Learning Actions from Observations
In the area of imitation learning, one of the important research problems is action representation. There has been a growing interest in expressing actions as a combination of meaningful subparts called action primitives. Action primitives could be thought of as elementary building blocks for action...
Saved in:
Published in | IEEE robotics & automation magazine Vol. 17; no. 2; pp. 30 - 43 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the area of imitation learning, one of the important research problems is action representation. There has been a growing interest in expressing actions as a combination of meaningful subparts called action primitives. Action primitives could be thought of as elementary building blocks for action representation. In this article, we present a complete concept of learning action primitives to recognize and synthesize actions. One of the main novelties in this work is the detection of primitives in a unified framework, which takes into account objects and actions being applied to them. As the first major contribution, we propose an unsupervised learning approach for action primitives that make use of the human movements as well as object state changes. As the second major contribution, we propose using parametric hidden Markov models (PHMMs) for representing the discovered action primitives. PHMMs represent movement trajectories as a function of their desired effect on the object, and we will discuss 1) how these PHMMs can be trained in an unsupervised manner, 2) how they can be used for synthesizing movements to achieve a desired effect, and 3) how they can be used to recognize an action primitive and the effect from an observed acting human. |
---|---|
AbstractList | In the area of imitation learning, one of the important research problems is action representation. There has been a growing interest in expressing actions as a combination of meaningful subparts called action primitives. Action primitives could be thought of as elementary building blocks for action representation. In this article, we present a complete concept of learning action primitives to recognize and synthesize actions. One of the main novelties in this work is the detection of primitives in a unified framework, which takes into account objects and actions being applied to them. As the first major contribution, we propose an unsupervised learning approach for action primitives that make use of the human movements as well as object state changes. As the second major contribution, we propose using parametric hidden Markov models (PHMMs) [1], [2] for representing the discovered action primitives. PHMMs represent movement trajectories as a function of their desired effect on the object, and we will discuss 1) how these PHMMs can be trained in an unsupervised manner, 2) how they can be used for synthesizing movements to achieve a desired effect, and 3) how they can be used to recognize an action primitive and the effect from an observed acting human. In the area of imitation learning, one of the important research problems is action representation. There has been a growing interest in expressing actions as a combination of meaningful subparts called action primitives. Action primitives could be thought of as elementary building blocks for action representation. In this article, we present a complete concept of learning action primitives to recognize and synthesize actions. One of the main novelties in this work is the detection of primitives in a unified framework, which takes into account objects and actions being applied to them. As the first major contribution, we propose an unsupervised learning approach for action primitives that make use of the human movements as well as object state changes. As the second major contribution, we propose using parametric hidden Markov models (PHMMs) for representing the discovered action primitives. PHMMs represent movement trajectories as a function of their desired effect on the object, and we will discuss 1) how these PHMMs can be trained in an unsupervised manner, 2) how they can be used for synthesizing movements to achieve a desired effect, and 3) how they can be used to recognize an action primitive and the effect from an observed acting human. |
Author | Kragic, D. Herzog, D.L. Ude, A. Baby, S. Kruger, V. |
Author_xml | – sequence: 1 givenname: V. surname: Kruger fullname: Kruger, V. email: vok@cvmi.aau.dk organization: Copenhagen Inst. Technol., Aalborg Univ., Copenhagen, Denmark – sequence: 2 givenname: D.L. surname: Herzog fullname: Herzog, D.L. organization: CVMI, CIT, Copenhagen, Denmark – sequence: 3 givenname: S. surname: Baby fullname: Baby, S. organization: Dept. of Math., Indian Inst. of Technol., Madras, Chennai, India – sequence: 4 givenname: A. surname: Ude fullname: Ude, A. organization: Studied Appl. Math., Univ. of Ljubljana, Ljubljana, Slovenia – sequence: 5 givenname: D. surname: Kragic fullname: Kragic, D. |
BackLink | https://lup.lub.lu.se/record/14f9b011-bd19-4553-8608-6e32229405dc$$DView record from Swedish Publication Index |
BookMark | eNpdkc1LxDAQxYMoqKtnD14WPXiqzuSrzXERv2BlQRS8hSSdSmW3XROr-N-bteLBw5BM-L03E94-2-76jhg7QjhHBHNx_zA755A7I7TRuMX2UKmq4Fw8b-c7lFAYI_gu20_pFQBlJao9djInF7u2e5nOwnvbd2naxH41XfhE8cP9vBywncYtEx3-nhP2dH31eHlbzBc3d5ezeREEqFBo5bmXukGN0kiqNRqlqNFGgpFSQNC6MZUzJQenaskDV8pTUF44YcpQiwmbj77pk9aDt-vYrlz8sr1r7XJY5_K5bCKLsjEeEK2v0ViplLCVhspqEpzzPFDVIdudjXbr2L8NlN7tqk2BlkvXUT8kWyqhFaAQmTz9R772Q-zyXy0CLzlq4Jipi5EKsU8pUvO3IILdJGBzAnaTgB0TyIrjUdES0R-tZIUoUXwDN2x_FQ |
CODEN | IRAMEB |
CitedBy_id | crossref_primary_10_1016_j_robot_2011_07_020 crossref_primary_10_1109_TOH_2020_2965449 crossref_primary_10_2200_S00568ED1V01Y201402AIM028 crossref_primary_10_1016_j_robot_2014_02_003 crossref_primary_10_1007_s10514_014_9392_1 crossref_primary_10_1007_s10846_015_0219_x crossref_primary_10_1109_TMECH_2022_3166993 crossref_primary_10_1109_LRA_2020_2977835 crossref_primary_10_1177_0278364918784350 crossref_primary_10_1109_THMS_2015_2493536 crossref_primary_10_1177_0278364917743319 crossref_primary_10_1049_ccs2_12025 crossref_primary_10_1109_TNNLS_2014_2333092 crossref_primary_10_1017_S0263574711000580 crossref_primary_10_1007_s10514_018_9740_7 crossref_primary_10_1007_s10514_018_9725_6 crossref_primary_10_1007_s11370_015_0187_9 crossref_primary_10_1017_S0263574711001056 crossref_primary_10_1016_j_patrec_2015_06_010 crossref_primary_10_1155_2012_613939 crossref_primary_10_1177_0278364911428653 crossref_primary_10_1016_j_robot_2014_11_012 crossref_primary_10_1109_TAMD_2012_2232291 crossref_primary_10_1109_TCYB_2015_2414277 crossref_primary_10_1007_s12559_010_9082_z crossref_primary_10_1016_j_bica_2016_03_003 crossref_primary_10_1108_01439911211201582 crossref_primary_10_3390_en15217856 crossref_primary_10_1016_j_ifacol_2015_06_007 crossref_primary_10_1177_0278364919835020 crossref_primary_10_1016_j_cviu_2013_02_002 crossref_primary_10_1016_j_robot_2012_05_004 |
Cites_doi | 10.1016/j.robot.2004.03.002 10.1109/DEVLRN.2009.5175537 10.1038/35090060 10.1080/02687030600741667 10.1163/156855307782148578 10.1016/j.robot.2006.01.007 10.1109/ICCV.1999.791201 10.1109/ICCV.2001.937641 10.1109/34.799904 10.1145/322033.322044 10.1023/A:1008078328650 10.1109/IROS.2007.4399469 10.1109/IRDS.2002.1041654 10.1109/CVPR.2000.854758 10.7551/mitpress/3496.001.0001 10.1109/MASSP.1986.1165342 10.1109/ICHR.2008.4756002 10.1109/34.868686 10.1007/s10851-007-0007-8 10.1177/0278364908091153 10.1016/S0959-4388(97)80037-2 10.1163/156855307782506156 10.1109/34.790429 10.1109/CVPR.2007.383331 10.1126/science.1115593 10.1109/ICCV.2005.47 10.1109/34.868677 10.1098/rstb.2000.0733 10.1109/DEVLRN.2008.4640811 10.1177/0278364904042199 10.1109/ICHR.2006.321365 10.1109/MC.2007.154 10.1109/TRO.2007.914848 10.1016/j.cviu.2006.08.002 10.1093/brain/119.2.593 10.1016/S1364-6613(02)02016-8 10.1109/ROBOT.2003.1242073 10.1098/rstb.1997.0108 10.1142/S0219843608001431 10.1109/TSMCB.2005.846654 10.1109/IROS.2008.4650953 10.1109/TPAMI.2008.35 10.5244/C.22.17 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D ADTPV AOWAS D95 |
DOI | 10.1109/MRA.2010.936961 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SwePub SwePub Articles SWEPUB Lunds universitet |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-223X |
EndPage | 43 |
ExternalDocumentID | oai_lup_lub_lu_se_14f9b011_bd19_4553_8608_6e32229405dc 2717091011 10_1109_MRA_2010_936961 5481141 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AFOGA AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS TN5 VH1 XFK AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D ADTPV AOWAS D95 |
ID | FETCH-LOGICAL-c305c-65b2b46f161494ed61955ef694094430c66f98a9720a5d42c255bec5b3a397cd3 |
IEDL.DBID | RIE |
ISSN | 1070-9932 |
IngestDate | Sat Aug 24 00:46:54 EDT 2024 Fri Aug 16 06:18:04 EDT 2024 Thu Oct 10 18:07:48 EDT 2024 Fri Aug 23 04:09:18 EDT 2024 Wed Jun 26 19:29:01 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c305c-65b2b46f161494ed61955ef694094430c66f98a9720a5d42c255bec5b3a397cd3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1027216021 |
PQPubID | 75744 |
PageCount | 14 |
ParticipantIDs | ieee_primary_5481141 proquest_journals_1027216021 swepub_primary_oai_lup_lub_lu_se_14f9b011_bd19_4553_8608_6e32229405dc crossref_primary_10_1109_MRA_2010_936961 proquest_miscellaneous_753650133 |
PublicationCentury | 2000 |
PublicationDate | 2010-June 2010-6-00 20100601 2010-06-01 |
PublicationDateYYYYMMDD | 2010-06-01 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-June |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE robotics & automation magazine |
PublicationTitleAbbrev | MRA |
PublicationYear | 2010 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref32 ref10 ref2 huang (ref25) 1990 ref1 ref38 ref16 daniel (ref39) 2006; 20 ref19 kozima (ref17) 2002 ref18 kr ger (ref5) 2007; 21 ref46 ref24 ref45 ref23 ref48 ref26 mackay (ref33) 1999 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 baby (ref13) 2009 ref28 ref27 ullman (ref40) 1996 ref29 ref8 kulic (ref11) 2008 ref7 ref9 ref4 ref3 ref6 |
References_xml | – ident: ref4 doi: 10.1016/j.robot.2004.03.002 – ident: ref15 doi: 10.1109/DEVLRN.2009.5175537 – ident: ref7 doi: 10.1038/35090060 – volume: 20 start-page: 1112 year: 2006 ident: ref39 article-title: Gestural knowledge evoked by objects as part of conceptual representations publication-title: Aphasiology doi: 10.1080/02687030600741667 contributor: fullname: daniel – volume: 21 start-page: 1473 year: 2007 ident: ref5 article-title: The meaning of action: A review on action recognition and mapping publication-title: Adv Robot doi: 10.1163/156855307782148578 contributor: fullname: kr ger – ident: ref44 doi: 10.1016/j.robot.2006.01.007 – ident: ref41 doi: 10.1109/ICCV.1999.791201 – ident: ref29 doi: 10.1109/ICCV.2001.937641 – ident: ref21 doi: 10.1109/34.799904 – ident: ref24 doi: 10.1145/322033.322044 – ident: ref31 doi: 10.1023/A:1008078328650 – start-page: 175 year: 1999 ident: ref33 publication-title: Learning in Graphical Models contributor: fullname: mackay – ident: ref18 doi: 10.1109/IROS.2007.4399469 – ident: ref46 doi: 10.1109/IRDS.2002.1041654 – ident: ref32 doi: 10.1109/CVPR.2000.854758 – year: 1996 ident: ref40 publication-title: High-level vision Object recognition and visual cognition doi: 10.7551/mitpress/3496.001.0001 contributor: fullname: ullman – ident: ref23 doi: 10.1109/MASSP.1986.1165342 – ident: ref26 doi: 10.1109/ICHR.2008.4756002 – ident: ref48 doi: 10.1109/34.868686 – ident: ref30 doi: 10.1007/s10851-007-0007-8 – ident: ref22 doi: 10.1177/0278364908091153 – ident: ref8 doi: 10.1016/S0959-4388(97)80037-2 – ident: ref12 doi: 10.1163/156855307782506156 – ident: ref1 doi: 10.1109/34.790429 – ident: ref42 doi: 10.1109/CVPR.2007.383331 – start-page: 31 year: 2009 ident: ref13 article-title: Primitive based action representation and recognition publication-title: Proc Scandinavian Conf Image Analysis contributor: fullname: baby – ident: ref38 doi: 10.1126/science.1115593 – ident: ref36 doi: 10.1109/ICCV.2005.47 – ident: ref35 doi: 10.1109/34.868677 – year: 1990 ident: ref25 publication-title: Hidden Markov Models for Speech Recognition contributor: fullname: huang – ident: ref9 doi: 10.1098/rstb.2000.0733 – ident: ref20 doi: 10.1109/DEVLRN.2008.4640811 – ident: ref43 doi: 10.1177/0278364904042199 – ident: ref10 doi: 10.1109/ICHR.2006.321365 – ident: ref47 doi: 10.1109/MC.2007.154 – ident: ref16 doi: 10.1109/TRO.2007.914848 – ident: ref27 doi: 10.1016/j.cviu.2006.08.002 – ident: ref37 doi: 10.1093/brain/119.2.593 – ident: ref3 doi: 10.1016/S1364-6613(02)02016-8 – ident: ref14 doi: 10.1109/ROBOT.2003.1242073 – ident: ref34 doi: 10.1098/rstb.1997.0108 – ident: ref45 doi: 10.1142/S0219843608001431 – ident: ref19 doi: 10.1109/TSMCB.2005.846654 – ident: ref6 doi: 10.1109/IROS.2008.4650953 – start-page: 2860 year: 2008 ident: ref11 article-title: Scaffolding on-line segmentation of full body human motion parameters publication-title: Proc IEEE/RSJ Int Conf Intelligent Robots and Systems contributor: fullname: kulic – start-page: 59 year: 2002 ident: ref17 article-title: Emergence of imitation mediated by objects publication-title: Proc 4th Int Workshop Epigenetic Robotics contributor: fullname: kozima – ident: ref28 doi: 10.1109/TPAMI.2008.35 – ident: ref2 doi: 10.5244/C.22.17 |
SSID | ssj0014838 |
Score | 2.2862563 |
Snippet | In the area of imitation learning, one of the important research problems is action representation. There has been a growing interest in expressing actions as... |
SourceID | swepub proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 30 |
SubjectTerms | Action grammars Action primitives Automation Data mining Data structures Electrical Engineering, Electronic Engineering, Information Engineering Elektroteknik och elektronik Engineering and Technology Hidden Markov models Human Human body tracking Humans Learning Mathematical models Motor primitives Movements Object detection Parametric hidden Markov models Representations Robotics Robots Robotteknik och automation Speech recognition Speech synthesis Supervised learning Teknik Trajectories Unsupervised learning |
Title | Learning Actions from Observations |
URI | https://ieeexplore.ieee.org/document/5481141 https://www.proquest.com/docview/1027216021 https://search.proquest.com/docview/753650133 https://lup.lub.lu.se/record/14f9b011-bd19-4553-8608-6e32229405dc |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7WPenB1yrWF0U8eLBrt03S5riIIsIqiIK3kFc9KLuL3V789U6SblnFg4dCoSWkk5nO9yWZLwDnirGiyAuF8a1tQjDlJQrzCka8qtClnCKVq0aePLC7F3L_Sl97cNnVwlhr_eYzO3S3fi3fzHTjpsquEF0jfEeus1ZwHmq1uhUDUuah7K1IE8y5WSvjM0r51eRpHPZw-cPrRj8ykD9S5Se6XFUM9Vnmdgsmy_6FzSXvw2ahhvrrl3Tjfz9gGzZbuBmPg3_sQM9Od2FjRYRwAGetxOpbPPY1DnXsSk7iR9XN19Z78HJ783x9l7QnJyQa41cnjKpMEVYhnCOcWIMsiVJbMe7YHMlTzVjFS8mLLJXUkEwjscDBpCqXiE-0yfehP51N7QHEihFdytIa6YVqpKQjiZDEVIYiecxkBBdLa4p5EMgQnlikXKDhhTO8CIaPYOBM0r3WWiOC46X1RRtANTaROVkhRCARxN1jdH23niGndtbUApkW4ksk2RHchEHrmnai2R_NHC-Fl6gtUpyKK_yZCWVGXBBKc1GytBTMurUmNAw1-vDvDh7Betgz4OZejqG_-GzsCUKRhTr1PvgNqivW7g |
link.rule.ids | 230,315,783,787,799,888,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5ED-rBt1ifRTx4sGu3TdL2uIiy6q6CKHgLedWDsrvY7cVf7yTpllU8eCgUWkI6mel8X5L5AnAmGcuyNJMY38pEBFNeJDGvYMTLEl3KKlLZauThA-u_kLtX-roAF20tjDHGbT4zHXvr1vL1WNV2quwS0TXCd-Q6S4irc-artdo1A5KnvvAtiyPMukkj5NONi8vhU8_v4nLH13V_5CB3qMpPfDmvGeryzM06DGc99NtL3jv1VHbU1y_xxv9-wgasNYAz7HkP2YQFM9qC1TkZwm04bURW38Keq3KoQlt0Ej7Kdsa22oGXm-vnq37UnJ0QKYxgFTEqE0lYiYCOFMRo5EmUmpIVls-RNFaMlUUuiiyJBdUkUUgtcDipTAUiFKXTXVgcjUdmD0LJiMpFbrRwUjVC0K5AUKJLTZE-JiKA85k1-cRLZHBHLeKCo-G5NTz3hg9g25qkfa2xRgCHM-vzJoQqbCKxwkKIQQII28fo_HZFQ4zMuK44ci1EmEizA7j2g9Y2bWWzP-oJXhIvXhkkOWUh8XfGpe4WnFCa8pzFOWfGrjahYahW-3938ASW-8_DAR_cPtwfwIrfQWBnYg5hcfpZmyMEJlN57PzxGxIO2jk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Actions+from+Observations&rft.jtitle=IEEE+robotics+%26+automation+magazine&rft.au=Kruger%2C+Volker&rft.au=Herzog%2C+Dennis+L&rft.au=Baby%2C+Sanmohan&rft.au=Ude%2C+Ales&rft.date=2010-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1070-9932&rft.eissn=1558-223X&rft.volume=17&rft.issue=2&rft.spage=30&rft_id=info:doi/10.1109%2FMRA.2010.936961&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2717091011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9932&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9932&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9932&client=summon |