Ergodic properties of the Anzai skew-product for the non-commutative torus

We provide a systematic study of a non-commutative extension of the classical Anzai skew-product for the cartesian product of two copies of the unit circle to the non-commutative 2-tori. In particular, some relevant ergodic properties are proved for these quantum dynamical systems, extending the cor...

Full description

Saved in:
Bibliographic Details
Published inErgodic theory and dynamical systems Vol. 41; no. 4; pp. 1064 - 1085
Main Authors DEL VECCHIO, SIMONE, FIDALEO, FRANCESCO, GIORGETTI, LUCA, ROSSI, STEFANO
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We provide a systematic study of a non-commutative extension of the classical Anzai skew-product for the cartesian product of two copies of the unit circle to the non-commutative 2-tori. In particular, some relevant ergodic properties are proved for these quantum dynamical systems, extending the corresponding ones enjoyed by the classical Anzai skew-product. As an application, for a uniquely ergodic Anzai skew-product $\unicode[STIX]{x1D6F7}$ on the non-commutative $2$ -torus $\mathbb{A}_{\unicode[STIX]{x1D6FC}}$ , $\unicode[STIX]{x1D6FC}\in \mathbb{R}$ , we investigate the pointwise limit, $\lim _{n\rightarrow +\infty }(1/n)\sum _{k=0}^{n-1}\unicode[STIX]{x1D706}^{-k}\unicode[STIX]{x1D6F7}^{k}(x)$ , for $x\in \mathbb{A}_{\unicode[STIX]{x1D6FC}}$ and $\unicode[STIX]{x1D706}$ a point in the unit circle, and show that there are examples for which the limit does not exist, even in the weak topology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2019.116