Development of a Field Scale SWAT+ Modeling Framework for the Contiguous U.S

ABSTRACT The Soil and Water Assessment Tool (SWAT) model is commonly used to predict the impacts of agricultural practices on water quality and quantity. Although widely applied, the data framework used to drive SWAT in the United States (U.S.) is fragmented and inconsistent, varying by user and mod...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Water Resources Association Vol. 58; no. 6; pp. 1545 - 1560
Main Authors White, Michael J., Arnold, Jeffrey G., Bieger, Katrin, Allen, Peter M., Gao, Jungang, Čerkasova, Natalja, Gambone, Marilyn, Park, Seonggyu, Bosch, David D., Yen, Haw, Osorio, Javier M.
Format Journal Article
LanguageEnglish
Published Middleburg Blackwell Publishing Ltd 01.12.2022
Subjects
Online AccessGet full text
ISSN1093-474X
1752-1688
DOI10.1111/1752-1688.13056

Cover

Loading…
Abstract ABSTRACT The Soil and Water Assessment Tool (SWAT) model is commonly used to predict the impacts of agricultural practices on water quality and quantity. Although widely applied, the data framework used to drive SWAT in the United States (U.S.) is fragmented and inconsistent, varying by user and model interface. This research describes the development of the National Agroecosystems Model (NAM), which provides a unified field to national scale modeling computational framework for research and decision support by using the latest SWAT platform, dubbed SWAT+. NAM has sufficient detail to capture field‐level processes and management actions and spans the full extent of the contiguous U.S. NAM contains 7 million computational units, 4 million of which represent specific cultivated fields. It contains 3 million individually identifiable stream segments and more than 5,000 reservoirs. NAM is intended to serve as a reasonable base framework to be refined for specific applications. This work describes the individual data sources, assumptions, and the processing steps for their inclusion. NAM is constructed with 2,121 individual SWAT+ models which can be executed in a parallel hierarchical structure to dramatically improve runtime. This framework was tested in a case study of the Little River Watershed, Tifton, GA. NAM is developed using only publicly available data sources such that subsets of it can be shared to support research with other government agencies, universities, and others in the public domain.
AbstractList The Soil and Water Assessment Tool (SWAT) model is commonly used to predict the impacts of agricultural practices on water quality and quantity. Although widely applied, the data framework used to drive SWAT in the United States (U.S.) is fragmented and inconsistent, varying by user and model interface. This research describes the development of the National Agroecosystems Model (NAM), which provides a unified field to national scale modeling computational framework for research and decision support by using the latest SWAT platform, dubbed SWAT+. NAM has sufficient detail to capture field‐level processes and management actions and spans the full extent of the contiguous U.S. NAM contains 7 million computational units, 4 million of which represent specific cultivated fields. It contains 3 million individually identifiable stream segments and more than 5,000 reservoirs. NAM is intended to serve as a reasonable base framework to be refined for specific applications. This work describes the individual data sources, assumptions, and the processing steps for their inclusion. NAM is constructed with 2,121 individual SWAT+ models which can be executed in a parallel hierarchical structure to dramatically improve runtime. This framework was tested in a case study of the Little River Watershed, Tifton, GA. NAM is developed using only publicly available data sources such that subsets of it can be shared to support research with other government agencies, universities, and others in the public domain.
The Soil and Water Assessment Tool (SWAT) model is commonly used to predict the impacts of agricultural practices on water quality and quantity. Although widely applied, the data framework used to drive SWAT in the U.S. is fragmented and inconsistent, varying by user and model interface. This research describes the development of the National Agroecosystems Model (NAM), which provides a unified field to national scale modeling computational framework for research and decision support by using the latest SWAT platform, dubbed SWAT+. NAM has sufficient detail to capture field-level processes and management actions, and spans the full extent of the contiguous U.S. NAM contains 7 million computational units, 4 million of which represent specific cultivated fields. It contains 3 million individually identifiable stream segments and more than 5,000 reservoirs. This work describes the individual data sources, assumptions, and the processing steps for their inclusion. NAM is constructed with 2,121 individual SWAT+ models which can be executed in a parallel hierarchical structure to dramatically improve runtime. This framework is tested in a case study of the Little River Watershed, Tifton, GA. NAM is developed using only publicly available data sources such that subsets of it can be shared to support research with other government agencies, universities, and others in the public domain.
