Research Progress on Supported Metal Catalysts for Thermal Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furan Dicarboxylic Acid
Biomass resources have become a research hotspot in the field of chemical industry to explore new resources because of its abundant total amount and wide distribution range. Biomass-based 2,5-furanediformic acid (FDCA) has attracted much attention due to its potential as a substitute for petroleum-b...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 42; no. 5; pp. 953 - 968 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2025
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biomass resources have become a research hotspot in the field of chemical industry to explore new resources because of its abundant total amount and wide distribution range. Biomass-based 2,5-furanediformic acid (FDCA) has attracted much attention due to its potential as a substitute for petroleum-based terephthalic acid (PTA), which industrial production can protect the environment and save resources. 5-Hydroxymethylfurfural (HMF) is a representative biomass-based platform compound with a wide range of raw materials and a green and sustainable preparation process. Hence, the preparation of FDCA from HMF has attracted much attention in recent years. In this review, HMF oxidation reaction pathway and different catalysts and carriers are reviewed, chiefly including noble metal catalysts, non-noble metal catalysts, metal oxide carriers, non-metal oxide carriers, resin carriers, and other carriers. In particular, the great industrial application potential of the resin carriers loaded with noble metals. We have tentatively prepared an efficient catalyst for the oxidation of HMF to FDCA using macroporous resins loaded with noble metals. Finally, the industrial application of resin-supported noble metal catalysts in the preparation of FDCA by HMF is summarized and prospected. This paper focuses on the research progress of conversion of HMF to FDCA by thermal catalysis, summarizes the research achievements and exists problems of catalytic oxidation of HMF to prepare FDCA, points out the factors limiting the industrialization of HMF to FDCA, and discusses the possible solutions. Finally, the research direction is provided for the industrialization of HMF to FDCA in future. |
---|---|
AbstractList | Biomass resources have become a research hotspot in the fi eld of chemical industry to explore new resources because of its abundant total amount and wide distribution range. Biomass-based 2,5-furanediformic acid (FDCA) has attracted much attention due to its potential as a substitute for petroleum-based terephthalic acid (PTA), which industrial production can protect the environment and save resources. 5-Hydroxymethylfurfural (HMF) is a representative biomass-based platform compound with a wide range of raw materials and a green and sustainable preparation process. Hence, the preparation of FDCA from HMF has attracted much attention in recent years. In this review, HMF oxidation reaction pathway and diff erent catalysts and carriers are reviewed, chiefl y including noble metal catalysts, non-noble metal catalysts, metal oxide carriers, non-metal oxide carriers, resin carriers, and other carriers. In particular, the great industrial application potential of the resin carriers loaded with noble metals. We have tentatively prepared an effi cient catalyst for the oxidation of HMF to FDCA using macroporous resins loaded with noble metals. Finally, the industrial application of resin-supported noble metal catalysts in the preparation of FDCA by HMF is summarized and prospected. This paper focuses on the research progress of conversion of HMF to FDCA by thermal catalysis, summarizes the research achievements and exists problems of catalytic oxidation of HMF to prepare FDCA, points out the factors limiting the industrialization of HMF to FDCA, and discusses the possible solutions. Finally, the research direction is provided for the industrialization of HMF to FDCA in future. KCI Citation Count: 0 Biomass resources have become a research hotspot in the field of chemical industry to explore new resources because of its abundant total amount and wide distribution range. Biomass-based 2,5-furanediformic acid (FDCA) has attracted much attention due to its potential as a substitute for petroleum-based terephthalic acid (PTA), which industrial production can protect the environment and save resources. 5-Hydroxymethylfurfural (HMF) is a representative biomass-based platform compound with a wide range of raw materials and a green and sustainable preparation process. Hence, the preparation of FDCA from HMF has attracted much attention in recent years. In this review, HMF oxidation reaction pathway and different catalysts and carriers are reviewed, chiefly including noble metal catalysts, non-noble metal catalysts, metal oxide carriers, non-metal oxide carriers, resin carriers, and other carriers. In particular, the great industrial application potential of the resin carriers loaded with noble metals. We have tentatively prepared an efficient catalyst for the oxidation of HMF to FDCA using macroporous resins loaded with noble metals. Finally, the industrial application of resin-supported noble metal catalysts in the preparation of FDCA by HMF is summarized and prospected. This paper focuses on the research progress of conversion of HMF to FDCA by thermal catalysis, summarizes the research achievements and exists problems of catalytic oxidation of HMF to prepare FDCA, points out the factors limiting the industrialization of HMF to FDCA, and discusses the possible solutions. Finally, the research direction is provided for the industrialization of HMF to FDCA in future. |
Author | Chen, Xinde Li, Hailong Zhang, Hairong Chen, Xuefang Peng, Fen Xiong, Lian Wang, Yanxing |
Author_xml | – sequence: 1 givenname: Yanxing surname: Wang fullname: Wang, Yanxing organization: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Shenyang University of Chemical Technology, R&D Center of Xuyi Attapulgite Energy and Environmental Materials – sequence: 2 givenname: Lian surname: Xiong fullname: Xiong, Lian organization: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, R&D Center of Xuyi Attapulgite Energy and Environmental Materials, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development – sequence: 3 givenname: Xuefang surname: Chen fullname: Chen, Xuefang organization: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, R&D Center of Xuyi Attapulgite Energy and Environmental Materials, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development – sequence: 4 givenname: Hailong surname: Li fullname: Li, Hailong organization: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, R&D Center of Xuyi Attapulgite Energy and Environmental Materials, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development – sequence: 5 givenname: Hairong surname: Zhang fullname: Zhang, Hairong organization: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, R&D Center of Xuyi Attapulgite Energy and Environmental Materials, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development – sequence: 6 givenname: Fen surname: Peng fullname: Peng, Fen email: pengfen000@126.com organization: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, R&D Center of Xuyi Attapulgite Energy and Environmental Materials, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development – sequence: 7 givenname: Xinde orcidid: 0000-0001-5027-4147 surname: Chen fullname: Chen, Xinde email: cxd_cxd@hotmail.com organization: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, R&D Center of Xuyi Attapulgite Energy and Environmental Materials, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003203461$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kdFqFDEUhoNUcFt9Aa8C3onRc5LJZOdyWa0tVCp1vQ6ZTLI77e5kPZmFzhv42MaO6J0QckjyfT-B_5ydDWkIjL1GeI8A5kNGXGIlQGoBUCGK-hlbYGO0MFLCGVuUl1ogon7BznO-B9C6lrBgP-9CDo78jn-ltKWQM08D_3Y6HhONoeNfwuj2fO3KPuUx85iIb3aBDn9vx97z28e-c2NfzBS5FldTR-lxOoRxN-3jicoq-Ji4fKfFZTkM_GPvHbUF2hd95fvuJXse3T6HV3_mBft--WmzvhI3t5-v16sb4RXoUSyDcegrI6OqWmg7H8wSlWuc1q30JjTKYYwOmliDaVsEhbKSnetqcIDRqAv2ds4dKNoH39vk-qe5TfaB7Opuc20RDCoNqsBvZvhI6ccp5NHepxMN5X9WYSOVUqbGQsmZ8pRyphDtkfqDo6kE2d_12LkeW0qwT_XYukhqlnKBh22gf9H_sX4BBLKVEg |
Cites_doi | 10.1007/s12039-018-1551-z 10.1016/j.cattod.2018.05.050 10.1016/j.cattod.2017.08.061 10.1016/j.biombioe.2023.107022 10.1002/anie.201805457 10.1016/j.apsusc.2024.160771 10.1021/acs.iecr.0c05561 10.1016/j.cattod.2019.03.065 10.1007/s10562-020-03361-2 10.1016/j.fuel.2020.118362 10.1021/acssuschemeng.9b05656 10.1002/sus2.109 10.1007/s11705-020-1999-5 10.1016/j.cej.2023.141344 10.1021/jacs.8b09917 10.1021/acsanm.1c03361 10.1016/j.clay.2022.106574 10.1515/ntrev-2022-0518 10.1021/acssuschemeng.2c01143 10.1002/cssc.202400115 10.1002/cssc.202101983 10.1016/j.biortech.2019.03.105 10.1021/acssuschemeng.8b03775 10.1039/C9GC00869A 10.1002/cssc.201800989 10.1002/cnma.202400037 10.1016/j.molstruc.2023.136674 10.1016/j.jcat.2021.02.012 10.1039/C9NJ01555H 10.1016/j.catcom.2018.05.004 10.1016/j.apsusc.2018.06.120 10.1016/j.mcat.2019.03.026 10.1021/acsomega.4c05787 10.1016/S1872-5813(20)30066-9 10.1021/acscatal.8b02522 10.1016/j.apcata.2017.08.035 10.1016/j.mcat.2024.113917 10.1016/j.cclet.2019.10.031 10.3390/catal14100704 10.3390/catal10010120 10.1039/D4GC01777C 10.1002/asia.201901001 10.1016/j.cattod.2020.10.038 10.1039/C7GC00027H 10.1039/D1CC05757J 10.1039/D0NJ01426E 10.1016/j.mcat.2020.111133 10.1007/s12010-020-03290-1 10.1002/cssc.201900651 10.1021/acsami.0c08043 10.1021/acs.iecr.7b05101 10.1039/C7CY01704A 10.1039/D2CY00110A 10.1016/j.mcat.2017.06.034 10.1002/adsu.202000297 10.3390/molecules29122724 10.1016/j.fuel.2020.118361 10.1016/j.radphyschem.2023.111081 10.1021/acssuschemeng.8b01630 10.1016/j.cej.2015.02.068 10.1002/cbic.201800008 10.1021/acs.iecr.8b05602 10.1039/C7RA08774H 10.1021/acscatal.1c05236 10.1039/C9GC01283D 10.1002/cssc.201601443 10.1016/j.mcat.2017.03.034 10.1007/s13399-022-02949-5 10.1016/S1872-2067(20)63720-2 10.1021/j150649a014 10.1098/rsos.240155 10.1016/j.jcat.2018.09.034 10.1016/j.apcatb.2018.12.046 10.1016/j.cattod.2018.04.024 10.1016/j.cej.2015.08.022 10.3390/catal11010115 10.1021/acs.iecr.1c02730 10.1016/j.apcata.2021.118106 10.1007/s11705-021-2092-4 10.1016/j.cattod.2018.05.037 10.1021/acssuschemeng.0c00058 10.1016/j.jechem.2024.04.019 10.1021/acscatal.8b04862 10.1002/cssc.202201333 10.1039/C9CY01298B 10.1016/j.ijhydene.2024.01.025 10.1039/D4DT01196A 10.1016/j.mcat.2018.03.006 10.3390/ijms241814367 10.1021/acssuschemeng.8b03330 10.1039/D3NJ01834B 10.1016/j.carbon.2021.06.007 10.1021/acscatal.0c04503 10.1002/ejic.201900190 10.1016/j.polymer.2024.127340 10.3389/fchem.2020.00659 10.1007/s40843-022-2076-y 10.1002/cssc.202200501 10.1016/j.jechem.2020.05.068 10.1002/anie.202108955 10.3390/catal14020157 10.1016/j.jiec.2019.04.038 10.1039/D0CY01649G 10.1021/acs.iecr.0c00937 10.1021/acs.jpcc.0c09545 10.1016/j.jechem.2024.01.023 10.1039/C8GC00972D 10.1016/j.mcat.2024.114354 10.1016/j.mencom.2018.07.031 10.1002/cssc.202201074 10.1002/asia.201800738 10.1021/acssuschemeng.7b00573 10.1016/j.ijhydene.2024.06.376 10.1021/acsomega.0c02178 10.1039/C9CY00211A 10.1016/j.cattod.2020.05.009 10.1016/j.biombioe.2022.106358 10.1039/C1GC16074E 10.1021/acsami.3c18720 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Korean Institute of Chemical Engineers, Seoul, Korea 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Korean Institute of Chemical Engineers, Seoul, Korea 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-025-00411-6 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 968 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10713503 10_1007_s11814_025_00411_6 |
GrantInformation_xml | – fundername: Jiangsu Provincial Key Research and Development Program grantid: BE2023078 funderid: http://dx.doi.org/10.13039/501100013058 |
GroupedDBID | -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 ZMTXR ZZE ~A9 ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP ATHPR CITATION ACYCR |
ID | FETCH-LOGICAL-c305t-8e7a1c472f34b0bdce7813a9a55b2c7e93a1ffa09f607bb1031242dad60a01f73 |
IEDL.DBID | U2A |
ISSN | 0256-1115 |
IngestDate | Fri May 23 03:15:09 EDT 2025 Fri Jul 25 09:47:46 EDT 2025 Tue Aug 05 12:09:43 EDT 2025 Mon Apr 21 02:00:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Catalytic oxidation 5-Hydroxymethylfurfural 2,5-Furandicarboxylic acid Macroporous resin |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c305t-8e7a1c472f34b0bdce7813a9a55b2c7e93a1ffa09f607bb1031242dad60a01f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5027-4147 |
PQID | 3192333761 |
PQPubID | 2044390 |
PageCount | 16 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10713503 proquest_journals_3192333761 crossref_primary_10_1007_s11814_025_00411_6 springer_journals_10_1007_s11814_025_00411_6 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | J Su (411_CR34) 2024; 29 H Qu (411_CR117) 2021; 15 Y Yamaguchi (411_CR89) 2020; 12 J Cai (411_CR6) 2022; 158 CP Ferraz (411_CR118) 2018; 6 E Hayashi (411_CR88) 2019; 141 C Yang (411_CR110) 2020; 278 J Zheng (411_CR60) 2024; 11 Z Jinbo (411_CR2) 2019; 17 W Jiang (411_CR44) 2024; 556 D Bonincontro (411_CR76) 2019; 21 Y Zhou (411_CR18) 2024; 79 C Zhou (411_CR119) 2019; 330 T Gao (411_CR121) 2020; 59 D Zhao (411_CR31) 2020; 495 ADK Deshan (411_CR7) 2020; 8 H Liu (411_CR58) 2019; 77 C Megías-Sayago (411_CR52) 2019; 333 L Li (411_CR24) 2024; 672 X Bowen (411_CR48) 2022; 34 M Chen (411_CR11) 2024; 308 L Chen (411_CR82) 2021; 616 W Guan (411_CR51) 2021; 396 P Kandasamy (411_CR83) 2021; 375 M Ventura (411_CR100) 2018; 20 LC Gao (411_CR129) 2015; 270 G Tian (411_CR39) 2022; 42 DK Mishra (411_CR123) 2017; 19 P Liu (411_CR8) 2024; 53 DX Yan (411_CR85) 2018; 8 JS Shen (411_CR69) 2018; 57 C Chen (411_CR13) 2021; 54 X Zhong (411_CR43) 2022; 226 Y-F Yao (411_CR37) 2021; 125 H Liu (411_CR98) 2021; 11 MV Morales (411_CR112) 2021; 182 X Cheng (411_CR50) 2022; 58 S Chen (411_CR28) 2021; 60 XH Deng (411_CR45) 2021; 60 TY Gao (411_CR77) 2020; 59 B Sang (411_CR33) 2019; 470 H Xia (411_CR67) 2019; 319 J Vosberg (411_CR128) 2023; 24 KTV Rao (411_CR90) 2018; 11 X Jiang (411_CR23) 2023; 3 D Álvarez-Hernández (411_CR106) 2024; 17 S Yang (411_CR40) 2023; 457 J Xu (411_CR20) 2020; 5 C Ramirez-Barria (411_CR139) 2017; 7 Z Gao (411_CR137) 2017; 5 MJ Kang (411_CR14) 2020; 44 A Chen (411_CR32) 2022; 12 Q Li (411_CR78) 2019; 9 E Hayashi (411_CR87) 2019; 141 Y Wei (411_CR65) 2022; 15 D Alvarez-Hernández (411_CR101) 2024; 17 AB Gawade (411_CR97) 2018; 309 DY Zhao (411_CR56) 2020; 8 S Zhang (411_CR105) 2018; 113 F Yang (411_CR135) 2017; 435 GY Ryu (411_CR36) 2024; 180 A-D Cheng (411_CR27) 2021; 5 KJ Liu (411_CR49) 2019; 30 Z Ying (411_CR134) 2020; 46 XL Liu (411_CR71) 2021; 42 H Zhou (411_CR102) 2019; 244 X Han (411_CR9) 2024; 1295 XY Wan (411_CR92) 2021; 11 R Ge (411_CR22) 2022; 65 S Hameed (411_CR30) 2020; 10 T Gao (411_CR81) 2018; 368 YY Jiazi (411_CR55) 2020; 48 L Chen (411_CR73) 2021; 616 P Lokhande (411_CR107) 2023; 47 M Guo (411_CR46) 2022; 15 DF da Ferreira (411_CR116) 2019; 58 KAP Payne (411_CR26) 2019; 9 W Wang (411_CR21) 2023; 13 SL Wu (411_CR41) 2020; 191 H Zhou (411_CR95) 2019; 21 411_CR104 C Ke (411_CR115) 2018; 13 D Mal (411_CR131) 2023; 211 L Yu (411_CR108) 2021; 60 DK Mishra (411_CR113) 2017; 19 J Wu (411_CR5) 2024; 95 X Wang (411_CR19) 2020; 8 G Chongyang (411_CR124) 2021; 40 P Sharma (411_CR80) 2019; 43 F Xia (411_CR10) 2019; 14 S Hameed (411_CR3) 2024; 26 ADD Ferreira (411_CR57) 2019; 58 C Megías-Sayago (411_CR64) 2018; 8 JC Espinosa (411_CR79) 2019; 2019 Q Danping (411_CR132) 2020; 83 TY Gao (411_CR59) 2018; 450 H Zhou (411_CR38) 2019; 244 Z Ying (411_CR133) 2019; 45 K-F Wang (411_CR25) 2018; 19 Z Jiahong (411_CR61) 2023; 14 P Zhu (411_CR17) 2022; 10 T Gao (411_CR86) 2020; 355 H Yu (411_CR70) 2019; 7 J Yang (411_CR120) 2019; 9 CA Antonyraj (411_CR114) 2018; 130 XX Liu (411_CR136) 2016; 283 Z Lin (411_CR15) 2023; 12 TY Gao (411_CR140) 2020; 355 W Wen (411_CR47) 2024; 564 S Salakhum (411_CR74) 2021; 4 L Ma (411_CR84) 2022; 20 411_CR127 T Gao (411_CR138) 2017; 439 T Seehamongkol (411_CR4) 2024; 10 E Hayashi (411_CR122) 2017; 10 M Jin (411_CR99) 2021; 367 DV Chernysheva (411_CR72) 2018; 28 S Dong (411_CR111) 2024; 9 411_CR130 T Ji (411_CR66) 2018; 6 SK Perumal (411_CR62) 2024; 16 W Guan (411_CR75) 2020; 278 E Ramírez (411_CR126) 2024; 14 J Ren (411_CR96) 2018; 456 G Totaro (411_CR29) 2022; 15 M Kim (411_CR63) 2018; 57 LH Yu (411_CR93) 2021; 60 RR Chen (411_CR91) 2019; 12 S Saxena (411_CR53) 2021; 151 J Ren (411_CR103) 2018; 456 R Kumar (411_CR109) 2022; 15 RO Rajesh (411_CR141) 2019; 284 Z Ma (411_CR16) 2024; 14 D German (411_CR125) 2021; 11 W Xiansong (411_CR1) 2019; 36 SL Fan (411_CR42) 2024; 92 L Xiaoling (411_CR68) 2021; 42 SW Yang (411_CR94) 2022; 12 F Cheng (411_CR12) 2021; 15 JT Kiss (411_CR54) 1984; 88 SE Davis (411_CR35) 2012; 14 |
References_xml | – volume: 130 start-page: 156 year: 2018 ident: 411_CR114 publication-title: J. Chem. Sci. doi: 10.1007/s12039-018-1551-z – volume: 319 start-page: 113 year: 2019 ident: 411_CR67 publication-title: Catal. Today doi: 10.1016/j.cattod.2018.05.050 – volume: 309 start-page: 119 year: 2018 ident: 411_CR97 publication-title: Catal. Today doi: 10.1016/j.cattod.2017.08.061 – volume: 180 year: 2024 ident: 411_CR36 publication-title: Biomass Bioenerg. doi: 10.1016/j.biombioe.2023.107022 – volume: 57 start-page: 8235 year: 2018 ident: 411_CR63 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201805457 – volume: 672 year: 2024 ident: 411_CR24 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2024.160771 – volume: 60 start-page: 1624 year: 2021 ident: 411_CR108 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c05561 – volume: 355 start-page: 252 year: 2020 ident: 411_CR140 publication-title: Catal. Today doi: 10.1016/j.cattod.2019.03.065 – volume: 355 start-page: 252 year: 2020 ident: 411_CR86 publication-title: Catal. Today doi: 10.1016/j.cattod.2019.03.065 – volume: 151 start-page: 921 year: 2021 ident: 411_CR53 publication-title: Catal. Lett. doi: 10.1007/s10562-020-03361-2 – volume: 278 start-page: 118362 year: 2020 ident: 411_CR75 publication-title: Fuel doi: 10.1016/j.fuel.2020.118362 – volume: 8 start-page: 3091 year: 2020 ident: 411_CR56 publication-title: Acs Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05656 – volume: 3 start-page: 21 year: 2023 ident: 411_CR23 publication-title: SusMat doi: 10.1002/sus2.109 – volume: 15 start-page: 960 year: 2021 ident: 411_CR12 publication-title: Front. Chem. Sci. Eng. doi: 10.1007/s11705-020-1999-5 – volume: 457 year: 2023 ident: 411_CR40 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141344 – volume: 141 start-page: 890 year: 2019 ident: 411_CR88 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09917 – volume: 4 start-page: 14047 year: 2021 ident: 411_CR74 publication-title: Acs Appl.Nano Mater. doi: 10.1021/acsanm.1c03361 – volume: 226 year: 2022 ident: 411_CR43 publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2022.106574 – volume: 12 start-page: 20220518 year: 2023 ident: 411_CR15 publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2022-0518 – ident: 411_CR130 – volume: 10 start-page: 8778 year: 2022 ident: 411_CR17 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.2c01143 – volume: 17 year: 2024 ident: 411_CR106 publication-title: Chemsuschem doi: 10.1002/cssc.202400115 – volume: 15 year: 2022 ident: 411_CR65 publication-title: Chemsuschem doi: 10.1002/cssc.202101983 – volume: 284 start-page: 155 year: 2019 ident: 411_CR141 publication-title: Biores. Technol. doi: 10.1016/j.biortech.2019.03.105 – volume: 7 start-page: 3742 year: 2019 ident: 411_CR70 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b03775 – volume: 21 start-page: 2923 year: 2019 ident: 411_CR95 publication-title: Green Chem. doi: 10.1039/C9GC00869A – volume: 11 start-page: 3323 year: 2018 ident: 411_CR90 publication-title: Chemsuschem doi: 10.1002/cssc.201800989 – volume: 10 year: 2024 ident: 411_CR4 publication-title: ChemNanoMat doi: 10.1002/cnma.202400037 – volume: 36 start-page: 2341 year: 2019 ident: 411_CR1 publication-title: Fine Chemicals – volume: 1295 year: 2024 ident: 411_CR9 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2023.136674 – volume: 396 start-page: 40 year: 2021 ident: 411_CR51 publication-title: J. Catal. doi: 10.1016/j.jcat.2021.02.012 – volume: 43 start-page: 10601 year: 2019 ident: 411_CR80 publication-title: New J. Chem. doi: 10.1039/C9NJ01555H – volume: 113 start-page: 19 year: 2018 ident: 411_CR105 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2018.05.004 – volume: 17 start-page: 329 year: 2019 ident: 411_CR2 publication-title: Chinese J. Bioprocess Eng. – volume: 456 start-page: 174 year: 2018 ident: 411_CR103 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.06.120 – volume: 470 start-page: 67 year: 2019 ident: 411_CR33 publication-title: Mole. Catal. doi: 10.1016/j.mcat.2019.03.026 – volume: 9 start-page: 49259 year: 2024 ident: 411_CR111 publication-title: ACS Omega doi: 10.1021/acsomega.4c05787 – volume: 14 start-page: 4 year: 2023 ident: 411_CR61 publication-title: Contemporary Chem. Industry Eng. Res. – volume: 48 start-page: 942 year: 2020 ident: 411_CR55 publication-title: J.Fuel Chem. Technol. doi: 10.1016/S1872-5813(20)30066-9 – volume: 8 start-page: 11154 year: 2018 ident: 411_CR64 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02522 – volume: 17 start-page: e202400115 year: 2024 ident: 411_CR101 publication-title: Chemsuschem doi: 10.1002/cssc.202400115 – volume: 40 start-page: 1008 year: 2021 ident: 411_CR124 publication-title: Chem. Ind. Eng. Progress – ident: 411_CR104 doi: 10.1016/j.apcata.2017.08.035 – volume: 556 year: 2024 ident: 411_CR44 publication-title: Mole. Catal. doi: 10.1016/j.mcat.2024.113917 – volume: 30 start-page: 2304 year: 2019 ident: 411_CR49 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.10.031 – volume: 14 start-page: 704 year: 2024 ident: 411_CR126 publication-title: Catalysts doi: 10.3390/catal14100704 – volume: 10 start-page: 120 year: 2020 ident: 411_CR30 publication-title: Catalysts doi: 10.3390/catal10010120 – volume: 26 start-page: 7806 year: 2024 ident: 411_CR3 publication-title: Green Chem. doi: 10.1039/D4GC01777C – volume: 14 start-page: 3329 year: 2019 ident: 411_CR10 publication-title: Chem. Asian J. doi: 10.1002/asia.201901001 – volume: 367 start-page: 2 year: 2021 ident: 411_CR99 publication-title: Catal. Today doi: 10.1016/j.cattod.2020.10.038 – volume: 19 start-page: 1619 year: 2017 ident: 411_CR123 publication-title: Green Chem. doi: 10.1039/C7GC00027H – volume: 58 start-page: 1183 year: 2022 ident: 411_CR50 publication-title: Chem. Commun. doi: 10.1039/D1CC05757J – volume: 19 start-page: 1619 year: 2017 ident: 411_CR113 publication-title: Green Chem. doi: 10.1039/C7GC00027H – volume: 44 start-page: 14239 year: 2020 ident: 411_CR14 publication-title: New J. Chem. doi: 10.1039/D0NJ01426E – volume: 495 year: 2020 ident: 411_CR31 publication-title: Mole. Catal. doi: 10.1016/j.mcat.2020.111133 – volume: 191 start-page: 1470 year: 2020 ident: 411_CR41 publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-020-03290-1 – volume: 12 start-page: 2715 year: 2019 ident: 411_CR91 publication-title: Chemsuschem doi: 10.1002/cssc.201900651 – volume: 12 start-page: 36004 year: 2020 ident: 411_CR89 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08043 – volume: 57 start-page: 2811 year: 2018 ident: 411_CR69 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b05101 – volume: 8 start-page: 164 year: 2018 ident: 411_CR85 publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY01704A – volume: 12 start-page: 2954 year: 2022 ident: 411_CR32 publication-title: Catal. Sci. Technol. doi: 10.1039/D2CY00110A – volume: 439 start-page: 171 year: 2017 ident: 411_CR138 publication-title: Mole. Catal. doi: 10.1016/j.mcat.2017.06.034 – volume: 5 start-page: 2000297 year: 2021 ident: 411_CR27 publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.202000297 – volume: 29 start-page: 2724 year: 2024 ident: 411_CR34 publication-title: Molecules (Basel, Switzerland) doi: 10.3390/molecules29122724 – volume: 278 year: 2020 ident: 411_CR110 publication-title: Fuel doi: 10.1016/j.fuel.2020.118361 – volume: 211 year: 2023 ident: 411_CR131 publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2023.111081 – volume: 6 start-page: 11493 year: 2018 ident: 411_CR66 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01630 – volume: 141 start-page: 890 year: 2019 ident: 411_CR87 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09917 – volume: 270 start-page: 444 year: 2015 ident: 411_CR129 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.02.068 – volume: 19 start-page: 654 year: 2018 ident: 411_CR25 publication-title: ChemBioChem doi: 10.1002/cbic.201800008 – volume: 58 start-page: 128 year: 2019 ident: 411_CR57 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b05602 – volume: 83 start-page: 161 year: 2020 ident: 411_CR132 publication-title: Chem. Bull. (Print Edition) – volume: 7 start-page: 44568 year: 2017 ident: 411_CR139 publication-title: RSC Adv. doi: 10.1039/C7RA08774H – volume: 12 start-page: 971 year: 2022 ident: 411_CR94 publication-title: ACS Catal. doi: 10.1021/acscatal.1c05236 – volume: 45 start-page: 167 year: 2019 ident: 411_CR133 publication-title: Food Fermentation Ind. – volume: 21 start-page: 4090 year: 2019 ident: 411_CR76 publication-title: Green Chem. doi: 10.1039/C9GC01283D – volume: 10 start-page: 654 year: 2017 ident: 411_CR122 publication-title: Chemsuschem doi: 10.1002/cssc.201601443 – volume: 435 start-page: 144 year: 2017 ident: 411_CR135 publication-title: Mole.r Catal. doi: 10.1016/j.mcat.2017.03.034 – volume: 13 start-page: 17247 year: 2023 ident: 411_CR21 publication-title: Biomass Conv. Bioref. doi: 10.1007/s13399-022-02949-5 – volume: 42 start-page: 994 year: 2021 ident: 411_CR71 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63720-2 – volume: 88 start-page: 892 year: 1984 ident: 411_CR54 publication-title: J. Phys. Chem. doi: 10.1021/j150649a014 – volume: 11 year: 2024 ident: 411_CR60 publication-title: Royal Soc. Open Sci. doi: 10.1098/rsos.240155 – volume: 368 start-page: 53 year: 2018 ident: 411_CR81 publication-title: J. Catal. doi: 10.1016/j.jcat.2018.09.034 – volume: 58 start-page: 128 year: 2019 ident: 411_CR116 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b05602 – volume: 244 start-page: 965 year: 2019 ident: 411_CR38 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.12.046 – volume: 333 start-page: 169 year: 2019 ident: 411_CR52 publication-title: Catal. Today doi: 10.1016/j.cattod.2018.04.024 – volume: 283 start-page: 1315 year: 2016 ident: 411_CR136 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.022 – volume: 42 start-page: 24 year: 2022 ident: 411_CR39 publication-title: Chem. Ind. For. Prod. – volume: 11 start-page: 115 year: 2021 ident: 411_CR125 publication-title: Catalysts doi: 10.3390/catal11010115 – volume: 60 start-page: 16887 year: 2021 ident: 411_CR28 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c02730 – volume: 616 year: 2021 ident: 411_CR82 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2021.118106 – volume: 15 start-page: 1514 year: 2021 ident: 411_CR117 publication-title: Front. Chem. Sci. Eng. doi: 10.1007/s11705-021-2092-4 – volume: 330 start-page: 92 year: 2019 ident: 411_CR119 publication-title: Catal. Today doi: 10.1016/j.cattod.2018.05.037 – volume: 8 start-page: 4341 year: 2020 ident: 411_CR19 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c00058 – volume: 95 start-page: 670 year: 2024 ident: 411_CR5 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2024.04.019 – volume: 46 start-page: 98 year: 2020 ident: 411_CR134 publication-title: Food and Fermentation Industry – volume: 9 start-page: 2854 year: 2019 ident: 411_CR26 publication-title: ACS Catal. doi: 10.1021/acscatal.8b04862 – volume: 15 year: 2022 ident: 411_CR109 publication-title: Chemsuschem doi: 10.1002/cssc.202201333 – volume: 9 start-page: 6659 year: 2019 ident: 411_CR120 publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY01298B – ident: 411_CR127 doi: 10.1016/j.ijhydene.2024.01.025 – volume: 53 start-page: 9130 year: 2024 ident: 411_CR8 publication-title: Dalton Trans. doi: 10.1039/D4DT01196A – volume: 450 start-page: 55 year: 2018 ident: 411_CR59 publication-title: Mole. Catal. doi: 10.1016/j.mcat.2018.03.006 – volume: 24 start-page: 14367 year: 2023 ident: 411_CR128 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms241814367 – volume: 6 start-page: 16332 year: 2018 ident: 411_CR118 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b03330 – volume: 47 start-page: 15325 year: 2023 ident: 411_CR107 publication-title: New J. Chem. doi: 10.1039/D3NJ01834B – volume: 182 start-page: 265 year: 2021 ident: 411_CR112 publication-title: Carbon doi: 10.1016/j.carbon.2021.06.007 – volume: 11 start-page: 7828 year: 2021 ident: 411_CR98 publication-title: ACS Catal. doi: 10.1021/acscatal.0c04503 – volume: 2019 start-page: 1979 year: 2019 ident: 411_CR79 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201900190 – volume: 308 year: 2024 ident: 411_CR11 publication-title: Polymer doi: 10.1016/j.polymer.2024.127340 – volume: 42 start-page: 994 year: 2021 ident: 411_CR68 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63720-2 – volume: 8 start-page: 659 year: 2020 ident: 411_CR7 publication-title: Front. Chem. doi: 10.3389/fchem.2020.00659 – volume: 65 start-page: 3273 year: 2022 ident: 411_CR22 publication-title: Sci. China Mater. doi: 10.1007/s40843-022-2076-y – volume: 15 year: 2022 ident: 411_CR29 publication-title: Chemsuschem doi: 10.1002/cssc.202200501 – volume: 54 start-page: 528 year: 2021 ident: 411_CR13 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.05.068 – volume: 60 start-page: 20535 year: 2021 ident: 411_CR45 publication-title: Angewandte Chemie-International Edition doi: 10.1002/anie.202108955 – volume: 14 start-page: 157 year: 2024 ident: 411_CR16 publication-title: Catalysts doi: 10.3390/catal14020157 – volume: 77 start-page: 209 year: 2019 ident: 411_CR58 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2019.04.038 – volume: 244 start-page: 965 year: 2019 ident: 411_CR102 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.12.046 – volume: 11 start-page: 1497 year: 2021 ident: 411_CR92 publication-title: Catal. Sci. Technol. doi: 10.1039/D0CY01649G – volume: 59 start-page: 17200 year: 2020 ident: 411_CR121 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c00937 – volume: 125 start-page: 3818 year: 2021 ident: 411_CR37 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c09545 – volume: 616 start-page: 118106 year: 2021 ident: 411_CR73 publication-title: Appl. Catal. A-General doi: 10.1016/j.apcata.2021.118106 – volume: 92 start-page: 1 year: 2024 ident: 411_CR42 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2024.01.023 – volume: 20 start-page: 3921 year: 2018 ident: 411_CR100 publication-title: Green Chem. doi: 10.1039/C8GC00972D – volume: 564 year: 2024 ident: 411_CR47 publication-title: Mole. Catal. doi: 10.1016/j.mcat.2024.114354 – volume: 20 start-page: 17 year: 2022 ident: 411_CR84 publication-title: Chem. Propellants High Mole. Weight Mater. – volume: 28 start-page: 431 year: 2018 ident: 411_CR72 publication-title: Mendeleev Commun. doi: 10.1016/j.mencom.2018.07.031 – volume: 60 start-page: 1624 year: 2021 ident: 411_CR93 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c05561 – volume: 456 start-page: 174 year: 2018 ident: 411_CR96 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.06.120 – volume: 15 year: 2022 ident: 411_CR46 publication-title: Chemsuschem doi: 10.1002/cssc.202201074 – volume: 34 start-page: 1661 year: 2022 ident: 411_CR48 publication-title: Prog. Chem. – volume: 13 start-page: 2714 year: 2018 ident: 411_CR115 publication-title: Chem. Asian J. doi: 10.1002/asia.201800738 – volume: 5 start-page: 5852 year: 2017 ident: 411_CR137 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00573 – volume: 79 start-page: 646 year: 2024 ident: 411_CR18 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2024.06.376 – volume: 59 start-page: 17200 year: 2020 ident: 411_CR77 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c00937 – volume: 5 start-page: 19625 year: 2020 ident: 411_CR20 publication-title: ACS Omega doi: 10.1021/acsomega.0c02178 – volume: 9 start-page: 1570 year: 2019 ident: 411_CR78 publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY00211A – volume: 375 start-page: 145 year: 2021 ident: 411_CR83 publication-title: Catal. Today doi: 10.1016/j.cattod.2020.05.009 – volume: 158 year: 2022 ident: 411_CR6 publication-title: Biomass Bioenerg. doi: 10.1016/j.biombioe.2022.106358 – volume: 14 start-page: 143 year: 2012 ident: 411_CR35 publication-title: Green Chem. doi: 10.1039/C1GC16074E – volume: 16 start-page: 7353 year: 2024 ident: 411_CR62 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c18720 |
SSID | ssj0055620 |
Score | 2.3797922 |
SecondaryResourceType | review_article |
Snippet | Biomass resources have become a research hotspot in the field of chemical industry to explore new resources because of its abundant total amount and wide... Biomass resources have become a research hotspot in the fi eld of chemical industry to explore new resources because of its abundant total amount and wide... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 953 |
SubjectTerms | Biomass Biotechnology Catalysis Catalysts Catalytic oxidation Chemical engineering Chemistry Chemistry and Materials Science Dicarboxylic acids Environmental protection Hydroxymethylfurfural Industrial applications Industrial Chemistry/Chemical Engineering Industrial development Materials Science Metal oxides Noble metals Oxidation Raw materials Resins Review Article Terephthalic acid 화학공학 |
Title | Research Progress on Supported Metal Catalysts for Thermal Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furan Dicarboxylic Acid |
URI | https://link.springer.com/article/10.1007/s11814-025-00411-6 https://www.proquest.com/docview/3192333761 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003203461 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2025, 42(5), 304, pp.953-968 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VOBQOiEcRy0uW4AaWkjjP47JluxTxOLASPVlObKMVKEHZILH_gJ_NTDbWlqo99BQlsWMpM575bM98A3BCHHHWCM3R18c8TFXAlRAWp3umCqPQBSeU73x9E4_G4c-H6KFLCpu6aHd3JNla6kWyGzqjkFP5VSKJ8nm8BCsRrd1Ri8dB39nfCD36fGeFGPYQ8HSpMn__xid3tFTW9hPS_ONwtPU5ww1Y78Ai68-luwlfTLkFXweuRtsWrP1GJ7gN7y6Mjt1R1BXaMFaVjOp2UkStZtcGkTYb0IbNbNpMGeJVhmqCptk9xXHY7dtkXmeJVZZFfDTTFOlClaZnz_a1tsTTwZqKBWcRH-JNyb6joOscGz1j934x0d9gPLy4H4x4V2mBFzjfG56aRPlFmARWhLmX68IkqS9UpqIoD4rEZEL51iovs7GX5DmVhkDXrpWOPeX5NhE7sFxWpdkFFhSiPWpN00yFOsHlIEIco_NYx0oYE_Tg1P1w-TIn1JAL6mQSj0TxyFY8Mu7BMcpEPhUTSTzYdH2s5FMtEe1fYicqMOiJHhw4mcluCk6lIOwq0H76PThzcly8_veYe__XfB9Wg1ahKAjyAJab-tUcIlBp8iNY6Q_Pz2_o-uPX1cVRq6cfCO7hOw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VOAAHVF5iebSWyg0sJXGex9XCamlZ2gMrcbOc2EYrUIKyQWL_AT-bmWysLagceoqSOLGUz575Ys98A3BKGnHWCM3R18c8TFXAlRAWp3umCqPQBSeU7zy-iUeT8OdddNclhc1ctLvbkmwt9TLZDZ1RyKn8KolE-TxegTUkAykFck2CvrO_EXr0xcoKKewh4elSZf79jnfuaKWs7Tum-WFztPU5w6-w1ZFF1l-guw1fTLkD6wNXo20HNv-SE9yFVxdGx_5Q1BXaMFaVjOp2UkStZmODTJsNaMFmPmtmDPkqw2GCptldxX7Y75fpos4SqyyL-GiuKdKFKk3PH-1zbUmngzUVC84jPsSTkl0g0HWOjR7x8X4x1XswGV7eDka8q7TAC5zvDU9NovwiTAIrwtzLdWGS1BcqU1GUB0ViMqF8a5WX2dhL8pxKQ6Br10rHnvJ8m4h9WC2r0hwACwrRbrWmaaZCneDvIFIco_NYx0oYE_TgzH1w-bQQ1JBL6WSCRyI8soVHxj34gZjIh2IqSQebjveVfKglsv0rfIgKDHqiB8cOM9lNwZkUxF0F2k-_B-cOx-Xtz_s8_L_m32F9dDu-ltdXN7-OYCNoBxcFRB7DalM_mxMkLU3-rR2jb6_X4R4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xkNjlgIBdRJeXJbiBRRLneawKVXlzoBI3y4ltVBUlKA3S9h_sz2YmaVRA7IFTlMSJpXz2zBd75huAI9KIs0Zojr4-5H6sPK6EsDjdE5UZhS44onznm9twMPQvH4PHd1n8dbR7uyXZ5DSQSlNenb5oezpPfEPH5HMqxUqCUS4PF2EZzbFL43rodVtbHKB3b1ZZSG0Pyc8sbebrd3xwTYt5aT-wzk8bpbX_6a_D2ow4sm6D9AYsmHwTfvTaem2bsPpOWvAX_GtD6tg9RWChPWNFzqiGJ0XXanZjkHWzHi3eTCfVhCF3ZThk0Ey3V7Efdvd31NRcYoVlAR9MNUW9UNXp6bN9LS1pdrCqYN5JwPt4krMzBL1MsdEzPt7NRvo3DPvnD70Bn1Vd4BnO_YrHJlJu5keeFX7qpDozUewKlaggSL0sMolQrrXKSWzoRGlKZSLQzWulQ0c5ro3EFizlRW62gXmZqLdd4zhRvo7w1xDpjtFpqEMljPE6cNx-cPnSiGvIuYwywSMRHlnDI8MOHCImcpyNJGli0_GpkONSIvO_wIeo2KAjOrDbYiZn03EiBfFYgbbU7cBJi-P89v_7_PO95gewcn_Wl9cXt1c78NOrxxbFRu7CUlW-mj3kL1W6Xw_RN8o65Vo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Progress+on+Supported+Metal+Catalysts+for+Thermal+Catalytic+Oxidation+of+5-Hydroxymethylfurfural+to+2%2C5-Furan+Dicarboxylic+Acid&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Wang%2C+Yanxing&rft.au=Xiong%2C+Lian&rft.au=Chen%2C+Xuefang&rft.au=Li%2C+Hailong&rft.date=2025-05-01&rft.pub=Springer+US&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=42&rft.issue=5&rft.spage=953&rft.epage=968&rft_id=info:doi/10.1007%2Fs11814-025-00411-6&rft.externalDocID=10_1007_s11814_025_00411_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |