Prediction and Interpretability of Glass Transition Temperature of Homopolymers by Data-Augmented Graph Convolutional Neural Networks
Establishing the structure-property relationship by machine learning (ML) models is extremely valuable for accelerating the molecular design of polymers. However, existing ML models for the polymers are subject to scarcity issues of training data and fewer variations of graph structures of molecules...
Saved in:
Published in | ACS applied materials & interfaces Vol. 15; no. 46; pp. 54006 - 54017 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
22.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-8244 1944-8252 1944-8252 |
DOI | 10.1021/acsami.3c13698 |
Cover
Loading…
Abstract | Establishing the structure-property relationship by machine learning (ML) models is extremely valuable for accelerating the molecular design of polymers. However, existing ML models for the polymers are subject to scarcity issues of training data and fewer variations of graph structures of molecules. In addition, limited works have explored the interpretability of ML models to infer the latent knowledge in the field of polymer science that could inspire ML-assisted molecular design. In this contribution, we integrate graph convolutional neural networks (GCNs) with data augmentation strategy to predict the glass transition temperature Tg of polymers. It is demonstrated that the data-augmented GCN model outperforms the conventional models and achieves a higher accuracy for the prediction of Tg despite a small amount of training data. Furthermore, taking advantage of molecular graph representations, the data-augmented GCN model has the capability to infer the importance of atoms or substructures from the understanding of Tg, which generally agrees with the experimental findings in the field of polymer science. The inferred knowledge of the GCN model is used to advise on the design of functional polymers with specific Tg. The data-augmented GCN model possesses prominent superiorities in the establishment of structure-property relationship and also provides an efficient way for accelerating the rational design of polymer molecules.Establishing the structure-property relationship by machine learning (ML) models is extremely valuable for accelerating the molecular design of polymers. However, existing ML models for the polymers are subject to scarcity issues of training data and fewer variations of graph structures of molecules. In addition, limited works have explored the interpretability of ML models to infer the latent knowledge in the field of polymer science that could inspire ML-assisted molecular design. In this contribution, we integrate graph convolutional neural networks (GCNs) with data augmentation strategy to predict the glass transition temperature Tg of polymers. It is demonstrated that the data-augmented GCN model outperforms the conventional models and achieves a higher accuracy for the prediction of Tg despite a small amount of training data. Furthermore, taking advantage of molecular graph representations, the data-augmented GCN model has the capability to infer the importance of atoms or substructures from the understanding of Tg, which generally agrees with the experimental findings in the field of polymer science. The inferred knowledge of the GCN model is used to advise on the design of functional polymers with specific Tg. The data-augmented GCN model possesses prominent superiorities in the establishment of structure-property relationship and also provides an efficient way for accelerating the rational design of polymer molecules. |
---|---|
AbstractList | Establishing the structure-property relationship by machine learning (ML) models is extremely valuable for accelerating the molecular design of polymers. However, existing ML models for the polymers are subject to scarcity issues of training data and fewer variations of graph structures of molecules. In addition, limited works have explored the interpretability of ML models to infer the latent knowledge in the field of polymer science that could inspire ML-assisted molecular design. In this contribution, we integrate graph convolutional neural networks (GCNs) with data augmentation strategy to predict the glass transition temperature Tg of polymers. It is demonstrated that the data-augmented GCN model outperforms the conventional models and achieves a higher accuracy for the prediction of Tg despite a small amount of training data. Furthermore, taking advantage of molecular graph representations, the data-augmented GCN model has the capability to infer the importance of atoms or substructures from the understanding of Tg, which generally agrees with the experimental findings in the field of polymer science. The inferred knowledge of the GCN model is used to advise on the design of functional polymers with specific Tg. The data-augmented GCN model possesses prominent superiorities in the establishment of structure-property relationship and also provides an efficient way for accelerating the rational design of polymer molecules.Establishing the structure-property relationship by machine learning (ML) models is extremely valuable for accelerating the molecular design of polymers. However, existing ML models for the polymers are subject to scarcity issues of training data and fewer variations of graph structures of molecules. In addition, limited works have explored the interpretability of ML models to infer the latent knowledge in the field of polymer science that could inspire ML-assisted molecular design. In this contribution, we integrate graph convolutional neural networks (GCNs) with data augmentation strategy to predict the glass transition temperature Tg of polymers. It is demonstrated that the data-augmented GCN model outperforms the conventional models and achieves a higher accuracy for the prediction of Tg despite a small amount of training data. Furthermore, taking advantage of molecular graph representations, the data-augmented GCN model has the capability to infer the importance of atoms or substructures from the understanding of Tg, which generally agrees with the experimental findings in the field of polymer science. The inferred knowledge of the GCN model is used to advise on the design of functional polymers with specific Tg. The data-augmented GCN model possesses prominent superiorities in the establishment of structure-property relationship and also provides an efficient way for accelerating the rational design of polymer molecules. Establishing the structure-property relationship by machine learning (ML) models is extremely valuable for accelerating the molecular design of polymers. However, existing ML models for the polymers are subject to scarcity issues of training data and fewer variations of graph structures of molecules. In addition, limited works have explored the interpretability of ML models to infer the latent knowledge in the field of polymer science that could inspire ML-assisted molecular design. In this contribution, we integrate graph convolutional neural networks (GCNs) with data augmentation strategy to predict the glass transition temperature T g of polymers. It is demonstrated that the data-augmented GCN model outperforms the conventional models and achieves a higher accuracy for the prediction of T g despite a small amount of training data. Furthermore, taking advantage of molecular graph representations, the data-augmented GCN model has the capability to infer the importance of atoms or substructures from the understanding of T g, which generally agrees with the experimental findings in the field of polymer science. The inferred knowledge of the GCN model is used to advise on the design of functional polymers with specific T g. The data-augmented GCN model possesses prominent superiorities in the establishment of structure-property relationship and also provides an efficient way for accelerating the rational design of polymer molecules. |
