Learning Actions from Observations

In the area of imitation learning, one of the important research problems is action representation. There has been a growing interest in expressing actions as a combination of meaningful subparts called action primitives. Action primitives could be thought of as elementary building blocks for action...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics & automation magazine Vol. 17; no. 2; pp. 30 - 43
Main Authors Kruger, V., Herzog, D.L., Baby, S., Ude, A., Kragic, D.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the area of imitation learning, one of the important research problems is action representation. There has been a growing interest in expressing actions as a combination of meaningful subparts called action primitives. Action primitives could be thought of as elementary building blocks for action representation. In this article, we present a complete concept of learning action primitives to recognize and synthesize actions. One of the main novelties in this work is the detection of primitives in a unified framework, which takes into account objects and actions being applied to them. As the first major contribution, we propose an unsupervised learning approach for action primitives that make use of the human movements as well as object state changes. As the second major contribution, we propose using parametric hidden Markov models (PHMMs) for representing the discovered action primitives. PHMMs represent movement trajectories as a function of their desired effect on the object, and we will discuss 1) how these PHMMs can be trained in an unsupervised manner, 2) how they can be used for synthesizing movements to achieve a desired effect, and 3) how they can be used to recognize an action primitive and the effect from an observed acting human.
AbstractList In the area of imitation learning, one of the important research problems is action representation. There has been a growing interest in expressing actions as a combination of meaningful subparts called action primitives. Action primitives could be thought of as elementary building blocks for action representation. In this article, we present a complete concept of learning action primitives to recognize and synthesize actions. One of the main novelties in this work is the detection of primitives in a unified framework, which takes into account objects and actions being applied to them. As the first major contribution, we propose an unsupervised learning approach for action primitives that make use of the human movements as well as object state changes. As the second major contribution, we propose using parametric hidden Markov models (PHMMs) [1], [2] for representing the discovered action primitives. PHMMs represent movement trajectories as a function of their desired effect on the object, and we will discuss 1) how these PHMMs can be trained in an unsupervised manner, 2) how they can be used for synthesizing movements to achieve a desired effect, and 3) how they can be used to recognize an action primitive and the effect from an observed acting human.
In the area of imitation learning, one of the important research problems is action representation. There has been a growing interest in expressing actions as a combination of meaningful subparts called action primitives. Action primitives could be thought of as elementary building blocks for action representation. In this article, we present a complete concept of learning action primitives to recognize and synthesize actions. One of the main novelties in this work is the detection of primitives in a unified framework, which takes into account objects and actions being applied to them. As the first major contribution, we propose an unsupervised learning approach for action primitives that make use of the human movements as well as object state changes. As the second major contribution, we propose using parametric hidden Markov models (PHMMs) for representing the discovered action primitives. PHMMs represent movement trajectories as a function of their desired effect on the object, and we will discuss 1) how these PHMMs can be trained in an unsupervised manner, 2) how they can be used for synthesizing movements to achieve a desired effect, and 3) how they can be used to recognize an action primitive and the effect from an observed acting human.
Author Kragic, D.
Herzog, D.L.
Ude, A.
Baby, S.
Kruger, V.
Author_xml – sequence: 1
  givenname: V.
  surname: Kruger
  fullname: Kruger, V.
  email: vok@cvmi.aau.dk
  organization: Copenhagen Inst. Technol., Aalborg Univ., Copenhagen, Denmark
– sequence: 2
  givenname: D.L.
  surname: Herzog
  fullname: Herzog, D.L.
  organization: CVMI, CIT, Copenhagen, Denmark
– sequence: 3
  givenname: S.
  surname: Baby
  fullname: Baby, S.
  organization: Dept. of Math., Indian Inst. of Technol., Madras, Chennai, India
– sequence: 4
  givenname: A.
  surname: Ude
  fullname: Ude, A.
  organization: Studied Appl. Math., Univ. of Ljubljana, Ljubljana, Slovenia
– sequence: 5
  givenname: D.
  surname: Kragic
  fullname: Kragic, D.
BackLink https://lup.lub.lu.se/record/14f9b011-bd19-4553-8608-6e32229405dc$$DView record from Swedish Publication Index
BookMark eNpdkc1LxDAQxYMoqKtnD14WPXiqzuSrzXERv2BlQRS8hSSdSmW3XROr-N-bteLBw5BM-L03E94-2-76jhg7QjhHBHNx_zA755A7I7TRuMX2UKmq4Fw8b-c7lFAYI_gu20_pFQBlJao9djInF7u2e5nOwnvbd2naxH41XfhE8cP9vBywncYtEx3-nhP2dH31eHlbzBc3d5ezeREEqFBo5bmXukGN0kiqNRqlqNFGgpFSQNC6MZUzJQenaskDV8pTUF44YcpQiwmbj77pk9aDt-vYrlz8sr1r7XJY5_K5bCKLsjEeEK2v0ViplLCVhspqEpzzPFDVIdudjXbr2L8NlN7tqk2BlkvXUT8kWyqhFaAQmTz9R772Q-zyXy0CLzlq4Jipi5EKsU8pUvO3IILdJGBzAnaTgB0TyIrjUdES0R-tZIUoUXwDN2x_FQ
CODEN IRAMEB
CitedBy_id crossref_primary_10_1016_j_robot_2011_07_020
crossref_primary_10_1109_TOH_2020_2965449
crossref_primary_10_2200_S00568ED1V01Y201402AIM028
crossref_primary_10_1016_j_robot_2014_02_003
crossref_primary_10_1007_s10514_014_9392_1
crossref_primary_10_1007_s10846_015_0219_x
crossref_primary_10_1109_TMECH_2022_3166993
crossref_primary_10_1109_LRA_2020_2977835
crossref_primary_10_1177_0278364918784350
crossref_primary_10_1109_THMS_2015_2493536
crossref_primary_10_1177_0278364917743319
crossref_primary_10_1049_ccs2_12025
crossref_primary_10_1109_TNNLS_2014_2333092
crossref_primary_10_1017_S0263574711000580
crossref_primary_10_1007_s10514_018_9740_7
crossref_primary_10_1007_s10514_018_9725_6
crossref_primary_10_1007_s11370_015_0187_9
crossref_primary_10_1017_S0263574711001056
crossref_primary_10_1016_j_patrec_2015_06_010
crossref_primary_10_1155_2012_613939
crossref_primary_10_1177_0278364911428653
crossref_primary_10_1016_j_robot_2014_11_012
crossref_primary_10_1109_TAMD_2012_2232291
crossref_primary_10_1109_TCYB_2015_2414277
crossref_primary_10_1007_s12559_010_9082_z
crossref_primary_10_1016_j_bica_2016_03_003
crossref_primary_10_1108_01439911211201582
crossref_primary_10_3390_en15217856
crossref_primary_10_1016_j_ifacol_2015_06_007
crossref_primary_10_1177_0278364919835020
crossref_primary_10_1016_j_cviu_2013_02_002
crossref_primary_10_1016_j_robot_2012_05_004
Cites_doi 10.1016/j.robot.2004.03.002
10.1109/DEVLRN.2009.5175537
10.1038/35090060
10.1080/02687030600741667
10.1163/156855307782148578
10.1016/j.robot.2006.01.007
10.1109/ICCV.1999.791201
10.1109/ICCV.2001.937641
10.1109/34.799904
10.1145/322033.322044
10.1023/A:1008078328650
10.1109/IROS.2007.4399469
10.1109/IRDS.2002.1041654
10.1109/CVPR.2000.854758
10.7551/mitpress/3496.001.0001
10.1109/MASSP.1986.1165342
10.1109/ICHR.2008.4756002
10.1109/34.868686
10.1007/s10851-007-0007-8
10.1177/0278364908091153
10.1016/S0959-4388(97)80037-2
10.1163/156855307782506156
10.1109/34.790429
10.1109/CVPR.2007.383331
10.1126/science.1115593
10.1109/ICCV.2005.47
10.1109/34.868677
10.1098/rstb.2000.0733
10.1109/DEVLRN.2008.4640811
10.1177/0278364904042199
10.1109/ICHR.2006.321365
10.1109/MC.2007.154
10.1109/TRO.2007.914848
10.1016/j.cviu.2006.08.002
10.1093/brain/119.2.593
10.1016/S1364-6613(02)02016-8
10.1109/ROBOT.2003.1242073
10.1098/rstb.1997.0108
10.1142/S0219843608001431
10.1109/TSMCB.2005.846654
10.1109/IROS.2008.4650953
10.1109/TPAMI.2008.35
10.5244/C.22.17
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D95
DOI 10.1109/MRA.2010.936961
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-223X
EndPage 43
ExternalDocumentID oai_lup_lub_lu_se_14f9b011_bd19_4553_8608_6e32229405dc
2717091011
10_1109_MRA_2010_936961
5481141
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AFOGA
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
VH1
XFK
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c305c-65b2b46f161494ed61955ef694094430c66f98a9720a5d42c255bec5b3a397cd3
IEDL.DBID RIE
ISSN 1070-9932
IngestDate Sat Aug 24 00:46:54 EDT 2024
Fri Aug 16 06:18:04 EDT 2024
Thu Oct 10 18:07:48 EDT 2024
Fri Aug 23 04:09:18 EDT 2024
Wed Jun 26 19:29:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c305c-65b2b46f161494ed61955ef694094430c66f98a9720a5d42c255bec5b3a397cd3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1027216021
PQPubID 75744
PageCount 14
ParticipantIDs ieee_primary_5481141
proquest_journals_1027216021
swepub_primary_oai_lup_lub_lu_se_14f9b011_bd19_4553_8608_6e32229405dc
crossref_primary_10_1109_MRA_2010_936961
proquest_miscellaneous_753650133
PublicationCentury 2000
PublicationDate 2010-June
2010-6-00
20100601
2010-06-01
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-June
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE robotics & automation magazine
PublicationTitleAbbrev MRA
PublicationYear 2010
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref32
ref10
ref2
huang (ref25) 1990
ref1
ref38
ref16
daniel (ref39) 2006; 20
ref19
kozima (ref17) 2002
ref18
kr ger (ref5) 2007; 21
ref46
ref24
ref45
ref23
ref48
ref26
mackay (ref33) 1999
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
baby (ref13) 2009
ref28
ref27
ullman (ref40) 1996
ref29
ref8
kulic (ref11) 2008
ref7
ref9
ref4
ref3
ref6
References_xml – ident: ref4
  doi: 10.1016/j.robot.2004.03.002
– ident: ref15
  doi: 10.1109/DEVLRN.2009.5175537
– ident: ref7
  doi: 10.1038/35090060
– volume: 20
  start-page: 1112
  year: 2006
  ident: ref39
  article-title: Gestural knowledge evoked by objects as part of conceptual representations
  publication-title: Aphasiology
  doi: 10.1080/02687030600741667
  contributor:
    fullname: daniel
– volume: 21
  start-page: 1473
  year: 2007
  ident: ref5
  article-title: The meaning of action: A review on action recognition and mapping
  publication-title: Adv Robot
  doi: 10.1163/156855307782148578
  contributor:
    fullname: kr ger
– ident: ref44
  doi: 10.1016/j.robot.2006.01.007
– ident: ref41
  doi: 10.1109/ICCV.1999.791201
– ident: ref29
  doi: 10.1109/ICCV.2001.937641
– ident: ref21
  doi: 10.1109/34.799904
– ident: ref24
  doi: 10.1145/322033.322044
– ident: ref31
  doi: 10.1023/A:1008078328650
– start-page: 175
  year: 1999
  ident: ref33
  publication-title: Learning in Graphical Models
  contributor:
    fullname: mackay
– ident: ref18
  doi: 10.1109/IROS.2007.4399469
– ident: ref46
  doi: 10.1109/IRDS.2002.1041654
– ident: ref32
  doi: 10.1109/CVPR.2000.854758
– year: 1996
  ident: ref40
  publication-title: High-level vision Object recognition and visual cognition
  doi: 10.7551/mitpress/3496.001.0001
  contributor:
    fullname: ullman
– ident: ref23
  doi: 10.1109/MASSP.1986.1165342
– ident: ref26
  doi: 10.1109/ICHR.2008.4756002
– ident: ref48
  doi: 10.1109/34.868686
– ident: ref30
  doi: 10.1007/s10851-007-0007-8
– ident: ref22
  doi: 10.1177/0278364908091153
– ident: ref8
  doi: 10.1016/S0959-4388(97)80037-2
– ident: ref12
  doi: 10.1163/156855307782506156
– ident: ref1
  doi: 10.1109/34.790429
– ident: ref42
  doi: 10.1109/CVPR.2007.383331
– start-page: 31
  year: 2009
  ident: ref13
  article-title: Primitive based action representation and recognition
  publication-title: Proc Scandinavian Conf Image Analysis
  contributor:
    fullname: baby
– ident: ref38
  doi: 10.1126/science.1115593
– ident: ref36
  doi: 10.1109/ICCV.2005.47
– ident: ref35
  doi: 10.1109/34.868677
– year: 1990
  ident: ref25
  publication-title: Hidden Markov Models for Speech Recognition
  contributor:
    fullname: huang
– ident: ref9
  doi: 10.1098/rstb.2000.0733
– ident: ref20
  doi: 10.1109/DEVLRN.2008.4640811
– ident: ref43
  doi: 10.1177/0278364904042199
– ident: ref10
  doi: 10.1109/ICHR.2006.321365
– ident: ref47
  doi: 10.1109/MC.2007.154
– ident: ref16
  doi: 10.1109/TRO.2007.914848
– ident: ref27
  doi: 10.1016/j.cviu.2006.08.002
– ident: ref37
  doi: 10.1093/brain/119.2.593
– ident: ref3
  doi: 10.1016/S1364-6613(02)02016-8
– ident: ref14
  doi: 10.1109/ROBOT.2003.1242073
– ident: ref34
  doi: 10.1098/rstb.1997.0108
– ident: ref45
  doi: 10.1142/S0219843608001431
– ident: ref19
  doi: 10.1109/TSMCB.2005.846654
– ident: ref6
  doi: 10.1109/IROS.2008.4650953
– start-page: 2860
  year: 2008
  ident: ref11
  article-title: Scaffolding on-line segmentation of full body human motion parameters
  publication-title: Proc IEEE/RSJ Int Conf Intelligent Robots and Systems
  contributor:
    fullname: kulic
– start-page: 59
  year: 2002
  ident: ref17
  article-title: Emergence of imitation mediated by objects
  publication-title: Proc 4th Int Workshop Epigenetic Robotics
  contributor:
    fullname: kozima
– ident: ref28
  doi: 10.1109/TPAMI.2008.35
– ident: ref2
  doi: 10.5244/C.22.17
SSID ssj0014838
Score 2.2862563
Snippet In the area of imitation learning, one of the important research problems is action representation. There has been a growing interest in expressing actions as...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 30
SubjectTerms Action grammars
Action primitives
Automation
Data mining
Data structures
Electrical Engineering, Electronic Engineering, Information Engineering
Elektroteknik och elektronik
Engineering and Technology
Hidden Markov models
Human
Human body tracking
Humans
Learning
Mathematical models
Motor primitives
Movements
Object detection
Parametric hidden Markov models
Representations
Robotics
Robots
Robotteknik och automation
Speech recognition
Speech synthesis
Supervised learning
Teknik
Trajectories
Unsupervised learning
Title Learning Actions from Observations
URI https://ieeexplore.ieee.org/document/5481141
https://www.proquest.com/docview/1027216021
https://search.proquest.com/docview/753650133
https://lup.lub.lu.se/record/14f9b011-bd19-4553-8608-6e32229405dc
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7WPenB1yrWF0U8eLBrt03S5riIIsIqiIK3kFc9KLuL3V789U6SblnFg4dCoSWkk5nO9yWZLwDnirGiyAuF8a1tQjDlJQrzCka8qtClnCKVq0aePLC7F3L_Sl97cNnVwlhr_eYzO3S3fi3fzHTjpsquEF0jfEeus1ZwHmq1uhUDUuah7K1IE8y5WSvjM0r51eRpHPZw-cPrRj8ykD9S5Se6XFUM9Vnmdgsmy_6FzSXvw2ahhvrrl3Tjfz9gGzZbuBmPg3_sQM9Od2FjRYRwAGetxOpbPPY1DnXsSk7iR9XN19Z78HJ783x9l7QnJyQa41cnjKpMEVYhnCOcWIMsiVJbMe7YHMlTzVjFS8mLLJXUkEwjscDBpCqXiE-0yfehP51N7QHEihFdytIa6YVqpKQjiZDEVIYiecxkBBdLa4p5EMgQnlikXKDhhTO8CIaPYOBM0r3WWiOC46X1RRtANTaROVkhRCARxN1jdH23niGndtbUApkW4ksk2RHchEHrmnai2R_NHC-Fl6gtUpyKK_yZCWVGXBBKc1GytBTMurUmNAw1-vDvDh7Betgz4OZejqG_-GzsCUKRhTr1PvgNqivW7g
link.rule.ids 230,315,783,787,799,888,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5ED-rBt1ifRTx4sGu3TdL2uIiy6q6CKHgLedWDsrvY7cVf7yTpllU8eCgUWkI6mel8X5L5AnAmGcuyNJMY38pEBFNeJDGvYMTLEl3KKlLZauThA-u_kLtX-roAF20tjDHGbT4zHXvr1vL1WNV2quwS0TXCd-Q6S4irc-artdo1A5KnvvAtiyPMukkj5NONi8vhU8_v4nLH13V_5CB3qMpPfDmvGeryzM06DGc99NtL3jv1VHbU1y_xxv9-wgasNYAz7HkP2YQFM9qC1TkZwm04bURW38Keq3KoQlt0Ej7Kdsa22oGXm-vnq37UnJ0QKYxgFTEqE0lYiYCOFMRo5EmUmpIVls-RNFaMlUUuiiyJBdUkUUgtcDipTAUiFKXTXVgcjUdmD0LJiMpFbrRwUjVC0K5AUKJLTZE-JiKA85k1-cRLZHBHLeKCo-G5NTz3hg9g25qkfa2xRgCHM-vzJoQqbCKxwkKIQQII28fo_HZFQ4zMuK44ci1EmEizA7j2g9Y2bWWzP-oJXhIvXhkkOWUh8XfGpe4WnFCa8pzFOWfGrjahYahW-3938ASW-8_DAR_cPtwfwIrfQWBnYg5hcfpZmyMEJlN57PzxGxIO2jk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Actions+from+Observations&rft.jtitle=IEEE+robotics+%26+automation+magazine&rft.au=Kruger%2C+Volker&rft.au=Herzog%2C+Dennis+L&rft.au=Baby%2C+Sanmohan&rft.au=Ude%2C+Ales&rft.date=2010-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1070-9932&rft.eissn=1558-223X&rft.volume=17&rft.issue=2&rft.spage=30&rft_id=info:doi/10.1109%2FMRA.2010.936961&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2717091011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9932&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9932&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9932&client=summon