Development of a Field Scale SWAT+ Modeling Framework for the Contiguous U.S
ABSTRACT The Soil and Water Assessment Tool (SWAT) model is commonly used to predict the impacts of agricultural practices on water quality and quantity. Although widely applied, the data framework used to drive SWAT in the United States (U.S.) is fragmented and inconsistent, varying by user and mod...
Saved in:
Published in | Journal of the American Water Resources Association Vol. 58; no. 6; pp. 1545 - 1560 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Middleburg
Blackwell Publishing Ltd
01.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1093-474X 1752-1688 |
DOI | 10.1111/1752-1688.13056 |
Cover
Loading…
Abstract | ABSTRACT
The Soil and Water Assessment Tool (SWAT) model is commonly used to predict the impacts of agricultural practices on water quality and quantity. Although widely applied, the data framework used to drive SWAT in the United States (U.S.) is fragmented and inconsistent, varying by user and model interface. This research describes the development of the National Agroecosystems Model (NAM), which provides a unified field to national scale modeling computational framework for research and decision support by using the latest SWAT platform, dubbed SWAT+. NAM has sufficient detail to capture field‐level processes and management actions and spans the full extent of the contiguous U.S. NAM contains 7 million computational units, 4 million of which represent specific cultivated fields. It contains 3 million individually identifiable stream segments and more than 5,000 reservoirs. NAM is intended to serve as a reasonable base framework to be refined for specific applications. This work describes the individual data sources, assumptions, and the processing steps for their inclusion. NAM is constructed with 2,121 individual SWAT+ models which can be executed in a parallel hierarchical structure to dramatically improve runtime. This framework was tested in a case study of the Little River Watershed, Tifton, GA. NAM is developed using only publicly available data sources such that subsets of it can be shared to support research with other government agencies, universities, and others in the public domain. |
---|---|
AbstractList | The Soil and Water Assessment Tool (SWAT) model is commonly used to predict the impacts of agricultural practices on water quality and quantity. Although widely applied, the data framework used to drive SWAT in the United States (U.S.) is fragmented and inconsistent, varying by user and model interface. This research describes the development of the National Agroecosystems Model (NAM), which provides a unified field to national scale modeling computational framework for research and decision support by using the latest SWAT platform, dubbed SWAT+. NAM has sufficient detail to capture field‐level processes and management actions and spans the full extent of the contiguous U.S. NAM contains 7 million computational units, 4 million of which represent specific cultivated fields. It contains 3 million individually identifiable stream segments and more than 5,000 reservoirs. NAM is intended to serve as a reasonable base framework to be refined for specific applications. This work describes the individual data sources, assumptions, and the processing steps for their inclusion. NAM is constructed with 2,121 individual SWAT+ models which can be executed in a parallel hierarchical structure to dramatically improve runtime. This framework was tested in a case study of the Little River Watershed, Tifton, GA. NAM is developed using only publicly available data sources such that subsets of it can be shared to support research with other government agencies, universities, and others in the public domain. The Soil and Water Assessment Tool (SWAT) model is commonly used to predict the impacts of agricultural practices on water quality and quantity. Although widely applied, the data framework used to drive SWAT in the U.S. is fragmented and inconsistent, varying by user and model interface. This research describes the development of the National Agroecosystems Model (NAM), which provides a unified field to national scale modeling computational framework for research and decision support by using the latest SWAT platform, dubbed SWAT+. NAM has sufficient detail to capture field-level processes and management actions, and spans the full extent of the contiguous U.S. NAM contains 7 million computational units, 4 million of which represent specific cultivated fields. It contains 3 million individually identifiable stream segments and more than 5,000 reservoirs. This work describes the individual data sources, assumptions, and the processing steps for their inclusion. NAM is constructed with 2,121 individual SWAT+ models which can be executed in a parallel hierarchical structure to dramatically improve runtime. This framework is tested in a case study of the Little River Watershed, Tifton, GA. NAM is developed using only publicly available data sources such that subsets of it can be shared to support research with other government agencies, universities, and others in the public domain. ABSTRACT The Soil and Water Assessment Tool (SWAT) model is commonly used to predict the impacts of agricultural practices on water quality and quantity. Although widely applied, the data framework used to drive SWAT in the United States (U.S.) is fragmented and inconsistent, varying by user and model interface. This research describes the development of the National Agroecosystems Model (NAM), which provides a unified field to national scale modeling computational framework for research and decision support by using the latest SWAT platform, dubbed SWAT+. NAM has sufficient detail to capture field‐level processes and management actions and spans the full extent of the contiguous U.S. NAM contains 7 million computational units, 4 million of which represent specific cultivated fields. It contains 3 million individually identifiable stream segments and more than 5,000 reservoirs. NAM is intended to serve as a reasonable base framework to be refined for specific applications. This work describes the individual data sources, assumptions, and the processing steps for their inclusion. NAM is constructed with 2,121 individual SWAT+ models which can be executed in a parallel hierarchical structure to dramatically improve runtime. This framework was tested in a case study of the Little River Watershed, Tifton, GA. NAM is developed using only publicly available data sources such that subsets of it can be shared to support research with other government agencies, universities, and others in the public domain. |
Author | Arnold, Jeffrey G. Gambone, Marilyn Gao, Jungang Yen, Haw Park, Seonggyu Bosch, David D. White, Michael J. Allen, Peter M. Osorio, Javier M. Bieger, Katrin Čerkasova, Natalja |
Author_xml | – sequence: 1 givenname: Michael J. orcidid: 0000-0002-1641-0077 surname: White fullname: White, Michael J. email: mike.white2@usda.gov organization: USDA‐Agricultural Research Service – sequence: 2 givenname: Jeffrey G. surname: Arnold fullname: Arnold, Jeffrey G. organization: USDA‐Agricultural Research Service – sequence: 3 givenname: Katrin orcidid: 0000-0001-5573-8182 surname: Bieger fullname: Bieger, Katrin organization: Aarhus University – sequence: 4 givenname: Peter M. surname: Allen fullname: Allen, Peter M. organization: Baylor University – sequence: 5 givenname: Jungang surname: Gao fullname: Gao, Jungang organization: Texas A&M AgriLife – sequence: 6 givenname: Natalja surname: Čerkasova fullname: Čerkasova, Natalja organization: Texas A&M AgriLife – sequence: 7 givenname: Marilyn surname: Gambone fullname: Gambone, Marilyn organization: USDA‐Agricultural Research Service – sequence: 8 givenname: Seonggyu surname: Park fullname: Park, Seonggyu organization: Texas A&M AgriLife – sequence: 9 givenname: David D. surname: Bosch fullname: Bosch, David D. organization: USDA‐Agricultural Research Service – sequence: 10 givenname: Haw surname: Yen fullname: Yen, Haw organization: Bayer Crop Science – sequence: 11 givenname: Javier M. surname: Osorio fullname: Osorio, Javier M. organization: Texas A&M AgriLife |
BookMark | eNqFkM9PwjAYhhujiYCevTbxYmIG7bq240hQ_BGMiUDw1pTuGxbLit2Q8N87xHjgoL20aZ7ny_u9TXRc-AIQuqCkTevToZLHERVp2qaMcHGEGr8_x_WbdFmUyOT1FDXLckEI5TRlDTS8gU9wfrWEosI-xxoPLLgMj4x2gEfT3vgaP_kMnC3meBD0EjY-vOPcB1y9Ae77orLztV-XeNIenaGTXLsSzn_uFpoMbsf9-2j4fPfQ7w0js0sWsRzyRGRixmOZSTPjRM6kzFNKBeVZbHQqOOXSSJnFUhrW5TmkIgFi2Eww0KyFrvZzV8F_rKGs1NKWBpzTBdRRFKOc8UTGRNbo5QG68OtQ1OlULHmXii6JeU3xPWWCL8sAuTK20pWttwvaOkWJ2nWsdo2qXaPqu-Pa6xx4q2CXOmz_MMTe2FgH2_9w9dibvuzFL9z1i_Y |
CitedBy_id | crossref_primary_10_1080_02626667_2024_2393414 crossref_primary_10_1016_j_jenvman_2023_119514 crossref_primary_10_3389_feart_2024_1416387 crossref_primary_10_1016_j_watres_2025_123335 crossref_primary_10_3390_cli13030051 crossref_primary_10_1080_02626667_2024_2364714 crossref_primary_10_1016_j_envsoft_2024_106234 crossref_primary_10_1016_j_scitotenv_2024_175283 crossref_primary_10_1016_j_envsoft_2023_105878 crossref_primary_10_1038_s41598_025_92987_6 crossref_primary_10_1016_j_ejrh_2025_102188 crossref_primary_10_1016_j_agsy_2023_103695 crossref_primary_10_1016_j_jenvman_2025_125101 crossref_primary_10_1016_j_catena_2023_107339 crossref_primary_10_1088_1748_9326_ad404b crossref_primary_10_2166_hydro_2024_079 crossref_primary_10_3390_w17060834 crossref_primary_10_5194_hess_28_21_2024 crossref_primary_10_1016_j_ejrh_2024_102134 crossref_primary_10_22630_srees_9790 crossref_primary_10_1016_j_jhydrol_2025_132691 crossref_primary_10_1016_j_agwat_2024_108954 crossref_primary_10_3390_w17050670 crossref_primary_10_1016_j_jhydrol_2024_132470 crossref_primary_10_1016_j_jenvman_2024_121394 crossref_primary_10_3389_frwa_2024_1451648 crossref_primary_10_1002_hyp_15282 |
Cites_doi | 10.1016/j.jhydrol.2021.126422 10.2489/jswc.69.1.26 10.13031/2013.3211 10.1016/j.compag.2012.03.005 10.4236/jgis.2017.93016 10.1111/j.1752-1688.1998.tb05961.x 10.1016/j.jhydrol.2020.124817 10.1029/2006WR005844 10.3390/w9060437 10.1111/1752-1688.12460 10.3390/w10101299 10.2489/jswc.67.6.525 10.1029/2008WR007615 10.1016/j.jhydrol.2007.12.025 10.3390/rs13050968 10.1016/j.jhydrol.2015.03.027 10.3133/ds1101 10.3133/cir1441 10.1111/1752-1688.12384 10.3390/w9110892 10.1016/j.rse.2015.10.034 10.1061/(ASCE)HE.1943-5584.0001590 10.3133/fs20123020 10.13031/2013.42256 10.3390/w8040164 10.1111/1752-1688.12890 10.1007/s00267-016-0756-5 10.1111/1752-1688.12728 10.1038/s41597-020-00596-x 10.1016/j.rse.2021.112445 10.3390/w11081681 10.1016/j.jenvman.2013.05.018 10.1111/1752-1688.12552 10.1111/j.1752‐1688.2011.00576.x 10.1080/07900629849231 10.1111/1752-1688.12546 10.1016/j.scitotenv.2016.06.202 10.1007/s10584-020-02924-x 10.1111/1752-1688.12482 10.1016/j.jhydrol.2020.125021 10.1016/j.jhydrol.2020.124556 10.1016/j.catena.2017.04.010 10.2166/9781780401867 10.1111/1752-1688.12389 10.3390/rs10060885 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Journal of the American Water Resources Association published by Wiley Periodicals LLC on behalf of American Water Resources Association. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Journal of the American Water Resources Association published by Wiley Periodicals LLC on behalf of American Water Resources Association. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7QH 7ST 7UA 8FD C1K F1W FR3 H97 KR7 L.G SOI 7S9 L.6 |
DOI | 10.1111/1752-1688.13056 |
DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Economics |
EISSN | 1752-1688 |
EndPage | 1560 |
ExternalDocumentID | 10_1111_1752_1688_13056 JAWR13056 |
Genre | article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: Natural Resources Conservation Service funderid: 60‐0202‐0‐002; 60‐3098‐9‐001; 60‐3098‐9‐002; 68‐7482‐17‐355 – fundername: Agricultural Research Service funderid: 3098‐13610‐007‐00D |
GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29L 31~ 33P 3SF 3V. 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 7X2 7XC 8-0 8-1 8-3 8-4 8-5 88I 8C1 8CJ 8FE 8FG 8FH 8FW 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJCF ABJNI ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYN AEUYR AFBPY AFFNX AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 C1A CAG CCPQU CO8 COF CS3 D-E D-F D1J DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DWQXO EBS EJD ESX F00 F01 F04 F5P FEDTE FYUFA FZ0 G-S G.N GNUQQ GODZA H.T H.X HCIFZ HF~ HGLYW HVGLF HZ~ IX1 J0M K48 L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK5 LK8 LOXES LP6 LP7 LUTES LW6 LYRES M0K M2P M7P M7R M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OHT OIG P0- P2P P2W P2X P4D PALCI PATMY PCBAR PQQKQ PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 R.K RIWAO RJQFR ROL RX1 S0X SUPJJ TAE UB1 UKHRP VH1 VQP W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 YCJ YHZ YV5 ZCA ZO4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT 7QH 7ST 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H97 KR7 L.G SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3056-3fef46d6b527d7cb507b77f811615d2ca865157c77d277c395fe864e0c3b63ea3 |
IEDL.DBID | 24P |
ISSN | 1093-474X |
IngestDate | Tue Aug 05 11:41:05 EDT 2025 Wed Aug 13 09:23:52 EDT 2025 Tue Jul 01 03:34:21 EDT 2025 Thu Apr 24 22:52:25 EDT 2025 Wed Jan 22 16:25:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3056-3fef46d6b527d7cb507b77f811615d2ca865157c77d277c395fe864e0c3b63ea3 |
Notes | (JAWR). Discussions are open until six months from issue publication Journal of the American Water Resources Association Paper No. JAWR‐21‐0146‐P of the Research Impact Statement . The National Agroecosystems Model is a field based, national scale water quantity and quality model to aid in conservation planning and policy. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5573-8182 0000-0002-1641-0077 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1752-1688.13056 |
PQID | 2759169025 |
PQPubID | 34915 |
PageCount | 1560 |
ParticipantIDs | proquest_miscellaneous_3153547207 proquest_journals_2759169025 crossref_citationtrail_10_1111_1752_1688_13056 crossref_primary_10_1111_1752_1688_13056 wiley_primary_10_1111_1752_1688_13056_JAWR13056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Middleburg |
PublicationPlace_xml | – name: Middleburg |
PublicationTitle | Journal of the American Water Resources Association |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2009; 45 2017; 4 2020; 163 2019; 55 2019; 11 2013; 127 2014; 69 2017; 156 2012; 55 2017; 9 2020; 7 2001 2021; 598 2016; 569–570 2008; 352 2012; 67 1998; 14 2012 2011 2020; 583 2017; 22 2020; 588 2008 2016; 52 2007 2021; 260 2015; 524 2020; 586 2015; 8 2016; 58 2021; 57 2021; 13 2017; 53 2022 2021 2004; 59 2019 2018 2016 2015 2014 2011; 47 2013 2007; 43 2018; 10 1998; 34 2016; 8 2012; 84 2016; 172 e_1_2_7_5_1 Soil Survey Staff (e_1_2_7_40_1) 2021 e_1_2_7_3_1 e_1_2_7_19_1 Kalcic M. (e_1_2_7_28_1) 2015; 8 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 Gollehon N. (e_1_2_7_24_1) 2016 Sugg Z. (e_1_2_7_43_1) 2007 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 Baker N.T. (e_1_2_7_9_1) 2011 e_1_2_7_21_1 e_1_2_7_35_1 Soil Survey Staff (e_1_2_7_39_1) 2014 e_1_2_7_56_1 Asamen D.M. (e_1_2_7_7_1) 2022 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Mausbach M. (e_1_2_7_30_1) 2004; 59 Di Luzio M. (e_1_2_7_17_1) 2017; 4 e_1_2_7_51_1 e_1_2_7_53_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 172 start-page: 67 year: 2016 end-page: 86 article-title: Conterminous United States Crop Field Size Quantification from Multi‐Temporal Landsat Data publication-title: Remote Sensing of Environment – volume: 53 start-page: 115 year: 2017 end-page: 30 article-title: Introduction to SWAT+, A Completely Restructured Version of the Soil and Water Assessment Tool publication-title: Journal of the American Water Resources Association – volume: 588 year: 2020 article-title: Comparative Analysis of Water Budgets across the U.S. Long‐Term Agroecosystem Research Network publication-title: Journal of Hydrology – volume: 43 issue: 9 year: 2007 article-title: Little River Experimental Watershed Database publication-title: Water Resources Research – volume: 53 start-page: 961 year: 2017 end-page: 83 article-title: Annual Estimates of Recharge, Quick‐Flow Runoff, and Evapotranspiration for the Contiguous U.S. Using Empirical Regression Equations publication-title: Journal of the American Water Resources Association – volume: 598 year: 2021 article-title: Modelling Framework for Flow, Sediments and Nutrient Loads in a Large Transboundary River Watershed: A Climate Change Impact Assessment of the Nemunas River Watershed publication-title: Journal of Hydrology – year: 2021 – volume: 52 start-page: 1385 year: 2016 end-page: 400 article-title: Development and Comparison of Multiple Regression Models to Predict Bankfull Channel Dimensions for Use in Hydrologic Models publication-title: Journal of the American Water Resources Association – volume: 586 year: 2020 article-title: Development and Accuracy Assessment of a 12‐Digit Hydrologic Unit Code Based Real‐Time Climate Database for Hydrologic Models in the US publication-title: Journal of Hydrology – start-page: 13 year: 2011 – volume: 47 start-page: 950 year: 2011 end-page: 64 article-title: Nutrient Loadings to Streams of the Continental United States from Municipal and Industrial Effluent publication-title: Journal of the American Water Resources Association – volume: 7 start-page: 257 year: 2020 article-title: Mapping of 30‐Meter Resolution Tile‐Drained Croplands Using a Geospatial Modeling Approach publication-title: Scientific Data – volume: 55 start-page: 578 year: 2019 end-page: 90 article-title: Representing the Connectivity of Upland Areas to Floodplains and Streams in SWAT+ publication-title: Journal of the American Water Resources Association – year: 2018 – volume: 34 start-page: 73 year: 1998 end-page: 89 article-title: Large Area Hydrologic Model Develpment and Assessment Part 1: Model Development publication-title: Journal of the American Water Resources Association – volume: 14 start-page: 315 year: 1998 end-page: 25 article-title: Hydrologic Modelling of the United States with the Soil and Water Assessment Tool publication-title: International Journal of Water Resources Development – year: 2014 – volume: 260 year: 2021 article-title: Mapping Annual Irrigation from Landsat Imagery and Environmental Variables across the Conterminous United States publication-title: Remote Sensing of Environment – volume: 10 start-page: 885 year: 2018 article-title: Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite‐Based Earth Observations publication-title: Remote Sensing – volume: 55 start-page: 1491 issue: 4 year: 2012 end-page: 508 article-title: SWAT: Model Use, Calibration, and Validation publication-title: Transactions of American Society of Agricultural and Biological Engineers – start-page: 33 year: 2008 end-page: 52 – year: 2022 article-title: Prediction of Streambed Median Grain Size (D50) at Regional and Continental U.S. Scale publication-title: Water – volume: 11 start-page: 1681 year: 2019 article-title: IPEAT+: A Built‐in Optimization and Automatic Calibration Tool of SWAT+ publication-title: Water – volume: 156 start-page: 353 year: 2017 end-page: 64 article-title: Impacts of Alternative Climate Information on Hydrologic Processes with SWAT: A Comparison of NCDC, PRISM and NEXRAD Datasets publication-title: Catena – volume: 59 start-page: 96 issue: 5 year: 2004 end-page: 103 article-title: The Length We Go Measuring Environmental Benefits of Conservation Practices publication-title: Journal of Soil and Water Conservation – volume: 163 start-page: 1307 year: 2020 end-page: 27 article-title: Mass Balance Calibration and Reservoir Representations for Large‐Scale Hydrological Impact Studies Using SWAT+ publication-title: Climatic Change – volume: 10 start-page: 1299 year: 2018 article-title: Assessing the Impact of Site‐Specific BMPs Using a Spatially Explicit, Field‐Scale SWAT Model with Edge‐of‐Field and Tile Hydrology and Water‐Quality Data in the Eagle Creek Watershed, Ohio publication-title: Water – volume: 52 start-page: 890 year: 2016 end-page: 900 article-title: The Road to NHDPlus — Advancements in Digital Stream Networks and Associated Catchments publication-title: Journal of the American Water Resources Association – year: 2019 – volume: 8 start-page: 164 issue: 4 year: 2016 article-title: Application of Large‐Scale, Multi‐Resolution Watershed Modeling Framework Using the Hydrologic and Water Quality System (HAWQS) publication-title: Water – year: 2015 – volume: 13 start-page: 968 year: 2021 article-title: Accuracy, Bias, and Improvements in Mapping Crops and Cropland across the United States Using the USDA Cropland Data Layer publication-title: Remote Sensing – year: 2007 – volume: 52 start-page: 269 year: 2016 end-page: 74 article-title: Development of a Cropland Management Dataset to Support U.S. Swat Assessments publication-title: Journal of the American Water Resources Association – volume: 45 issue: 10 year: 2009 article-title: Assessing the Impact of Climate Change on Water Resources in Iran publication-title: Water Resources Research – volume: 9 start-page: 892 year: 2017 article-title: Development of a Hydrologic Connectivity Dataset for SWAT Assessments in the US publication-title: Water – volume: 8 start-page: 69 year: 2015 end-page: 80 article-title: Defining Soil and Water Assessment Tool (SWAT) Hydrologic Response Units (HRUs) by Field Boundaries publication-title: International Journal of Agricultural and Biological Engineering – year: 2016 – year: 2012 – volume: 58 start-page: 857 year: 2016 end-page: 72 article-title: Mapping Water Vulnerability of the Yangtze River Basin: 1994–2013 publication-title: Environmental Management – volume: 69 start-page: 26 year: 2014 end-page: 40 article-title: Nutrient Delivery from the Mississippi River to the Gulf of Mexico and Effects of Cropland Conservation publication-title: Journal of Soil and Water Conservation – volume: 352 start-page: 30 year: 2008 end-page: 49 article-title: Estimation of Freshwater Availability in the West African Sub‐Continent Using the SWAT Hydrologic Model publication-title: Journal of Hydrology – volume: 9 start-page: 267 year: 2017 article-title: A Large Scale GIS Geodatabase of Soil Parameters Supporting the Modeling of Conservation Practice Alternatives in the United States publication-title: Journal of Geographic Information System – volume: 84 start-page: 111 year: 2012 end-page: 23 article-title: CropScape: A Web Service Based Application for Exploring and Disseminating US Conterminous Geospatial Cropland Data Products for Decision Support publication-title: Computers and Electronics in Agriculture – volume: 127 start-page: 228 year: 2013 end-page: 36 article-title: Evaluating the Capabilities of Watershed‐Scale Models in Estimating Sediment Yield at Field‐Scale publication-title: Journal of Environmental Management – volume: 67 start-page: 525 year: 2012 end-page: 35 article-title: Development and Validation of the Texas Best Management Practice Evaluation Tool (TBET) publication-title: Journal of Soil and Water Conservation – volume: 22 year: 2017 article-title: Modeling the Responses of Water and Sediment Discharge to Climate Change in the Upper Yellow River Basin, China publication-title: Journal of Hydrologic Engineering – volume: 57 start-page: 154 year: 2021 end-page: 69 article-title: Conceptual Framework of Connectivity for a National Agroecosystem Model Based on Transport Processes and Management Practices publication-title: Journal of the American Water Resources Association – volume: 4 start-page: 2 issue: 1 year: 2017 article-title: Advancement of a Soil Parameters Geodatabase for the Modeling Assessment of Conservation Practice Outcomes in the United States publication-title: International Journal of Geospatial and Environmental Research. – volume: 9 start-page: 437 issue: 6 year: 2017 article-title: Development of a Station Based Climate Database for SWAT and APEX Assessments in the US publication-title: Water – volume: 583 year: 2020 article-title: Development of Reservoir Operation Functions in SWAT+ for National Environmental Assessments publication-title: Journal of Hydrology – volume: 524 start-page: 733 year: 2015 end-page: 52 article-title: A Continental‐Scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High‐Resolution Large‐Scale SWAT Model publication-title: Journal of Hydrology – volume: 53 start-page: 1229 year: 2017 end-page: 40 article-title: Distribution of Selected Soil and Water Conservation Practices in the U.S. as Identified with Google Earth publication-title: Journal of the American Water Resources Association – volume: 569–570 start-page: 1265 year: 2016 end-page: 81 article-title: Western Lake Erie Basin: Soft‐Data‐Constrained, NHDPlus Resolution Watershed Modeling and Exploration of Applicable Conservation Scenarios publication-title: Science of the Total Environment – start-page: 95 year: 2001 end-page: 98 – year: 2013 – ident: e_1_2_7_14_1 doi: 10.1016/j.jhydrol.2021.126422 – ident: e_1_2_7_51_1 doi: 10.2489/jswc.69.1.26 – ident: e_1_2_7_20_1 doi: 10.13031/2013.3211 – ident: e_1_2_7_25_1 doi: 10.1016/j.compag.2012.03.005 – ident: e_1_2_7_16_1 doi: 10.4236/jgis.2017.93016 – volume: 8 start-page: 69 year: 2015 ident: e_1_2_7_28_1 article-title: Defining Soil and Water Assessment Tool (SWAT) Hydrologic Response Units (HRUs) by Field Boundaries publication-title: International Journal of Agricultural and Biological Engineering – ident: e_1_2_7_5_1 doi: 10.1111/j.1752-1688.1998.tb05961.x – ident: e_1_2_7_22_1 doi: 10.1016/j.jhydrol.2020.124817 – ident: e_1_2_7_13_1 doi: 10.1029/2006WR005844 – volume-title: Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United States year: 2014 ident: e_1_2_7_39_1 – ident: e_1_2_7_50_1 doi: 10.3390/w9060437 – ident: e_1_2_7_12_1 doi: 10.1111/1752-1688.12460 – ident: e_1_2_7_32_1 doi: 10.3390/w10101299 – ident: e_1_2_7_52_1 doi: 10.2489/jswc.67.6.525 – ident: e_1_2_7_2_1 doi: 10.1029/2008WR007615 – ident: e_1_2_7_36_1 doi: 10.1016/j.jhydrol.2007.12.025 – ident: e_1_2_7_29_1 doi: 10.3390/rs13050968 – ident: e_1_2_7_3_1 doi: 10.1016/j.jhydrol.2015.03.027 – volume-title: U.S. General Soil Map (STATSGO2) year: 2021 ident: e_1_2_7_40_1 – ident: e_1_2_7_38_1 doi: 10.3133/ds1101 – ident: e_1_2_7_18_1 doi: 10.3133/cir1441 – ident: e_1_2_7_48_1 doi: 10.1111/1752-1688.12384 – ident: e_1_2_7_19_1 – ident: e_1_2_7_47_1 doi: 10.3390/w9110892 – ident: e_1_2_7_55_1 doi: 10.1016/j.rse.2015.10.034 – ident: e_1_2_7_59_1 doi: 10.1061/(ASCE)HE.1943-5584.0001590 – volume-title: Estimates of Recoverable and Non‐Recoverable Manure Nutrients Based on the Census of Agriculture — 2012 Results year: 2016 ident: e_1_2_7_24_1 – ident: e_1_2_7_27_1 doi: 10.3133/fs20123020 – ident: e_1_2_7_4_1 doi: 10.13031/2013.42256 – volume: 59 start-page: 96 issue: 5 year: 2004 ident: e_1_2_7_30_1 article-title: The Length We Go Measuring Environmental Benefits of Conservation Practices publication-title: Journal of Soil and Water Conservation – ident: e_1_2_7_37_1 – ident: e_1_2_7_56_1 doi: 10.3390/w8040164 – ident: e_1_2_7_6_1 doi: 10.1111/1752-1688.12890 – ident: e_1_2_7_44_1 doi: 10.1007/s00267-016-0756-5 – ident: e_1_2_7_45_1 – ident: e_1_2_7_10_1 doi: 10.1111/1752-1688.12728 – ident: e_1_2_7_46_1 doi: 10.1038/s41597-020-00596-x – ident: e_1_2_7_54_1 doi: 10.1016/j.rse.2021.112445 – ident: e_1_2_7_57_1 doi: 10.3390/w11081681 – ident: e_1_2_7_41_1 doi: 10.1016/j.jenvman.2013.05.018 – ident: e_1_2_7_49_1 doi: 10.1111/1752-1688.12552 – ident: e_1_2_7_31_1 doi: 10.1111/j.1752‐1688.2011.00576.x – volume: 4 start-page: 2 issue: 1 year: 2017 ident: e_1_2_7_17_1 article-title: Advancement of a Soil Parameters Geodatabase for the Modeling Assessment of Conservation Practice Outcomes in the United States publication-title: International Journal of Geospatial and Environmental Research. – ident: e_1_2_7_42_1 doi: 10.1080/07900629849231 – ident: e_1_2_7_35_1 doi: 10.1111/1752-1688.12546 – start-page: 13 volume-title: Tillage Practices in the Conterminous United States, 1989–2004 Datasets Aggregated by Watershed: U S. Geological Survey Data Series 573 year: 2011 ident: e_1_2_7_9_1 – ident: e_1_2_7_58_1 doi: 10.1016/j.scitotenv.2016.06.202 – ident: e_1_2_7_15_1 doi: 10.1007/s10584-020-02924-x – year: 2022 ident: e_1_2_7_7_1 article-title: Prediction of Streambed Median Grain Size (D50) at Regional and Continental U.S. Scale publication-title: Water – volume-title: Assessing U.S. Farm Drainage: Can GIS Lead to Better Estimates of Subsurface Drainage Extent? year: 2007 ident: e_1_2_7_43_1 – ident: e_1_2_7_11_1 doi: 10.1111/1752-1688.12482 – ident: e_1_2_7_8_1 doi: 10.1016/j.jhydrol.2020.125021 – ident: e_1_2_7_53_1 doi: 10.1016/j.jhydrol.2020.124556 – ident: e_1_2_7_21_1 doi: 10.1016/j.catena.2017.04.010 – ident: e_1_2_7_26_1 doi: 10.2166/9781780401867 – ident: e_1_2_7_34_1 doi: 10.1111/1752-1688.12389 – ident: e_1_2_7_33_1 doi: 10.3390/rs10060885 – ident: e_1_2_7_23_1 |
SSID | ssj0015183 |
Score | 2.4642193 |
Snippet | ABSTRACT
The Soil and Water Assessment Tool (SWAT) model is commonly used to predict the impacts of agricultural practices on water quality and quantity.... The Soil and Water Assessment Tool (SWAT) model is commonly used to predict the impacts of agricultural practices on water quality and quantity. Although... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1545 |
SubjectTerms | Agricultural ecosystems Agricultural practices agroecosystems Computer applications Data sources Frameworks Government agencies Hydrologic models Modelling non‐point source pollution Public domain rivers/streams simulation Soil and Water Assessment Tool model Soil water spatially distributed modeling streamflow surface water hydrology SWAT water Water quality Watersheds |
Title | Development of a Field Scale SWAT+ Modeling Framework for the Contiguous U.S |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1752-1688.13056 https://www.proquest.com/docview/2759169025 https://www.proquest.com/docview/3153547207 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9-POiL-Inziwg-CFJt0ySXPg51jKEizqFvJUkTFWQTtz3435vr2jkFEV9CoE1a7nLJr73f3RFyJKWOZeZkxIUOjdZxZDT4CDLDwRZGy5Lyf30j2z3eeRQ1mxBjYSb5IaY_3NAyyv0aDVyb4YyRh3OPRYlUCgsaCzlPFjHAFpc647dTR4JI1IRjn6URB_5YZfdBMs-PCb4fTF9ocxazlodOa5WsVGiRNifqXSNzrr9Olupg4mHoV0XMnz82yNUMAYgOPNW0hfQ02g1qcLT70Lw_oVj6DAPQaasmZdGAWmlAgRTzVL08jQfjIe2ddjdJr3V5f96OqmIJkcW3j1LvPJeFNIJBAdYEnGcAvEoQ0hXMaoVFz8ECFAzAppnwTknuYpsamTqdbpGF_qDvtgn14JPYWqMTabiyUolY-9iYTIX5ZWIb5LSWVG6rTOJY0OI1r78oULQ5ijYvRdsgx9MBb5MkGr_fuleLPq-saZgzEBm685hokMPp5WAH6NzQfRckk6dh6xYcWAwNclaq7K9H5Z3mw13Z2_n3iF2yzDAOouS17JGF0fvY7Qd0MjIH5foL7cUd-wSvFNa8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Bb9MwFH4a22Fc0BggCmMYiQMSykgc2885VmhVt3UToq3Wm2U7NkyaWkTXA_9-fmlSChJCu0SWEjvRc5792f7e-wDeK2VzVQWVCWnTxdo8cxZjhpUT6GtnVUP5v7xSw6k4n8nZVizMOj_EZsONPKMZr8nBaUN6y8vTxMezQmlNisZSPYI9oTiSfAMXXzYnCbLQa5J9VWYCxaxN70Nsnr8a-HNm-g03t0FrM-sMDuBJCxdZf92_T2EnzA9hv4smXqZyq2L-_dczGG0xgNgiMssGxE9j49QPgY2v-5OPjLTPKAKdDTpWFkuwlSUYyChR1c231WK1ZNOT8XOYDk4nn4dZq5aQefr6rIwhClUrJznW6F0Ceg4x6oIwXc291aR6jh6x5oi-rGQMWomQ-9KpMtjyBezOF_PwEljEWOTeO1soJ7RXWuY25s5VOrWvCt-Dk85SxrepxEnR4tZ0SwoyrSHTmsa0PfiwqfBjnUXj348edaY3rTstDUdZ0Xkelz14t7mdHIFON-w8JMuYMo3dUiDPsQefmi7736vMef_6a1N69eAab2F_OLkcmdHZ1cVreMwpKKIhuRzB7t3PVXiToMqdO27-xXtOidk_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BkMZeEOOHVhibkXhAQhmJY_ucxwoWjTGmaV21vVm2Yw-kqa3o-sB_jy9Nug4JIV4iS4md6M5nf859dwfwTimbqyqoTEibLtbmmbMYM6ycQN84q1rK_7dTdTQWx1eyZxNSLMwyP8TqhxtZRrtek4HPmrhm5Gnf41mhtKaCxlI9hEfk8qNJzsXZypEgC73k2FdlJlBcddl9iMzzxwD3N6Y7tLmOWdtNp34KTzq0yIZL9W7DgzB5Bo_7YOJ5andFzL__eg4nawQgNo3MsproaWyU1BDY6HJ48YFR6TMKQGd1T8piCbWyhAIZ5an6cb2YLuZsfDB6AeP68OLTUdYVS8g8fX1WxhCFapSTHBv0LuE8hxh1QZCu4d5qKnqOHrHhiL6sZAxaiZD70qky2PIlbEymk7ADLGIscu-dLZQT2istcxtz5yqdxleFH8BBLynju0ziVNDixvQnChKtIdGaVrQDeL_qMFsm0fj7o7u96E1nTXPDUVbkzuNyAG9Xt5MdkHPDTkKSjCnT0i0F8hwH8LFV2b9eZY6Hl-dt69V_99iHzbPPtTn5cvr1NWxxColoKS67sHH7cxHeJKBy6_baqfgbHlPYcQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+Field+Scale+SWAT%2B+Modeling+Framework+for+the+Contiguous+U.S&rft.jtitle=Journal+of+the+American+Water+Resources+Association&rft.au=White%2C+Michael+J.&rft.au=Arnold%2C+Jeffrey+G.&rft.au=Bieger%2C+Katrin&rft.au=Allen%2C+Peter+M.&rft.date=2022-12-01&rft.issn=1093-474X&rft.eissn=1752-1688&rft.volume=58&rft.issue=6&rft.spage=1545&rft.epage=1560&rft_id=info:doi/10.1111%2F1752-1688.13056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1752_1688_13056 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-474X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-474X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-474X&client=summon |