Enhancing flexibility and strength-to-weight ratio of polymeric stents: A new variable-thickness design approach

This paper presents a new design strategy to improve the flexibility and strength-to-weight ratio of polymeric stents. The proposed design introduces a variable-thickness (VT) stent that outperforms conventional polymeric stents with constant thickness (CT). While polymeric stents offer benefits lik...

Full description

Saved in:
Bibliographic Details
Published inJournal of the mechanical behavior of biomedical materials Vol. 150; p. 106262
Main Authors Khatami, Mohamad, Doniavi, Ali, Abazari, Amir Musa, Fotouhi, Mohammad
Format Journal Article
LanguageEnglish
Published Netherlands 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a new design strategy to improve the flexibility and strength-to-weight ratio of polymeric stents. The proposed design introduces a variable-thickness (VT) stent that outperforms conventional polymeric stents with constant thickness (CT). While polymeric stents offer benefits like flexibility and bioabsorption, their mechanical strength is lower compared to metal stents. To address this limitation, thicker polymer stents are used, compromising flexibility and clinical performance. Leveraging advancements in 3D printing, a new design approach is introduced in this study and is manufactured by the Liquid Crystal Display (LCD) 3D printing method and PLA resin. The mechanical performance of CT and VT stents is compared using the Finite Element Method (FEM), validated by experimental tests. Results demonstrate that the VT stent offers significant improvements compared to a CT stent in bending stiffness (over 20%), reduced plastic strain distribution of expansion (over 26%), and increased radial strength (over 10%). This research showcases the potential of the VT stent design to enhance clinical outcomes and patient care.
AbstractList This paper presents a new design strategy to improve the flexibility and strength-to-weight ratio of polymeric stents. The proposed design introduces a variable-thickness (VT) stent that outperforms conventional polymeric stents with constant thickness (CT). While polymeric stents offer benefits like flexibility and bioabsorption, their mechanical strength is lower compared to metal stents. To address this limitation, thicker polymer stents are used, compromising flexibility and clinical performance. Leveraging advancements in 3D printing, a new design approach is introduced in this study and is manufactured by the Liquid Crystal Display (LCD) 3D printing method and PLA resin. The mechanical performance of CT and VT stents is compared using the Finite Element Method (FEM), validated by experimental tests. Results demonstrate that the VT stent offers significant improvements compared to a CT stent in bending stiffness (over 20%), reduced plastic strain distribution of expansion (over 26%), and increased radial strength (over 10%). This research showcases the potential of the VT stent design to enhance clinical outcomes and patient care.This paper presents a new design strategy to improve the flexibility and strength-to-weight ratio of polymeric stents. The proposed design introduces a variable-thickness (VT) stent that outperforms conventional polymeric stents with constant thickness (CT). While polymeric stents offer benefits like flexibility and bioabsorption, their mechanical strength is lower compared to metal stents. To address this limitation, thicker polymer stents are used, compromising flexibility and clinical performance. Leveraging advancements in 3D printing, a new design approach is introduced in this study and is manufactured by the Liquid Crystal Display (LCD) 3D printing method and PLA resin. The mechanical performance of CT and VT stents is compared using the Finite Element Method (FEM), validated by experimental tests. Results demonstrate that the VT stent offers significant improvements compared to a CT stent in bending stiffness (over 20%), reduced plastic strain distribution of expansion (over 26%), and increased radial strength (over 10%). This research showcases the potential of the VT stent design to enhance clinical outcomes and patient care.
This paper presents a new design strategy to improve the flexibility and strength-to-weight ratio of polymeric stents. The proposed design introduces a variable-thickness (VT) stent that outperforms conventional polymeric stents with constant thickness (CT). While polymeric stents offer benefits like flexibility and bioabsorption, their mechanical strength is lower compared to metal stents. To address this limitation, thicker polymer stents are used, compromising flexibility and clinical performance. Leveraging advancements in 3D printing, a new design approach is introduced in this study and is manufactured by the Liquid Crystal Display (LCD) 3D printing method and PLA resin. The mechanical performance of CT and VT stents is compared using the Finite Element Method (FEM), validated by experimental tests. Results demonstrate that the VT stent offers significant improvements compared to a CT stent in bending stiffness (over 20%), reduced plastic strain distribution of expansion (over 26%), and increased radial strength (over 10%). This research showcases the potential of the VT stent design to enhance clinical outcomes and patient care.