Author | Lin, Jiaping Li, Zean Hu, Junyang Zhang, Liangshun |
Author_xml | – sequence: 1 givenname: Junyang surname: Hu fullname: Hu, Junyang organization: Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China – sequence: 2 givenname: Zean surname: Li fullname: Li, Zean organization: Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China – sequence: 3 givenname: Jiaping orcidid: 0000-0001-9633-4483 surname: Lin fullname: Lin, Jiaping organization: Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China – sequence: 4 givenname: Liangshun orcidid: 0000-0002-0182-7486 surname: Zhang fullname: Zhang, Liangshun organization: Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China |
BookMark | eNqFkTtPxDAQhC0EEs-W2iVNDr-Sc0p0wIGEgOKoo42zAYMTB9sB3Q_gf3PHIQokRDWr3W9GWs0-2e59j4QcczbhTPBTMBE6O5GGy6LUW2SPl0plWuRi-2dWapfsx_jMWCEFy_fIx33AxppkfU-hb-h1nzAMARPU1tm0pL6lcwcx0kWAPtovcIHdgAHSGHB9v_KdH7xbdhgirZf0HBJkZ-Njh6uwhs4DDE905vs378a1Hxy9xTF8SXr34SUekp0WXMSjbz0gD5cXi9lVdnM3v56d3WRGsjxlCqZCYV4YbWreooK8KQ1jAmu12pfIpyjyohCm0VzWjWghF0ww3dRTqFGCPCAnm9wh-NcRY6o6Gw06Bz36MVaSKSa1llP-Lyq0LkrFlRIrVG1QE3yMAdvK2ATrT1MA6yrOqnVB1aag6ruglW3yyzYE20FY_mX4BM_7mgU |
CitedBy_id | crossref_primary_10_1021_acsapm_4c00036 crossref_primary_10_3390_app142210413 crossref_primary_10_1016_j_commatsci_2024_112863 crossref_primary_10_1016_j_commatsci_2024_113502 crossref_primary_10_1021_acs_iecr_4c02469 crossref_primary_10_1038_s42004_024_01305_0 crossref_primary_10_1016_j_mtcomm_2025_111557 crossref_primary_10_1080_00268976_2024_2413005 crossref_primary_10_1002_adfm_202315177 |
Cites_doi | 10.1021/acs.jcim.2c00997 10.1016/j.polymer.2020.123351 10.1021/acs.jcim.0c00726 10.1021/acsomega.1c03839 10.1021/acs.jcim.2c00875 10.1016/j.patter.2022.100491 10.1063/1.5099132 10.1021/ma00104a036 10.1021/acs.macromol.0c02594 10.1021/ci100050t 10.1021/acs.jcim.1c01031 10.1063/5.0023759 10.1021/acs.jcim.9b00587 10.1039/C7SC02664A 10.1038/s42256-020-00271-1 10.1021/acssuschemeng.2c05985 10.1021/acscentsci.7b00572 10.1016/0079-6700(93)90013-3 10.1021/acsmacrolett.7b00228 10.1038/s41524-019-0221-0 10.1021/acscentsci.2c01123 10.1016/0032-3861(60)90065-3 10.1002/pol.1971.150090705 10.1021/acs.jpcc.8b02913 10.1038/s42256-020-0160-y 10.1021/acsomega.2c04649 10.1038/s41467-020-19266-y 10.1038/s41467-023-39868-6 10.1126/science.aat2663 10.1088/2632-2153/ac9c84 10.1063/1.1744141 10.1038/s41467-020-14656-8 10.1016/j.progpolymsci.2003.09.002 10.1021/acspolymersau.2c00009 10.1109/EIDWT.2011.13 10.1021/acscentsci.9b00476 10.1021/jo301998g 10.1021/acs.jcim.1c00537 10.1126/sciadv.abn9545 10.1186/s13321-019-0393-0 10.1002/pol.1951.120070406 10.1021/acs.iecr.2c01302 10.1021/acs.jcim.0c01489 10.1021/acsomega.0c04499 10.1038/s42256-022-00447-x 10.1016/j.patter.2022.100588 10.1109/ICIEM48762.2020.9160048 10.1038/s42256-020-00236-4 10.1039/D2SC02839E 10.1021/acs.jcim.9b00237 10.1038/s43246-022-00315-6 10.1063/1.5019779 10.1109/CCNS50731.2020.00049 10.1016/j.polymer.2020.122341 10.1021/jacs.2c13467 10.1021/acspolymersau.1c00050 10.1038/s41524-023-01034-3 10.1016/j.polymer.2020.122786 10.1016/j.patter.2021.100225 10.1021/acs.macromol.1c00135 10.1021/jacs.0c09105 10.1021/acs.jpcb.1c05264 10.1002/(SICI)1099-1581(199803)9:3<169::AID-PAT740>3.0.CO;2-Z 10.1002/pen.760161103 10.1021/acs.jmedchem.9b00959 10.1021/acsami.1c20947 10.1021/acs.jcim.9b00358 10.1016/j.patter.2021.100238 10.1016/j.commatsci.2019.109155 10.3390/polym13111898 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1021/acsami.3c13698 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 54017 |
ExternalDocumentID | 10_1021_acsami_3c13698 |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI AAHBH AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c305t-4a724e56c8cb1fe4a5d9c002eb424e9e17e25662cd813bd2fa520208db7abe3a3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Wed Jul 02 04:48:39 EDT 2025 Fri Jul 11 12:35:48 EDT 2025 Thu Apr 24 22:59:01 EDT 2025 Tue Jul 01 03:31:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c305t-4a724e56c8cb1fe4a5d9c002eb424e9e17e25662cd813bd2fa520208db7abe3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9633-4483 0000-0002-0182-7486 |
PQID | 2886941442 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3040388371 proquest_miscellaneous_2886941442 crossref_citationtrail_10_1021_acsami_3c13698 crossref_primary_10_1021_acsami_3c13698 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-22 |
PublicationDateYYYYMMDD | 2023-11-22 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied materials & interfaces |
PublicationYear | 2023 |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 John W. N. (ref6/cit6) 2017 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 Khosla C. (ref38/cit38) 2020 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 Brandrup J. (ref70/cit70) 1999 Mark J. E. (ref51/cit51) 2008 ref49/cit49 ref13/cit13 Gulrajani I. (ref77/cit77) 2017 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref64/cit64 ref78/cit78 ref54/cit54 ref36/cit36 ref18/cit18 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 Liu P. (ref39/cit39) 2020 ref72/cit72 ref76/cit76 ref32/cit32 ref14/cit14 ref57/cit57 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 Wypych G. (ref50/cit50) 2012 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref53/cit53 doi: 10.1021/acs.jcim.2c00997 – ident: ref43/cit43 doi: 10.1016/j.polymer.2020.123351 – ident: ref60/cit60 doi: 10.1021/acs.jcim.0c00726 – start-page: 5769 year: 2017 ident: ref77/cit77 publication-title: Proc. 31st Int. Conf. Neural Inf. Proc. Syst. – ident: ref30/cit30 doi: 10.1021/acsomega.1c03839 – ident: ref32/cit32 doi: 10.1021/acs.jcim.2c00875 – ident: ref55/cit55 doi: 10.1016/j.patter.2022.100491 – ident: ref63/cit63 doi: 10.1063/1.5099132 – ident: ref10/cit10 doi: 10.1021/ma00104a036 – ident: ref19/cit19 doi: 10.1021/acs.macromol.0c02594 – ident: ref24/cit24 doi: 10.1021/ci100050t – ident: ref62/cit62 doi: 10.1021/acs.jcim.1c01031 – ident: ref12/cit12 doi: 10.1063/5.0023759 – ident: ref37/cit37 doi: 10.1021/acs.jcim.9b00587 – ident: ref58/cit58 – ident: ref35/cit35 doi: 10.1039/C7SC02664A – volume-title: Physical Properties of Polymers Handbook year: 2008 ident: ref51/cit51 – ident: ref79/cit79 doi: 10.1038/s42256-020-00271-1 – ident: ref47/cit47 doi: 10.1021/acssuschemeng.2c05985 – ident: ref73/cit73 doi: 10.1021/acscentsci.7b00572 – ident: ref2/cit2 doi: 10.1016/0079-6700(93)90013-3 – ident: ref40/cit40 – ident: ref11/cit11 doi: 10.1021/acsmacrolett.7b00228 – volume-title: Polymer Handbook year: 1999 ident: ref70/cit70 – ident: ref7/cit7 doi: 10.1038/s41524-019-0221-0 – ident: ref14/cit14 doi: 10.1021/acscentsci.2c01123 – ident: ref66/cit66 doi: 10.1016/0032-3861(60)90065-3 – ident: ref67/cit67 doi: 10.1002/pol.1971.150090705 – ident: ref15/cit15 doi: 10.1021/acs.jpcc.8b02913 – ident: ref57/cit57 doi: 10.1038/s42256-020-0160-y – volume-title: The Chemistry of Polymers year: 2017 ident: ref6/cit6 – ident: ref31/cit31 doi: 10.1021/acsomega.2c04649 – ident: ref42/cit42 doi: 10.1038/s41467-020-19266-y – ident: ref61/cit61 doi: 10.1038/s41467-023-39868-6 – ident: ref72/cit72 doi: 10.1126/science.aat2663 – ident: ref41/cit41 doi: 10.1088/2632-2153/ac9c84 – ident: ref64/cit64 doi: 10.1063/1.1744141 – ident: ref4/cit4 doi: 10.1038/s41467-020-14656-8 – ident: ref69/cit69 doi: 10.1016/j.progpolymsci.2003.09.002 – ident: ref23/cit23 doi: 10.1021/acspolymersau.2c00009 – ident: ref49/cit49 doi: 10.1109/EIDWT.2011.13 – ident: ref22/cit22 doi: 10.1021/acscentsci.9b00476 – ident: ref68/cit68 doi: 10.1021/jo301998g – ident: ref74/cit74 doi: 10.1021/acs.jcim.1c00537 – ident: ref48/cit48 doi: 10.1126/sciadv.abn9545 – ident: ref56/cit56 doi: 10.1186/s13321-019-0393-0 – ident: ref65/cit65 doi: 10.1002/pol.1951.120070406 – ident: ref33/cit33 doi: 10.1021/acs.iecr.2c01302 – ident: ref54/cit54 doi: 10.1021/acs.jcim.0c01489 – ident: ref52/cit52 doi: 10.1021/acsomega.0c04499 – ident: ref71/cit71 doi: 10.1038/s42256-022-00447-x – ident: ref78/cit78 doi: 10.1016/j.patter.2022.100588 – start-page: 79 year: 2020 ident: ref38/cit38 publication-title: Proceedings of the 2020 International Conference on Intelligent Engineering and Management (ICIEM) doi: 10.1109/ICIEM48762.2020.9160048 – ident: ref45/cit45 doi: 10.1038/s42256-020-00236-4 – ident: ref29/cit29 doi: 10.1039/D2SC02839E – ident: ref36/cit36 doi: 10.1021/acs.jcim.9b00237 – ident: ref46/cit46 – ident: ref75/cit75 doi: 10.1038/s43246-022-00315-6 – ident: ref26/cit26 doi: 10.1063/1.5019779 – start-page: 191 year: 2020 ident: ref39/cit39 publication-title: 2020 International Conference on Computer Communication and Network Security (CCNS) doi: 10.1109/CCNS50731.2020.00049 – ident: ref28/cit28 – ident: ref17/cit17 doi: 10.1016/j.polymer.2020.122341 – ident: ref76/cit76 doi: 10.1021/jacs.2c13467 – ident: ref25/cit25 doi: 10.1021/acspolymersau.1c00050 – ident: ref34/cit34 doi: 10.1038/s41524-023-01034-3 – volume-title: Handbook of Polymer year: 2012 ident: ref50/cit50 – ident: ref18/cit18 doi: 10.1016/j.polymer.2020.122786 – ident: ref20/cit20 doi: 10.1016/j.patter.2021.100225 – ident: ref5/cit5 doi: 10.1021/acs.macromol.1c00135 – ident: ref8/cit8 doi: 10.1021/jacs.0c09105 – ident: ref59/cit59 doi: 10.1021/acs.jpcb.1c05264 – ident: ref3/cit3 doi: 10.1002/(SICI)1099-1581(199803)9:3<169::AID-PAT740>3.0.CO;2-Z – ident: ref1/cit1 doi: 10.1002/pen.760161103 – ident: ref27/cit27 doi: 10.1021/acs.jmedchem.9b00959 – ident: ref44/cit44 doi: 10.1021/acsami.1c20947 – ident: ref13/cit13 doi: 10.1021/acs.jcim.9b00358 – ident: ref16/cit16 doi: 10.1016/j.patter.2021.100238 – ident: ref9/cit9 doi: 10.1016/j.commatsci.2019.109155 – ident: ref21/cit21 doi: 10.3390/polym13111898 |
SSID | ssj0063205 |
Score | 2.4763505 |
Snippet | Establishing the structure-property relationship by machine learning (ML) models is extremely valuable for accelerating the molecular design of polymers.... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 54006 |
SubjectTerms | glass transition temperature polymers prediction structure-activity relationships |
Title | Prediction and Interpretability of Glass Transition Temperature of Homopolymers by Data-Augmented Graph Convolutional Neural Networks |
URI | https://www.proquest.com/docview/2886941442 https://www.proquest.com/docview/3040388371 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7iSQ--xTcRBE9R8-hjj8vqugiKoIK3klc9qK3sdoX17v92Ju36WhY9FZq0DZl0vklm5htCDkxuwQqwJ8yCgJni3jEDuMF0IoXV1kEz5g5fXsW9O3VxH91_nXf89uALfqztAEvhSMtl3ApZvYlCkvx252ascmMpQqwibMgVSwGwxuyME4__RJ-fyjcgSnexpjcaBCJCDCR5PBpW5si-TdI0_jnYJbLQmJW0Xa-DZTLjixUy_41scJW8X_fRKYOCoLpw9CvcMMTHjmiZ03O0pWnArxDKRW89mNU17TK298pnLKowwsNuakb0VFeatYcPgdnT0XNkv6adsnhtFjQMCdk_wiWEmw_WyF337LbTY00RBmZBFVRM6UQoH8U2tYbnXunItSyoUW8U3G95nniwmmJhXcqlcSLXkcDCn84k2nip5TqZLcrCbxDqHDe5kYnyOWAnoORJ4uHtceJib6Mo3SRsLJzMNgzlWCjjKQuecsGzenqzZno3yeFn_5eam2Nqz_2xrDP4fdAnogtfDgeZSFNM5VVKTO8jQdHJFHbyfOvfX9wmc1iYHrMWhdghs1V_6HfBfKnMXli6H9DG8OU |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+Interpretability+of+Glass+Transition+Temperature+of+Homopolymers+by+Data-Augmented+Graph+Convolutional+Neural+Networks&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Hu%2C+Junyang&rft.au=Li%2C+Zean&rft.au=Lin%2C+Jiaping&rft.au=Zhang%2C+Liangshun&rft.date=2023-11-22&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=15&rft.issue=46&rft.spage=54006&rft.epage=54017&rft_id=info:doi/10.1021%2Facsami.3c13698&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_3c13698 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |