Prediction and Interpretability of Glass Transition Temperature of Homopolymers by Data-Augmented Graph Convolutional Neural Networks

Establishing the structure-property relationship by machine learning (ML) models is extremely valuable for accelerating the molecular design of polymers. However, existing ML models for the polymers are subject to scarcity issues of training data and fewer variations of graph structures of molecules...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 15; no. 46; pp. 54006 - 54017
Main Authors Hu, Junyang, Li, Zean, Lin, Jiaping, Zhang, Liangshun
Format Journal Article
LanguageEnglish
Published 22.11.2023
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.3c13698

Cover

Loading…
Abstract Establishing the structure-property relationship by machine learning (ML) models is extremely valuable for accelerating the molecular design of polymers. However, existing ML models for the polymers are subject to scarcity issues of training data and fewer variations of graph structures of molecules. In addition, limited works have explored the interpretability of ML models to infer the latent knowledge in the field of polymer science that could inspire ML-assisted molecular design. In this contribution, we integrate graph convolutional neural networks (GCNs) with data augmentation strategy to predict the glass transition temperature Tg of polymers. It is demonstrated that the data-augmented GCN model outperforms the conventional models and achieves a higher accuracy for the prediction of Tg despite a small amount of training data. Furthermore, taking advantage of molecular graph representations, the data-augmented GCN model has the capability to infer the importance of atoms or substructures from the understanding of Tg, which generally agrees with the experimental findings in the field of polymer science. The inferred knowledge of the GCN model is used to advise on the design of functional polymers with specific Tg. The data-augmented GCN model possesses prominent superiorities in the establishment of structure-property relationship and also provides an efficient way for accelerating the rational design of polymer molecules.Establishing the structure-property relationship by machine learning (ML) models is extremely valuable for accelerating the molecular design of polymers. However, existing ML models for the polymers are subject to scarcity issues of training data and fewer variations of graph structures of molecules. In addition, limited works have explored the interpretability of ML models to infer the latent knowledge in the field of polymer science that could inspire ML-assisted molecular design. In this contribution, we integrate graph convolutional neural networks (GCNs) with data augmentation strategy to predict the glass transition temperature Tg of polymers. It is demonstrated that the data-augmented GCN model outperforms the conventional models and achieves a higher accuracy for the prediction of Tg despite a small amount of training data. Furthermore, taking advantage of molecular graph representations, the data-augmented GCN model has the capability to infer the importance of atoms or substructures from the understanding of Tg, which generally agrees with the experimental findings in the field of polymer science. The inferred knowledge of the GCN model is used to advise on the design of functional polymers with specific Tg. The data-augmented GCN model possesses prominent superiorities in the establishment of structure-property relationship and also provides an efficient way for accelerating the rational design of polymer molecules.
AbstractList Establishing the structure-property relationship by machine learning (ML) models is extremely valuable for accelerating the molecular design of polymers. However, existing ML models for the polymers are subject to scarcity issues of training data and fewer variations of graph structures of molecules. In addition, limited works have explored the interpretability of ML models to infer the latent knowledge in the field of polymer science that could inspire ML-assisted molecular design. In this contribution, we integrate graph convolutional neural networks (GCNs) with data augmentation strategy to predict the glass transition temperature Tg of polymers. It is demonstrated that the data-augmented GCN model outperforms the conventional models and achieves a higher accuracy for the prediction of Tg despite a small amount of training data. Furthermore, taking advantage of molecular graph representations, the data-augmented GCN model has the capability to infer the importance of atoms or substructures from the understanding of Tg, which generally agrees with the experimental findings in the field of polymer science. The inferred knowledge of the GCN model is used to advise on the design of functional polymers with specific Tg. The data-augmented GCN model possesses prominent superiorities in the establishment of structure-property relationship and also provides an efficient way for accelerating the rational design of polymer molecules.Establishing the structure-property relationship by machine learning (ML) models is extremely valuable for accelerating the molecular design of polymers. However, existing ML models for the polymers are subject to scarcity issues of training data and fewer variations of graph structures of molecules. In addition, limited works have explored the interpretability of ML models to infer the latent knowledge in the field of polymer science that could inspire ML-assisted molecular design. In this contribution, we integrate graph convolutional neural networks (GCNs) with data augmentation strategy to predict the glass transition temperature Tg of polymers. It is demonstrated that the data-augmented GCN model outperforms the conventional models and achieves a higher accuracy for the prediction of Tg despite a small amount of training data. Furthermore, taking advantage of molecular graph representations, the data-augmented GCN model has the capability to infer the importance of atoms or substructures from the understanding of Tg, which generally agrees with the experimental findings in the field of polymer science. The inferred knowledge of the GCN model is used to advise on the design of functional polymers with specific Tg. The data-augmented GCN model possesses prominent superiorities in the establishment of structure-property relationship and also provides an efficient way for accelerating the rational design of polymer molecules.
Establishing the structure-property relationship by machine learning (ML) models is extremely valuable for accelerating the molecular design of polymers. However, existing ML models for the polymers are subject to scarcity issues of training data and fewer variations of graph structures of molecules. In addition, limited works have explored the interpretability of ML models to infer the latent knowledge in the field of polymer science that could inspire ML-assisted molecular design. In this contribution, we integrate graph convolutional neural networks (GCNs) with data augmentation strategy to predict the glass transition temperature T g of polymers. It is demonstrated that the data-augmented GCN model outperforms the conventional models and achieves a higher accuracy for the prediction of T g despite a small amount of training data. Furthermore, taking advantage of molecular graph representations, the data-augmented GCN model has the capability to infer the importance of atoms or substructures from the understanding of T g, which generally agrees with the experimental findings in the field of polymer science. The inferred knowledge of the GCN model is used to advise on the design of functional polymers with specific T g. The data-augmented GCN model possesses prominent superiorities in the establishment of structure-property relationship and also provides an efficient way for accelerating the rational design of polymer molecules.
Author Lin, Jiaping
Li, Zean
Hu, Junyang
Zhang, Liangshun
Author_xml – sequence: 1
  givenname: Junyang
  surname: Hu
  fullname: Hu, Junyang
  organization: Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
– sequence: 2
  givenname: Zean
  surname: Li
  fullname: Li, Zean
  organization: Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
– sequence: 3
  givenname: Jiaping
  orcidid: 0000-0001-9633-4483
  surname: Lin
  fullname: Lin, Jiaping
  organization: Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
– sequence: 4
  givenname: Liangshun
  orcidid: 0000-0002-0182-7486
  surname: Zhang
  fullname: Zhang, Liangshun
  organization: Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
BookMark eNqFkTtPxDAQhC0EEs-W2iVNDr-Sc0p0wIGEgOKoo42zAYMTB9sB3Q_gf3PHIQokRDWr3W9GWs0-2e59j4QcczbhTPBTMBE6O5GGy6LUW2SPl0plWuRi-2dWapfsx_jMWCEFy_fIx33AxppkfU-hb-h1nzAMARPU1tm0pL6lcwcx0kWAPtovcIHdgAHSGHB9v_KdH7xbdhgirZf0HBJkZ-Njh6uwhs4DDE905vs378a1Hxy9xTF8SXr34SUekp0WXMSjbz0gD5cXi9lVdnM3v56d3WRGsjxlCqZCYV4YbWreooK8KQ1jAmu12pfIpyjyohCm0VzWjWghF0ww3dRTqFGCPCAnm9wh-NcRY6o6Gw06Bz36MVaSKSa1llP-Lyq0LkrFlRIrVG1QE3yMAdvK2ATrT1MA6yrOqnVB1aag6ruglW3yyzYE20FY_mX4BM_7mgU
CitedBy_id crossref_primary_10_1021_acsapm_4c00036
crossref_primary_10_3390_app142210413
crossref_primary_10_1016_j_commatsci_2024_112863
crossref_primary_10_1016_j_commatsci_2024_113502
crossref_primary_10_1021_acs_iecr_4c02469
crossref_primary_10_1038_s42004_024_01305_0
crossref_primary_10_1016_j_mtcomm_2025_111557
crossref_primary_10_1080_00268976_2024_2413005
crossref_primary_10_1002_adfm_202315177
Cites_doi 10.1021/acs.jcim.2c00997
10.1016/j.polymer.2020.123351
10.1021/acs.jcim.0c00726
10.1021/acsomega.1c03839
10.1021/acs.jcim.2c00875
10.1016/j.patter.2022.100491
10.1063/1.5099132
10.1021/ma00104a036
10.1021/acs.macromol.0c02594
10.1021/ci100050t
10.1021/acs.jcim.1c01031
10.1063/5.0023759
10.1021/acs.jcim.9b00587
10.1039/C7SC02664A
10.1038/s42256-020-00271-1
10.1021/acssuschemeng.2c05985
10.1021/acscentsci.7b00572
10.1016/0079-6700(93)90013-3
10.1021/acsmacrolett.7b00228
10.1038/s41524-019-0221-0
10.1021/acscentsci.2c01123
10.1016/0032-3861(60)90065-3
10.1002/pol.1971.150090705
10.1021/acs.jpcc.8b02913
10.1038/s42256-020-0160-y
10.1021/acsomega.2c04649
10.1038/s41467-020-19266-y
10.1038/s41467-023-39868-6
10.1126/science.aat2663
10.1088/2632-2153/ac9c84
10.1063/1.1744141
10.1038/s41467-020-14656-8
10.1016/j.progpolymsci.2003.09.002
10.1021/acspolymersau.2c00009
10.1109/EIDWT.2011.13
10.1021/acscentsci.9b00476
10.1021/jo301998g
10.1021/acs.jcim.1c00537
10.1126/sciadv.abn9545
10.1186/s13321-019-0393-0
10.1002/pol.1951.120070406
10.1021/acs.iecr.2c01302
10.1021/acs.jcim.0c01489
10.1021/acsomega.0c04499
10.1038/s42256-022-00447-x
10.1016/j.patter.2022.100588
10.1109/ICIEM48762.2020.9160048
10.1038/s42256-020-00236-4
10.1039/D2SC02839E
10.1021/acs.jcim.9b00237
10.1038/s43246-022-00315-6
10.1063/1.5019779
10.1109/CCNS50731.2020.00049
10.1016/j.polymer.2020.122341
10.1021/jacs.2c13467
10.1021/acspolymersau.1c00050
10.1038/s41524-023-01034-3
10.1016/j.polymer.2020.122786
10.1016/j.patter.2021.100225
10.1021/acs.macromol.1c00135
10.1021/jacs.0c09105
10.1021/acs.jpcb.1c05264
10.1002/(SICI)1099-1581(199803)9:3<169::AID-PAT740>3.0.CO;2-Z
10.1002/pen.760161103
10.1021/acs.jmedchem.9b00959
10.1021/acsami.1c20947
10.1021/acs.jcim.9b00358
10.1016/j.patter.2021.100238
10.1016/j.commatsci.2019.109155
10.3390/polym13111898
ContentType Journal Article
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1021/acsami.3c13698
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 54017
ExternalDocumentID 10_1021_acsami_3c13698
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CITATION
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
7X8
7S9
L.6
ID FETCH-LOGICAL-c305t-4a724e56c8cb1fe4a5d9c002eb424e9e17e25662cd813bd2fa520208db7abe3a3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Wed Jul 02 04:48:39 EDT 2025
Fri Jul 11 12:35:48 EDT 2025
Thu Apr 24 22:59:01 EDT 2025
Tue Jul 01 03:31:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c305t-4a724e56c8cb1fe4a5d9c002eb424e9e17e25662cd813bd2fa520208db7abe3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9633-4483
0000-0002-0182-7486
PQID 2886941442
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_3040388371
proquest_miscellaneous_2886941442
crossref_citationtrail_10_1021_acsami_3c13698
crossref_primary_10_1021_acsami_3c13698
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-22
PublicationDateYYYYMMDD 2023-11-22
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-22
  day: 22
PublicationDecade 2020
PublicationTitle ACS applied materials & interfaces
PublicationYear 2023
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
John W. N. (ref6/cit6) 2017
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
Khosla C. (ref38/cit38) 2020
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
Brandrup J. (ref70/cit70) 1999
Mark J. E. (ref51/cit51) 2008
ref49/cit49
ref13/cit13
Gulrajani I. (ref77/cit77) 2017
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref64/cit64
ref78/cit78
ref54/cit54
ref36/cit36
ref18/cit18
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
Liu P. (ref39/cit39) 2020
ref72/cit72
ref76/cit76
ref32/cit32
ref14/cit14
ref57/cit57
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
Wypych G. (ref50/cit50) 2012
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref53/cit53
  doi: 10.1021/acs.jcim.2c00997
– ident: ref43/cit43
  doi: 10.1016/j.polymer.2020.123351
– ident: ref60/cit60
  doi: 10.1021/acs.jcim.0c00726
– start-page: 5769
  year: 2017
  ident: ref77/cit77
  publication-title: Proc. 31st Int. Conf. Neural Inf. Proc. Syst.
– ident: ref30/cit30
  doi: 10.1021/acsomega.1c03839
– ident: ref32/cit32
  doi: 10.1021/acs.jcim.2c00875
– ident: ref55/cit55
  doi: 10.1016/j.patter.2022.100491
– ident: ref63/cit63
  doi: 10.1063/1.5099132
– ident: ref10/cit10
  doi: 10.1021/ma00104a036
– ident: ref19/cit19
  doi: 10.1021/acs.macromol.0c02594
– ident: ref24/cit24
  doi: 10.1021/ci100050t
– ident: ref62/cit62
  doi: 10.1021/acs.jcim.1c01031
– ident: ref12/cit12
  doi: 10.1063/5.0023759
– ident: ref37/cit37
  doi: 10.1021/acs.jcim.9b00587
– ident: ref58/cit58
– ident: ref35/cit35
  doi: 10.1039/C7SC02664A
– volume-title: Physical Properties of Polymers Handbook
  year: 2008
  ident: ref51/cit51
– ident: ref79/cit79
  doi: 10.1038/s42256-020-00271-1
– ident: ref47/cit47
  doi: 10.1021/acssuschemeng.2c05985
– ident: ref73/cit73
  doi: 10.1021/acscentsci.7b00572
– ident: ref2/cit2
  doi: 10.1016/0079-6700(93)90013-3
– ident: ref40/cit40
– ident: ref11/cit11
  doi: 10.1021/acsmacrolett.7b00228
– volume-title: Polymer Handbook
  year: 1999
  ident: ref70/cit70
– ident: ref7/cit7
  doi: 10.1038/s41524-019-0221-0
– ident: ref14/cit14
  doi: 10.1021/acscentsci.2c01123
– ident: ref66/cit66
  doi: 10.1016/0032-3861(60)90065-3
– ident: ref67/cit67
  doi: 10.1002/pol.1971.150090705
– ident: ref15/cit15
  doi: 10.1021/acs.jpcc.8b02913
– ident: ref57/cit57
  doi: 10.1038/s42256-020-0160-y
– volume-title: The Chemistry of Polymers
  year: 2017
  ident: ref6/cit6
– ident: ref31/cit31
  doi: 10.1021/acsomega.2c04649
– ident: ref42/cit42
  doi: 10.1038/s41467-020-19266-y
– ident: ref61/cit61
  doi: 10.1038/s41467-023-39868-6
– ident: ref72/cit72
  doi: 10.1126/science.aat2663
– ident: ref41/cit41
  doi: 10.1088/2632-2153/ac9c84
– ident: ref64/cit64
  doi: 10.1063/1.1744141
– ident: ref4/cit4
  doi: 10.1038/s41467-020-14656-8
– ident: ref69/cit69
  doi: 10.1016/j.progpolymsci.2003.09.002
– ident: ref23/cit23
  doi: 10.1021/acspolymersau.2c00009
– ident: ref49/cit49
  doi: 10.1109/EIDWT.2011.13
– ident: ref22/cit22
  doi: 10.1021/acscentsci.9b00476
– ident: ref68/cit68
  doi: 10.1021/jo301998g
– ident: ref74/cit74
  doi: 10.1021/acs.jcim.1c00537
– ident: ref48/cit48
  doi: 10.1126/sciadv.abn9545
– ident: ref56/cit56
  doi: 10.1186/s13321-019-0393-0
– ident: ref65/cit65
  doi: 10.1002/pol.1951.120070406
– ident: ref33/cit33
  doi: 10.1021/acs.iecr.2c01302
– ident: ref54/cit54
  doi: 10.1021/acs.jcim.0c01489
– ident: ref52/cit52
  doi: 10.1021/acsomega.0c04499
– ident: ref71/cit71
  doi: 10.1038/s42256-022-00447-x
– ident: ref78/cit78
  doi: 10.1016/j.patter.2022.100588
– start-page: 79
  year: 2020
  ident: ref38/cit38
  publication-title: Proceedings of the 2020 International Conference on Intelligent Engineering and Management (ICIEM)
  doi: 10.1109/ICIEM48762.2020.9160048
– ident: ref45/cit45
  doi: 10.1038/s42256-020-00236-4
– ident: ref29/cit29
  doi: 10.1039/D2SC02839E
– ident: ref36/cit36
  doi: 10.1021/acs.jcim.9b00237
– ident: ref46/cit46
– ident: ref75/cit75
  doi: 10.1038/s43246-022-00315-6
– ident: ref26/cit26
  doi: 10.1063/1.5019779
– start-page: 191
  year: 2020
  ident: ref39/cit39
  publication-title: 2020 International Conference on Computer Communication and Network Security (CCNS)
  doi: 10.1109/CCNS50731.2020.00049
– ident: ref28/cit28
– ident: ref17/cit17
  doi: 10.1016/j.polymer.2020.122341
– ident: ref76/cit76
  doi: 10.1021/jacs.2c13467
– ident: ref25/cit25
  doi: 10.1021/acspolymersau.1c00050
– ident: ref34/cit34
  doi: 10.1038/s41524-023-01034-3
– volume-title: Handbook of Polymer
  year: 2012
  ident: ref50/cit50
– ident: ref18/cit18
  doi: 10.1016/j.polymer.2020.122786
– ident: ref20/cit20
  doi: 10.1016/j.patter.2021.100225
– ident: ref5/cit5
  doi: 10.1021/acs.macromol.1c00135
– ident: ref8/cit8
  doi: 10.1021/jacs.0c09105
– ident: ref59/cit59
  doi: 10.1021/acs.jpcb.1c05264
– ident: ref3/cit3
  doi: 10.1002/(SICI)1099-1581(199803)9:3<169::AID-PAT740>3.0.CO;2-Z
– ident: ref1/cit1
  doi: 10.1002/pen.760161103
– ident: ref27/cit27
  doi: 10.1021/acs.jmedchem.9b00959
– ident: ref44/cit44
  doi: 10.1021/acsami.1c20947
– ident: ref13/cit13
  doi: 10.1021/acs.jcim.9b00358
– ident: ref16/cit16
  doi: 10.1016/j.patter.2021.100238
– ident: ref9/cit9
  doi: 10.1016/j.commatsci.2019.109155
– ident: ref21/cit21
  doi: 10.3390/polym13111898
SSID ssj0063205
Score 2.4763505
Snippet Establishing the structure-property relationship by machine learning (ML) models is extremely valuable for accelerating the molecular design of polymers....
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 54006
SubjectTerms glass transition temperature
polymers
prediction
structure-activity relationships
Title Prediction and Interpretability of Glass Transition Temperature of Homopolymers by Data-Augmented Graph Convolutional Neural Networks
URI https://www.proquest.com/docview/2886941442
https://www.proquest.com/docview/3040388371
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7iSQ--xTcRBE9R8-hjj8vqugiKoIK3klc9qK3sdoX17v92Ju36WhY9FZq0DZl0vklm5htCDkxuwQqwJ8yCgJni3jEDuMF0IoXV1kEz5g5fXsW9O3VxH91_nXf89uALfqztAEvhSMtl3ApZvYlCkvx252ascmMpQqwibMgVSwGwxuyME4__RJ-fyjcgSnexpjcaBCJCDCR5PBpW5si-TdI0_jnYJbLQmJW0Xa-DZTLjixUy_41scJW8X_fRKYOCoLpw9CvcMMTHjmiZ03O0pWnArxDKRW89mNU17TK298pnLKowwsNuakb0VFeatYcPgdnT0XNkv6adsnhtFjQMCdk_wiWEmw_WyF337LbTY00RBmZBFVRM6UQoH8U2tYbnXunItSyoUW8U3G95nniwmmJhXcqlcSLXkcDCn84k2nip5TqZLcrCbxDqHDe5kYnyOWAnoORJ4uHtceJib6Mo3SRsLJzMNgzlWCjjKQuecsGzenqzZno3yeFn_5eam2Nqz_2xrDP4fdAnogtfDgeZSFNM5VVKTO8jQdHJFHbyfOvfX9wmc1iYHrMWhdghs1V_6HfBfKnMXli6H9DG8OU
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+Interpretability+of+Glass+Transition+Temperature+of+Homopolymers+by+Data-Augmented+Graph+Convolutional+Neural+Networks&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Hu%2C+Junyang&rft.au=Li%2C+Zean&rft.au=Lin%2C+Jiaping&rft.au=Zhang%2C+Liangshun&rft.date=2023-11-22&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=15&rft.issue=46&rft.spage=54006&rft.epage=54017&rft_id=info:doi/10.1021%2Facsami.3c13698&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_3c13698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon