PDRK:A General Kinetic Dispersion Relation Solver for Magnetized Plasma
A general,fast,and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations.The plasma dispersion function is approximated by J-pole expansion.Subsequently,the dispersion relation is transformed to a standard matrix eigenvalue problem of an equivalent l...
Saved in:
Published in | Plasma science & technology Vol. 18; no. 2; pp. 97 - 107 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1009-0630 |
DOI | 10.1088/1009-0630/18/2/01 |
Cover
Loading…
Abstract | A general,fast,and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations.The plasma dispersion function is approximated by J-pole expansion.Subsequently,the dispersion relation is transformed to a standard matrix eigenvalue problem of an equivalent linear system.Numerical solutions for the least damped or fastest growing modes using an 8-pole expansion are generally accurate;more strongly damped modes are less accurate,but are less likely to be of physical interest.In contrast to conventional approaches,such as Newton's iterative method,this approach can give either all the solutions in the system or a few solutions around the initial guess.It is also free from convergence problems.The approach is demonstrated for electrostatic dispersion equations with one-dimensional and twodimensional wavevectors,and for electromagnetic kinetic magnetized plasma dispersion relation for bi-Maxwellian distribution with relative parallel velocity flows between species. |
---|---|
AbstractList | A general,fast,and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations.The plasma dispersion function is approximated by J-pole expansion.Subsequently,the dispersion relation is transformed to a standard matrix eigenvalue problem of an equivalent linear system.Numerical solutions for the least damped or fastest growing modes using an 8-pole expansion are generally accurate;more strongly damped modes are less accurate,but are less likely to be of physical interest.In contrast to conventional approaches,such as Newton's iterative method,this approach can give either all the solutions in the system or a few solutions around the initial guess.It is also free from convergence problems.The approach is demonstrated for electrostatic dispersion equations with one-dimensional and twodimensional wavevectors,and for electromagnetic kinetic magnetized plasma dispersion relation for bi-Maxwellian distribution with relative parallel velocity flows between species. A general, fast, and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations. The plasma dispersion function is approximated by J-pole expansion. Subsequently, the dispersion relation is transformed to a standard matrix eigenvalue problem of an equivalent linear system. Numerical solutions for the least damped or fastest growing modes using an 8-pole expansion are generally accurate; more strongly damped modes are less accurate, but are less likely to be of physical interest. In contrast to conventional approaches, such as Newton's iterative method, this approach can give either all the solutions in the system or a few solutions around the initial guess. It is also free from convergence problems. The approach is demonstrated for electrostatic dispersion equations with one-dimensional and two-dimensional wavevectors, and for electromagnetic kinetic magnetized plasma dispersion relation for bi-Maxwellian distribution with relative parallel velocity flows between species. |
Author | 谢华生 肖湧 |
AuthorAffiliation | Institute for Fusion Theory and Simulation and the Department of Physics,Zhejiang University, Hangzhou 310027, China |
Author_xml | – sequence: 1 fullname: 谢华生 肖湧 |
BookMark | eNp9kLFOwzAQhj0UibbwAGwRE0uIHcexPVYtlKpFVAVmy3EuxShNWjtFgkfhWXgnXoGGVh0YmO50-r873ddDnaquAKELgq8JFiIiGMsQpxRHRERxhEkHdY-zU9Tz_hVjlkhBu2gyHy2m31-fg2AMFThdBlNbQWNNMLJ-Dc7bugoWUOqmbR7r8g1cUNQuuNfLNvcBeTAvtV_pM3RS6NLD-aH20fPtzdPwLpw9jCfDwSw0FLMm5LEwLNE0i3Um4yyjMecZk4UghRCaS0gko2A4kALnYATHhEqaZzFP0oLlhvbR1X7v2tWbLfhGraw3UJa6gnrrFRExSxhLBd5F-T5qXO29g0IZ2_x-0jhtS0WwaoWpVo5q5exgFavdxT4if8i1syvt3v9lLg_MS10tN7ZaHqE05ZJinjL6Az9TfQU |
CitedBy_id | crossref_primary_10_1063_5_0026220 crossref_primary_10_1088_1361_6595_ab08af crossref_primary_10_3847_1538_4357_acdc17 crossref_primary_10_1029_2023GL105876 crossref_primary_10_1063_5_0216433 crossref_primary_10_1126_sciadv_aax4545 crossref_primary_10_1126_sciadv_adr8227 crossref_primary_10_3847_1538_4357_ac52a9 crossref_primary_10_1029_2020JA028631 crossref_primary_10_1029_2022JA031128 crossref_primary_10_1029_2020JA028592 crossref_primary_10_1051_0004_6361_202346815 crossref_primary_10_3847_1538_4357_ab9f9a crossref_primary_10_3847_1538_4357_abb5a1 crossref_primary_10_1063_1_4960964 crossref_primary_10_3847_1538_4357_ac9ea9 crossref_primary_10_3847_1538_4357_ac02bc crossref_primary_10_3847_1538_4357_ad333d crossref_primary_10_1051_0004_6361_201834701 crossref_primary_10_1007_s41614_024_00157_4 crossref_primary_10_1063_5_0184424 crossref_primary_10_1088_1674_4527_ad1bd6 crossref_primary_10_1016_j_fpp_2024_100050 crossref_primary_10_1088_1741_4326_acff0a crossref_primary_10_1093_mnrasl_slae118 crossref_primary_10_3847_1538_4357_abb3ca crossref_primary_10_3847_1538_4357_ab0896 crossref_primary_10_3847_1538_4357_ac133c crossref_primary_10_3847_1538_4357_ab3bd1 crossref_primary_10_1016_j_cpc_2019_06_014 crossref_primary_10_1029_2021JA029761 crossref_primary_10_1016_j_physleta_2024_129575 crossref_primary_10_1029_2021JA029720 crossref_primary_10_1029_2019GL081964 crossref_primary_10_3847_1538_4357_abc00b crossref_primary_10_1016_j_cpc_2024_109434 crossref_primary_10_3847_1538_4357_acd1dd crossref_primary_10_1029_2021JA029408 crossref_primary_10_1063_5_0140875 crossref_primary_10_1016_j_jmaa_2018_06_045 crossref_primary_10_1029_2021JA030119 crossref_primary_10_1088_1674_4527_ac389a crossref_primary_10_1029_2022JA030935 crossref_primary_10_1029_2023JA031295 crossref_primary_10_1063_1_4953094 crossref_primary_10_3847_1538_4357_ad7b34 crossref_primary_10_1063_5_0149450 crossref_primary_10_1063_5_0238442 crossref_primary_10_1029_2020GL087515 crossref_primary_10_1007_s10509_025_04397_9 crossref_primary_10_3847_1538_4357_ace7c9 crossref_primary_10_1088_1674_4527_acaaf2 crossref_primary_10_1029_2023GL104994 crossref_primary_10_3847_1538_4357_ac8e07 crossref_primary_10_1029_2019JA027278 crossref_primary_10_1063_1_5121782 crossref_primary_10_1016_j_physleta_2024_129319 crossref_primary_10_3389_fphy_2024_1334531 crossref_primary_10_3847_1538_4357_ab3dad crossref_primary_10_3847_1538_4357_ab672f crossref_primary_10_1016_j_cpc_2022_108363 crossref_primary_10_3847_1538_4357_ac02ce crossref_primary_10_1088_1674_1056_26_1_015202 crossref_primary_10_3847_1538_4357_ac6c8e crossref_primary_10_1029_2019GL085220 |
Cites_doi | 10.1017/S0022377800008606 10.1086/506172 10.1063/1.3610378 10.1017/S0022377800013519 10.1887/0750301171 10.1063/1.4823722 10.1063/1.524411 10.1063/1.4812196 10.1063/1.4736848 10.1063/1.1694133 10.1063/1.4822332 10.1017/S0022377800002270 10.1088/0741-3335/47/4/006 10.1103/PhysRevE.81.036402 10.1088/0032-1028/25/6/007 10.1063/1.2769968 10.1063/1.3132628 10.1016/j.cpc.2013.10.012 10.1063/1.874180 10.1063/1.4736980 10.1088/0004-637X/773/1/8 10.1238/Physica.Topical.084a00206 10.1017/CBO9780511551512 10.1017/CBO9780511809125 10.1063/1.4831761 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1088/1009-0630/18/2/01 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | PDRK:A General Kinetic Dispersion Relation Solver for Magnetized Plasma |
EndPage | 107 |
ExternalDocumentID | 10_1088_1009_0630_18_2_01 667930765 |
GroupedDBID | 02O 042 123 1JI 1WK 2B. 2C. 2RA 4.4 5B3 5VR 5VS 5ZH 7.M 7.Q 92E 92I 92L 92Q 93N AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 CW9 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO JCGBZ KNG KOT LAP M45 N5L N9A NS0 NT- NT. P2P PJBAE Q02 R4D RIN RNS RO9 ROL RPA RW3 S3P SY9 T37 TCJ TGP W28 W92 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7U5 8FD AEINN H8D L7M |
ID | FETCH-LOGICAL-c305t-728c54a3b2ab92bb3277b59f81f88a79e4953ec7e1f0dec8701393db2746f5dc3 |
ISSN | 1009-0630 |
IngestDate | Tue Aug 05 09:57:43 EDT 2025 Thu Apr 24 22:52:41 EDT 2025 Tue Jul 01 03:44:31 EDT 2025 Wed Feb 14 10:22:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c305t-728c54a3b2ab92bb3277b59f81f88a79e4953ec7e1f0dec8701393db2746f5dc3 |
Notes | plasma physics dispersion relation kinetic waves instabilities linear system matrix eigenvalue XIE Huasheng , XlAO Yong ( Institute for Fusion Theory and Simulation and the Department of Physics Zhejiang University, Hangzhou 310027, China) A general,fast,and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations.The plasma dispersion function is approximated by J-pole expansion.Subsequently,the dispersion relation is transformed to a standard matrix eigenvalue problem of an equivalent linear system.Numerical solutions for the least damped or fastest growing modes using an 8-pole expansion are generally accurate;more strongly damped modes are less accurate,but are less likely to be of physical interest.In contrast to conventional approaches,such as Newton's iterative method,this approach can give either all the solutions in the system or a few solutions around the initial guess.It is also free from convergence problems.The approach is demonstrated for electrostatic dispersion equations with one-dimensional and twodimensional wavevectors,and for electromagnetic kinetic magnetized plasma dispersion relation for bi-Maxwellian distribution with relative parallel velocity flows between species. 34-1187/TL ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1825455680 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1825455680 crossref_citationtrail_10_1088_1009_0630_18_2_01 crossref_primary_10_1088_1009_0630_18_2_01 chongqing_primary_667930765 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Plasma science & technology |
PublicationTitleAlternate | Plasma Science & Technology |
PublicationYear | 2016 |
References | 23 24 Ronnmark K (2) 1982 25 26 27 28 Stix T (19) 1992 Lin Y (9) 2005; 47 Howes G G (29) 2006; 651 Cereceda C (11) 2000; 2000 10 Bao J (22) 2014; 56 12 13 14 15 16 17 Verscharen D (4) 2013; 773 18 Ronnmark K (3) 1983; 25 1 Xie H S (20) 2014; 89 5 6 7 8 21 |
References_xml | – ident: 12 doi: 10.1017/S0022377800008606 – volume: 651 start-page: 590 issn: 0004-637X year: 2006 ident: 29 publication-title: The Astrophysical Journal doi: 10.1086/506172 – year: 1982 ident: 2 – ident: 6 doi: 10.1063/1.3610378 – ident: 13 doi: 10.1017/S0022377800013519 – ident: 17 doi: 10.1887/0750301171 – ident: 26 doi: 10.1063/1.4823722 – ident: 10 doi: 10.1063/1.524411 – ident: 21 doi: 10.1063/1.4812196 – ident: 28 doi: 10.1063/1.4736848 – year: 1992 ident: 19 publication-title: Waves in Plasmas – ident: 18 doi: 10.1063/1.1694133 – ident: 14 doi: 10.1063/1.4822332 – ident: 23 doi: 10.1017/S0022377800002270 – volume: 47 start-page: 657 issn: 0741-3335 year: 2005 ident: 9 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/47/4/006 – ident: 24 doi: 10.1103/PhysRevE.81.036402 – volume: 25 start-page: 699 issn: 0032-1028 year: 1983 ident: 3 publication-title: Plasma Physics doi: 10.1088/0032-1028/25/6/007 – ident: 27 doi: 10.1063/1.2769968 – ident: 8 doi: 10.1063/1.3132628 – ident: 1 doi: 10.1016/j.cpc.2013.10.012 – volume: 89 issn: 1402-4896 year: 2014 ident: 20 publication-title: Phys. Scr. – ident: 7 doi: 10.1063/1.874180 – ident: 25 doi: 10.1063/1.4736980 – volume: 773 start-page: 8 issn: 0004-637X year: 2013 ident: 4 publication-title: The Astrophysical Journal doi: 10.1088/0004-637X/773/1/8 – volume: 2000 start-page: 206 issn: 1402-4896 year: 2000 ident: 11 publication-title: Phys. Scr. doi: 10.1238/Physica.Topical.084a00206 – ident: 5 doi: 10.1017/CBO9780511551512 – ident: 16 doi: 10.1017/CBO9780511809125 – ident: 15 doi: 10.1063/1.4831761 – volume: 56 issn: 0741-3335 year: 2014 ident: 22 publication-title: Plasma Phys. Control. Fusion |
SSID | ssj0054983 |
Score | 2.312247 |
Snippet | A general,fast,and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations.The plasma dispersion function is... A general, fast, and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations. The plasma dispersion function is... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 97 |
SubjectTerms | Approximation Convergence Dispersion Equivalence Linear systems Mathematical analysis Mathematical models Solvers 动力学 数值计算 求解 牛顿迭代法 矩阵特征值问题 磁化等离子体 色散关系 麦克斯韦分布 |
Title | PDRK:A General Kinetic Dispersion Relation Solver for Magnetized Plasma |
URI | http://lib.cqvip.com/qk/84262X/201602/667930765.html https://www.proquest.com/docview/1825455680 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgCMEF8VOUATISJ6rQxEkch9vENhU2tgpaqTfLdpwxCaUbTS_763nPdhKmIjS4RNaT44M_6_Nn-_0g5C3XnFcV11GhTBFlumaRLpWJjMDsb0JltXXZPk_4dJF9XubLoY6eiy5p9Xtz9ce4kv9BFWyAK0bJ_gOy_aBggDbgC19AGL43wni2__XIh5aH7NHjIxCNmIJ1_xwzgONNWO_uNv62Qi9o51f4RZ1hvytQmzOQz4Gbg0b1lnEX8INro926gJ9u1Pq79USxPLcDeXQmtfr9QiHpfZB7DnTvJTw8l2yRZH9W9YznvWvD3hkq2G7RMlCZuyEIA2MbDczFHww7Uff6fnIqDxfHx3J-sJzfJncYnACwOMWn01m3ycKpVvjYiTBk92AN5_neNknEhE2w3M892Eqas0sQA9flx_Xd10mK-UPyIJwF6J4H9hG5ZZvH5K7zyTXrJ2SK8H6gezSASwO4dACXduBSDy4FcOkALvVQPiWLw4P5x2kUCl9EBui3jQomTJ6pVDOlS6Z1CjOg87IWSS2EKkqLTsHWFDap48oaoFzQ8WmlWZHxOq9M-ozsNKvGPieUp7yMQTKCFBKZ0rYUdcyZwSjRAgtNj8huPzfywic4kZwDa8cFz0ck7mZLmpAzHkuX_JDOd0EITHldSpxsmQjJZJyMyLv-l268v3R-00EggdbwrUo1drVZQwcG2j7nIn5xgz675P6wkl-Snfbnxr4Csdjq127Z_AJVgmNi |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PDRK%3A+A+General+Kinetic+Dispersion+Relation+Solver+for+Magnetized+Plasma&rft.jtitle=Plasma+science+%26+technology&rft.au=Huasheng%2C+Xie&rft.au=Yong%2C+Xiao&rft.date=2016-02-01&rft.issn=1009-0630&rft.volume=18&rft.issue=2&rft.spage=97&rft.epage=107&rft_id=info:doi/10.1088%2F1009-0630%2F18%2F2%2F01&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84262X%2F84262X.jpg |