Quantitative analysis of dried serum FTIR spectra based on correlation Analysis-Interval random Frog-Partial least squares
[Display omitted] •The method proposed in this study can quickly and accurately quantify 9 major serum components simultaneously.•The correlation between 18 spectral absorption peaks and 26 serum biochemical parameters was preliminarily explored.•For the first time, the quantitative analysis of apol...
Saved in:
Published in | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Vol. 327; p. 125427 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
15.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The method proposed in this study can quickly and accurately quantify 9 major serum components simultaneously.•The correlation between 18 spectral absorption peaks and 26 serum biochemical parameters was preliminarily explored.•For the first time, the quantitative analysis of apolipoprotein A1 was achieved using spectroscopic methods.
Serum biochemical markers are widely used in clinical practice but often require expensive, specific reagents, complex instruments, and prolonged result waiting times. Infrared spectroscopy offers multiple advantages for serum analysis, such as reagent-free testing and the ability to quickly and directly measure multiple parameters simultaneously. This study collected serum samples from 66 healthy subjects to explore the relationship between dried serum infrared spectra and biochemical parameters, and to investigate the feasibility of simultaneously quantifying nine major serum components using dried serum infrared spectra. Initially, correlation analysis was conducted between spectral data and biochemical parameters, and the correlation spectral bands of glucose, protein and lipid were determined according to the correlation results. Subsequently, the interval random frog (IRF) algorithm was utilized to select the optimal characteristic wavenumbers of the correlated spectral bands, extracting the most informative spectral variables and constructing partial least squares (PLS) quantitative models. This method successfully achieved rapid and accurate quantification of nine major components in serum, including glucose, total protein, albumin, apolipoprotein A1, apolipoprotein B, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. The experimental results showed that the correlation coefficient (Rp) range in the test set was 0.8892–0.9941. Among them, the quantification of total cholesterol yielded the highest Rp, corresponding to a root mean square error (RMSEP) of 7.2425 mg/dL in the test set, while the quantification of glucose yielded the lowest Rp, with an associated RMSEP of 2.3683 mg/dL. The Correlation Analysis (CA)-IRF-PLS method developed in this study outperformed the conventional PLS method, the direct use of the successive projection algorithm (SPA)-PLS quantitative method and other reported quantitative techniques, providing a novel approach for the real-time determination of clinical parameters in serum. |
---|---|
AbstractList | Serum biochemical markers are widely used in clinical practice but often require expensive, specific reagents, complex instruments, and prolonged result waiting times. Infrared spectroscopy offers multiple advantages for serum analysis, such as reagent-free testing and the ability to quickly and directly measure multiple parameters simultaneously. This study collected serum samples from 66 healthy subjects to explore the relationship between dried serum infrared spectra and biochemical parameters, and to investigate the feasibility of simultaneously quantifying nine major serum components using dried serum infrared spectra. Initially, correlation analysis was conducted between spectral data and biochemical parameters, and the correlation spectral bands of glucose, protein and lipid were determined according to the correlation results. Subsequently, the interval random frog (IRF) algorithm was utilized to select the optimal characteristic wavenumbers of the correlated spectral bands, extracting the most informative spectral variables and constructing partial least squares (PLS) quantitative models. This method successfully achieved rapid and accurate quantification of nine major components in serum, including glucose, total protein, albumin, apolipoprotein A1, apolipoprotein B, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. The experimental results showed that the correlation coefficient (Rp) range in the test set was 0.8892-0.9941. Among them, the quantification of total cholesterol yielded the highest Rp, corresponding to a root mean square error (RMSEP) of 7.2425 mg/dL in the test set, while the quantification of glucose yielded the lowest Rp, with an associated RMSEP of 2.3683 mg/dL. The Correlation Analysis (CA)-IRF-PLS method developed in this study outperformed the conventional PLS method, the direct use of the successive projection algorithm (SPA)-PLS quantitative method and other reported quantitative techniques, providing a novel approach for the real-time determination of clinical parameters in serum. [Display omitted] •The method proposed in this study can quickly and accurately quantify 9 major serum components simultaneously.•The correlation between 18 spectral absorption peaks and 26 serum biochemical parameters was preliminarily explored.•For the first time, the quantitative analysis of apolipoprotein A1 was achieved using spectroscopic methods. Serum biochemical markers are widely used in clinical practice but often require expensive, specific reagents, complex instruments, and prolonged result waiting times. Infrared spectroscopy offers multiple advantages for serum analysis, such as reagent-free testing and the ability to quickly and directly measure multiple parameters simultaneously. This study collected serum samples from 66 healthy subjects to explore the relationship between dried serum infrared spectra and biochemical parameters, and to investigate the feasibility of simultaneously quantifying nine major serum components using dried serum infrared spectra. Initially, correlation analysis was conducted between spectral data and biochemical parameters, and the correlation spectral bands of glucose, protein and lipid were determined according to the correlation results. Subsequently, the interval random frog (IRF) algorithm was utilized to select the optimal characteristic wavenumbers of the correlated spectral bands, extracting the most informative spectral variables and constructing partial least squares (PLS) quantitative models. This method successfully achieved rapid and accurate quantification of nine major components in serum, including glucose, total protein, albumin, apolipoprotein A1, apolipoprotein B, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. The experimental results showed that the correlation coefficient (Rp) range in the test set was 0.8892–0.9941. Among them, the quantification of total cholesterol yielded the highest Rp, corresponding to a root mean square error (RMSEP) of 7.2425 mg/dL in the test set, while the quantification of glucose yielded the lowest Rp, with an associated RMSEP of 2.3683 mg/dL. The Correlation Analysis (CA)-IRF-PLS method developed in this study outperformed the conventional PLS method, the direct use of the successive projection algorithm (SPA)-PLS quantitative method and other reported quantitative techniques, providing a novel approach for the real-time determination of clinical parameters in serum. |
ArticleNumber | 125427 |
Author | Gao, Yuan Xie, Qinlan Zhang, Ruojing Guo, Hongrui Zhang, Xianwen Zhang, Zhushanying Cao, Huimin |
Author_xml | – sequence: 1 givenname: Ruojing surname: Zhang fullname: Zhang, Ruojing organization: College of Biomedical Engineering, South-Central MinZu University, Wuhan 430074, China – sequence: 2 givenname: Xianwen surname: Zhang fullname: Zhang, Xianwen organization: Guangxi Natural Resources Vocational and Technical College, Nanning 532100, China – sequence: 3 givenname: Hongrui surname: Guo fullname: Guo, Hongrui organization: College of Biomedical Engineering, South-Central MinZu University, Wuhan 430074, China – sequence: 4 givenname: Zhushanying orcidid: 0000-0002-7259-9361 surname: Zhang fullname: Zhang, Zhushanying email: syzhu@mail.scuec.edu.cn organization: College of Biomedical Engineering, South-Central MinZu University, Wuhan 430074, China – sequence: 5 givenname: Yuan surname: Gao fullname: Gao, Yuan organization: College of Biomedical Engineering, South-Central MinZu University, Wuhan 430074, China – sequence: 6 givenname: Qinlan surname: Xie fullname: Xie, Qinlan organization: College of Biomedical Engineering, South-Central MinZu University, Wuhan 430074, China – sequence: 7 givenname: Huimin surname: Cao fullname: Cao, Huimin organization: College of Biomedical Engineering, South-Central MinZu University, Wuhan 430074, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39556892$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kF1PwjAUhhuDEUR_gDemf2CzXdttxCtCRElI_Aj3zVl7ZkrGhu0gwV9vCeilV-fN6fs07XNNBm3XIiF3nKWc8fxhnQaANGOZTHmmZFZckBEvC5EIpYpBzKLMEy4zNSTXIawZY7zM2BUZiolSeTnJRuT7fQdt73ro3R4ptNAcggu0q6n1Di0N6HcbOl8tPmjYouk90ApCPOhaajrvsYlkzNMzmSzaHv0eGuqhtV1EffeZvIHvXdw1CKGn4WsHHsMNuayhCXh7nmOymj-tZi_J8vV5MZsuEyOY6pMJK9EIMzGyKgRyBkZKtIZl8TtVXishLUKRV7XMC8GwZrlQtSqlMZUtUYkxuT9du91VG7R6690G_EH_OogFfioY34Xgsf6rcKaPnvVaR8_66FmfPEfm8cRgfPjeodfBOGwNWuejJW079w_9A4rqhx8 |
Cites_doi | 10.1007/s00216-006-0895-2 10.1152/physrev.00035.2018 10.1016/j.saa.2022.121839 10.1016/j.talanta.2020.120857 10.1210/endrev/bnab037 10.1016/j.infrared.2018.10.030 10.1186/s12944-019-1144-y 10.1016/j.ihj.2021.07.013 10.1016/j.vibspec.2018.08.019 10.1016/j.trac.2012.09.006 10.1016/j.cca.2015.10.033 10.1093/clinchem/48.3.499 10.1039/C9AN00599D 10.1016/j.molliq.2021.117380 10.1364/AO.38.002916 10.1016/j.clispe.2020.100004 10.1016/j.clispe.2020.100001 10.1016/j.trac.2019.01.018 10.1016/j.talanta.2015.08.033 10.1016/j.microc.2012.06.016 10.1016/j.aca.2020.04.015 10.1016/j.chemolab.2019.103916 10.1039/C5CS00585J 10.1016/j.saa.2019.117376 10.1016/j.aca.2010.03.048 10.1016/j.saa.2013.03.083 10.1117/1.1911847 10.1039/C9AN00125E 10.1016/j.clinbiochem.2014.05.064 10.1007/s00216-021-03472-8 10.1080/05704928.2020.1738453 10.1166/mat.2014.1161 10.1177/000456329803500505 10.1016/j.trac.2014.06.012 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1016/j.saa.2024.125427 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1873-3557 |
ExternalDocumentID | 39556892 10_1016_j_saa_2024_125427 S1386142524015932 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABMAC ACDAQ ACRLP ADBBV ADECG ADEZE AEBSH AEKER AFJKZ AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SDP SES SEW SPC SPCBC SSK SSZ T5K WH7 XPP ZMT ~G- 1RT 53G 6TJ AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ M36 R2- RIG SSH UHS CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c305t-908ec3c9c4b73e10ac44edc02000b6f534dea76bf46730ef0635f584ccbd8e53 |
IEDL.DBID | .~1 |
ISSN | 1386-1425 |
IngestDate | Mon Jul 21 06:01:23 EDT 2025 Tue Jul 01 03:32:51 EDT 2025 Sat Dec 14 16:15:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Interval random frog Serum biochemical parameters Infrared spectrum Correlation analysis |
Language | English |
License | Copyright © 2024 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c305t-908ec3c9c4b73e10ac44edc02000b6f534dea76bf46730ef0635f584ccbd8e53 |
ORCID | 0000-0002-7259-9361 |
PMID | 39556892 |
ParticipantIDs | pubmed_primary_39556892 crossref_primary_10_1016_j_saa_2024_125427 elsevier_sciencedirect_doi_10_1016_j_saa_2024_125427 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-15 |
PublicationDateYYYYMMDD | 2025-02-15 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy |
PublicationTitleAlternate | Spectrochim Acta A Mol Biomol Spectrosc |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – sequence: 0 name: Elsevier B.V |
References | Perez-Guaita, Garrigues (b0120) 2014; 62 Byrne, Bonnier, McIntyre, Parachalil (b0055) 2020; 2 Berberich, Hegele (b0175) 2022; 43 Bel'skaya, Sarf (b0100) 2021; 341 Chen, Song, Shi, Jia (b0140) 2015; 4 Roy, Perez-Guaita, Bowden, Heraud, Wood (b0095) 2019; 1 Gupta, Singh, Kumar, Khajuria (b0110) 2014; 3 Baker, Hussain, Lovergne, Untereiner, Hughes, Lukaszewski, Thiéfin, Sockalingum (b0015) 2016; 45 Wishart (b0005) 2019; 99 Soares, Gomes, Araujo, Filho, Galvão (b0160) 2013; 42 Tian, Zhang, Li, Wang, Sheng, Liu, Wang (b0070) 2018; 95 Spalding, Bonnier, Bruno, Blasco, Board, Bretagne, Byrne, Butler, Chourpa, Radhakrishnan, Baker (b0050) 2018; 99 Leng, Chen, Chen, Chen, Du, Chen, Yang, Zuo, Xiao, Lv, Liu (b0090) 2023; 285 Tian, Li, Shan, Wang, Jiang, Cui (b0170) 2019; 18 Goodarzi, Saeys (b0060) 2016; 146 Jessen, Höskuldsson, Bjerrum, Lars Sørensen, Bratholm, Christensen, Jensen, Jensen (b0045) 2014; 47 Aggarwal, Kathariya, Verma (b0165) 2021; 73 Parachalil, Bruno, Bonnier, Blasco, Chourpa, McIntyrea, Byrne (b0035) 2019; 144 Rohleder, Kocherscheidt, Gerber, Kiefer, Köhler, Möcks, Petrich (b0020) 2005; 10 Sitnikova, Kotkova, Nosenko, Kotkova, Martynova, Uspenskaya (b0085) 2020; 214 Yu, Yun, Zhang, Chen, Liu, Zhong, Chen, Chen (b0125) 2020; 224 Beć, Grabska, Huck (b0115) 2020; 1133 Liu, Man, Dembinski, Shaw (b0150) 2007; 387 Perez-Guaita, Ventura-Gayete, Pérez-Rambla, Sancho-Andreu, Garrigues, de la Guardia (b0010) 2013; 106 Berger, Koo, Itzkan, Horowitz, Feld (b0025) 1999; 38 Shaw (b0040) 1998; 35 Giamougiannis, Morais, Rodriguez, Nicholas, Pierre, Francis (b0080) 2021; 413 Ramasamy (b0135) 2016; 454 Bian, Wang, Tan, Diwu, Zhang, Guo (b0155) 2020; 197 Liu, Shaw, Man, Dembinski, Mantsch (b0145) 2002; 48 Parachalil, Bruno, Bonnier, Blasco, Chourpa, Baker, McIntyrea, Byrne (b0030) 2019; 144 Yun, Li, Wood, Fan, Wang, Cao, Xu, Liang (b0075) 2013; 111 Yun, Li, Deng, Cao (b0130) 2019; 113 Zou, Zhao, Povey, Holmes, Mao (b0065) 2010; 667 Naseer, Ali, Qazi (b0105) 2021; 56 Baker (10.1016/j.saa.2024.125427_b0015) 2016; 45 Gupta (10.1016/j.saa.2024.125427_b0110) 2014; 3 Goodarzi (10.1016/j.saa.2024.125427_b0060) 2016; 146 Berberich (10.1016/j.saa.2024.125427_b0175) 2022; 43 Bian (10.1016/j.saa.2024.125427_b0155) 2020; 197 Ramasamy (10.1016/j.saa.2024.125427_b0135) 2016; 454 Soares (10.1016/j.saa.2024.125427_b0160) 2013; 42 Bel'skaya (10.1016/j.saa.2024.125427_b0100) 2021; 341 Yun (10.1016/j.saa.2024.125427_b0130) 2019; 113 Liu (10.1016/j.saa.2024.125427_b0145) 2002; 48 Perez-Guaita (10.1016/j.saa.2024.125427_b0010) 2013; 106 Leng (10.1016/j.saa.2024.125427_b0090) 2023; 285 Liu (10.1016/j.saa.2024.125427_b0150) 2007; 387 Zou (10.1016/j.saa.2024.125427_b0065) 2010; 667 Shaw (10.1016/j.saa.2024.125427_b0040) 1998; 35 Sitnikova (10.1016/j.saa.2024.125427_b0085) 2020; 214 Parachalil (10.1016/j.saa.2024.125427_b0035) 2019; 144 Tian (10.1016/j.saa.2024.125427_b0170) 2019; 18 Berger (10.1016/j.saa.2024.125427_b0025) 1999; 38 Yun (10.1016/j.saa.2024.125427_b0075) 2013; 111 Beć (10.1016/j.saa.2024.125427_b0115) 2020; 1133 Rohleder (10.1016/j.saa.2024.125427_b0020) 2005; 10 Jessen (10.1016/j.saa.2024.125427_b0045) 2014; 47 Parachalil (10.1016/j.saa.2024.125427_b0030) 2019; 144 Chen (10.1016/j.saa.2024.125427_b0140) 2015; 4 Tian (10.1016/j.saa.2024.125427_b0070) 2018; 95 Aggarwal (10.1016/j.saa.2024.125427_b0165) 2021; 73 Spalding (10.1016/j.saa.2024.125427_b0050) 2018; 99 Giamougiannis (10.1016/j.saa.2024.125427_b0080) 2021; 413 Perez-Guaita (10.1016/j.saa.2024.125427_b0120) 2014; 62 Wishart (10.1016/j.saa.2024.125427_b0005) 2019; 99 Yu (10.1016/j.saa.2024.125427_b0125) 2020; 224 Roy (10.1016/j.saa.2024.125427_b0095) 2019; 1 Byrne (10.1016/j.saa.2024.125427_b0055) 2020; 2 Naseer (10.1016/j.saa.2024.125427_b0105) 2021; 56 |
References_xml | – volume: 35 start-page: 624 year: 1998 end-page: 632 ident: b0040 article-title: Kotowich S, Leroux M, Mantsch HH, Multianalyte Serum Analysis Using Mid-Infrared Spectroscopy publication-title: Ann. Clin. Biochem. – volume: 56 start-page: 85 year: 2021 end-page: 97 ident: b0105 article-title: ATR-FTIR spectroscopy as the future of diagnostics: a systematic review of the approach using bio-fluids publication-title: Appl. Spectrosc. Rev. – volume: 454 start-page: 143 year: 2016 end-page: 185 ident: b0135 article-title: Update on the molecular biology of dyslipidemias publication-title: Clin Chim Acta. – volume: 224 year: 2020 ident: b0125 article-title: Three-step hybrid strategy towards efficiently selecting variables in multivariate calibration of near-infrared spectra publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 18 start-page: 1 year: 2019 end-page: 9 ident: b0170 article-title: Comparison of apolipoprotein B/A1 ratio framingham risk score and TC/HDL-c for predicting clinical outcomes in patients undergoing percutaneous coronary intervention publication-title: Lipids in Health and Disease. – volume: 197 year: 2020 ident: b0155 article-title: A selective ensemble preprocessing strategy for near-infrared spectral quantitative analysis of complex samples publication-title: Chemom. Intel. Lab. Syst. – volume: 1133 start-page: 150 year: 2020 end-page: 177 ident: b0115 article-title: Biomolecular and bioanalytical applications of infrared spectroscopy–A review publication-title: Anal. Chim. Acta – volume: 10 year: 2005 ident: b0020 article-title: Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum publication-title: J. Biomed. Opt. – volume: 285 year: 2023 ident: b0090 article-title: Raman spectroscopy and FTIR spectroscopy fusion technology combined with deep learning: A novel cancer prediction method publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 2 year: 2020 ident: b0055 article-title: Quantitative analysis of human blood serum using vibrational spectroscopy publication-title: Clin. Spectrosc. – volume: 113 start-page: 102 year: 2019 end-page: 115 ident: b0130 article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra publication-title: TrAC Trends Anal. Chem. – volume: 341 year: 2021 ident: b0100 article-title: Biochemical composition and characteristics of salivary FTIR spectra: Correlation analysis publication-title: J. Mol. Liq. – volume: 4 start-page: 914 year: 2015 end-page: 918 ident: b0140 article-title: Multidimensional Scaling Linear Regression Applied to FTIR Spectral Quantitative Analysis of Clinical Parameters of Human Blood Serum, Spectroscopy and Spectral publication-title: Analysis – volume: 413 start-page: 5095 year: 2021 end-page: 5107 ident: b0080 article-title: Detection of ovarian cancer (± neo-adjuvant chemotherapy effects) via ATR-FTIR spectroscopy: comparative analysis of blood and urine biofluids in a large patient cohort publication-title: Anal Bioanal Chem. – volume: 62 start-page: 93 year: 2014 end-page: 105 ident: b0120 article-title: Infrared-based quantification of clinical parameters publication-title: TrAC Trends Anal. Chem. – volume: 48 start-page: 499 year: 2002 end-page: 506 ident: b0145 article-title: Reagent-free, simultaneous determination of serum cholesterol in HDL and LDL by infrared spectroscopy publication-title: Clin Chem. – volume: 146 start-page: 155 year: 2016 end-page: 165 ident: b0060 article-title: Selection of the most informative near infrared spectroscopy wavebands for continuous glucose monitoring in human serum publication-title: Talanta – volume: 214 year: 2020 ident: b0085 article-title: Breast cancer detection by ATR-FTIR spectroscopy of blood serum and multivariate data-analysis publication-title: Talanta – volume: 38 start-page: 2916 year: 1999 end-page: 2926 ident: b0025 article-title: Multicomponent blood analysis by near-infrared Raman spectroscopy publication-title: Appl. Opt. – volume: 99 start-page: 50 year: 2018 end-page: 58 ident: b0050 article-title: Enabling quantification of protein concentration in human serum biopsies using attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy publication-title: Vib. Spectrosc. – volume: 3 start-page: 211 year: 2014 end-page: 217 ident: b0110 article-title: Spectroscopic studies of cholesterol: fourier transform infra-red and vibrational frequency analysis publication-title: Materials Focus. – volume: 99 start-page: 1819 year: 2019 end-page: 1875 ident: b0005 article-title: Metabolomics for investigating physiological and pathophysiological processes publication-title: Physiol. Rev. – volume: 111 start-page: 31 year: 2013 end-page: 36 ident: b0075 article-title: An efficient method of wavelength interval selection based on random frog for multivariate spectral calibration publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 387 start-page: 1809 year: 2007 end-page: 1814 ident: b0150 article-title: Quantification of serum apolipoprotein B by infrared spectroscopy publication-title: Anal Bioanal Chem. – volume: 95 start-page: 88 year: 2018 end-page: 92 ident: b0070 article-title: Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy publication-title: Infrared Phys. Techn. – volume: 1 year: 2019 ident: b0095 article-title: Spectroscopy goes viral: Diagnosis of hepatitis B and C virus infection from human sera using ATR-FTIR spectroscopy publication-title: Clin. Spectrosc. – volume: 667 start-page: 14 year: 2010 end-page: 32 ident: b0065 article-title: Variables selection methods in near-infrared spectroscopy publication-title: Anal. Chim. Acta – volume: 144 start-page: 4295 year: 2019 end-page: 4311 ident: b0035 article-title: Raman spectroscopic screening of High and Low molecular weight fractions of human serum publication-title: Analyst – volume: 144 start-page: 3334 year: 2019 end-page: 3346 ident: b0030 article-title: Analysis of bodily fluids using Vibrational Spectroscopy: a direct comparison of Raman scattering and Infrared absorption techniques for the case of glucose in blood serum publication-title: Analyst – volume: 47 start-page: 1306 year: 2014 end-page: 1312 ident: b0045 article-title: Simultaneous determination of glucose, triglycerides, urea, cholesterol, albumin and total protein in human plasma by Fourier transform infrared spectroscopy: Direct clinical biochemistry without reagents publication-title: Clin. Biochem. – volume: 43 start-page: 611 year: 2022 end-page: 653 ident: b0175 article-title: A modern approach to dyslipidemia publication-title: Endocr. Rev. – volume: 42 start-page: 84 year: 2013 end-page: 98 ident: b0160 article-title: The successive projections algorithm publication-title: TrAC Trends Anal. Chem. – volume: 45 start-page: 1803 year: 2016 end-page: 1818 ident: b0015 article-title: Developing and understanding biofluid vibrational spectroscopy: a critical review publication-title: Chem. Soc. Rev. – volume: 106 start-page: 202 year: 2013 end-page: 211 ident: b0010 article-title: Evaluation of infrared spectroscopy as a screening tool for serum analysis Impact of the nature of samples included in the calibration set publication-title: Microchem. – volume: 73 start-page: 544 year: 2021 end-page: 548 ident: b0165 article-title: LDL-C, NON-HDL-C and APO-B for cardiovascular risk assessment: looking for the ideal marker publication-title: Indian Heart J. – volume: 387 start-page: 1809 year: 2007 ident: 10.1016/j.saa.2024.125427_b0150 article-title: Quantification of serum apolipoprotein B by infrared spectroscopy publication-title: Anal Bioanal Chem. doi: 10.1007/s00216-006-0895-2 – volume: 99 start-page: 1819 year: 2019 ident: 10.1016/j.saa.2024.125427_b0005 article-title: Metabolomics for investigating physiological and pathophysiological processes publication-title: Physiol. Rev. doi: 10.1152/physrev.00035.2018 – volume: 285 year: 2023 ident: 10.1016/j.saa.2024.125427_b0090 article-title: Raman spectroscopy and FTIR spectroscopy fusion technology combined with deep learning: A novel cancer prediction method publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2022.121839 – volume: 214 year: 2020 ident: 10.1016/j.saa.2024.125427_b0085 article-title: Breast cancer detection by ATR-FTIR spectroscopy of blood serum and multivariate data-analysis publication-title: Talanta doi: 10.1016/j.talanta.2020.120857 – volume: 43 start-page: 611 year: 2022 ident: 10.1016/j.saa.2024.125427_b0175 article-title: A modern approach to dyslipidemia publication-title: Endocr. Rev. doi: 10.1210/endrev/bnab037 – volume: 95 start-page: 88 year: 2018 ident: 10.1016/j.saa.2024.125427_b0070 article-title: Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy publication-title: Infrared Phys. Techn. doi: 10.1016/j.infrared.2018.10.030 – volume: 4 start-page: 914 year: 2015 ident: 10.1016/j.saa.2024.125427_b0140 article-title: Multidimensional Scaling Linear Regression Applied to FTIR Spectral Quantitative Analysis of Clinical Parameters of Human Blood Serum, Spectroscopy and Spectral publication-title: Analysis – volume: 18 start-page: 1 year: 2019 ident: 10.1016/j.saa.2024.125427_b0170 article-title: Comparison of apolipoprotein B/A1 ratio framingham risk score and TC/HDL-c for predicting clinical outcomes in patients undergoing percutaneous coronary intervention publication-title: Lipids in Health and Disease. doi: 10.1186/s12944-019-1144-y – volume: 73 start-page: 544 year: 2021 ident: 10.1016/j.saa.2024.125427_b0165 article-title: LDL-C, NON-HDL-C and APO-B for cardiovascular risk assessment: looking for the ideal marker publication-title: Indian Heart J. doi: 10.1016/j.ihj.2021.07.013 – volume: 99 start-page: 50 year: 2018 ident: 10.1016/j.saa.2024.125427_b0050 article-title: Enabling quantification of protein concentration in human serum biopsies using attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2018.08.019 – volume: 42 start-page: 84 year: 2013 ident: 10.1016/j.saa.2024.125427_b0160 article-title: The successive projections algorithm publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2012.09.006 – volume: 454 start-page: 143 year: 2016 ident: 10.1016/j.saa.2024.125427_b0135 article-title: Update on the molecular biology of dyslipidemias publication-title: Clin Chim Acta. doi: 10.1016/j.cca.2015.10.033 – volume: 48 start-page: 499 year: 2002 ident: 10.1016/j.saa.2024.125427_b0145 article-title: Reagent-free, simultaneous determination of serum cholesterol in HDL and LDL by infrared spectroscopy publication-title: Clin Chem. doi: 10.1093/clinchem/48.3.499 – volume: 144 start-page: 4295 year: 2019 ident: 10.1016/j.saa.2024.125427_b0035 article-title: Raman spectroscopic screening of High and Low molecular weight fractions of human serum publication-title: Analyst doi: 10.1039/C9AN00599D – volume: 341 year: 2021 ident: 10.1016/j.saa.2024.125427_b0100 article-title: Biochemical composition and characteristics of salivary FTIR spectra: Correlation analysis publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.117380 – volume: 38 start-page: 2916 year: 1999 ident: 10.1016/j.saa.2024.125427_b0025 article-title: Multicomponent blood analysis by near-infrared Raman spectroscopy publication-title: Appl. Opt. doi: 10.1364/AO.38.002916 – volume: 2 year: 2020 ident: 10.1016/j.saa.2024.125427_b0055 article-title: Quantitative analysis of human blood serum using vibrational spectroscopy publication-title: Clin. Spectrosc. doi: 10.1016/j.clispe.2020.100004 – volume: 1 year: 2019 ident: 10.1016/j.saa.2024.125427_b0095 article-title: Spectroscopy goes viral: Diagnosis of hepatitis B and C virus infection from human sera using ATR-FTIR spectroscopy publication-title: Clin. Spectrosc. doi: 10.1016/j.clispe.2020.100001 – volume: 113 start-page: 102 year: 2019 ident: 10.1016/j.saa.2024.125427_b0130 article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2019.01.018 – volume: 146 start-page: 155 year: 2016 ident: 10.1016/j.saa.2024.125427_b0060 article-title: Selection of the most informative near infrared spectroscopy wavebands for continuous glucose monitoring in human serum publication-title: Talanta doi: 10.1016/j.talanta.2015.08.033 – volume: 106 start-page: 202 year: 2013 ident: 10.1016/j.saa.2024.125427_b0010 article-title: Evaluation of infrared spectroscopy as a screening tool for serum analysis Impact of the nature of samples included in the calibration set publication-title: Microchem. doi: 10.1016/j.microc.2012.06.016 – volume: 1133 start-page: 150 year: 2020 ident: 10.1016/j.saa.2024.125427_b0115 article-title: Biomolecular and bioanalytical applications of infrared spectroscopy–A review publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2020.04.015 – volume: 197 year: 2020 ident: 10.1016/j.saa.2024.125427_b0155 article-title: A selective ensemble preprocessing strategy for near-infrared spectral quantitative analysis of complex samples publication-title: Chemom. Intel. Lab. Syst. doi: 10.1016/j.chemolab.2019.103916 – volume: 45 start-page: 1803 year: 2016 ident: 10.1016/j.saa.2024.125427_b0015 article-title: Developing and understanding biofluid vibrational spectroscopy: a critical review publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00585J – volume: 224 year: 2020 ident: 10.1016/j.saa.2024.125427_b0125 article-title: Three-step hybrid strategy towards efficiently selecting variables in multivariate calibration of near-infrared spectra publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2019.117376 – volume: 667 start-page: 14 year: 2010 ident: 10.1016/j.saa.2024.125427_b0065 article-title: Variables selection methods in near-infrared spectroscopy publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2010.03.048 – volume: 111 start-page: 31 year: 2013 ident: 10.1016/j.saa.2024.125427_b0075 article-title: An efficient method of wavelength interval selection based on random frog for multivariate spectral calibration publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2013.03.083 – volume: 10 year: 2005 ident: 10.1016/j.saa.2024.125427_b0020 article-title: Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum publication-title: J. Biomed. Opt. doi: 10.1117/1.1911847 – volume: 144 start-page: 3334 year: 2019 ident: 10.1016/j.saa.2024.125427_b0030 article-title: Analysis of bodily fluids using Vibrational Spectroscopy: a direct comparison of Raman scattering and Infrared absorption techniques for the case of glucose in blood serum publication-title: Analyst doi: 10.1039/C9AN00125E – volume: 47 start-page: 1306 year: 2014 ident: 10.1016/j.saa.2024.125427_b0045 article-title: Simultaneous determination of glucose, triglycerides, urea, cholesterol, albumin and total protein in human plasma by Fourier transform infrared spectroscopy: Direct clinical biochemistry without reagents publication-title: Clin. Biochem. doi: 10.1016/j.clinbiochem.2014.05.064 – volume: 413 start-page: 5095 year: 2021 ident: 10.1016/j.saa.2024.125427_b0080 article-title: Detection of ovarian cancer (± neo-adjuvant chemotherapy effects) via ATR-FTIR spectroscopy: comparative analysis of blood and urine biofluids in a large patient cohort publication-title: Anal Bioanal Chem. doi: 10.1007/s00216-021-03472-8 – volume: 56 start-page: 85 year: 2021 ident: 10.1016/j.saa.2024.125427_b0105 article-title: ATR-FTIR spectroscopy as the future of diagnostics: a systematic review of the approach using bio-fluids publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2020.1738453 – volume: 3 start-page: 211 year: 2014 ident: 10.1016/j.saa.2024.125427_b0110 article-title: Spectroscopic studies of cholesterol: fourier transform infra-red and vibrational frequency analysis publication-title: Materials Focus. doi: 10.1166/mat.2014.1161 – volume: 35 start-page: 624 year: 1998 ident: 10.1016/j.saa.2024.125427_b0040 article-title: Kotowich S, Leroux M, Mantsch HH, Multianalyte Serum Analysis Using Mid-Infrared Spectroscopy publication-title: Ann. Clin. Biochem. doi: 10.1177/000456329803500505 – volume: 62 start-page: 93 year: 2014 ident: 10.1016/j.saa.2024.125427_b0120 article-title: Infrared-based quantification of clinical parameters publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2014.06.012 |
SSID | ssj0001820 ssib047304432 |
Score | 2.4294388 |
Snippet | [Display omitted]
•The method proposed in this study can quickly and accurately quantify 9 major serum components simultaneously.•The correlation between 18... Serum biochemical markers are widely used in clinical practice but often require expensive, specific reagents, complex instruments, and prolonged result... |
SourceID | pubmed crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 125427 |
SubjectTerms | Adult Algorithms Blood Glucose - analysis Blood Proteins - analysis Correlation analysis Female Humans Infrared spectrum Interval random frog Least-Squares Analysis Lipids - blood Male Serum biochemical parameters Spectroscopy, Fourier Transform Infrared - methods |
Title | Quantitative analysis of dried serum FTIR spectra based on correlation Analysis-Interval random Frog-Partial least squares |
URI | https://dx.doi.org/10.1016/j.saa.2024.125427 https://www.ncbi.nlm.nih.gov/pubmed/39556892 |
Volume | 327 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQCMGCoLxf8sCEZJrWjyQjqqhaEFWBIrFFju0gECTQx8LAb-fOSXgsHcgWK3aiu8v3nZN7EHLSUpHicLDYBoKJjAumQ50y8I0z2Qp1yH2S2PVA9e7F5YN8WCCdOhcGwyor7C8x3aN1NdKspNl8e3pq3rV4BNzSlsBJwMkccViIEK387PMnzAMLlPtNV6QYXl3_2fQxXhONpYfa4gxoXmBjmbnc9It4uutkrfIY6Xn5UBtkweUNstKpG7U1yLKP4jSTTfJxM9O5zxoDDKO6qjdCi4xa2BFbCuY2e6XdUf-W-gzLsabIYpYWOTXYpqMMjKN1pRLmvxeCLVJgNFvA1HHxyIYoHxh7wbY_dPI-wxSmLTLqXow6PVY1V2AGXvEpi4PIGW5iI9KQu1agjRDOmgBTd1KVSS6s06FKM0BSHrgMXBmZgbdiTGojJ_k2WcyL3O0SGmqZGpipY1hDKRtJ5Qstwl4lC40ze-S0lmryVpbQSOrYsucEVJCgCpJSBXtE1HJP_thBAhA_b9pOqaPvO_AYa6vF7f3_LXhAVtvY6Rdbv8hDsjgdz9wRuB_T9Njb1zFZOu9f9QZwNhhefwELnNpT |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQJgQXxPsNOXBCCuuWR9sjmpg2HhOPIXGr0iRFIGjHHhd-PU7aIrhwoMdITivb_ey09meAk7aMJMOLxibglGeMUxWqlGJunIl2qELmm8RuhrL_yC-fxNMCdOteGFdWWWF_iekerauVVqXN1vjlpfXQZhHGlo7AmIQxmSEONx07lWhA83xw1R9-A7LjKPfnrkhSJ1D_3PRlXlPl2Ic6_AwjPXezZf4MTz9iT28VVqqkkZyXz7UGCzZfh6VuPattHRZ9IaeebsDn3VzlvnEMYYyoinKEFBkxeCg2BD1u_k56o8E98U2WE0VcIDOkyIl2kzrK2jhSk5VQ_8kQ3ZFgUDMFik6KZ3rrVIRrb27yD5l-zF0X0yaMehejbp9W8xWoxrd8RuMgsprpWPM0ZLYdKM25NTpw3TupzATjxqpQphmCKQtshtmMyDBh0To1kRVsCxp5kdsdIKESqUZJFeMeUppISM-1iMeVLNRW78JprdVkXLJoJHV52WuCJkicCZLSBLvAa70nv1whQZT_S2y7tNH3HVjs6NXizt7_NjyGpf7o5jq5Hgyv9mG54wb_ukkw4gAas8ncHmI2MkuPKm_7Am462_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+analysis+of+dried+serum+FTIR+spectra+based+on+correlation+Analysis-Interval+random+Frog-Partial+least+squares&rft.jtitle=Spectrochimica+acta.+Part+A%2C+Molecular+and+biomolecular+spectroscopy&rft.au=Zhang%2C+Ruojing&rft.au=Zhang%2C+Xianwen&rft.au=Guo%2C+Hongrui&rft.au=Zhang%2C+Zhushanying&rft.date=2025-02-15&rft.pub=Elsevier+B.V&rft.issn=1386-1425&rft.volume=327&rft_id=info:doi/10.1016%2Fj.saa.2024.125427&rft.externalDocID=S1386142524015932 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-1425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-1425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-1425&client=summon |