ArticleNumber 106262
Author Khatami, Mohamad
Fotouhi, Mohammad
Abazari, Amir Musa
Doniavi, Ali
Author_xml – sequence: 1
  givenname: Mohamad
  surname: Khatami
  fullname: Khatami, Mohamad
  email: m.khatami@urmia.ac.ir
  organization: Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran. Electronic address: m.khatami@urmia.ac.ir
– sequence: 2
  givenname: Ali
  surname: Doniavi
  fullname: Doniavi, Ali
  email: a.doniavi@urmia.ac.ir
  organization: Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran. Electronic address: a.doniavi@urmia.ac.ir
– sequence: 3
  givenname: Amir Musa
  surname: Abazari
  fullname: Abazari, Amir Musa
  email: am.abazari@urmia.ac.ir
  organization: Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran. Electronic address: am.abazari@urmia.ac.ir
– sequence: 4
  givenname: Mohammad
  surname: Fotouhi
  fullname: Fotouhi, Mohammad
  email: M.Fotouhi-1@tudelft.nl
  organization: Department of Materials, Mechanics, Management & Design (3MD), Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands. Electronic address: M.Fotouhi-1@tudelft.nl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38029464$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtPwzAQhC0Eorx-ARLykUuKH4njcEOIl4TEBc6WY28al8QJtkvpvyfQwmlXq5kdzXeM9v3gAaFzSuaUUHG1nC_7uu7njDA-XQQTbA8dUVnKjFBJ9qe9LGgmqKAzdBzjkhBBiJSHaMYlYVUu8iM03vlWe-P8AjcdfLnadS5tsPYWxxTAL1KbpSFbg1u0CQed3ICHBo9Dt-khODOpwKd4jW-whzX-1MHpuoMstc68e4gRW4hu4bEexzBo056ig0Z3Ec528wS93d-93j5mzy8PT7c3z5nhpEgZtbbMS1uIilpouJUUSskAWG2JbAQreG6MyYmupk7Q0KpgZc1rQYSkZVMAP0GX279T7McKYlK9iwa6TnsYVlExWRXlRI7JScq3UhOGGAM0agyu12GjKFE_qNVS_aJWP6jVFvXkutgFrOoe7L_njy3_BhsDfv8
CitedBy_id crossref_primary_10_1007_s12008_024_01944_6
Cites_doi 10.3390/ma11091679
10.1016/j.commatsci.2013.01.031
10.1038/s41598-023-34383-6
10.1016/j.eng.2020.02.013
10.1161/CIRCULATIONAHA.110.003210
10.1016/j.jmatprotec.2006.12.010
10.1016/j.mee.2018.12.007
10.3390/pharmaceutics13091421
10.1007/s10544-006-9024-4
10.1126/sciadv.abf0614
10.1016/j.finel.2009.01.001
10.1016/j.jmbbm.2012.02.013
10.1016/j.mechmat.2021.104092
10.1016/j.matdes.2015.07.051
10.1152/ajpheart.00934.2004
10.1016/j.mpdhp.2017.11.009
10.1016/j.biomaterials.2019.119414
10.1016/j.jcin.2015.09.024
10.1016/j.ijcard.2016.11.258
10.1016/j.jbiomech.2008.01.027
10.1016/j.mattod.2017.07.001
10.1016/j.medengphy.2018.04.017
10.1007/s11043-017-9371-y
10.1140/epjp/s13360-021-01545-2
10.1021/acsami.5b01993
10.1021/acsbiomaterials.9b00303
10.1016/j.matdes.2022.110843
10.1016/j.msec.2014.05.078
10.1016/j.jmbbm.2016.08.033
10.1056/NEJM199408253310801
10.1021/acs.bioconjchem.5b00192
10.1021/am4032295
10.1002/ccd.28545
10.1016/j.actbio.2022.01.045
10.1056/NEJMra043430
10.1016/j.ijcard.2012.09.143
10.1016/j.engfailanal.2022.106267
10.1007/s13239-015-0235-9
10.1016/S0140-6736(07)60853-8
10.1016/j.amjcard.2018.07.040
10.1007/s10439-005-2807-6
10.1038/s41569-018-0124-7
10.1017/jmech.2018.23
10.1142/S0129183121501436
ContentType Journal Article
Copyright Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.jmbbm.2023.106262
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-0180
ExternalDocumentID 10_1016_j_jmbbm_2023_106262
38029464
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CGR
CS3
CUY
CVF
DU5
EBS
ECM
EFJIC
EIF
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
NPM
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AAXKI
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c305t-1dd747d5691def3d81e782ee2bd08f62534ccc40a9600ef19527b3b606817f5e3
ISSN 1751-6161
1878-0180
IngestDate Mon Aug 12 17:02:07 EDT 2024
Thu Sep 12 20:07:07 EDT 2024
Thu May 23 23:29:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Variable-thickness
Flexibility
Stent
3D printing
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c305t-1dd747d5691def3d81e782ee2bd08f62534ccc40a9600ef19527b3b606817f5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4987-203X
PMID 38029464
PQID 2895702328
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2895702328
crossref_primary_10_1016_j_jmbbm_2023_106262
pubmed_primary_38029464
PublicationCentury 2000
PublicationDate 2024-Feb
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of the mechanical behavior of biomedical materials
PublicationTitleAlternate J Mech Behav Biomed Mater
PublicationYear 2024
References Okereke (10.1016/j.jmbbm.2023.106262_bib28) 2021; 163
Roopmani (10.1016/j.jmbbm.2023.106262_bib35) 2019; 5
Wang (10.1016/j.jmbbm.2023.106262_bib47) 2021; 7
Tofail (10.1016/j.jmbbm.2023.106262_bib46) 2018; 21
Park (10.1016/j.jmbbm.2023.106262_bib31) 2007; 9
Prithipaul (10.1016/j.jmbbm.2023.106262_bib32) 2018; 57
Li (10.1016/j.jmbbm.2023.106262_bib23) 2009; 45
Azaouzi (10.1016/j.jmbbm.2023.106262_bib2) 2013; 72
Schwartz (10.1016/j.jmbbm.2023.106262_bib39) 1998; 32
Shen (10.1016/j.jmbbm.2023.106262_bib45) 2019; 35
Guerra (10.1016/j.jmbbm.2023.106262_bib13) 2018; 11
Shen (10.1016/j.jmbbm.2023.106262_bib44) 2021; 33
Chen (10.1016/j.jmbbm.2023.106262_bib6) 2020; 13
Saraf (10.1016/j.jmbbm.2023.106262_bib37) 2018
Shen (10.1016/j.jmbbm.2023.106262_bib42) 2021; 136
Wang (10.1016/j.jmbbm.2023.106262_bib48) 2017; 65
Hansson (10.1016/j.jmbbm.2023.106262_bib14) 2005; 352
Shen (10.1016/j.jmbbm.2023.106262_bib43) 2021; 32
Kolandaivelu (10.1016/j.jmbbm.2023.106262_bib21) 2011; 123
Mori (10.1016/j.jmbbm.2023.106262_bib27) 2005; 33
Wu (10.1016/j.jmbbm.2023.106262_bib50) 2007; 184
Ang (10.1016/j.jmbbm.2023.106262_bib1) 2017; 228
Holzapfel (10.1016/j.jmbbm.2023.106262_bib15) 2005; 289
Serruys (10.1016/j.jmbbm.2023.106262_bib40) 1994; 331
Lipinski (10.1016/j.jmbbm.2023.106262_bib26) 2016; 9
Chen (10.1016/j.jmbbm.2023.106262_bib5) 2019; 221
Iantorno (10.1016/j.jmbbm.2023.106262_bib17) 2018; 122
Rebelo (10.1016/j.jmbbm.2023.106262_bib34) 2015; 86
Schmidt (10.1016/j.jmbbm.2023.106262_bib38) 2009
Foin (10.1016/j.jmbbm.2023.106262_bib10) 2013; 164
Hu (10.1016/j.jmbbm.2023.106262_bib16) 2015; 7
Qiu (10.1016/j.jmbbm.2023.106262_bib33) 2018; 22
Li (10.1016/j.jmbbm.2023.106262_bib25) 2022; 142
Khatami (10.1016/j.jmbbm.2023.106262_bib19) 2024; 40
Erbel (10.1016/j.jmbbm.2023.106262_bib9) 2007; 369
Li (10.1016/j.jmbbm.2023.106262_bib22) 2014; 42
Barkholt (10.1016/j.jmbbm.2023.106262_bib3) 2020; 96
Park (10.1016/j.jmbbm.2023.106262_bib30) 2019; 206
Padilla (10.1016/j.jmbbm.2023.106262_bib29) 2001
Chen (10.1016/j.jmbbm.2023.106262_bib7) 2015; 26
Xu (10.1016/j.jmbbm.2023.106262_bib51) 2021; 13
Grogan (10.1016/j.jmbbm.2023.106262_bib12) 2012; 12
Li (10.1016/j.jmbbm.2023.106262_bib24) 2022; 220
Salavatidezfouli (10.1016/j.jmbbm.2023.106262_bib36) 2023; 13
Yang (10.1016/j.jmbbm.2023.106262_bib52) 2013; 5
Bobel (10.1016/j.jmbbm.2023.106262_bib4) 2015; 6
Donik (10.1016/j.jmbbm.2023.106262_bib8) 2022; 137
Khatami (10.1016/j.jmbbm.2023.106262_bib20) 2023; 29
Gervaso (10.1016/j.jmbbm.2023.106262_bib11) 2008; 41
Shen (10.1016/j.jmbbm.2023.106262_bib41) 2021; 7
Wang (10.1016/j.jmbbm.2023.106262_bib49) 2017; 23
Jinnouchi (10.1016/j.jmbbm.2023.106262_bib18) 2019; 16
References_xml – volume: 11
  year: 2018
  ident: 10.1016/j.jmbbm.2023.106262_bib13
  article-title: 3D-Printed PCL/PLA composite stents: towards a new solution to cardiovascular problems
  publication-title: Materials
  doi: 10.3390/ma11091679
  contributor:
    fullname: Guerra
– volume: 72
  start-page: 54
  year: 2013
  ident: 10.1016/j.jmbbm.2023.106262_bib2
  article-title: Numerical investigations of the structural behavior of a balloon expandable stent design using finite element method
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2013.01.031
  contributor:
    fullname: Azaouzi
– volume: 13
  year: 2020
  ident: 10.1016/j.jmbbm.2023.106262_bib6
  article-title: Flexibility of biodegradable polymer stents with different strut geometries
  publication-title: Materials
  contributor:
    fullname: Chen
– volume: 13
  start-page: 7155
  year: 2023
  ident: 10.1016/j.jmbbm.2023.106262_bib36
  article-title: Investigation of the stent induced deformation on hemodynamic of internal carotid aneurysms by computational fluid dynamics
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-34383-6
  contributor:
    fullname: Salavatidezfouli
– volume: 7
  start-page: 979
  year: 2021
  ident: 10.1016/j.jmbbm.2023.106262_bib47
  article-title: Design, characterization, and 3D printing of cardiovascular stents with zero Poisson's ratio in longitudinal deformation
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.02.013
  contributor:
    fullname: Wang
– volume: 123
  start-page: 1400
  year: 2011
  ident: 10.1016/j.jmbbm.2023.106262_bib21
  article-title: Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.003210
  contributor:
    fullname: Kolandaivelu
– volume: 184
  start-page: 447
  year: 2007
  ident: 10.1016/j.jmbbm.2023.106262_bib50
  article-title: An FEA method to study flexibility of expanded coronary stents
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2006.12.010
  contributor:
    fullname: Wu
– volume: 206
  start-page: 1
  year: 2019
  ident: 10.1016/j.jmbbm.2023.106262_bib30
  article-title: Biodegradable polymer material based smart stent: wireless pressure sensor and 3D printed stent
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2018.12.007
  contributor:
    fullname: Park
– volume: 13
  year: 2021
  ident: 10.1016/j.jmbbm.2023.106262_bib51
  article-title: 3D printed punctal plugs for controlled ocular drug delivery
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13091421
  contributor:
    fullname: Xu
– volume: 9
  start-page: 223
  year: 2007
  ident: 10.1016/j.jmbbm.2023.106262_bib31
  article-title: Polymer particle-based micromolding to fabricate novel microstructures
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-006-9024-4
  contributor:
    fullname: Park
– volume: 7
  year: 2021
  ident: 10.1016/j.jmbbm.2023.106262_bib41
  article-title: PDLLA-Zn-nitrided Fe bioresorbable scaffold with 53-μm-thick metallic struts and tunable multistage biodegradation function
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf0614
  contributor:
    fullname: Shen
– volume: 40
  start-page: 28
  year: 2024
  ident: 10.1016/j.jmbbm.2023.106262_bib19
  article-title: Flexibility and geometric optimization of a new structure for a polymer stent with the finite element method
  publication-title: Sharif J. Mech. Eng.
  contributor:
    fullname: Khatami
– volume: 45
  start-page: 468
  year: 2009
  ident: 10.1016/j.jmbbm.2023.106262_bib23
  article-title: Shape optimization of coronary artery stent based on a parametric model
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2009.01.001
  contributor:
    fullname: Li
– volume: 12
  start-page: 129
  year: 2012
  ident: 10.1016/j.jmbbm.2023.106262_bib12
  article-title: Comparing coronary stent material performance on a common geometric platform through simulated bench testing
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2012.02.013
  contributor:
    fullname: Grogan
– volume: 163
  year: 2021
  ident: 10.1016/j.jmbbm.2023.106262_bib28
  article-title: Development of 3D printable bioresorbable coronary artery stents: a virtual testing approach
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2021.104092
  contributor:
    fullname: Okereke
– year: 2001
  ident: 10.1016/j.jmbbm.2023.106262_bib29
  contributor:
    fullname: Padilla
– volume: 86
  start-page: 237
  year: 2015
  ident: 10.1016/j.jmbbm.2023.106262_bib34
  article-title: Influence of design parameters on the mechanical behavior and porosity of braided fibrous stents
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.07.051
  contributor:
    fullname: Rebelo
– volume: 289
  start-page: H2048
  year: 2005
  ident: 10.1016/j.jmbbm.2023.106262_bib15
  article-title: Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00934.2004
  contributor:
    fullname: Holzapfel
– volume: 23
  start-page: 473
  year: 2017
  ident: 10.1016/j.jmbbm.2023.106262_bib49
  article-title: Pathogenesis of atherosclerosis
  publication-title: Diagn. Histopathol.
  doi: 10.1016/j.mpdhp.2017.11.009
  contributor:
    fullname: Wang
– volume: 221
  year: 2019
  ident: 10.1016/j.jmbbm.2023.106262_bib5
  article-title: In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119414
  contributor:
    fullname: Chen
– volume: 9
  start-page: 12
  year: 2016
  ident: 10.1016/j.jmbbm.2023.106262_bib26
  article-title: Scaffold thrombosis after percutaneous coronary intervention with ABSORB bioresorbable vascular scaffold: a systematic review and meta-analysis
  publication-title: JACC Cardiovasc. Interv.
  doi: 10.1016/j.jcin.2015.09.024
  contributor:
    fullname: Lipinski
– start-page: 136
  year: 2009
  ident: 10.1016/j.jmbbm.2023.106262_bib38
  article-title: Biomechanical aspects of potential stent malapposition at coronary stent implantation
  contributor:
    fullname: Schmidt
– volume: 228
  start-page: 931
  year: 2017
  ident: 10.1016/j.jmbbm.2023.106262_bib1
  article-title: Bioresorbable stents: current and upcoming bioresorbable technologies
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2016.11.258
  contributor:
    fullname: Ang
– volume: 41
  start-page: 1206
  year: 2008
  ident: 10.1016/j.jmbbm.2023.106262_bib11
  article-title: On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.01.027
  contributor:
    fullname: Gervaso
– volume: 33
  year: 2021
  ident: 10.1016/j.jmbbm.2023.106262_bib44
  article-title: Numerical simulation of blood flow effects on rupture of aneurysm in middle cerebral artery
  publication-title: Int. J. Mod. Phys. C
  contributor:
    fullname: Shen
– volume: 21
  start-page: 22
  year: 2018
  ident: 10.1016/j.jmbbm.2023.106262_bib46
  article-title: Additive manufacturing: scientific and technological challenges, market uptake and opportunities
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.07.001
  contributor:
    fullname: Tofail
– volume: 57
  start-page: 11
  year: 2018
  ident: 10.1016/j.jmbbm.2023.106262_bib32
  article-title: Assessment of structural and hemodynamic performance of vascular stents modelled as periodic lattices
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2018.04.017
  contributor:
    fullname: Prithipaul
– volume: 22
  start-page: 273
  year: 2018
  ident: 10.1016/j.jmbbm.2023.106262_bib33
  article-title: A computational study of crimping and expansion of bioresorbable polymeric stents
  publication-title: Mech. Time-Dependent Mater.
  doi: 10.1007/s11043-017-9371-y
  contributor:
    fullname: Qiu
– volume: 136
  start-page: 541
  year: 2021
  ident: 10.1016/j.jmbbm.2023.106262_bib42
  article-title: Computational study of blood flow characteristics on formation of the aneurysm in internal carotid artery
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-021-01545-2
  contributor:
    fullname: Shen
– volume: 7
  start-page: 11695
  year: 2015
  ident: 10.1016/j.jmbbm.2023.106262_bib16
  article-title: Controlled slow-release drug-eluting stents for the prevention of coronary restenosis: recent progress and future prospects
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01993
  contributor:
    fullname: Hu
– volume: 5
  start-page: 2899
  year: 2019
  ident: 10.1016/j.jmbbm.2023.106262_bib35
  article-title: Development of dual drug eluting cardiovascular stent with ultrathin flexible poly(l-lactide-co-caprolactone) coating
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b00303
  contributor:
    fullname: Roopmani
– volume: 220
  year: 2022
  ident: 10.1016/j.jmbbm.2023.106262_bib24
  article-title: Optimizing structural design on biodegradable magnesium alloy vascular stent for reducing strut thickness and raising radial strength
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.110843
  contributor:
    fullname: Li
– start-page: 27
  year: 2018
  ident: 10.1016/j.jmbbm.2023.106262_bib37
  article-title: 2 - fundamentals of bare-metal stents
  contributor:
    fullname: Saraf
– volume: 29
  start-page: 283
  year: 2023
  ident: 10.1016/j.jmbbm.2023.106262_bib20
  article-title: Application of 3D printing in pharmaceutical sciences, and evaluation of administration routes for drug-loaded composites
  publication-title: Pharmaceut. Sci.
  contributor:
    fullname: Khatami
– volume: 42
  start-page: 705
  year: 2014
  ident: 10.1016/j.jmbbm.2023.106262_bib22
  article-title: Finite element analyses for optimization design of biodegradable magnesium alloy stent
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2014.05.078
  contributor:
    fullname: Li
– volume: 65
  start-page: 415
  year: 2017
  ident: 10.1016/j.jmbbm.2023.106262_bib48
  article-title: Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.08.033
  contributor:
    fullname: Wang
– volume: 331
  start-page: 489
  year: 1994
  ident: 10.1016/j.jmbbm.2023.106262_bib40
  article-title: A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199408253310801
  contributor:
    fullname: Serruys
– volume: 26
  start-page: 1277
  year: 2015
  ident: 10.1016/j.jmbbm.2023.106262_bib7
  article-title: Polymer-free drug-eluting stents: an overview of coating strategies and comparison with polymer-coated drug-eluting stents
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.5b00192
  contributor:
    fullname: Chen
– volume: 5
  start-page: 10985
  year: 2013
  ident: 10.1016/j.jmbbm.2023.106262_bib52
  article-title: Thermo-Induced shape-memory PEG-PCL copolymer as a dual-drug-eluting biodegradable stent
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4032295
  contributor:
    fullname: Yang
– volume: 96
  start-page: E674
  year: 2020
  ident: 10.1016/j.jmbbm.2023.106262_bib3
  article-title: Mechanical properties of the drug-eluting bioresorbable magnesium scaffold compared with polymeric scaffolds and a permanent metallic drug-eluting stent
  publication-title: Cathet. Cardiovasc. Interv.
  doi: 10.1002/ccd.28545
  contributor:
    fullname: Barkholt
– volume: 142
  start-page: 402
  year: 2022
  ident: 10.1016/j.jmbbm.2023.106262_bib25
  article-title: A biodegradable magnesium alloy vascular stent structure: design, optimisation and evaluation
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2022.01.045
  contributor:
    fullname: Li
– volume: 352
  start-page: 1685
  year: 2005
  ident: 10.1016/j.jmbbm.2023.106262_bib14
  article-title: Inflammation, atherosclerosis, and coronary artery disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra043430
  contributor:
    fullname: Hansson
– volume: 164
  start-page: 259
  issue: 3
  year: 2013
  ident: 10.1016/j.jmbbm.2023.106262_bib10
  article-title: Stent flexibility versus concertina effect: mechanism of an unpleasant trade-off in stent design and its implications for stent selection in the cath-lab
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2012.09.143
  contributor:
    fullname: Foin
– volume: 32
  start-page: 2087
  year: 1998
  ident: 10.1016/j.jmbbm.2023.106262_bib39
  article-title: Artery size, neointima, and remodeling: time for some standards
  publication-title: J. Am. Coll. Cardiol.
  contributor:
    fullname: Schwartz
– volume: 137
  year: 2022
  ident: 10.1016/j.jmbbm.2023.106262_bib8
  article-title: Finite element analysis of the mechanical performance of a two-layer polymer composite stent structure
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2022.106267
  contributor:
    fullname: Donik
– volume: 6
  start-page: 519
  year: 2015
  ident: 10.1016/j.jmbbm.2023.106262_bib4
  article-title: Computational bench testing to evaluate the short-term mechanical performance of a polymeric stent
  publication-title: Cardiovasc. Eng. Technol.
  doi: 10.1007/s13239-015-0235-9
  contributor:
    fullname: Bobel
– volume: 369
  start-page: 1869
  year: 2007
  ident: 10.1016/j.jmbbm.2023.106262_bib9
  article-title: Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)60853-8
  contributor:
    fullname: Erbel
– volume: 122
  start-page: 1652
  year: 2018
  ident: 10.1016/j.jmbbm.2023.106262_bib17
  article-title: Meta-analysis of the impact of strut thickness on outcomes in patients with drug-eluting stents in a coronary artery
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2018.07.040
  contributor:
    fullname: Iantorno
– volume: 33
  start-page: 733
  year: 2005
  ident: 10.1016/j.jmbbm.2023.106262_bib27
  article-title: Effects of stent structure on stent flexibility measurements
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-005-2807-6
  contributor:
    fullname: Mori
– volume: 16
  start-page: 286
  year: 2019
  ident: 10.1016/j.jmbbm.2023.106262_bib18
  article-title: Fully bioresorbable vascular scaffolds: lessons learned and future directions
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-018-0124-7
  contributor:
    fullname: Jinnouchi
– volume: 35
  start-page: 455
  year: 2019
  ident: 10.1016/j.jmbbm.2023.106262_bib45
  article-title: Bending analysis of stented coronary artery: the interaction between stent and vessel
  publication-title: J. Mech.
  doi: 10.1017/jmech.2018.23
  contributor:
    fullname: Shen
– volume: 32
  year: 2021
  ident: 10.1016/j.jmbbm.2023.106262_bib43
  article-title: Effects of blood flow characteristics on rupture of cerebral aneurysm: computational study
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183121501436
  contributor:
    fullname: Shen
SSID ssj0060088
Score 2.4028265
Snippet This paper presents a new design strategy to improve the flexibility and strength-to-weight ratio of polymeric stents. The proposed design introduces a...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 106262
SubjectTerms Finite Element Analysis
Humans
Polymers
Printing, Three-Dimensional
Prosthesis Design
Stents
Stress, Mechanical
Title Enhancing flexibility and strength-to-weight ratio of polymeric stents: A new variable-thickness design approach
URI https://www.ncbi.nlm.nih.gov/pubmed/38029464
https://www.proquest.com/docview/2895702328/abstract/
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1di9QwFA3jCrI-iN-OX0TwbezQJv1IfRtkl0UYn3Zh30qSpnZH2w67reI--E_8r94kk8xoHVBfytCWDNxzuLm3PfcUoddMhEyRuAqorCptqi0CnlQk0EOTNM0kk8Z2cfkhPTmL358n55PJjx3V0tCLubz-41zJ_6AK5wBXPSX7D8j6ReEE_AZ84QgIw_GvMD5qa22XobWQ2tfS6Fytn5IeAWk_9nXQd8FX8_RzZqA2Aufu8zeroAeEtYzCDKdDeT37Ao2zHqUKtAj-k0mCpVF4eOvxPbWsrl4bpYeIDeZu9l9fsvP95jQUxzYqPsvXvOeN0RMsu5o3vPR1NaQaWMKO4Fxs31Hxa25H4xfNxeVsOVz5XeW467uh3q7lFts80SCxE0HrDclmYaZtfyP7iSefpq1B7SbRQidLbBof7QH2ccRqvmqE0F4DhM7Hd0No142hBWUhyWNrpf6b9ba7dAPdJFme6N5-_t0riKBUZMwZWRnJ4OgfD9Ett8avdc-eZsYUNad30Z0NgnhhqXUPTVR7H93e8ah8gNaeZHiHZBhIhsckw4ZkuKuwJxm2JHuLFxgohscUw5Zi2FHsITo7Pjp9dxJsPtMRSNgs-iAqS-hJyyTNo1JVtGSRgrJTKSLKkFXQX9NYShmHHJrlUFVRnpBMUAGdM4uyKlH0ETpou1Y9QZhwymVMs1AmkD9CKkRGyiwtc5Vy7Us1RW9cEIu1dWMpnExxVZjwFzr8hQ3_FL1ygS4ga-pXYbxV3XBVEAZwwo2ETdFji4Bf0CH2dO-VZ-hwy9vn6KC_HNQLqE178dIw5Cf0SpNI
link.rule.ids 315,786,790,27957,27958
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+flexibility+and+strength-to-weight+ratio+of+polymeric+stents%3A+A+new+variable-thickness+design+approach&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Khatami%2C+Mohamad&rft.au=Doniavi%2C+Ali&rft.au=Abazari%2C+Amir+Musa&rft.au=Fotouhi%2C+Mohammad&rft.date=2024-02-01&rft.eissn=1878-0180&rft.volume=150&rft.spage=106262&rft_id=info:doi/10.1016%2Fj.jmbbm.2023.106262&rft_id=info%3Apmid%2F38029464&rft.externalDocID=38029464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon