MicroRNA-1297 participates in the repair of intestinal barrier injury in patients with HIV/AIDS via negative regulation of PLCβ1

To explore the role of the miRNA-1297/phospholipase Cβ1 (PLCβ1) axis in intestinal barrier injury. Abnormally expressed miR-1297 and its target gene PLCβ1 as well as their transcriptome sequencing were confirmed by bioinformatics analysis. Next, the intestinal barrier injury was induced by lipopolys...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular biochemistry Vol. 477; no. 8; pp. 2133 - 2147
Main Authors Bao, Yuxia, Guo, Huiming, Yang, Bin, Chen, Fengrong, Zhang, Zunyue, Gao, Jianyuan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To explore the role of the miRNA-1297/phospholipase Cβ1 (PLCβ1) axis in intestinal barrier injury. Abnormally expressed miR-1297 and its target gene PLCβ1 as well as their transcriptome sequencing were confirmed by bioinformatics analysis. Next, the intestinal barrier injury was induced by lipopolysaccharide (LPS) in the CCCHIE-2 cells. Subsequently, the impacts of miR-1297 and PLCβ1 on the transcriptome were estimated. QRT-PCR and Western blotting were conducted to detect the relative mRNA and protein expressions, respectively. The cell viability and permeability were analyzed by MTT assay and fluorescent yellow detection. miR-1297 was significantly upregulated in patients with human immunodeficiency virus/acquired immunodeficiency syndrome and targeted PLCβ1. Moreover, overexpressed PLCβ1 was mainly enriched in the transforming growth factor-beta signaling pathway, while the knockdown of miR-1297 was focused on the arginine biosynthesis pathway. The overexpression of miR-1297 could reduce the PLCβ1 expression and inhibit the viability of CCCHIE-2 cells injured by LPS, while the effect of the downregulation of miR-1297 was on the opposite. Western blotting and cell fluorescence localization experiments revealed that the inhibition of miR-1297 increased the expressions of PLCβ1 and ZO-1. In addition, the upregulation of miR-1297 strengthened the permeability in cells injured by LPS, as did the knockdown of PLCβ1. miR-1297 could restrain the repair of intestinal barrier injury via negatively regulating PLCβ1 and its tight junction downstream protein ZO-1 in CCC-HIE-2 cells injured by LPS, which indicated that PLCβ1 and miR-1297 might be important targets for the repair of intestinal barrier injury.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0300-8177
1573-4919
DOI:10.1007/s11010-022-04426-z