2
  year: 1997
  end-page: 122
  ident: CR6
  article-title: A patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: possible use as a warning device
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.552241
– ident: CR17
– volume: 22
  start-page: 1035
  issue: 3
  year: 2004
  end-page: 1045
  ident: CR16
  article-title: Decomposing eeg data into space time frequency components using parallel factor analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.03.039
– volume: 46
  start-page: 470
  issue: 4
  year: 2005
  end-page: 472
  ident: CR1
  article-title: Epileptic seizures and epilepsy: definitions proposed by the International League against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE)
  publication-title: Epilepsia
  doi: 10.1111/j.0013-9580.2005.66104.x
– volume: 51
  start-page: 49
  issue: 1–2
  year: 2013
  end-page: 60
  ident: CR9
  article-title: Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-012-0967-8
– volume: 22
  start-page: 1250027
  issue: 06
  year: 2012
  ident: CR11
  article-title: Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals
  publication-title: Int J Neural Syst
  doi: 10.1142/S012906571250027X
– volume: 119
  start-page: 1248
  issue: 6
  year: 2008
  end-page: 1261
  ident: CR7
  article-title: A comparison of quantitative EEG features for neonatal seizure detection
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2008.02.001
– volume: 227
  start-page: 234
  issue: 3
  year: 2013
  end-page: 244
  ident: CR8
  article-title: Automated diagnosis of epileptic electroencephalogram using independent component analysis and discrete wavelet transform for different electroencephalogram durations
  publication-title: Proc Inst Mech Eng [H]
  doi: 10.1177/0954411912467883
– volume: 36
  start-page: 830
  issue: 4
  year: 1990
  end-page: 835
  ident: CR15
  article-title: Cross spectral analysis of nonstationary processes
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.53742
– volume: 170
  start-page: 114533
  year: 2021
  ident: CR21
  article-title: Dynamic learning framework for epileptic seizure prediction using sparsity based EEG reconstruction with optimized CNN classifier
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114533
– volume: 123
  start-page: 69
  issue: 1
  year: 2003
  end-page: 87
  ident: CR12
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: J Neurosci Methods
  doi: 10.1016/S0165-0270(02)00340-0
– volume: 54
  start-page: 530
  issue: 5
  year: 1982
  end-page: 540
  ident: CR5
  article-title: Automatic recognition of epileptic seizures in the EEG
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(82)90038-4
– volume: 6
  start-page: 38683
  year: 2018
  end-page: 38692
  ident: CR19
  article-title: Dynamic mode decomposition based epileptic seizure detection from scalp EEG
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2853125
– year: 1999
  ident: CR4
  publication-title: Fisch and Spehlmann’s EEG primer: basic principles of digital and analog EEG
– volume: 133
  start-page: 157
  year: 2022
  end-page: 164
  ident: CR18
  article-title: Coherent false seizure prediction in epilepsy, coincidence or providence?
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2021.09.022
– ident: CR20
– ident: 1127_CR20
  doi: 10.23919/ELINFOCOM.2018.8330671
– volume: 119
  start-page: 1248
  issue: 6
  year: 2008
  ident: 1127_CR7
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2008.02.001
– ident: 1127_CR17
– volume: 6
  start-page: 38683
  year: 2018
  ident: 1127_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2853125
– volume: 22
  start-page: 1250027
  issue: 06
  year: 2012
  ident: 1127_CR11
  publication-title: Int J Neural Syst
  doi: 10.1142/S012906571250027X
– volume: 22
  start-page: 1035
  issue: 3
  year: 2004
  ident: 1127_CR16
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.03.039
– volume: 46
  start-page: 470
  issue: 4
  year: 2005
  ident: 1127_CR1
  publication-title: Epilepsia
  doi: 10.1111/j.0013-9580.2005.66104.x
– volume-title: Fisch and Spehlmann’s EEG primer: basic principles of digital and analog EEG
  year: 1999
  ident: 1127_CR4
– volume: 51
  start-page: 49
  issue: 1–2
  year: 2013
  ident: 1127_CR9
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-012-0967-8
– volume: 36
  start-page: 830
  issue: 4
  year: 1990
  ident: 1127_CR15
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.53742
– volume: 133
  start-page: 157
  year: 2022
  ident: 1127_CR18
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2021.09.022
– volume: 44
  start-page: 115
  issue: 2
  year: 1997
  ident: 1127_CR6
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.552241
– volume: 459
  start-page: 212
  year: 2021
  ident: 1127_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.06.048
– volume: 32
  start-page: 1084
  issue: 4
  year: 2007
  ident: 1127_CR13
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.02.005
– volume-title: Ten lectures on wavelets
  year: 1992
  ident: 1127_CR14
  doi: 10.1137/1.9781611970104
– volume: 54
  start-page: 530
  issue: 5
  year: 1982
  ident: 1127_CR5
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(82)90038-4
– volume: 227
  start-page: 234
  issue: 3
  year: 2013
  ident: 1127_CR8
  publication-title: Proc Inst Mech Eng [H]
  doi: 10.1177/0954411912467883
– volume: 123
  start-page: 69
  issue: 1
  year: 2003
  ident: 1127_CR12
  publication-title: J Neurosci Methods
  doi: 10.1016/S0165-0270(02)00340-0
– ident: 1127_CR2
– ident: 1127_CR3
– volume: 170
  start-page: 114533
  year: 2021
  ident: 1127_CR21
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114533
– volume: 41
  start-page: 2391
  issue: 5
  year: 2014
  ident: 1127_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.09.037
SSID ssj0002511765
ssj0024368
Score 2.258084
Snippet Finding components from multi-channel EEG signal for localizing and detection of onset of seizure, is a new approach in biomedical signal analysis....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 601
SubjectTerms Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Classifiers
Coherence
Convulsions & seizures
Discrete Wavelet Transform
Electroencephalography
Medical and Radiation Physics
Scientific Paper
Seizures
Signal analysis
Tensors
Wavelet analysis
Wavelet transforms
Title Epileptic-seizure onset detection using PARAFAC model with cross-wavelet transformation on multi-channel EEG
URI https://link.springer.com/article/10.1007/s13246-022-01127-1
https://www.ncbi.nlm.nih.gov/pubmed/35575961
https://www.proquest.com/docview/2681637895
https://www.proquest.com/docview/2665111007
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdb-7I9jH0vW1c02NsmFtmyPp6GU-yWwUIpC-TNSLI0CsXJGofB_vrdKc7HKCsYG2xJFjqd9OP0uztCPurcWiu1YEELy4TykYGYCyZc4WUURgaO3sjfp_JiJr7Ni_lgcFsNtMrtmpgW6nbh0Ub-JZMaoIPSpvi6_MUwaxSerg4pNB6SYwxdhpQuNVcHsfaSKxzseKDUJteD08zGdQ6QBNJvkZjAM8X4vxvTHbR556Q0bUD1U_JkQI603Ij6GXkQuufk8UE8wRfkplqCksMi4NkqXP9Z3waKZOmetqFPlKuOIs_9J70sr8q6PKMpDw5FWyxNvWK_LSai6Gl_gGehFlyJecjQT7iDKlV1_pLM6urH2QUb0ikwD0rdM-O89MHoIgvjsQ0esIuI3guvzNho6Vzg3OfWeW-UzUTMJZfa8GhiJn1sTf6KHHWLLrwh1LU65MIa63ILCMQ4LkMQ2dipVugY1Yjw7Vg2fog1jikvbpp9lGQc_wbGv0nj3_AR-bSrs9xE2ri39MlWRM2gdatmP0dG5MPuM-gLHoLYLizWWEYCxsRWR-T1RrS73wH2UoWR0Pjnraz3jf-_L2_v78s78ihL8wxNNyfkqL9dh_eAZHp3mqYr3HV9fkqOy3oymcJzUk0vr-DtLCv_An7a8wo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLam8QA8TNzpGGAkeAKL2nEc-wGharTr2EUIbdLegu04aNKUdmuqif2o_UbOcZK2aGJvk_IW27HO9Yt9LoS814m1VmnJgpaWycyXDNicMulSr0ppVOCYjXxwqMbH8vtJerJGrrtcGAyr7GxiNNTFxOMZ-WehNECHTJv06_ScYdcovF3tWmg0YrEX_lzCL9vsy-434O8HIUbDo-0xa7sKMA-yXTPjvPLB6FSEft8GDy5clt5Ln5m-0cq5wLlPrPPeZFbIMlFcacNLUwrlywKLL4HJvyeTxKBG6dHOSm2_mHoHHhaMiEl0m6TTpOoBcsFwXwyE4CJj_F9HeAPd3riZjQ5v9IhstEiVDhrRekzWQvWEPFypX_iUnA2nYFTA6Hg2C6dX84tAMTi7pkWoY4hXRTGu_jf9Mfg5GA22aey7Q_Hsl8ZdsUuLjS9qWq_gZ5gFT4x0ZJiXXMGU4XDnGTm-E0I_J-vVpAovCXWFDom0xrrEAuIxjqsQpOi7rJC6LLMe4R0tc9_WNscWG2f5sioz0j8H-ueR_jnvkY-LOdOmsseto7c6FuWtls_ypUz2yLvFa9BPvHSxVZjMcYwCTIur9siLhrWLzwHWy1KjYPFPHa-Xi_9_L5u37-UtuT8-OtjP93cP916RByLKHB4bbZH1-mIeXgOKqt2bKLqU_LprXfkLIFQsHg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA6lguiDeO_aqhH0SUM3M5lcHkSWdtfWailiYd_GJJOIUGa33VmK_jR_nedkZ3ZXin0rzNskmXCu3yTnQshrnVtrpRYsaGGZUD4yYHPBhCu8jMLIwDEb-cuxPDgVn8bFeIP86XJhMKyys4nJUFcTj2fku5nUAB2UNsVubMMiTvZHH6bnDDtI4U1r105jISJH4dcl_L7N3h_uA6_fZNlo-G3vgLUdBpgHOW-YcV76YHSRhX7fBg_uXETvhVemb7R0LnDuc-u8N8pmIuaSS214NDGTPlZYiAnM_y2VFxx1TI3VWp2_lIYH3hYMisl1m7CzSNsDFIOhvxgUwTPF-L9O8QrSvXJLm5zf6D6516JWOliI2QOyEeqH5O5aLcNH5Gw4BQMDBsizWfj5e34RKAZqN7QKTQr3qinG2P-gJ4Ovg9Fgj6YePBTPgWnaFbu02ASjoc0aloZZ8KSoR4Y5yjVMGQ4_PianN0LoJ2SzntRhi1BX6ZALa6zLLaAf47gMQWR9pyqhY1Q9wjtalr6tc47tNs7KVYVmpH8J9C8T_UveI2-Xc6aLKh_Xjt7pWFS2Gj8rV_LZI6-Wr0FX8QLG1mEyxzES8C2u2iNPF6xdfg5wnyqMhMXfdbxeLf7_vTy7fi8vyW3QkvLz4fHRNrmTJZHDE6QdstlczMNzAFSNe5Ekl5LvN60qfwEFmzBL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epileptic-seizure+onset+detection+using+PARAFAC+model+with+cross-wavelet+transformation+on+multi-channel+EEG&rft.jtitle=Australasian+physical+%26+engineering+sciences+in+medicine&rft.au=Ghosh%2C+Arijit&rft.au=Pahari%2C+Purbanka&rft.au=Basak%2C+Piyali&rft.au=Maulik%2C+Ujjwal&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0158-9938&rft.eissn=1879-5447&rft.volume=45&rft.issue=2&rft.spage=601&rft.epage=612&rft_id=info:doi/10.1007%2Fs13246-022-01127-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4729&client=summon