PDRK:A General Kinetic Dispersion Relation Solver for Magnetized Plasma

A general,fast,and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations.The plasma dispersion function is approximated by J-pole expansion.Subsequently,the dispersion relation is transformed to a standard matrix eigenvalue problem of an equivalent l...

Full description

Saved in:
Bibliographic Details
Published inPlasma science & technology Vol. 18; no. 2; pp. 97 - 107
Main Author 谢华生 肖湧
Format Journal Article
LanguageEnglish
Published 01.02.2016
Subjects
Online AccessGet full text
ISSN1009-0630
DOI10.1088/1009-0630/18/2/01

Cover

Loading…
Abstract A general,fast,and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations.The plasma dispersion function is approximated by J-pole expansion.Subsequently,the dispersion relation is transformed to a standard matrix eigenvalue problem of an equivalent linear system.Numerical solutions for the least damped or fastest growing modes using an 8-pole expansion are generally accurate;more strongly damped modes are less accurate,but are less likely to be of physical interest.In contrast to conventional approaches,such as Newton's iterative method,this approach can give either all the solutions in the system or a few solutions around the initial guess.It is also free from convergence problems.The approach is demonstrated for electrostatic dispersion equations with one-dimensional and twodimensional wavevectors,and for electromagnetic kinetic magnetized plasma dispersion relation for bi-Maxwellian distribution with relative parallel velocity flows between species.
AbstractList A general,fast,and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations.The plasma dispersion function is approximated by J-pole expansion.Subsequently,the dispersion relation is transformed to a standard matrix eigenvalue problem of an equivalent linear system.Numerical solutions for the least damped or fastest growing modes using an 8-pole expansion are generally accurate;more strongly damped modes are less accurate,but are less likely to be of physical interest.In contrast to conventional approaches,such as Newton's iterative method,this approach can give either all the solutions in the system or a few solutions around the initial guess.It is also free from convergence problems.The approach is demonstrated for electrostatic dispersion equations with one-dimensional and twodimensional wavevectors,and for electromagnetic kinetic magnetized plasma dispersion relation for bi-Maxwellian distribution with relative parallel velocity flows between species.
A general, fast, and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations. The plasma dispersion function is approximated by J-pole expansion. Subsequently, the dispersion relation is transformed to a standard matrix eigenvalue problem of an equivalent linear system. Numerical solutions for the least damped or fastest growing modes using an 8-pole expansion are generally accurate; more strongly damped modes are less accurate, but are less likely to be of physical interest. In contrast to conventional approaches, such as Newton's iterative method, this approach can give either all the solutions in the system or a few solutions around the initial guess. It is also free from convergence problems. The approach is demonstrated for electrostatic dispersion equations with one-dimensional and two-dimensional wavevectors, and for electromagnetic kinetic magnetized plasma dispersion relation for bi-Maxwellian distribution with relative parallel velocity flows between species.
Author 谢华生 肖湧
AuthorAffiliation Institute for Fusion Theory and Simulation and the Department of Physics,Zhejiang University, Hangzhou 310027, China
Author_xml – sequence: 1
  fullname: 谢华生 肖湧
BookMark eNp9kLFOwzAQhj0UibbwAGwRE0uIHcexPVYtlKpFVAVmy3EuxShNWjtFgkfhWXgnXoGGVh0YmO50-r873ddDnaquAKELgq8JFiIiGMsQpxRHRERxhEkHdY-zU9Tz_hVjlkhBu2gyHy2m31-fg2AMFThdBlNbQWNNMLJ-Dc7bugoWUOqmbR7r8g1cUNQuuNfLNvcBeTAvtV_pM3RS6NLD-aH20fPtzdPwLpw9jCfDwSw0FLMm5LEwLNE0i3Um4yyjMecZk4UghRCaS0gko2A4kALnYATHhEqaZzFP0oLlhvbR1X7v2tWbLfhGraw3UJa6gnrrFRExSxhLBd5F-T5qXO29g0IZ2_x-0jhtS0WwaoWpVo5q5exgFavdxT4if8i1syvt3v9lLg_MS10tN7ZaHqE05ZJinjL6Az9TfQU
CitedBy_id crossref_primary_10_1063_5_0026220
crossref_primary_10_1088_1361_6595_ab08af
crossref_primary_10_3847_1538_4357_acdc17
crossref_primary_10_1029_2023GL105876
crossref_primary_10_1063_5_0216433
crossref_primary_10_1126_sciadv_aax4545
crossref_primary_10_1126_sciadv_adr8227
crossref_primary_10_3847_1538_4357_ac52a9
crossref_primary_10_1029_2020JA028631
crossref_primary_10_1029_2022JA031128
crossref_primary_10_1029_2020JA028592
crossref_primary_10_1051_0004_6361_202346815
crossref_primary_10_3847_1538_4357_ab9f9a
crossref_primary_10_3847_1538_4357_abb5a1
crossref_primary_10_1063_1_4960964
crossref_primary_10_3847_1538_4357_ac9ea9
crossref_primary_10_3847_1538_4357_ac02bc
crossref_primary_10_3847_1538_4357_ad333d
crossref_primary_10_1051_0004_6361_201834701
crossref_primary_10_1007_s41614_024_00157_4
crossref_primary_10_1063_5_0184424
crossref_primary_10_1088_1674_4527_ad1bd6
crossref_primary_10_1016_j_fpp_2024_100050
crossref_primary_10_1088_1741_4326_acff0a
crossref_primary_10_1093_mnrasl_slae118
crossref_primary_10_3847_1538_4357_abb3ca
crossref_primary_10_3847_1538_4357_ab0896
crossref_primary_10_3847_1538_4357_ac133c
crossref_primary_10_3847_1538_4357_ab3bd1
crossref_primary_10_1016_j_cpc_2019_06_014
crossref_primary_10_1029_2021JA029761
crossref_primary_10_1016_j_physleta_2024_129575
crossref_primary_10_1029_2021JA029720
crossref_primary_10_1029_2019GL081964
crossref_primary_10_3847_1538_4357_abc00b
crossref_primary_10_1016_j_cpc_2024_109434
crossref_primary_10_3847_1538_4357_acd1dd
crossref_primary_10_1029_2021JA029408
crossref_primary_10_1063_5_0140875
crossref_primary_10_1016_j_jmaa_2018_06_045
crossref_primary_10_1029_2021JA030119
crossref_primary_10_1088_1674_4527_ac389a
crossref_primary_10_1029_2022JA030935
crossref_primary_10_1029_2023JA031295
crossref_primary_10_1063_1_4953094
crossref_primary_10_3847_1538_4357_ad7b34
crossref_primary_10_1063_5_0149450
crossref_primary_10_1063_5_0238442
crossref_primary_10_1029_2020GL087515
crossref_primary_10_1007_s10509_025_04397_9
crossref_primary_10_3847_1538_4357_ace7c9
crossref_primary_10_1088_1674_4527_acaaf2
crossref_primary_10_1029_2023GL104994
crossref_primary_10_3847_1538_4357_ac8e07
crossref_primary_10_1029_2019JA027278
crossref_primary_10_1063_1_5121782
crossref_primary_10_1016_j_physleta_2024_129319
crossref_primary_10_3389_fphy_2024_1334531
crossref_primary_10_3847_1538_4357_ab3dad
crossref_primary_10_3847_1538_4357_ab672f
crossref_primary_10_1016_j_cpc_2022_108363
crossref_primary_10_3847_1538_4357_ac02ce
crossref_primary_10_1088_1674_1056_26_1_015202
crossref_primary_10_3847_1538_4357_ac6c8e
crossref_primary_10_1029_2019GL085220
Cites_doi 10.1017/S0022377800008606
10.1086/506172
10.1063/1.3610378
10.1017/S0022377800013519
10.1887/0750301171
10.1063/1.4823722
10.1063/1.524411
10.1063/1.4812196
10.1063/1.4736848
10.1063/1.1694133
10.1063/1.4822332
10.1017/S0022377800002270
10.1088/0741-3335/47/4/006
10.1103/PhysRevE.81.036402
10.1088/0032-1028/25/6/007
10.1063/1.2769968
10.1063/1.3132628
10.1016/j.cpc.2013.10.012
10.1063/1.874180
10.1063/1.4736980
10.1088/0004-637X/773/1/8
10.1238/Physica.Topical.084a00206
10.1017/CBO9780511551512
10.1017/CBO9780511809125
10.1063/1.4831761
ContentType Journal Article
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1009-0630/18/2/01
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate PDRK:A General Kinetic Dispersion Relation Solver for Magnetized Plasma
EndPage 107
ExternalDocumentID 10_1088_1009_0630_18_2_01
667930765
GroupedDBID 02O
042
123
1JI
1WK
2B.
2C.
2RA
4.4
5B3
5VR
5VS
5ZH
7.M
7.Q
92E
92I
92L
92Q
93N
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
CW9
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
LAP
M45
N5L
N9A
NS0
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
T37
TCJ
TGP
W28
W92
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
AEINN
H8D
L7M
ID FETCH-LOGICAL-c305t-728c54a3b2ab92bb3277b59f81f88a79e4953ec7e1f0dec8701393db2746f5dc3
ISSN 1009-0630
IngestDate Tue Aug 05 09:57:43 EDT 2025
Thu Apr 24 22:52:41 EDT 2025
Tue Jul 01 03:44:31 EDT 2025
Wed Feb 14 10:22:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c305t-728c54a3b2ab92bb3277b59f81f88a79e4953ec7e1f0dec8701393db2746f5dc3
Notes plasma physics dispersion relation kinetic waves instabilities linear system matrix eigenvalue
XIE Huasheng , XlAO Yong ( Institute for Fusion Theory and Simulation and the Department of Physics Zhejiang University, Hangzhou 310027, China)
A general,fast,and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations.The plasma dispersion function is approximated by J-pole expansion.Subsequently,the dispersion relation is transformed to a standard matrix eigenvalue problem of an equivalent linear system.Numerical solutions for the least damped or fastest growing modes using an 8-pole expansion are generally accurate;more strongly damped modes are less accurate,but are less likely to be of physical interest.In contrast to conventional approaches,such as Newton's iterative method,this approach can give either all the solutions in the system or a few solutions around the initial guess.It is also free from convergence problems.The approach is demonstrated for electrostatic dispersion equations with one-dimensional and twodimensional wavevectors,and for electromagnetic kinetic magnetized plasma dispersion relation for bi-Maxwellian distribution with relative parallel velocity flows between species.
34-1187/TL
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825455680
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1825455680
crossref_citationtrail_10_1088_1009_0630_18_2_01
crossref_primary_10_1088_1009_0630_18_2_01
chongqing_primary_667930765
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Plasma science & technology
PublicationTitleAlternate Plasma Science & Technology
PublicationYear 2016
References 23
24
Ronnmark K (2) 1982
25
26
27
28
Stix T (19) 1992
Lin Y (9) 2005; 47
Howes G G (29) 2006; 651
Cereceda C (11) 2000; 2000
10
Bao J (22) 2014; 56
12
13
14
15
16
17
Verscharen D (4) 2013; 773
18
Ronnmark K (3) 1983; 25
1
Xie H S (20) 2014; 89
5
6
7
8
21
References_xml – ident: 12
  doi: 10.1017/S0022377800008606
– volume: 651
  start-page: 590
  issn: 0004-637X
  year: 2006
  ident: 29
  publication-title: The Astrophysical Journal
  doi: 10.1086/506172
– year: 1982
  ident: 2
– ident: 6
  doi: 10.1063/1.3610378
– ident: 13
  doi: 10.1017/S0022377800013519
– ident: 17
  doi: 10.1887/0750301171
– ident: 26
  doi: 10.1063/1.4823722
– ident: 10
  doi: 10.1063/1.524411
– ident: 21
  doi: 10.1063/1.4812196
– ident: 28
  doi: 10.1063/1.4736848
– year: 1992
  ident: 19
  publication-title: Waves in Plasmas
– ident: 18
  doi: 10.1063/1.1694133
– ident: 14
  doi: 10.1063/1.4822332
– ident: 23
  doi: 10.1017/S0022377800002270
– volume: 47
  start-page: 657
  issn: 0741-3335
  year: 2005
  ident: 9
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/47/4/006
– ident: 24
  doi: 10.1103/PhysRevE.81.036402
– volume: 25
  start-page: 699
  issn: 0032-1028
  year: 1983
  ident: 3
  publication-title: Plasma Physics
  doi: 10.1088/0032-1028/25/6/007
– ident: 27
  doi: 10.1063/1.2769968
– ident: 8
  doi: 10.1063/1.3132628
– ident: 1
  doi: 10.1016/j.cpc.2013.10.012
– volume: 89
  issn: 1402-4896
  year: 2014
  ident: 20
  publication-title: Phys. Scr.
– ident: 7
  doi: 10.1063/1.874180
– ident: 25
  doi: 10.1063/1.4736980
– volume: 773
  start-page: 8
  issn: 0004-637X
  year: 2013
  ident: 4
  publication-title: The Astrophysical Journal
  doi: 10.1088/0004-637X/773/1/8
– volume: 2000
  start-page: 206
  issn: 1402-4896
  year: 2000
  ident: 11
  publication-title: Phys. Scr.
  doi: 10.1238/Physica.Topical.084a00206
– ident: 5
  doi: 10.1017/CBO9780511551512
– ident: 16
  doi: 10.1017/CBO9780511809125
– ident: 15
  doi: 10.1063/1.4831761
– volume: 56
  issn: 0741-3335
  year: 2014
  ident: 22
  publication-title: Plasma Phys. Control. Fusion
SSID ssj0054983
Score 2.312247
Snippet A general,fast,and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations.The plasma dispersion function is...
A general, fast, and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations. The plasma dispersion function is...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 97
SubjectTerms Approximation
Convergence
Dispersion
Equivalence
Linear systems
Mathematical analysis
Mathematical models
Solvers
动力学
数值计算
求解
牛顿迭代法
矩阵特征值问题
磁化等离子体
色散关系
麦克斯韦分布
Title PDRK:A General Kinetic Dispersion Relation Solver for Magnetized Plasma
URI http://lib.cqvip.com/qk/84262X/201602/667930765.html
https://www.proquest.com/docview/1825455680
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgCMEF8VOUATISJ6rQxEkch9vENhU2tgpaqTfLdpwxCaUbTS_763nPdhKmIjS4RNaT44M_6_Nn-_0g5C3XnFcV11GhTBFlumaRLpWJjMDsb0JltXXZPk_4dJF9XubLoY6eiy5p9Xtz9ce4kv9BFWyAK0bJ_gOy_aBggDbgC19AGL43wni2__XIh5aH7NHjIxCNmIJ1_xwzgONNWO_uNv62Qi9o51f4RZ1hvytQmzOQz4Gbg0b1lnEX8INro926gJ9u1Pq79USxPLcDeXQmtfr9QiHpfZB7DnTvJTw8l2yRZH9W9YznvWvD3hkq2G7RMlCZuyEIA2MbDczFHww7Uff6fnIqDxfHx3J-sJzfJncYnACwOMWn01m3ycKpVvjYiTBk92AN5_neNknEhE2w3M892Eqas0sQA9flx_Xd10mK-UPyIJwF6J4H9hG5ZZvH5K7zyTXrJ2SK8H6gezSASwO4dACXduBSDy4FcOkALvVQPiWLw4P5x2kUCl9EBui3jQomTJ6pVDOlS6Z1CjOg87IWSS2EKkqLTsHWFDap48oaoFzQ8WmlWZHxOq9M-ozsNKvGPieUp7yMQTKCFBKZ0rYUdcyZwSjRAgtNj8huPzfywic4kZwDa8cFz0ck7mZLmpAzHkuX_JDOd0EITHldSpxsmQjJZJyMyLv-l268v3R-00EggdbwrUo1drVZQwcG2j7nIn5xgz675P6wkl-Snfbnxr4Csdjq127Z_AJVgmNi
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PDRK%3A+A+General+Kinetic+Dispersion+Relation+Solver+for+Magnetized+Plasma&rft.jtitle=Plasma+science+%26+technology&rft.au=Huasheng%2C+Xie&rft.au=Yong%2C+Xiao&rft.date=2016-02-01&rft.issn=1009-0630&rft.volume=18&rft.issue=2&rft.spage=97&rft.epage=107&rft_id=info:doi/10.1088%2F1009-0630%2F18%2F2%2F01&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84262X%2F84262X.jpg