Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture
The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures pr...
Saved in:
Published in | Journal of the mechanical behavior of biomedical materials Vol. 76; pp. 69 - 75 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules. |
---|---|
AbstractList | The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules. The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules.The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules. |
Author | Monn, Michael A. Kesari, Haneesh |
Author_xml | – sequence: 1 givenname: Michael A. surname: Monn fullname: Monn, Michael A. – sequence: 2 givenname: Haneesh surname: Kesari fullname: Kesari, Haneesh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28595803$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM1q3TAQRkVJaX7aJygELbOxO2NbsrwMIWkDgW7atSrJ0o0uspxI8iJvH90k7aKLwMAMzPmG4ZySo7hGS8hXhBYB-bd9u1-0XtoOcGyBtdB3H8gJilE0gAKO6jwybDhyPCanOe8BOIAQn8hxJ9jEBPQn5M91vFfR2JlqG2cfd9QpH7ZkaS5J-Uhrab-GdeeNCnQXVM7UeW1TpvNmaVkrUWyKdRnUYkNQiapk7n2xptQ7n8lHp0K2X976Gfl9c_3r6kdz9_P77dXlXWN6YKUZxQBT5zrspxk5Z4PQ2unRMWfHeWKIGkw_oBksw8k4zbUxI1e2MzgPo3P9Gbl4vfuQ1sfN5iIXn83hn2jXLUucQAz9AHyq6PkbuunFzvIh-UWlJ_nXSgX6V8CkNedk3T8EQR7cy718cS8P7iUwWd3X1PRfyviiil_jwWR4N_sMyqiM0Q |
CitedBy_id | crossref_primary_10_1038_s41467_019_14128_8 crossref_primary_10_1007_s11837_023_05966_5 crossref_primary_10_1016_j_actbio_2023_03_024 crossref_primary_10_1016_j_jmbbm_2021_104362 crossref_primary_10_1016_j_ijsolstr_2022_111622 crossref_primary_10_1098_rspa_2017_0594 crossref_primary_10_2138_am_2018_6429 crossref_primary_10_1016_j_jmbbm_2022_105448 crossref_primary_10_1021_acsearthspacechem_3c00272 crossref_primary_10_1002_adem_202301876 crossref_primary_10_1016_j_jmbbm_2021_104787 crossref_primary_10_1088_1748_3190_ac1dfb crossref_primary_10_1007_s00339_020_03564_9 crossref_primary_10_1098_rsif_2024_0252 |
Cites_doi | 10.1002/adfm.201603993 10.1016/j.jmps.2014.08.008 10.1126/science.1220854 10.1126/science.1218764 10.1016/j.jmbbm.2010.11.006 10.1557/JMR.1992.1564 10.1038/nmat4089 10.1016/S0894-9166(16)30159-8 10.1007/978-3-642-19240-1_2 10.1016/S0167-5729(99)00003-5 10.1098/rspb.1988.0056 10.1002/jemt.10397 10.1063/1.1728910 10.1016/j.jsb.2006.10.027 10.1016/j.pmatsci.2009.05.001 10.1007/s00253-009-2014-8 10.1080/00218460903417917 10.1098/rsif.2014.1326 10.1126/science.1112255 10.1016/j.jmbbm.2008.02.003 10.1016/j.mechmat.2008.12.004 10.1007/978-3-642-75656-6_24 10.1073/pnas.0307843101 10.1016/j.actbio.2010.04.008 10.1371/journal.pone.0035105 10.1073/pnas.1415502112 |
ContentType | Journal Article |
Copyright | Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jmbbm.2017.05.032 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-0180 |
EndPage | 75 |
ExternalDocumentID | 28595803 10_1016_j_jmbbm_2017_05_032 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSH SSM SST SSZ T5K ~G- CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c305t-784092f2139d166548bbfb7f5fe7d9511b0c341c4e519cfb6bcc76ae2c1d47ff3 |
ISSN | 1751-6161 1878-0180 |
IngestDate | Mon Jul 21 09:45:04 EDT 2025 Mon Jul 21 05:40:51 EDT 2025 Thu Apr 24 23:00:50 EDT 2025 Tue Jul 01 02:19:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Euplectella aspergillum Structure-property relationship Tethya aurantia Structural biological material Spicules Flexural strength |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c305t-784092f2139d166548bbfb7f5fe7d9511b0c341c4e519cfb6bcc76ae2c1d47ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28595803 |
PQID | 1908434069 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1908434069 pubmed_primary_28595803 crossref_primary_10_1016_j_jmbbm_2017_05_032 crossref_citationtrail_10_1016_j_jmbbm_2017_05_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-00 20171201 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-00 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of the mechanical behavior of biomedical materials |
PublicationTitleAlternate | J Mech Behav Biomed Mater |
PublicationYear | 2017 |
References | 10.1016/j.jmbbm.2017.05.032_bib9 Oliver (10.1016/j.jmbbm.2017.05.032_bib20) 1992; 7 Chen (10.1016/j.jmbbm.2017.05.032_bib7) 2008; 1 10.1016/j.jmbbm.2017.05.032_bib25 Müller (10.1016/j.jmbbm.2017.05.032_bib16) 2009; 83 10.1016/j.jmbbm.2017.05.032_bib24 Bernstein (10.1016/j.jmbbm.2017.05.032_bib5) 1962; 33 10.1016/j.jmbbm.2017.05.032_bib23 Rabiei (10.1016/j.jmbbm.2017.05.032_bib21) 2010; 6 Espinosa (10.1016/j.jmbbm.2017.05.032_bib10) 2009; 54 Leys (10.1016/j.jmbbm.2017.05.032_bib15) 2003; 62 Aizenberg (10.1016/j.jmbbm.2017.05.032_bib2) 2005; 309 Meyers (10.1016/j.jmbbm.2017.05.032_bib17) 2013; 339 Wang (10.1016/j.jmbbm.2017.05.032_bib26) 2016; 29 10.1016/j.jmbbm.2017.05.032_bib31 Weaver (10.1016/j.jmbbm.2017.05.032_bib29) 2012; 336 Wegst (10.1016/j.jmbbm.2017.05.032_bib30) 2015; 14 10.1016/j.jmbbm.2017.05.032_bib18 Cappella (10.1016/j.jmbbm.2017.05.032_bib6) 1999; 34 Jackson (10.1016/j.jmbbm.2017.05.032_bib14) 1988; 234 10.1016/j.jmbbm.2017.05.032_bib13 10.1016/j.jmbbm.2017.05.032_bib12 10.1016/j.jmbbm.2017.05.032_bib11 Chen (10.1016/j.jmbbm.2017.05.032_bib8) 2009; 41 Aizenberg (10.1016/j.jmbbm.2017.05.032_bib1) 2004; 101 Weaver (10.1016/j.jmbbm.2017.05.032_bib28) 2010; 86 Barthelat (10.1016/j.jmbbm.2017.05.032_bib4) 2014; 73 Barber (10.1016/j.jmbbm.2017.05.032_bib3) 2015; 12 Monn (10.1016/j.jmbbm.2017.05.032_bib19) 2015; 112 Rim (10.1016/j.jmbbm.2017.05.032_bib22) 2011; 4 Weaver (10.1016/j.jmbbm.2017.05.032_bib27) 2007; 158 |
References_xml | – ident: 10.1016/j.jmbbm.2017.05.032_bib31 doi: 10.1002/adfm.201603993 – volume: 73 start-page: 22 year: 2014 ident: 10.1016/j.jmbbm.2017.05.032_bib4 article-title: Designing nacre-like materials for simultaneous stiffness, strength and toughness. Optimum materials, composition, microstructure and size publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2014.08.008 – volume: 339 start-page: 773 issue: 6121 year: 2013 ident: 10.1016/j.jmbbm.2017.05.032_bib17 article-title: Structural biological materials: critical mechanics-materials connections publication-title: Science doi: 10.1126/science.1220854 – volume: 336 start-page: 1275 issue: 6086 year: 2012 ident: 10.1016/j.jmbbm.2017.05.032_bib29 article-title: The stomatopod dactyl club. A formidable damage-tolerant biological hammer publication-title: Science doi: 10.1126/science.1218764 – volume: 4 start-page: 190 issue: 2 year: 2011 ident: 10.1016/j.jmbbm.2017.05.032_bib22 article-title: Dimensional analysis and parametric studies for designing artificial nacre publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2010.11.006 – volume: 7 start-page: 1564 issue: 06 year: 1992 ident: 10.1016/j.jmbbm.2017.05.032_bib20 article-title: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments publication-title: J. Mater. Res. doi: 10.1557/JMR.1992.1564 – volume: 14 start-page: 23 issue: 1 year: 2015 ident: 10.1016/j.jmbbm.2017.05.032_bib30 article-title: Bioinspired structural materials publication-title: Nat. Mater. doi: 10.1038/nmat4089 – ident: 10.1016/j.jmbbm.2017.05.032_bib24 – volume: 29 start-page: 245 issue: 3 year: 2016 ident: 10.1016/j.jmbbm.2017.05.032_bib26 article-title: Helical fiber pull-out in biological materials publication-title: Acta Mech. Solida Sin. doi: 10.1016/S0894-9166(16)30159-8 – ident: 10.1016/j.jmbbm.2017.05.032_bib18 – ident: 10.1016/j.jmbbm.2017.05.032_bib12 doi: 10.1007/978-3-642-19240-1_2 – volume: 34 start-page: 1 year: 1999 ident: 10.1016/j.jmbbm.2017.05.032_bib6 article-title: Force-distance curves by atomic force microscopy publication-title: Surf. Sci. Rep. doi: 10.1016/S0167-5729(99)00003-5 – volume: 234 start-page: 415 issue: 1277 year: 1988 ident: 10.1016/j.jmbbm.2017.05.032_bib14 article-title: The mechanical design of nacre publication-title: Proc. R. Soc. Lond. B: Biol. Sci. doi: 10.1098/rspb.1988.0056 – volume: 62 start-page: 300 issue: 4 year: 2003 ident: 10.1016/j.jmbbm.2017.05.032_bib15 article-title: Comparative study of spiculogenesis in demosponge and hexactinellid larvae publication-title: Microsc. Res. Tech. doi: 10.1002/jemt.10397 – volume: 33 issue: 6 year: 1962 ident: 10.1016/j.jmbbm.2017.05.032_bib5 article-title: Elastic properties of polycrystalline tungsten at elevated temperatures publication-title: J. Appl. Phys. doi: 10.1063/1.1728910 – volume: 158 start-page: 93 issue: 1 year: 2007 ident: 10.1016/j.jmbbm.2017.05.032_bib27 article-title: Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge euplectella aspergillum publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2006.10.027 – ident: 10.1016/j.jmbbm.2017.05.032_bib11 – ident: 10.1016/j.jmbbm.2017.05.032_bib9 – ident: 10.1016/j.jmbbm.2017.05.032_bib13 – volume: 54 start-page: 1059 issue: 8 year: 2009 ident: 10.1016/j.jmbbm.2017.05.032_bib10 article-title: Merger of structure and material in nacre and bone-perspectives on de novo biomimetic materials publication-title: Progress. Mater. Sci. doi: 10.1016/j.pmatsci.2009.05.001 – volume: 83 start-page: 397 issue: 3 year: 2009 ident: 10.1016/j.jmbbm.2017.05.032_bib16 article-title: Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2014-8 – volume: 86 start-page: 72 issue: 1 year: 2010 ident: 10.1016/j.jmbbm.2017.05.032_bib28 article-title: Unifying design strategies in demosponge and hexactinellid skeletal systems publication-title: J. Adhes. doi: 10.1080/00218460903417917 – volume: 12 start-page: 20141326 issue: 105 year: 2015 ident: 10.1016/j.jmbbm.2017.05.032_bib3 article-title: Extreme strength observed in limpet teeth publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2014.1326 – volume: 309 start-page: 275 issue: 5732 year: 2005 ident: 10.1016/j.jmbbm.2017.05.032_bib2 article-title: Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale publication-title: Science doi: 10.1126/science.1112255 – volume: 1 start-page: 208 issue: 3 year: 2008 ident: 10.1016/j.jmbbm.2017.05.032_bib7 article-title: Structure and mechanical properties of selected biological materials publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2008.02.003 – volume: 41 start-page: 279 issue: 3 year: 2009 ident: 10.1016/j.jmbbm.2017.05.032_bib8 article-title: Curved-fiber pull-out model for nanocomposites. part 1. Bonded stage formulation publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2008.12.004 – ident: 10.1016/j.jmbbm.2017.05.032_bib23 doi: 10.1007/978-3-642-75656-6_24 – volume: 101 start-page: 3358 issue: 10 year: 2004 ident: 10.1016/j.jmbbm.2017.05.032_bib1 article-title: Biological glass fibers: correlation between optical and structural properties publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0307843101 – volume: 6 start-page: 4081 issue: 10 year: 2010 ident: 10.1016/j.jmbbm.2017.05.032_bib21 article-title: Failure mode transition in nacre and bone-like materials publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.04.008 – ident: 10.1016/j.jmbbm.2017.05.032_bib25 doi: 10.1371/journal.pone.0035105 – volume: 112 start-page: 4976 issue: 16 year: 2015 ident: 10.1016/j.jmbbm.2017.05.032_bib19 article-title: New functional insights into the internal architecture of the laminated anchor spicules of euplectella aspergillum publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1415502112 |
SSID | ssj0060088 |
Score | 2.2296157 |
Snippet | The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 69 |
SubjectTerms | Animals Glass Materials Testing Porifera Stress, Mechanical |
Title | Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28595803 https://www.proquest.com/docview/1908434069 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLY2dhmHaRuMlf2QJ-0WUjWJE2dHNDFVk-AEErdgO7agghTR9LLD_nbe84uTMAYak6qoctvXJt_X58_O-8HY12-mzGop6ngGs30spCljVYo0VkJh_7e8cAazkQ-PivmJ-Hmanw4hQT67pNVT8-uveSX_gyqMAa6YJfsEZHujMADPAV84AsJw_CeMD5pzuoGvLSWnOHWBYeaYAQIrftzLoCJLHgkvlCOHISKrqF77nhkXtCF4GQExMA7qJhrfWXhAuaJWvbKYMuzthkx_fImy-f0wSGG6Bj2my2YcqR_tTwdvv1KU8T5XjbWr8_FeBMxvQ1wHuU-ZJ7AYpfLqwb_KsYOkvizdVEs9U-45cdpPWEwXV1pjsYCEiqt2-6B3Smb_MZX1AYYhdm1ReSMVGqlmeQVGnrMXKSwpsNvF9HcfDgS6z_co7c8gVKjysYD3fsldFfPA0sRLlOPX7FWHEN8norxhz2zzlm2OKk5usbNAGd5RhneU4UQZDo-BMtxThhNlOFCGt0seKMMDZfiYMtvs5MfB8fd53DXZiA24-jaWuMJPXQorgTrBVtSl1k5Llzsra5DfiZ4ZUDpGWND6xulCGyMLZVOT1EI6l71jG82yse8ZVyazxmVlqlUuUqWVsbkptEyy2tki0ROWhotWma4CPZ7bZfUIXBO213_omgqwPP72LwGNChwl3v0C4i7XqwqUbykyTPSesB2CqTeIVRzzcpbtPu3LPrCXw7_gI9tob9b2E2jUVn_25LoFeZaWFA |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+bending+failure+strain+in+biological+glass+fibers+due+to+internal+lamellar+architecture&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Monn%2C+Michael+A.&rft.au=Kesari%2C+Haneesh&rft.date=2017-12-01&rft.issn=1751-6161&rft.volume=76&rft.spage=69&rft.epage=75&rft_id=info:doi/10.1016%2Fj.jmbbm.2017.05.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmbbm_2017_05_032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon |