Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture

The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of the mechanical behavior of biomedical materials Vol. 76; pp. 69 - 75
Main Authors Monn, Michael A., Kesari, Haneesh
Format Journal Article
LanguageEnglish
Published Netherlands 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules.
AbstractList The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules.
The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules.The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules.
Author Monn, Michael A.
Kesari, Haneesh
Author_xml – sequence: 1
  givenname: Michael A.
  surname: Monn
  fullname: Monn, Michael A.
– sequence: 2
  givenname: Haneesh
  surname: Kesari
  fullname: Kesari, Haneesh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28595803$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1q3TAQRkVJaX7aJygELbOxO2NbsrwMIWkDgW7atSrJ0o0uspxI8iJvH90k7aKLwMAMzPmG4ZySo7hGS8hXhBYB-bd9u1-0XtoOcGyBtdB3H8gJilE0gAKO6jwybDhyPCanOe8BOIAQn8hxJ9jEBPQn5M91vFfR2JlqG2cfd9QpH7ZkaS5J-Uhrab-GdeeNCnQXVM7UeW1TpvNmaVkrUWyKdRnUYkNQiapk7n2xptQ7n8lHp0K2X976Gfl9c_3r6kdz9_P77dXlXWN6YKUZxQBT5zrspxk5Z4PQ2unRMWfHeWKIGkw_oBksw8k4zbUxI1e2MzgPo3P9Gbl4vfuQ1sfN5iIXn83hn2jXLUucQAz9AHyq6PkbuunFzvIh-UWlJ_nXSgX6V8CkNedk3T8EQR7cy718cS8P7iUwWd3X1PRfyviiil_jwWR4N_sMyqiM0Q
CitedBy_id crossref_primary_10_1038_s41467_019_14128_8
crossref_primary_10_1007_s11837_023_05966_5
crossref_primary_10_1016_j_actbio_2023_03_024
crossref_primary_10_1016_j_jmbbm_2021_104362
crossref_primary_10_1016_j_ijsolstr_2022_111622
crossref_primary_10_1098_rspa_2017_0594
crossref_primary_10_2138_am_2018_6429
crossref_primary_10_1016_j_jmbbm_2022_105448
crossref_primary_10_1021_acsearthspacechem_3c00272
crossref_primary_10_1002_adem_202301876
crossref_primary_10_1016_j_jmbbm_2021_104787
crossref_primary_10_1088_1748_3190_ac1dfb
crossref_primary_10_1007_s00339_020_03564_9
crossref_primary_10_1098_rsif_2024_0252
Cites_doi 10.1002/adfm.201603993
10.1016/j.jmps.2014.08.008
10.1126/science.1220854
10.1126/science.1218764
10.1016/j.jmbbm.2010.11.006
10.1557/JMR.1992.1564
10.1038/nmat4089
10.1016/S0894-9166(16)30159-8
10.1007/978-3-642-19240-1_2
10.1016/S0167-5729(99)00003-5
10.1098/rspb.1988.0056
10.1002/jemt.10397
10.1063/1.1728910
10.1016/j.jsb.2006.10.027
10.1016/j.pmatsci.2009.05.001
10.1007/s00253-009-2014-8
10.1080/00218460903417917
10.1098/rsif.2014.1326
10.1126/science.1112255
10.1016/j.jmbbm.2008.02.003
10.1016/j.mechmat.2008.12.004
10.1007/978-3-642-75656-6_24
10.1073/pnas.0307843101
10.1016/j.actbio.2010.04.008
10.1371/journal.pone.0035105
10.1073/pnas.1415502112
ContentType Journal Article
Copyright Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jmbbm.2017.05.032
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-0180
EndPage 75
ExternalDocumentID 28595803
10_1016_j_jmbbm_2017_05_032
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SSM
SST
SSZ
T5K
~G-
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c305t-784092f2139d166548bbfb7f5fe7d9511b0c341c4e519cfb6bcc76ae2c1d47ff3
ISSN 1751-6161
1878-0180
IngestDate Mon Jul 21 09:45:04 EDT 2025
Mon Jul 21 05:40:51 EDT 2025
Thu Apr 24 23:00:50 EDT 2025
Tue Jul 01 02:19:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Euplectella aspergillum
Structure-property relationship
Tethya aurantia
Structural biological material
Spicules
Flexural strength
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c305t-784092f2139d166548bbfb7f5fe7d9511b0c341c4e519cfb6bcc76ae2c1d47ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28595803
PQID 1908434069
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1908434069
pubmed_primary_28595803
crossref_primary_10_1016_j_jmbbm_2017_05_032
crossref_citationtrail_10_1016_j_jmbbm_2017_05_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-00
20171201
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-00
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of the mechanical behavior of biomedical materials
PublicationTitleAlternate J Mech Behav Biomed Mater
PublicationYear 2017
References 10.1016/j.jmbbm.2017.05.032_bib9
Oliver (10.1016/j.jmbbm.2017.05.032_bib20) 1992; 7
Chen (10.1016/j.jmbbm.2017.05.032_bib7) 2008; 1
10.1016/j.jmbbm.2017.05.032_bib25
Müller (10.1016/j.jmbbm.2017.05.032_bib16) 2009; 83
10.1016/j.jmbbm.2017.05.032_bib24
Bernstein (10.1016/j.jmbbm.2017.05.032_bib5) 1962; 33
10.1016/j.jmbbm.2017.05.032_bib23
Rabiei (10.1016/j.jmbbm.2017.05.032_bib21) 2010; 6
Espinosa (10.1016/j.jmbbm.2017.05.032_bib10) 2009; 54
Leys (10.1016/j.jmbbm.2017.05.032_bib15) 2003; 62
Aizenberg (10.1016/j.jmbbm.2017.05.032_bib2) 2005; 309
Meyers (10.1016/j.jmbbm.2017.05.032_bib17) 2013; 339
Wang (10.1016/j.jmbbm.2017.05.032_bib26) 2016; 29
10.1016/j.jmbbm.2017.05.032_bib31
Weaver (10.1016/j.jmbbm.2017.05.032_bib29) 2012; 336
Wegst (10.1016/j.jmbbm.2017.05.032_bib30) 2015; 14
10.1016/j.jmbbm.2017.05.032_bib18
Cappella (10.1016/j.jmbbm.2017.05.032_bib6) 1999; 34
Jackson (10.1016/j.jmbbm.2017.05.032_bib14) 1988; 234
10.1016/j.jmbbm.2017.05.032_bib13
10.1016/j.jmbbm.2017.05.032_bib12
10.1016/j.jmbbm.2017.05.032_bib11
Chen (10.1016/j.jmbbm.2017.05.032_bib8) 2009; 41
Aizenberg (10.1016/j.jmbbm.2017.05.032_bib1) 2004; 101
Weaver (10.1016/j.jmbbm.2017.05.032_bib28) 2010; 86
Barthelat (10.1016/j.jmbbm.2017.05.032_bib4) 2014; 73
Barber (10.1016/j.jmbbm.2017.05.032_bib3) 2015; 12
Monn (10.1016/j.jmbbm.2017.05.032_bib19) 2015; 112
Rim (10.1016/j.jmbbm.2017.05.032_bib22) 2011; 4
Weaver (10.1016/j.jmbbm.2017.05.032_bib27) 2007; 158
References_xml – ident: 10.1016/j.jmbbm.2017.05.032_bib31
  doi: 10.1002/adfm.201603993
– volume: 73
  start-page: 22
  year: 2014
  ident: 10.1016/j.jmbbm.2017.05.032_bib4
  article-title: Designing nacre-like materials for simultaneous stiffness, strength and toughness. Optimum materials, composition, microstructure and size
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2014.08.008
– volume: 339
  start-page: 773
  issue: 6121
  year: 2013
  ident: 10.1016/j.jmbbm.2017.05.032_bib17
  article-title: Structural biological materials: critical mechanics-materials connections
  publication-title: Science
  doi: 10.1126/science.1220854
– volume: 336
  start-page: 1275
  issue: 6086
  year: 2012
  ident: 10.1016/j.jmbbm.2017.05.032_bib29
  article-title: The stomatopod dactyl club. A formidable damage-tolerant biological hammer
  publication-title: Science
  doi: 10.1126/science.1218764
– volume: 4
  start-page: 190
  issue: 2
  year: 2011
  ident: 10.1016/j.jmbbm.2017.05.032_bib22
  article-title: Dimensional analysis and parametric studies for designing artificial nacre
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2010.11.006
– volume: 7
  start-page: 1564
  issue: 06
  year: 1992
  ident: 10.1016/j.jmbbm.2017.05.032_bib20
  article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1992.1564
– volume: 14
  start-page: 23
  issue: 1
  year: 2015
  ident: 10.1016/j.jmbbm.2017.05.032_bib30
  article-title: Bioinspired structural materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4089
– ident: 10.1016/j.jmbbm.2017.05.032_bib24
– volume: 29
  start-page: 245
  issue: 3
  year: 2016
  ident: 10.1016/j.jmbbm.2017.05.032_bib26
  article-title: Helical fiber pull-out in biological materials
  publication-title: Acta Mech. Solida Sin.
  doi: 10.1016/S0894-9166(16)30159-8
– ident: 10.1016/j.jmbbm.2017.05.032_bib18
– ident: 10.1016/j.jmbbm.2017.05.032_bib12
  doi: 10.1007/978-3-642-19240-1_2
– volume: 34
  start-page: 1
  year: 1999
  ident: 10.1016/j.jmbbm.2017.05.032_bib6
  article-title: Force-distance curves by atomic force microscopy
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/S0167-5729(99)00003-5
– volume: 234
  start-page: 415
  issue: 1277
  year: 1988
  ident: 10.1016/j.jmbbm.2017.05.032_bib14
  article-title: The mechanical design of nacre
  publication-title: Proc. R. Soc. Lond. B: Biol. Sci.
  doi: 10.1098/rspb.1988.0056
– volume: 62
  start-page: 300
  issue: 4
  year: 2003
  ident: 10.1016/j.jmbbm.2017.05.032_bib15
  article-title: Comparative study of spiculogenesis in demosponge and hexactinellid larvae
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.10397
– volume: 33
  issue: 6
  year: 1962
  ident: 10.1016/j.jmbbm.2017.05.032_bib5
  article-title: Elastic properties of polycrystalline tungsten at elevated temperatures
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1728910
– volume: 158
  start-page: 93
  issue: 1
  year: 2007
  ident: 10.1016/j.jmbbm.2017.05.032_bib27
  article-title: Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge euplectella aspergillum
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2006.10.027
– ident: 10.1016/j.jmbbm.2017.05.032_bib11
– ident: 10.1016/j.jmbbm.2017.05.032_bib9
– ident: 10.1016/j.jmbbm.2017.05.032_bib13
– volume: 54
  start-page: 1059
  issue: 8
  year: 2009
  ident: 10.1016/j.jmbbm.2017.05.032_bib10
  article-title: Merger of structure and material in nacre and bone-perspectives on de novo biomimetic materials
  publication-title: Progress. Mater. Sci.
  doi: 10.1016/j.pmatsci.2009.05.001
– volume: 83
  start-page: 397
  issue: 3
  year: 2009
  ident: 10.1016/j.jmbbm.2017.05.032_bib16
  article-title: Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-2014-8
– volume: 86
  start-page: 72
  issue: 1
  year: 2010
  ident: 10.1016/j.jmbbm.2017.05.032_bib28
  article-title: Unifying design strategies in demosponge and hexactinellid skeletal systems
  publication-title: J. Adhes.
  doi: 10.1080/00218460903417917
– volume: 12
  start-page: 20141326
  issue: 105
  year: 2015
  ident: 10.1016/j.jmbbm.2017.05.032_bib3
  article-title: Extreme strength observed in limpet teeth
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2014.1326
– volume: 309
  start-page: 275
  issue: 5732
  year: 2005
  ident: 10.1016/j.jmbbm.2017.05.032_bib2
  article-title: Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale
  publication-title: Science
  doi: 10.1126/science.1112255
– volume: 1
  start-page: 208
  issue: 3
  year: 2008
  ident: 10.1016/j.jmbbm.2017.05.032_bib7
  article-title: Structure and mechanical properties of selected biological materials
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2008.02.003
– volume: 41
  start-page: 279
  issue: 3
  year: 2009
  ident: 10.1016/j.jmbbm.2017.05.032_bib8
  article-title: Curved-fiber pull-out model for nanocomposites. part 1. Bonded stage formulation
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2008.12.004
– ident: 10.1016/j.jmbbm.2017.05.032_bib23
  doi: 10.1007/978-3-642-75656-6_24
– volume: 101
  start-page: 3358
  issue: 10
  year: 2004
  ident: 10.1016/j.jmbbm.2017.05.032_bib1
  article-title: Biological glass fibers: correlation between optical and structural properties
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0307843101
– volume: 6
  start-page: 4081
  issue: 10
  year: 2010
  ident: 10.1016/j.jmbbm.2017.05.032_bib21
  article-title: Failure mode transition in nacre and bone-like materials
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.04.008
– ident: 10.1016/j.jmbbm.2017.05.032_bib25
  doi: 10.1371/journal.pone.0035105
– volume: 112
  start-page: 4976
  issue: 16
  year: 2015
  ident: 10.1016/j.jmbbm.2017.05.032_bib19
  article-title: New functional insights into the internal architecture of the laminated anchor spicules of euplectella aspergillum
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1415502112
SSID ssj0060088
Score 2.2296157
Snippet The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 69
SubjectTerms Animals
Glass
Materials Testing
Porifera
Stress, Mechanical
Title Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture
URI https://www.ncbi.nlm.nih.gov/pubmed/28595803
https://www.proquest.com/docview/1908434069
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLY2dhmHaRuMlf2QJ-0WUjWJE2dHNDFVk-AEErdgO7agghTR9LLD_nbe84uTMAYak6qoctvXJt_X58_O-8HY12-mzGop6ngGs30spCljVYo0VkJh_7e8cAazkQ-PivmJ-Hmanw4hQT67pNVT8-uveSX_gyqMAa6YJfsEZHujMADPAV84AsJw_CeMD5pzuoGvLSWnOHWBYeaYAQIrftzLoCJLHgkvlCOHISKrqF77nhkXtCF4GQExMA7qJhrfWXhAuaJWvbKYMuzthkx_fImy-f0wSGG6Bj2my2YcqR_tTwdvv1KU8T5XjbWr8_FeBMxvQ1wHuU-ZJ7AYpfLqwb_KsYOkvizdVEs9U-45cdpPWEwXV1pjsYCEiqt2-6B3Smb_MZX1AYYhdm1ReSMVGqlmeQVGnrMXKSwpsNvF9HcfDgS6z_co7c8gVKjysYD3fsldFfPA0sRLlOPX7FWHEN8norxhz2zzlm2OKk5usbNAGd5RhneU4UQZDo-BMtxThhNlOFCGt0seKMMDZfiYMtvs5MfB8fd53DXZiA24-jaWuMJPXQorgTrBVtSl1k5Llzsra5DfiZ4ZUDpGWND6xulCGyMLZVOT1EI6l71jG82yse8ZVyazxmVlqlUuUqWVsbkptEyy2tki0ROWhotWma4CPZ7bZfUIXBO213_omgqwPP72LwGNChwl3v0C4i7XqwqUbykyTPSesB2CqTeIVRzzcpbtPu3LPrCXw7_gI9tob9b2E2jUVn_25LoFeZaWFA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+bending+failure+strain+in+biological+glass+fibers+due+to+internal+lamellar+architecture&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Monn%2C+Michael+A.&rft.au=Kesari%2C+Haneesh&rft.date=2017-12-01&rft.issn=1751-6161&rft.volume=76&rft.spage=69&rft.epage=75&rft_id=info:doi/10.1016%2Fj.jmbbm.2017.05.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmbbm_2017_05_032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon