Quantitative analysis of dried serum FTIR spectra based on correlation Analysis-Interval random Frog-Partial least squares

[Display omitted] •The method proposed in this study can quickly and accurately quantify 9 major serum components simultaneously.•The correlation between 18 spectral absorption peaks and 26 serum biochemical parameters was preliminarily explored.•For the first time, the quantitative analysis of apol...

Full description

Saved in:
Bibliographic Details
Published inSpectrochimica acta. Part A, Molecular and biomolecular spectroscopy Vol. 327; p. 125427
Main Authors Zhang, Ruojing, Zhang, Xianwen, Guo, Hongrui, Zhang, Zhushanying, Gao, Yuan, Xie, Qinlan, Cao, Huimin
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 15.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The method proposed in this study can quickly and accurately quantify 9 major serum components simultaneously.•The correlation between 18 spectral absorption peaks and 26 serum biochemical parameters was preliminarily explored.•For the first time, the quantitative analysis of apolipoprotein A1 was achieved using spectroscopic methods. Serum biochemical markers are widely used in clinical practice but often require expensive, specific reagents, complex instruments, and prolonged result waiting times. Infrared spectroscopy offers multiple advantages for serum analysis, such as reagent-free testing and the ability to quickly and directly measure multiple parameters simultaneously. This study collected serum samples from 66 healthy subjects to explore the relationship between dried serum infrared spectra and biochemical parameters, and to investigate the feasibility of simultaneously quantifying nine major serum components using dried serum infrared spectra. Initially, correlation analysis was conducted between spectral data and biochemical parameters, and the correlation spectral bands of glucose, protein and lipid were determined according to the correlation results. Subsequently, the interval random frog (IRF) algorithm was utilized to select the optimal characteristic wavenumbers of the correlated spectral bands, extracting the most informative spectral variables and constructing partial least squares (PLS) quantitative models. This method successfully achieved rapid and accurate quantification of nine major components in serum, including glucose, total protein, albumin, apolipoprotein A1, apolipoprotein B, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. The experimental results showed that the correlation coefficient (Rp) range in the test set was 0.8892–0.9941. Among them, the quantification of total cholesterol yielded the highest Rp, corresponding to a root mean square error (RMSEP) of 7.2425 mg/dL in the test set, while the quantification of glucose yielded the lowest Rp, with an associated RMSEP of 2.3683 mg/dL. The Correlation Analysis (CA)-IRF-PLS method developed in this study outperformed the conventional PLS method, the direct use of the successive projection algorithm (SPA)-PLS quantitative method and other reported quantitative techniques, providing a novel approach for the real-time determination of clinical parameters in serum.
AbstractList Serum biochemical markers are widely used in clinical practice but often require expensive, specific reagents, complex instruments, and prolonged result waiting times. Infrared spectroscopy offers multiple advantages for serum analysis, such as reagent-free testing and the ability to quickly and directly measure multiple parameters simultaneously. This study collected serum samples from 66 healthy subjects to explore the relationship between dried serum infrared spectra and biochemical parameters, and to investigate the feasibility of simultaneously quantifying nine major serum components using dried serum infrared spectra. Initially, correlation analysis was conducted between spectral data and biochemical parameters, and the correlation spectral bands of glucose, protein and lipid were determined according to the correlation results. Subsequently, the interval random frog (IRF) algorithm was utilized to select the optimal characteristic wavenumbers of the correlated spectral bands, extracting the most informative spectral variables and constructing partial least squares (PLS) quantitative models. This method successfully achieved rapid and accurate quantification of nine major components in serum, including glucose, total protein, albumin, apolipoprotein A1, apolipoprotein B, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. The experimental results showed that the correlation coefficient (Rp) range in the test set was 0.8892-0.9941. Among them, the quantification of total cholesterol yielded the highest Rp, corresponding to a root mean square error (RMSEP) of 7.2425 mg/dL in the test set, while the quantification of glucose yielded the lowest Rp, with an associated RMSEP of 2.3683 mg/dL. The Correlation Analysis (CA)-IRF-PLS method developed in this study outperformed the conventional PLS method, the direct use of the successive projection algorithm (SPA)-PLS quantitative method and other reported quantitative techniques, providing a novel approach for the real-time determination of clinical parameters in serum.
[Display omitted] •The method proposed in this study can quickly and accurately quantify 9 major serum components simultaneously.•The correlation between 18 spectral absorption peaks and 26 serum biochemical parameters was preliminarily explored.•For the first time, the quantitative analysis of apolipoprotein A1 was achieved using spectroscopic methods. Serum biochemical markers are widely used in clinical practice but often require expensive, specific reagents, complex instruments, and prolonged result waiting times. Infrared spectroscopy offers multiple advantages for serum analysis, such as reagent-free testing and the ability to quickly and directly measure multiple parameters simultaneously. This study collected serum samples from 66 healthy subjects to explore the relationship between dried serum infrared spectra and biochemical parameters, and to investigate the feasibility of simultaneously quantifying nine major serum components using dried serum infrared spectra. Initially, correlation analysis was conducted between spectral data and biochemical parameters, and the correlation spectral bands of glucose, protein and lipid were determined according to the correlation results. Subsequently, the interval random frog (IRF) algorithm was utilized to select the optimal characteristic wavenumbers of the correlated spectral bands, extracting the most informative spectral variables and constructing partial least squares (PLS) quantitative models. This method successfully achieved rapid and accurate quantification of nine major components in serum, including glucose, total protein, albumin, apolipoprotein A1, apolipoprotein B, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. The experimental results showed that the correlation coefficient (Rp) range in the test set was 0.8892–0.9941. Among them, the quantification of total cholesterol yielded the highest Rp, corresponding to a root mean square error (RMSEP) of 7.2425 mg/dL in the test set, while the quantification of glucose yielded the lowest Rp, with an associated RMSEP of 2.3683 mg/dL. The Correlation Analysis (CA)-IRF-PLS method developed in this study outperformed the conventional PLS method, the direct use of the successive projection algorithm (SPA)-PLS quantitative method and other reported quantitative techniques, providing a novel approach for the real-time determination of clinical parameters in serum.
ArticleNumber 125427
Author Gao, Yuan
Xie, Qinlan
Zhang, Ruojing
Guo, Hongrui
Zhang, Xianwen
Zhang, Zhushanying
Cao, Huimin
Author_xml – sequence: 1
  givenname: Ruojing
  surname: Zhang
  fullname: Zhang, Ruojing
  organization: College of Biomedical Engineering, South-Central MinZu University, Wuhan 430074, China
– sequence: 2
  givenname: Xianwen
  surname: Zhang
  fullname: Zhang, Xianwen
  organization: Guangxi Natural Resources Vocational and Technical College, Nanning 532100, China
– sequence: 3
  givenname: Hongrui
  surname: Guo
  fullname: Guo, Hongrui
  organization: College of Biomedical Engineering, South-Central MinZu University, Wuhan 430074, China
– sequence: 4
  givenname: Zhushanying
  orcidid: 0000-0002-7259-9361
  surname: Zhang
  fullname: Zhang, Zhushanying
  email: syzhu@mail.scuec.edu.cn
  organization: College of Biomedical Engineering, South-Central MinZu University, Wuhan 430074, China
– sequence: 5
  givenname: Yuan
  surname: Gao
  fullname: Gao, Yuan
  organization: College of Biomedical Engineering, South-Central MinZu University, Wuhan 430074, China
– sequence: 6
  givenname: Qinlan
  surname: Xie
  fullname: Xie, Qinlan
  organization: College of Biomedical Engineering, South-Central MinZu University, Wuhan 430074, China
– sequence: 7
  givenname: Huimin
  surname: Cao
  fullname: Cao, Huimin
  organization: College of Biomedical Engineering, South-Central MinZu University, Wuhan 430074, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39556892$$D View this record in MEDLINE/PubMed
BookMark eNp9kF1PwjAUhhuDEUR_gDemf2CzXdttxCtCRElI_Aj3zVl7ZkrGhu0gwV9vCeilV-fN6fs07XNNBm3XIiF3nKWc8fxhnQaANGOZTHmmZFZckBEvC5EIpYpBzKLMEy4zNSTXIawZY7zM2BUZiolSeTnJRuT7fQdt73ro3R4ptNAcggu0q6n1Di0N6HcbOl8tPmjYouk90ApCPOhaajrvsYlkzNMzmSzaHv0eGuqhtV1EffeZvIHvXdw1CKGn4WsHHsMNuayhCXh7nmOymj-tZi_J8vV5MZsuEyOY6pMJK9EIMzGyKgRyBkZKtIZl8TtVXishLUKRV7XMC8GwZrlQtSqlMZUtUYkxuT9du91VG7R6690G_EH_OogFfioY34Xgsf6rcKaPnvVaR8_66FmfPEfm8cRgfPjeodfBOGwNWuejJW079w_9A4rqhx8
Cites_doi 10.1007/s00216-006-0895-2
10.1152/physrev.00035.2018
10.1016/j.saa.2022.121839
10.1016/j.talanta.2020.120857
10.1210/endrev/bnab037
10.1016/j.infrared.2018.10.030
10.1186/s12944-019-1144-y
10.1016/j.ihj.2021.07.013
10.1016/j.vibspec.2018.08.019
10.1016/j.trac.2012.09.006
10.1016/j.cca.2015.10.033
10.1093/clinchem/48.3.499
10.1039/C9AN00599D
10.1016/j.molliq.2021.117380
10.1364/AO.38.002916
10.1016/j.clispe.2020.100004
10.1016/j.clispe.2020.100001
10.1016/j.trac.2019.01.018
10.1016/j.talanta.2015.08.033
10.1016/j.microc.2012.06.016
10.1016/j.aca.2020.04.015
10.1016/j.chemolab.2019.103916
10.1039/C5CS00585J
10.1016/j.saa.2019.117376
10.1016/j.aca.2010.03.048
10.1016/j.saa.2013.03.083
10.1117/1.1911847
10.1039/C9AN00125E
10.1016/j.clinbiochem.2014.05.064
10.1007/s00216-021-03472-8
10.1080/05704928.2020.1738453
10.1166/mat.2014.1161
10.1177/000456329803500505
10.1016/j.trac.2014.06.012
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1016/j.saa.2024.125427
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3557
ExternalDocumentID 39556892
10_1016_j_saa_2024_125427
S1386142524015932
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABMAC
ACDAQ
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AFJKZ
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
WH7
XPP
ZMT
~G-
1RT
53G
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
M36
R2-
RIG
SSH
UHS
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c305t-908ec3c9c4b73e10ac44edc02000b6f534dea76bf46730ef0635f584ccbd8e53
IEDL.DBID .~1
ISSN 1386-1425
IngestDate Mon Jul 21 06:01:23 EDT 2025
Tue Jul 01 03:32:51 EDT 2025
Sat Dec 14 16:15:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Interval random frog
Serum biochemical parameters
Infrared spectrum
Correlation analysis
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c305t-908ec3c9c4b73e10ac44edc02000b6f534dea76bf46730ef0635f584ccbd8e53
ORCID 0000-0002-7259-9361
PMID 39556892
ParticipantIDs pubmed_primary_39556892
crossref_primary_10_1016_j_saa_2024_125427
elsevier_sciencedirect_doi_10_1016_j_saa_2024_125427
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-15
PublicationDateYYYYMMDD 2025-02-15
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
PublicationTitleAlternate Spectrochim Acta A Mol Biomol Spectrosc
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – sequence: 0
  name: Elsevier B.V
References Perez-Guaita, Garrigues (b0120) 2014; 62
Byrne, Bonnier, McIntyre, Parachalil (b0055) 2020; 2
Berberich, Hegele (b0175) 2022; 43
Bel'skaya, Sarf (b0100) 2021; 341
Chen, Song, Shi, Jia (b0140) 2015; 4
Roy, Perez-Guaita, Bowden, Heraud, Wood (b0095) 2019; 1
Gupta, Singh, Kumar, Khajuria (b0110) 2014; 3
Baker, Hussain, Lovergne, Untereiner, Hughes, Lukaszewski, Thiéfin, Sockalingum (b0015) 2016; 45
Wishart (b0005) 2019; 99
Soares, Gomes, Araujo, Filho, Galvão (b0160) 2013; 42
Tian, Zhang, Li, Wang, Sheng, Liu, Wang (b0070) 2018; 95
Spalding, Bonnier, Bruno, Blasco, Board, Bretagne, Byrne, Butler, Chourpa, Radhakrishnan, Baker (b0050) 2018; 99
Leng, Chen, Chen, Chen, Du, Chen, Yang, Zuo, Xiao, Lv, Liu (b0090) 2023; 285
Tian, Li, Shan, Wang, Jiang, Cui (b0170) 2019; 18
Goodarzi, Saeys (b0060) 2016; 146
Jessen, Höskuldsson, Bjerrum, Lars Sørensen, Bratholm, Christensen, Jensen, Jensen (b0045) 2014; 47
Aggarwal, Kathariya, Verma (b0165) 2021; 73
Parachalil, Bruno, Bonnier, Blasco, Chourpa, McIntyrea, Byrne (b0035) 2019; 144
Rohleder, Kocherscheidt, Gerber, Kiefer, Köhler, Möcks, Petrich (b0020) 2005; 10
Sitnikova, Kotkova, Nosenko, Kotkova, Martynova, Uspenskaya (b0085) 2020; 214
Yu, Yun, Zhang, Chen, Liu, Zhong, Chen, Chen (b0125) 2020; 224
Beć, Grabska, Huck (b0115) 2020; 1133
Liu, Man, Dembinski, Shaw (b0150) 2007; 387
Perez-Guaita, Ventura-Gayete, Pérez-Rambla, Sancho-Andreu, Garrigues, de la Guardia (b0010) 2013; 106
Berger, Koo, Itzkan, Horowitz, Feld (b0025) 1999; 38
Shaw (b0040) 1998; 35
Giamougiannis, Morais, Rodriguez, Nicholas, Pierre, Francis (b0080) 2021; 413
Ramasamy (b0135) 2016; 454
Bian, Wang, Tan, Diwu, Zhang, Guo (b0155) 2020; 197
Liu, Shaw, Man, Dembinski, Mantsch (b0145) 2002; 48
Parachalil, Bruno, Bonnier, Blasco, Chourpa, Baker, McIntyrea, Byrne (b0030) 2019; 144
Yun, Li, Wood, Fan, Wang, Cao, Xu, Liang (b0075) 2013; 111
Yun, Li, Deng, Cao (b0130) 2019; 113
Zou, Zhao, Povey, Holmes, Mao (b0065) 2010; 667
Naseer, Ali, Qazi (b0105) 2021; 56
Baker (10.1016/j.saa.2024.125427_b0015) 2016; 45
Gupta (10.1016/j.saa.2024.125427_b0110) 2014; 3
Goodarzi (10.1016/j.saa.2024.125427_b0060) 2016; 146
Berberich (10.1016/j.saa.2024.125427_b0175) 2022; 43
Bian (10.1016/j.saa.2024.125427_b0155) 2020; 197
Ramasamy (10.1016/j.saa.2024.125427_b0135) 2016; 454
Soares (10.1016/j.saa.2024.125427_b0160) 2013; 42
Bel'skaya (10.1016/j.saa.2024.125427_b0100) 2021; 341
Yun (10.1016/j.saa.2024.125427_b0130) 2019; 113
Liu (10.1016/j.saa.2024.125427_b0145) 2002; 48
Perez-Guaita (10.1016/j.saa.2024.125427_b0010) 2013; 106
Leng (10.1016/j.saa.2024.125427_b0090) 2023; 285
Liu (10.1016/j.saa.2024.125427_b0150) 2007; 387
Zou (10.1016/j.saa.2024.125427_b0065) 2010; 667
Shaw (10.1016/j.saa.2024.125427_b0040) 1998; 35
Sitnikova (10.1016/j.saa.2024.125427_b0085) 2020; 214
Parachalil (10.1016/j.saa.2024.125427_b0035) 2019; 144
Tian (10.1016/j.saa.2024.125427_b0170) 2019; 18
Berger (10.1016/j.saa.2024.125427_b0025) 1999; 38
Yun (10.1016/j.saa.2024.125427_b0075) 2013; 111
Beć (10.1016/j.saa.2024.125427_b0115) 2020; 1133
Rohleder (10.1016/j.saa.2024.125427_b0020) 2005; 10
Jessen (10.1016/j.saa.2024.125427_b0045) 2014; 47
Parachalil (10.1016/j.saa.2024.125427_b0030) 2019; 144
Chen (10.1016/j.saa.2024.125427_b0140) 2015; 4
Tian (10.1016/j.saa.2024.125427_b0070) 2018; 95
Aggarwal (10.1016/j.saa.2024.125427_b0165) 2021; 73
Spalding (10.1016/j.saa.2024.125427_b0050) 2018; 99
Giamougiannis (10.1016/j.saa.2024.125427_b0080) 2021; 413
Perez-Guaita (10.1016/j.saa.2024.125427_b0120) 2014; 62
Wishart (10.1016/j.saa.2024.125427_b0005) 2019; 99
Yu (10.1016/j.saa.2024.125427_b0125) 2020; 224
Roy (10.1016/j.saa.2024.125427_b0095) 2019; 1
Byrne (10.1016/j.saa.2024.125427_b0055) 2020; 2
Naseer (10.1016/j.saa.2024.125427_b0105) 2021; 56
References_xml – volume: 35
  start-page: 624
  year: 1998
  end-page: 632
  ident: b0040
  article-title: Kotowich S, Leroux M, Mantsch HH, Multianalyte Serum Analysis Using Mid-Infrared Spectroscopy
  publication-title: Ann. Clin. Biochem.
– volume: 56
  start-page: 85
  year: 2021
  end-page: 97
  ident: b0105
  article-title: ATR-FTIR spectroscopy as the future of diagnostics: a systematic review of the approach using bio-fluids
  publication-title: Appl. Spectrosc. Rev.
– volume: 454
  start-page: 143
  year: 2016
  end-page: 185
  ident: b0135
  article-title: Update on the molecular biology of dyslipidemias
  publication-title: Clin Chim Acta.
– volume: 224
  year: 2020
  ident: b0125
  article-title: Three-step hybrid strategy towards efficiently selecting variables in multivariate calibration of near-infrared spectra
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 18
  start-page: 1
  year: 2019
  end-page: 9
  ident: b0170
  article-title: Comparison of apolipoprotein B/A1 ratio framingham risk score and TC/HDL-c for predicting clinical outcomes in patients undergoing percutaneous coronary intervention
  publication-title: Lipids in Health and Disease.
– volume: 197
  year: 2020
  ident: b0155
  article-title: A selective ensemble preprocessing strategy for near-infrared spectral quantitative analysis of complex samples
  publication-title: Chemom. Intel. Lab. Syst.
– volume: 1133
  start-page: 150
  year: 2020
  end-page: 177
  ident: b0115
  article-title: Biomolecular and bioanalytical applications of infrared spectroscopy–A review
  publication-title: Anal. Chim. Acta
– volume: 10
  year: 2005
  ident: b0020
  article-title: Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum
  publication-title: J. Biomed. Opt.
– volume: 285
  year: 2023
  ident: b0090
  article-title: Raman spectroscopy and FTIR spectroscopy fusion technology combined with deep learning: A novel cancer prediction method
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 2
  year: 2020
  ident: b0055
  article-title: Quantitative analysis of human blood serum using vibrational spectroscopy
  publication-title: Clin. Spectrosc.
– volume: 113
  start-page: 102
  year: 2019
  end-page: 115
  ident: b0130
  article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra
  publication-title: TrAC Trends Anal. Chem.
– volume: 341
  year: 2021
  ident: b0100
  article-title: Biochemical composition and characteristics of salivary FTIR spectra: Correlation analysis
  publication-title: J. Mol. Liq.
– volume: 4
  start-page: 914
  year: 2015
  end-page: 918
  ident: b0140
  article-title: Multidimensional Scaling Linear Regression Applied to FTIR Spectral Quantitative Analysis of Clinical Parameters of Human Blood Serum, Spectroscopy and Spectral
  publication-title: Analysis
– volume: 413
  start-page: 5095
  year: 2021
  end-page: 5107
  ident: b0080
  article-title: Detection of ovarian cancer (± neo-adjuvant chemotherapy effects) via ATR-FTIR spectroscopy: comparative analysis of blood and urine biofluids in a large patient cohort
  publication-title: Anal Bioanal Chem.
– volume: 62
  start-page: 93
  year: 2014
  end-page: 105
  ident: b0120
  article-title: Infrared-based quantification of clinical parameters
  publication-title: TrAC Trends Anal. Chem.
– volume: 48
  start-page: 499
  year: 2002
  end-page: 506
  ident: b0145
  article-title: Reagent-free, simultaneous determination of serum cholesterol in HDL and LDL by infrared spectroscopy
  publication-title: Clin Chem.
– volume: 146
  start-page: 155
  year: 2016
  end-page: 165
  ident: b0060
  article-title: Selection of the most informative near infrared spectroscopy wavebands for continuous glucose monitoring in human serum
  publication-title: Talanta
– volume: 214
  year: 2020
  ident: b0085
  article-title: Breast cancer detection by ATR-FTIR spectroscopy of blood serum and multivariate data-analysis
  publication-title: Talanta
– volume: 38
  start-page: 2916
  year: 1999
  end-page: 2926
  ident: b0025
  article-title: Multicomponent blood analysis by near-infrared Raman spectroscopy
  publication-title: Appl. Opt.
– volume: 99
  start-page: 50
  year: 2018
  end-page: 58
  ident: b0050
  article-title: Enabling quantification of protein concentration in human serum biopsies using attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy
  publication-title: Vib. Spectrosc.
– volume: 3
  start-page: 211
  year: 2014
  end-page: 217
  ident: b0110
  article-title: Spectroscopic studies of cholesterol: fourier transform infra-red and vibrational frequency analysis
  publication-title: Materials Focus.
– volume: 99
  start-page: 1819
  year: 2019
  end-page: 1875
  ident: b0005
  article-title: Metabolomics for investigating physiological and pathophysiological processes
  publication-title: Physiol. Rev.
– volume: 111
  start-page: 31
  year: 2013
  end-page: 36
  ident: b0075
  article-title: An efficient method of wavelength interval selection based on random frog for multivariate spectral calibration
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 387
  start-page: 1809
  year: 2007
  end-page: 1814
  ident: b0150
  article-title: Quantification of serum apolipoprotein B by infrared spectroscopy
  publication-title: Anal Bioanal Chem.
– volume: 95
  start-page: 88
  year: 2018
  end-page: 92
  ident: b0070
  article-title: Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy
  publication-title: Infrared Phys. Techn.
– volume: 1
  year: 2019
  ident: b0095
  article-title: Spectroscopy goes viral: Diagnosis of hepatitis B and C virus infection from human sera using ATR-FTIR spectroscopy
  publication-title: Clin. Spectrosc.
– volume: 667
  start-page: 14
  year: 2010
  end-page: 32
  ident: b0065
  article-title: Variables selection methods in near-infrared spectroscopy
  publication-title: Anal. Chim. Acta
– volume: 144
  start-page: 4295
  year: 2019
  end-page: 4311
  ident: b0035
  article-title: Raman spectroscopic screening of High and Low molecular weight fractions of human serum
  publication-title: Analyst
– volume: 144
  start-page: 3334
  year: 2019
  end-page: 3346
  ident: b0030
  article-title: Analysis of bodily fluids using Vibrational Spectroscopy: a direct comparison of Raman scattering and Infrared absorption techniques for the case of glucose in blood serum
  publication-title: Analyst
– volume: 47
  start-page: 1306
  year: 2014
  end-page: 1312
  ident: b0045
  article-title: Simultaneous determination of glucose, triglycerides, urea, cholesterol, albumin and total protein in human plasma by Fourier transform infrared spectroscopy: Direct clinical biochemistry without reagents
  publication-title: Clin. Biochem.
– volume: 43
  start-page: 611
  year: 2022
  end-page: 653
  ident: b0175
  article-title: A modern approach to dyslipidemia
  publication-title: Endocr. Rev.
– volume: 42
  start-page: 84
  year: 2013
  end-page: 98
  ident: b0160
  article-title: The successive projections algorithm
  publication-title: TrAC Trends Anal. Chem.
– volume: 45
  start-page: 1803
  year: 2016
  end-page: 1818
  ident: b0015
  article-title: Developing and understanding biofluid vibrational spectroscopy: a critical review
  publication-title: Chem. Soc. Rev.
– volume: 106
  start-page: 202
  year: 2013
  end-page: 211
  ident: b0010
  article-title: Evaluation of infrared spectroscopy as a screening tool for serum analysis Impact of the nature of samples included in the calibration set
  publication-title: Microchem.
– volume: 73
  start-page: 544
  year: 2021
  end-page: 548
  ident: b0165
  article-title: LDL-C, NON-HDL-C and APO-B for cardiovascular risk assessment: looking for the ideal marker
  publication-title: Indian Heart J.
– volume: 387
  start-page: 1809
  year: 2007
  ident: 10.1016/j.saa.2024.125427_b0150
  article-title: Quantification of serum apolipoprotein B by infrared spectroscopy
  publication-title: Anal Bioanal Chem.
  doi: 10.1007/s00216-006-0895-2
– volume: 99
  start-page: 1819
  year: 2019
  ident: 10.1016/j.saa.2024.125427_b0005
  article-title: Metabolomics for investigating physiological and pathophysiological processes
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00035.2018
– volume: 285
  year: 2023
  ident: 10.1016/j.saa.2024.125427_b0090
  article-title: Raman spectroscopy and FTIR spectroscopy fusion technology combined with deep learning: A novel cancer prediction method
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2022.121839
– volume: 214
  year: 2020
  ident: 10.1016/j.saa.2024.125427_b0085
  article-title: Breast cancer detection by ATR-FTIR spectroscopy of blood serum and multivariate data-analysis
  publication-title: Talanta
  doi: 10.1016/j.talanta.2020.120857
– volume: 43
  start-page: 611
  year: 2022
  ident: 10.1016/j.saa.2024.125427_b0175
  article-title: A modern approach to dyslipidemia
  publication-title: Endocr. Rev.
  doi: 10.1210/endrev/bnab037
– volume: 95
  start-page: 88
  year: 2018
  ident: 10.1016/j.saa.2024.125427_b0070
  article-title: Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy
  publication-title: Infrared Phys. Techn.
  doi: 10.1016/j.infrared.2018.10.030
– volume: 4
  start-page: 914
  year: 2015
  ident: 10.1016/j.saa.2024.125427_b0140
  article-title: Multidimensional Scaling Linear Regression Applied to FTIR Spectral Quantitative Analysis of Clinical Parameters of Human Blood Serum, Spectroscopy and Spectral
  publication-title: Analysis
– volume: 18
  start-page: 1
  year: 2019
  ident: 10.1016/j.saa.2024.125427_b0170
  article-title: Comparison of apolipoprotein B/A1 ratio framingham risk score and TC/HDL-c for predicting clinical outcomes in patients undergoing percutaneous coronary intervention
  publication-title: Lipids in Health and Disease.
  doi: 10.1186/s12944-019-1144-y
– volume: 73
  start-page: 544
  year: 2021
  ident: 10.1016/j.saa.2024.125427_b0165
  article-title: LDL-C, NON-HDL-C and APO-B for cardiovascular risk assessment: looking for the ideal marker
  publication-title: Indian Heart J.
  doi: 10.1016/j.ihj.2021.07.013
– volume: 99
  start-page: 50
  year: 2018
  ident: 10.1016/j.saa.2024.125427_b0050
  article-title: Enabling quantification of protein concentration in human serum biopsies using attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2018.08.019
– volume: 42
  start-page: 84
  year: 2013
  ident: 10.1016/j.saa.2024.125427_b0160
  article-title: The successive projections algorithm
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2012.09.006
– volume: 454
  start-page: 143
  year: 2016
  ident: 10.1016/j.saa.2024.125427_b0135
  article-title: Update on the molecular biology of dyslipidemias
  publication-title: Clin Chim Acta.
  doi: 10.1016/j.cca.2015.10.033
– volume: 48
  start-page: 499
  year: 2002
  ident: 10.1016/j.saa.2024.125427_b0145
  article-title: Reagent-free, simultaneous determination of serum cholesterol in HDL and LDL by infrared spectroscopy
  publication-title: Clin Chem.
  doi: 10.1093/clinchem/48.3.499
– volume: 144
  start-page: 4295
  year: 2019
  ident: 10.1016/j.saa.2024.125427_b0035
  article-title: Raman spectroscopic screening of High and Low molecular weight fractions of human serum
  publication-title: Analyst
  doi: 10.1039/C9AN00599D
– volume: 341
  year: 2021
  ident: 10.1016/j.saa.2024.125427_b0100
  article-title: Biochemical composition and characteristics of salivary FTIR spectra: Correlation analysis
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2021.117380
– volume: 38
  start-page: 2916
  year: 1999
  ident: 10.1016/j.saa.2024.125427_b0025
  article-title: Multicomponent blood analysis by near-infrared Raman spectroscopy
  publication-title: Appl. Opt.
  doi: 10.1364/AO.38.002916
– volume: 2
  year: 2020
  ident: 10.1016/j.saa.2024.125427_b0055
  article-title: Quantitative analysis of human blood serum using vibrational spectroscopy
  publication-title: Clin. Spectrosc.
  doi: 10.1016/j.clispe.2020.100004
– volume: 1
  year: 2019
  ident: 10.1016/j.saa.2024.125427_b0095
  article-title: Spectroscopy goes viral: Diagnosis of hepatitis B and C virus infection from human sera using ATR-FTIR spectroscopy
  publication-title: Clin. Spectrosc.
  doi: 10.1016/j.clispe.2020.100001
– volume: 113
  start-page: 102
  year: 2019
  ident: 10.1016/j.saa.2024.125427_b0130
  article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.01.018
– volume: 146
  start-page: 155
  year: 2016
  ident: 10.1016/j.saa.2024.125427_b0060
  article-title: Selection of the most informative near infrared spectroscopy wavebands for continuous glucose monitoring in human serum
  publication-title: Talanta
  doi: 10.1016/j.talanta.2015.08.033
– volume: 106
  start-page: 202
  year: 2013
  ident: 10.1016/j.saa.2024.125427_b0010
  article-title: Evaluation of infrared spectroscopy as a screening tool for serum analysis Impact of the nature of samples included in the calibration set
  publication-title: Microchem.
  doi: 10.1016/j.microc.2012.06.016
– volume: 1133
  start-page: 150
  year: 2020
  ident: 10.1016/j.saa.2024.125427_b0115
  article-title: Biomolecular and bioanalytical applications of infrared spectroscopy–A review
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2020.04.015
– volume: 197
  year: 2020
  ident: 10.1016/j.saa.2024.125427_b0155
  article-title: A selective ensemble preprocessing strategy for near-infrared spectral quantitative analysis of complex samples
  publication-title: Chemom. Intel. Lab. Syst.
  doi: 10.1016/j.chemolab.2019.103916
– volume: 45
  start-page: 1803
  year: 2016
  ident: 10.1016/j.saa.2024.125427_b0015
  article-title: Developing and understanding biofluid vibrational spectroscopy: a critical review
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00585J
– volume: 224
  year: 2020
  ident: 10.1016/j.saa.2024.125427_b0125
  article-title: Three-step hybrid strategy towards efficiently selecting variables in multivariate calibration of near-infrared spectra
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2019.117376
– volume: 667
  start-page: 14
  year: 2010
  ident: 10.1016/j.saa.2024.125427_b0065
  article-title: Variables selection methods in near-infrared spectroscopy
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2010.03.048
– volume: 111
  start-page: 31
  year: 2013
  ident: 10.1016/j.saa.2024.125427_b0075
  article-title: An efficient method of wavelength interval selection based on random frog for multivariate spectral calibration
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2013.03.083
– volume: 10
  year: 2005
  ident: 10.1016/j.saa.2024.125427_b0020
  article-title: Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.1911847
– volume: 144
  start-page: 3334
  year: 2019
  ident: 10.1016/j.saa.2024.125427_b0030
  article-title: Analysis of bodily fluids using Vibrational Spectroscopy: a direct comparison of Raman scattering and Infrared absorption techniques for the case of glucose in blood serum
  publication-title: Analyst
  doi: 10.1039/C9AN00125E
– volume: 47
  start-page: 1306
  year: 2014
  ident: 10.1016/j.saa.2024.125427_b0045
  article-title: Simultaneous determination of glucose, triglycerides, urea, cholesterol, albumin and total protein in human plasma by Fourier transform infrared spectroscopy: Direct clinical biochemistry without reagents
  publication-title: Clin. Biochem.
  doi: 10.1016/j.clinbiochem.2014.05.064
– volume: 413
  start-page: 5095
  year: 2021
  ident: 10.1016/j.saa.2024.125427_b0080
  article-title: Detection of ovarian cancer (± neo-adjuvant chemotherapy effects) via ATR-FTIR spectroscopy: comparative analysis of blood and urine biofluids in a large patient cohort
  publication-title: Anal Bioanal Chem.
  doi: 10.1007/s00216-021-03472-8
– volume: 56
  start-page: 85
  year: 2021
  ident: 10.1016/j.saa.2024.125427_b0105
  article-title: ATR-FTIR spectroscopy as the future of diagnostics: a systematic review of the approach using bio-fluids
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2020.1738453
– volume: 3
  start-page: 211
  year: 2014
  ident: 10.1016/j.saa.2024.125427_b0110
  article-title: Spectroscopic studies of cholesterol: fourier transform infra-red and vibrational frequency analysis
  publication-title: Materials Focus.
  doi: 10.1166/mat.2014.1161
– volume: 35
  start-page: 624
  year: 1998
  ident: 10.1016/j.saa.2024.125427_b0040
  article-title: Kotowich S, Leroux M, Mantsch HH, Multianalyte Serum Analysis Using Mid-Infrared Spectroscopy
  publication-title: Ann. Clin. Biochem.
  doi: 10.1177/000456329803500505
– volume: 62
  start-page: 93
  year: 2014
  ident: 10.1016/j.saa.2024.125427_b0120
  article-title: Infrared-based quantification of clinical parameters
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2014.06.012
SSID ssj0001820
ssib047304432
Score 2.4294388
Snippet [Display omitted] •The method proposed in this study can quickly and accurately quantify 9 major serum components simultaneously.•The correlation between 18...
Serum biochemical markers are widely used in clinical practice but often require expensive, specific reagents, complex instruments, and prolonged result...
SourceID pubmed
crossref
elsevier
SourceType Index Database
Publisher
StartPage 125427
SubjectTerms Adult
Algorithms
Blood Glucose - analysis
Blood Proteins - analysis
Correlation analysis
Female
Humans
Infrared spectrum
Interval random frog
Least-Squares Analysis
Lipids - blood
Male
Serum biochemical parameters
Spectroscopy, Fourier Transform Infrared - methods
Title Quantitative analysis of dried serum FTIR spectra based on correlation Analysis-Interval random Frog-Partial least squares
URI https://dx.doi.org/10.1016/j.saa.2024.125427
https://www.ncbi.nlm.nih.gov/pubmed/39556892
Volume 327
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQCMGCoLxf8sCEZJrWjyQjqqhaEFWBIrFFju0gECTQx8LAb-fOSXgsHcgWK3aiu8v3nZN7EHLSUpHicLDYBoKJjAumQ50y8I0z2Qp1yH2S2PVA9e7F5YN8WCCdOhcGwyor7C8x3aN1NdKspNl8e3pq3rV4BNzSlsBJwMkccViIEK387PMnzAMLlPtNV6QYXl3_2fQxXhONpYfa4gxoXmBjmbnc9It4uutkrfIY6Xn5UBtkweUNstKpG7U1yLKP4jSTTfJxM9O5zxoDDKO6qjdCi4xa2BFbCuY2e6XdUf-W-gzLsabIYpYWOTXYpqMMjKN1pRLmvxeCLVJgNFvA1HHxyIYoHxh7wbY_dPI-wxSmLTLqXow6PVY1V2AGXvEpi4PIGW5iI9KQu1agjRDOmgBTd1KVSS6s06FKM0BSHrgMXBmZgbdiTGojJ_k2WcyL3O0SGmqZGpipY1hDKRtJ5Qstwl4lC40ze-S0lmryVpbQSOrYsucEVJCgCpJSBXtE1HJP_thBAhA_b9pOqaPvO_AYa6vF7f3_LXhAVtvY6Rdbv8hDsjgdz9wRuB_T9Njb1zFZOu9f9QZwNhhefwELnNpT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQJgQXxPsNOXBCCuuWR9sjmpg2HhOPIXGr0iRFIGjHHhd-PU7aIrhwoMdITivb_ey09meAk7aMJMOLxibglGeMUxWqlGJunIl2qELmm8RuhrL_yC-fxNMCdOteGFdWWWF_iekerauVVqXN1vjlpfXQZhHGlo7AmIQxmSEONx07lWhA83xw1R9-A7LjKPfnrkhSJ1D_3PRlXlPl2Ic6_AwjPXezZf4MTz9iT28VVqqkkZyXz7UGCzZfh6VuPattHRZ9IaeebsDn3VzlvnEMYYyoinKEFBkxeCg2BD1u_k56o8E98U2WE0VcIDOkyIl2kzrK2jhSk5VQ_8kQ3ZFgUDMFik6KZ3rrVIRrb27yD5l-zF0X0yaMehejbp9W8xWoxrd8RuMgsprpWPM0ZLYdKM25NTpw3TupzATjxqpQphmCKQtshtmMyDBh0To1kRVsCxp5kdsdIKESqUZJFeMeUppISM-1iMeVLNRW78JprdVkXLJoJHV52WuCJkicCZLSBLvAa70nv1whQZT_S2y7tNH3HVjs6NXizt7_NjyGpf7o5jq5Hgyv9mG54wb_ukkw4gAas8ncHmI2MkuPKm_7Am462_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+analysis+of+dried+serum+FTIR+spectra+based+on+correlation+Analysis-Interval+random+Frog-Partial+least+squares&rft.jtitle=Spectrochimica+acta.+Part+A%2C+Molecular+and+biomolecular+spectroscopy&rft.au=Zhang%2C+Ruojing&rft.au=Zhang%2C+Xianwen&rft.au=Guo%2C+Hongrui&rft.au=Zhang%2C+Zhushanying&rft.date=2025-02-15&rft.pub=Elsevier+B.V&rft.issn=1386-1425&rft.volume=327&rft_id=info:doi/10.1016%2Fj.saa.2024.125427&rft.externalDocID=S1386142524015932
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-1425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-1425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-1425&client=summon