ABSTRACT The Soil and Water Assessment Tool (SWAT) model is commonly used to predict the impacts of agricultural practices on water quality and quantity. Although widely applied, the data framework used to drive SWAT in the United States (U.S.) is fragmented and inconsistent, varying by user and model interface. This research describes the development of the National Agroecosystems Model (NAM), which provides a unified field to national scale modeling computational framework for research and decision support by using the latest SWAT platform, dubbed SWAT+. NAM has sufficient detail to capture field‐level processes and management actions and spans the full extent of the contiguous U.S. NAM contains 7 million computational units, 4 million of which represent specific cultivated fields. It contains 3 million individually identifiable stream segments and more than 5,000 reservoirs. NAM is intended to serve as a reasonable base framework to be refined for specific applications. This work describes the individual data sources, assumptions, and the processing steps for their inclusion. NAM is constructed with 2,121 individual SWAT+ models which can be executed in a parallel hierarchical structure to dramatically improve runtime. This framework was tested in a case study of the Little River Watershed, Tifton, GA. NAM is developed using only publicly available data sources such that subsets of it can be shared to support research with other government agencies, universities, and others in the public domain.
Author Arnold, Jeffrey G.
Gambone, Marilyn
Gao, Jungang
Yen, Haw
Park, Seonggyu
Bosch, David D.
White, Michael J.
Allen, Peter M.
Osorio, Javier M.
Bieger, Katrin
Čerkasova, Natalja
Author_xml – sequence: 1
  givenname: Michael J.
  orcidid: 0000-0002-1641-0077
  surname: White
  fullname: White, Michael J.
  email: mike.white2@usda.gov
  organization: USDA‐Agricultural Research Service
– sequence: 2
  givenname: Jeffrey G.
  surname: Arnold
  fullname: Arnold, Jeffrey G.
  organization: USDA‐Agricultural Research Service
– sequence: 3
  givenname: Katrin
  orcidid: 0000-0001-5573-8182
  surname: Bieger
  fullname: Bieger, Katrin
  organization: Aarhus University
– sequence: 4
  givenname: Peter M.
  surname: Allen
  fullname: Allen, Peter M.
  organization: Baylor University
– sequence: 5
  givenname: Jungang
  surname: Gao
  fullname: Gao, Jungang
  organization: Texas A&M AgriLife
– sequence: 6
  givenname: Natalja
  surname: Čerkasova
  fullname: Čerkasova, Natalja
  organization: Texas A&M AgriLife
– sequence: 7
  givenname: Marilyn
  surname: Gambone
  fullname: Gambone, Marilyn
  organization: USDA‐Agricultural Research Service
– sequence: 8
  givenname: Seonggyu
  surname: Park
  fullname: Park, Seonggyu
  organization: Texas A&M AgriLife
– sequence: 9
  givenname: David D.
  surname: Bosch
  fullname: Bosch, David D.
  organization: USDA‐Agricultural Research Service
– sequence: 10
  givenname: Haw
  surname: Yen
  fullname: Yen, Haw
  organization: Bayer Crop Science
– sequence: 11
  givenname: Javier M.
  surname: Osorio
  fullname: Osorio, Javier M.
  organization: Texas A&M AgriLife
BookMark eNqFkM9PwjAYhhujiYCevTbxYmIG7bq240hQ_BGMiUDw1pTuGxbLit2Q8N87xHjgoL20aZ7ny_u9TXRc-AIQuqCkTevToZLHERVp2qaMcHGEGr8_x_WbdFmUyOT1FDXLckEI5TRlDTS8gU9wfrWEosI-xxoPLLgMj4x2gEfT3vgaP_kMnC3meBD0EjY-vOPcB1y9Ae77orLztV-XeNIenaGTXLsSzn_uFpoMbsf9-2j4fPfQ7w0js0sWsRzyRGRixmOZSTPjRM6kzFNKBeVZbHQqOOXSSJnFUhrW5TmkIgFi2Eww0KyFrvZzV8F_rKGs1NKWBpzTBdRRFKOc8UTGRNbo5QG68OtQ1OlULHmXii6JeU3xPWWCL8sAuTK20pWttwvaOkWJ2nWsdo2qXaPqu-Pa6xx4q2CXOmz_MMTe2FgH2_9w9dibvuzFL9z1i_Y
CitedBy_id crossref_primary_10_1080_02626667_2024_2393414
crossref_primary_10_1016_j_jenvman_2023_119514
crossref_primary_10_3389_feart_2024_1416387
crossref_primary_10_1016_j_watres_2025_123335
crossref_primary_10_3390_cli13030051
crossref_primary_10_1080_02626667_2024_2364714
crossref_primary_10_1016_j_envsoft_2024_106234
crossref_primary_10_1016_j_scitotenv_2024_175283
crossref_primary_10_1016_j_envsoft_2023_105878
crossref_primary_10_1038_s41598_025_92987_6
crossref_primary_10_1016_j_ejrh_2025_102188
crossref_primary_10_1016_j_agsy_2023_103695
crossref_primary_10_1016_j_jenvman_2025_125101
crossref_primary_10_1016_j_catena_2023_107339
crossref_primary_10_1088_1748_9326_ad404b
crossref_primary_10_2166_hydro_2024_079
crossref_primary_10_3390_w17060834
crossref_primary_10_5194_hess_28_21_2024
crossref_primary_10_1016_j_ejrh_2024_102134
crossref_primary_10_22630_srees_9790
crossref_primary_10_1016_j_jhydrol_2025_132691
crossref_primary_10_1016_j_agwat_2024_108954
crossref_primary_10_3390_w17050670
crossref_primary_10_1016_j_jhydrol_2024_132470
crossref_primary_10_1016_j_jenvman_2024_121394
crossref_primary_10_3389_frwa_2024_1451648
crossref_primary_10_1002_hyp_15282
Cites_doi 10.1016/j.jhydrol.2021.126422
10.2489/jswc.69.1.26
10.13031/2013.3211
10.1016/j.compag.2012.03.005
10.4236/jgis.2017.93016
10.1111/j.1752-1688.1998.tb05961.x
10.1016/j.jhydrol.2020.124817
10.1029/2006WR005844
10.3390/w9060437
10.1111/1752-1688.12460
10.3390/w10101299
10.2489/jswc.67.6.525
10.1029/2008WR007615
10.1016/j.jhydrol.2007.12.025
10.3390/rs13050968
10.1016/j.jhydrol.2015.03.027
10.3133/ds1101
10.3133/cir1441
10.1111/1752-1688.12384
10.3390/w9110892
10.1016/j.rse.2015.10.034
10.1061/(ASCE)HE.1943-5584.0001590
10.3133/fs20123020
10.13031/2013.42256
10.3390/w8040164
10.1111/1752-1688.12890
10.1007/s00267-016-0756-5
10.1111/1752-1688.12728
10.1038/s41597-020-00596-x
10.1016/j.rse.2021.112445
10.3390/w11081681
10.1016/j.jenvman.2013.05.018
10.1111/1752-1688.12552
10.1111/j.1752‐1688.2011.00576.x
10.1080/07900629849231
10.1111/1752-1688.12546
10.1016/j.scitotenv.2016.06.202
10.1007/s10584-020-02924-x
10.1111/1752-1688.12482
10.1016/j.jhydrol.2020.125021
10.1016/j.jhydrol.2020.124556
10.1016/j.catena.2017.04.010
10.2166/9781780401867
10.1111/1752-1688.12389
10.3390/rs10060885
ContentType Journal Article
Copyright 2022 The Authors. Journal of the American Water Resources Association published by Wiley Periodicals LLC on behalf of American Water Resources Association. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Journal of the American Water Resources Association published by Wiley Periodicals LLC on behalf of American Water Resources Association. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7ST
7UA
8FD
C1K
F1W
FR3
H97
KR7
L.G
SOI
7S9
L.6
DOI 10.1111/1752-1688.13056
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1752-1688
EndPage 1560
ExternalDocumentID 10_1111_1752_1688_13056
JAWR13056
Genre article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Natural Resources Conservation Service
  funderid: 60‐0202‐0‐002; 60‐3098‐9‐001; 60‐3098‐9‐002; 68‐7482‐17‐355
– fundername: Agricultural Research Service
  funderid: 3098‐13610‐007‐00D
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
31~
33P
3SF
3V.
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
7X2
7XC
8-0
8-1
8-3
8-4
8-5
88I
8C1
8CJ
8FE
8FG
8FH
8FW
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJCF
ABJNI
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
C1A
CAG
CCPQU
CO8
COF
CS3
D-E
D-F
D1J
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FYUFA
FZ0
G-S
G.N
GNUQQ
GODZA
H.T
H.X
HCIFZ
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
K48
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK5
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0K
M2P
M7P
M7R
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OHT
OIG
P0-
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PQQKQ
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
R.K
RIWAO
RJQFR
ROL
RX1
S0X
SUPJJ
TAE
UB1
UKHRP
VH1
VQP
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YCJ
YHZ
YV5
ZCA
ZO4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
7QH
7ST
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H97
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c3056-3fef46d6b527d7cb507b77f811615d2ca865157c77d277c395fe864e0c3b63ea3
IEDL.DBID 24P
ISSN 1093-474X
IngestDate Tue Aug 05 11:41:05 EDT 2025
Wed Aug 13 09:23:52 EDT 2025
Tue Jul 01 03:34:21 EDT 2025
Thu Apr 24 22:52:25 EDT 2025
Wed Jan 22 16:25:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3056-3fef46d6b527d7cb507b77f811615d2ca865157c77d277c395fe864e0c3b63ea3
Notes (JAWR).
Discussions are open until six months from issue publication
Journal of the American Water Resources Association
Paper No. JAWR‐21‐0146‐P of the
Research Impact Statement
.
The National Agroecosystems Model is a field based, national scale water quantity and quality model to aid in conservation planning and policy.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5573-8182
0000-0002-1641-0077
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1752-1688.13056
PQID 2759169025
PQPubID 34915
PageCount 1560
ParticipantIDs proquest_miscellaneous_3153547207
proquest_journals_2759169025
crossref_citationtrail_10_1111_1752_1688_13056
crossref_primary_10_1111_1752_1688_13056
wiley_primary_10_1111_1752_1688_13056_JAWR13056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Middleburg
PublicationPlace_xml – name: Middleburg
PublicationTitle Journal of the American Water Resources Association
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2009; 45
2017; 4
2020; 163
2019; 55
2019; 11
2013; 127
2014; 69
2017; 156
2012; 55
2017; 9
2020; 7
2001
2021; 598
2016; 569–570
2008; 352
2012; 67
1998; 14
2012
2011
2020; 583
2017; 22
2020; 588
2008
2016; 52
2007
2021; 260
2015; 524
2020; 586
2015; 8
2016; 58
2021; 57
2021; 13
2017; 53
2022
2021
2004; 59
2019
2018
2016
2015
2014
2011; 47
2013
2007; 43
2018; 10
1998; 34
2016; 8
2012; 84
2016; 172
e_1_2_7_5_1
Soil Survey Staff (e_1_2_7_40_1) 2021
e_1_2_7_3_1
e_1_2_7_19_1
Kalcic M. (e_1_2_7_28_1) 2015; 8
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
Gollehon N. (e_1_2_7_24_1) 2016
Sugg Z. (e_1_2_7_43_1) 2007
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
Baker N.T. (e_1_2_7_9_1) 2011
e_1_2_7_21_1
e_1_2_7_35_1
Soil Survey Staff (e_1_2_7_39_1) 2014
e_1_2_7_56_1
Asamen D.M. (e_1_2_7_7_1) 2022
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Mausbach M. (e_1_2_7_30_1) 2004; 59
Di Luzio M. (e_1_2_7_17_1) 2017; 4
e_1_2_7_51_1
e_1_2_7_53_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 172
  start-page: 67
  year: 2016
  end-page: 86
  article-title: Conterminous United States Crop Field Size Quantification from Multi‐Temporal Landsat Data
  publication-title: Remote Sensing of Environment
– volume: 53
  start-page: 115
  year: 2017
  end-page: 30
  article-title: Introduction to SWAT+, A Completely Restructured Version of the Soil and Water Assessment Tool
  publication-title: Journal of the American Water Resources Association
– volume: 588
  year: 2020
  article-title: Comparative Analysis of Water Budgets across the U.S. Long‐Term Agroecosystem Research Network
  publication-title: Journal of Hydrology
– volume: 43
  issue: 9
  year: 2007
  article-title: Little River Experimental Watershed Database
  publication-title: Water Resources Research
– volume: 53
  start-page: 961
  year: 2017
  end-page: 83
  article-title: Annual Estimates of Recharge, Quick‐Flow Runoff, and Evapotranspiration for the Contiguous U.S. Using Empirical Regression Equations
  publication-title: Journal of the American Water Resources Association
– volume: 598
  year: 2021
  article-title: Modelling Framework for Flow, Sediments and Nutrient Loads in a Large Transboundary River Watershed: A Climate Change Impact Assessment of the Nemunas River Watershed
  publication-title: Journal of Hydrology
– year: 2021
– volume: 52
  start-page: 1385
  year: 2016
  end-page: 400
  article-title: Development and Comparison of Multiple Regression Models to Predict Bankfull Channel Dimensions for Use in Hydrologic Models
  publication-title: Journal of the American Water Resources Association
– volume: 586
  year: 2020
  article-title: Development and Accuracy Assessment of a 12‐Digit Hydrologic Unit Code Based Real‐Time Climate Database for Hydrologic Models in the US
  publication-title: Journal of Hydrology
– start-page: 13
  year: 2011
– volume: 47
  start-page: 950
  year: 2011
  end-page: 64
  article-title: Nutrient Loadings to Streams of the Continental United States from Municipal and Industrial Effluent
  publication-title: Journal of the American Water Resources Association
– volume: 7
  start-page: 257
  year: 2020
  article-title: Mapping of 30‐Meter Resolution Tile‐Drained Croplands Using a Geospatial Modeling Approach
  publication-title: Scientific Data
– volume: 55
  start-page: 578
  year: 2019
  end-page: 90
  article-title: Representing the Connectivity of Upland Areas to Floodplains and Streams in SWAT+
  publication-title: Journal of the American Water Resources Association
– year: 2018
– volume: 34
  start-page: 73
  year: 1998
  end-page: 89
  article-title: Large Area Hydrologic Model Develpment and Assessment Part 1: Model Development
  publication-title: Journal of the American Water Resources Association
– volume: 14
  start-page: 315
  year: 1998
  end-page: 25
  article-title: Hydrologic Modelling of the United States with the Soil and Water Assessment Tool
  publication-title: International Journal of Water Resources Development
– year: 2014
– volume: 260
  year: 2021
  article-title: Mapping Annual Irrigation from Landsat Imagery and Environmental Variables across the Conterminous United States
  publication-title: Remote Sensing of Environment
– volume: 10
  start-page: 885
  year: 2018
  article-title: Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite‐Based Earth Observations
  publication-title: Remote Sensing
– volume: 55
  start-page: 1491
  issue: 4
  year: 2012
  end-page: 508
  article-title: SWAT: Model Use, Calibration, and Validation
  publication-title: Transactions of American Society of Agricultural and Biological Engineers
– start-page: 33
  year: 2008
  end-page: 52
– year: 2022
  article-title: Prediction of Streambed Median Grain Size (D50) at Regional and Continental U.S. Scale
  publication-title: Water
– volume: 11
  start-page: 1681
  year: 2019
  article-title: IPEAT+: A Built‐in Optimization and Automatic Calibration Tool of SWAT+
  publication-title: Water
– volume: 156
  start-page: 353
  year: 2017
  end-page: 64
  article-title: Impacts of Alternative Climate Information on Hydrologic Processes with SWAT: A Comparison of NCDC, PRISM and NEXRAD Datasets
  publication-title: Catena
– volume: 59
  start-page: 96
  issue: 5
  year: 2004
  end-page: 103
  article-title: The Length We Go Measuring Environmental Benefits of Conservation Practices
  publication-title: Journal of Soil and Water Conservation
– volume: 163
  start-page: 1307
  year: 2020
  end-page: 27
  article-title: Mass Balance Calibration and Reservoir Representations for Large‐Scale Hydrological Impact Studies Using SWAT+
  publication-title: Climatic Change
– volume: 10
  start-page: 1299
  year: 2018
  article-title: Assessing the Impact of Site‐Specific BMPs Using a Spatially Explicit, Field‐Scale SWAT Model with Edge‐of‐Field and Tile Hydrology and Water‐Quality Data in the Eagle Creek Watershed, Ohio
  publication-title: Water
– volume: 52
  start-page: 890
  year: 2016
  end-page: 900
  article-title: The Road to NHDPlus — Advancements in Digital Stream Networks and Associated Catchments
  publication-title: Journal of the American Water Resources Association
– year: 2019
– volume: 8
  start-page: 164
  issue: 4
  year: 2016
  article-title: Application of Large‐Scale, Multi‐Resolution Watershed Modeling Framework Using the Hydrologic and Water Quality System (HAWQS)
  publication-title: Water
– year: 2015
– volume: 13
  start-page: 968
  year: 2021
  article-title: Accuracy, Bias, and Improvements in Mapping Crops and Cropland across the United States Using the USDA Cropland Data Layer
  publication-title: Remote Sensing
– year: 2007
– volume: 52
  start-page: 269
  year: 2016
  end-page: 74
  article-title: Development of a Cropland Management Dataset to Support U.S. Swat Assessments
  publication-title: Journal of the American Water Resources Association
– volume: 45
  issue: 10
  year: 2009
  article-title: Assessing the Impact of Climate Change on Water Resources in Iran
  publication-title: Water Resources Research
– volume: 9
  start-page: 892
  year: 2017
  article-title: Development of a Hydrologic Connectivity Dataset for SWAT Assessments in the US
  publication-title: Water
– volume: 8
  start-page: 69
  year: 2015
  end-page: 80
  article-title: Defining Soil and Water Assessment Tool (SWAT) Hydrologic Response Units (HRUs) by Field Boundaries
  publication-title: International Journal of Agricultural and Biological Engineering
– year: 2016
– year: 2012
– volume: 58
  start-page: 857
  year: 2016
  end-page: 72
  article-title: Mapping Water Vulnerability of the Yangtze River Basin: 1994–2013
  publication-title: Environmental Management
– volume: 69
  start-page: 26
  year: 2014
  end-page: 40
  article-title: Nutrient Delivery from the Mississippi River to the Gulf of Mexico and Effects of Cropland Conservation
  publication-title: Journal of Soil and Water Conservation
– volume: 352
  start-page: 30
  year: 2008
  end-page: 49
  article-title: Estimation of Freshwater Availability in the West African Sub‐Continent Using the SWAT Hydrologic Model
  publication-title: Journal of Hydrology
– volume: 9
  start-page: 267
  year: 2017
  article-title: A Large Scale GIS Geodatabase of Soil Parameters Supporting the Modeling of Conservation Practice Alternatives in the United States
  publication-title: Journal of Geographic Information System
– volume: 84
  start-page: 111
  year: 2012
  end-page: 23
  article-title: CropScape: A Web Service Based Application for Exploring and Disseminating US Conterminous Geospatial Cropland Data Products for Decision Support
  publication-title: Computers and Electronics in Agriculture
– volume: 127
  start-page: 228
  year: 2013
  end-page: 36
  article-title: Evaluating the Capabilities of Watershed‐Scale Models in Estimating Sediment Yield at Field‐Scale
  publication-title: Journal of Environmental Management
– volume: 67
  start-page: 525
  year: 2012
  end-page: 35
  article-title: Development and Validation of the Texas Best Management Practice Evaluation Tool (TBET)
  publication-title: Journal of Soil and Water Conservation
– volume: 22
  year: 2017
  article-title: Modeling the Responses of Water and Sediment Discharge to Climate Change in the Upper Yellow River Basin, China
  publication-title: Journal of Hydrologic Engineering
– volume: 57
  start-page: 154
  year: 2021
  end-page: 69
  article-title: Conceptual Framework of Connectivity for a National Agroecosystem Model Based on Transport Processes and Management Practices
  publication-title: Journal of the American Water Resources Association
– volume: 4
  start-page: 2
  issue: 1
  year: 2017
  article-title: Advancement of a Soil Parameters Geodatabase for the Modeling Assessment of Conservation Practice Outcomes in the United States
  publication-title: International Journal of Geospatial and Environmental Research.
– volume: 9
  start-page: 437
  issue: 6
  year: 2017
  article-title: Development of a Station Based Climate Database for SWAT and APEX Assessments in the US
  publication-title: Water
– volume: 583
  year: 2020
  article-title: Development of Reservoir Operation Functions in SWAT+ for National Environmental Assessments
  publication-title: Journal of Hydrology
– volume: 524
  start-page: 733
  year: 2015
  end-page: 52
  article-title: A Continental‐Scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High‐Resolution Large‐Scale SWAT Model
  publication-title: Journal of Hydrology
– volume: 53
  start-page: 1229
  year: 2017
  end-page: 40
  article-title: Distribution of Selected Soil and Water Conservation Practices in the U.S. as Identified with Google Earth
  publication-title: Journal of the American Water Resources Association
– volume: 569–570
  start-page: 1265
  year: 2016
  end-page: 81
  article-title: Western Lake Erie Basin: Soft‐Data‐Constrained, NHDPlus Resolution Watershed Modeling and Exploration of Applicable Conservation Scenarios
  publication-title: Science of the Total Environment
– start-page: 95
  year: 2001
  end-page: 98
– year: 2013
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jhydrol.2021.126422
– ident: e_1_2_7_51_1
  doi: 10.2489/jswc.69.1.26
– ident: e_1_2_7_20_1
  doi: 10.13031/2013.3211
– ident: e_1_2_7_25_1
  doi: 10.1016/j.compag.2012.03.005
– ident: e_1_2_7_16_1
  doi: 10.4236/jgis.2017.93016
– volume: 8
  start-page: 69
  year: 2015
  ident: e_1_2_7_28_1
  article-title: Defining Soil and Water Assessment Tool (SWAT) Hydrologic Response Units (HRUs) by Field Boundaries
  publication-title: International Journal of Agricultural and Biological Engineering
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1752-1688.1998.tb05961.x
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jhydrol.2020.124817
– ident: e_1_2_7_13_1
  doi: 10.1029/2006WR005844
– volume-title: Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United States
  year: 2014
  ident: e_1_2_7_39_1
– ident: e_1_2_7_50_1
  doi: 10.3390/w9060437
– ident: e_1_2_7_12_1
  doi: 10.1111/1752-1688.12460
– ident: e_1_2_7_32_1
  doi: 10.3390/w10101299
– ident: e_1_2_7_52_1
  doi: 10.2489/jswc.67.6.525
– ident: e_1_2_7_2_1
  doi: 10.1029/2008WR007615
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jhydrol.2007.12.025
– ident: e_1_2_7_29_1
  doi: 10.3390/rs13050968
– ident: e_1_2_7_3_1
  doi: 10.1016/j.jhydrol.2015.03.027
– volume-title: U.S. General Soil Map (STATSGO2)
  year: 2021
  ident: e_1_2_7_40_1
– ident: e_1_2_7_38_1
  doi: 10.3133/ds1101
– ident: e_1_2_7_18_1
  doi: 10.3133/cir1441
– ident: e_1_2_7_48_1
  doi: 10.1111/1752-1688.12384
– ident: e_1_2_7_19_1
– ident: e_1_2_7_47_1
  doi: 10.3390/w9110892
– ident: e_1_2_7_55_1
  doi: 10.1016/j.rse.2015.10.034
– ident: e_1_2_7_59_1
  doi: 10.1061/(ASCE)HE.1943-5584.0001590
– volume-title: Estimates of Recoverable and Non‐Recoverable Manure Nutrients Based on the Census of Agriculture — 2012 Results
  year: 2016
  ident: e_1_2_7_24_1
– ident: e_1_2_7_27_1
  doi: 10.3133/fs20123020
– ident: e_1_2_7_4_1
  doi: 10.13031/2013.42256
– volume: 59
  start-page: 96
  issue: 5
  year: 2004
  ident: e_1_2_7_30_1
  article-title: The Length We Go Measuring Environmental Benefits of Conservation Practices
  publication-title: Journal of Soil and Water Conservation
– ident: e_1_2_7_37_1
– ident: e_1_2_7_56_1
  doi: 10.3390/w8040164
– ident: e_1_2_7_6_1
  doi: 10.1111/1752-1688.12890
– ident: e_1_2_7_44_1
  doi: 10.1007/s00267-016-0756-5
– ident: e_1_2_7_45_1
– ident: e_1_2_7_10_1
  doi: 10.1111/1752-1688.12728
– ident: e_1_2_7_46_1
  doi: 10.1038/s41597-020-00596-x
– ident: e_1_2_7_54_1
  doi: 10.1016/j.rse.2021.112445
– ident: e_1_2_7_57_1
  doi: 10.3390/w11081681
– ident: e_1_2_7_41_1
  doi: 10.1016/j.jenvman.2013.05.018
– ident: e_1_2_7_49_1
  doi: 10.1111/1752-1688.12552
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1752‐1688.2011.00576.x
– volume: 4
  start-page: 2
  issue: 1
  year: 2017
  ident: e_1_2_7_17_1
  article-title: Advancement of a Soil Parameters Geodatabase for the Modeling Assessment of Conservation Practice Outcomes in the United States
  publication-title: International Journal of Geospatial and Environmental Research.
– ident: e_1_2_7_42_1
  doi: 10.1080/07900629849231
– ident: e_1_2_7_35_1
  doi: 10.1111/1752-1688.12546
– start-page: 13
  volume-title: Tillage Practices in the Conterminous United States, 1989–2004 Datasets Aggregated by Watershed: U S. Geological Survey Data Series 573
  year: 2011
  ident: e_1_2_7_9_1
– ident: e_1_2_7_58_1
  doi: 10.1016/j.scitotenv.2016.06.202
– ident: e_1_2_7_15_1
  doi: 10.1007/s10584-020-02924-x
– year: 2022
  ident: e_1_2_7_7_1
  article-title: Prediction of Streambed Median Grain Size (D50) at Regional and Continental U.S. Scale
  publication-title: Water
– volume-title: Assessing U.S. Farm Drainage: Can GIS Lead to Better Estimates of Subsurface Drainage Extent?
  year: 2007
  ident: e_1_2_7_43_1
– ident: e_1_2_7_11_1
  doi: 10.1111/1752-1688.12482
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jhydrol.2020.125021
– ident: e_1_2_7_53_1
  doi: 10.1016/j.jhydrol.2020.124556
– ident: e_1_2_7_21_1
  doi: 10.1016/j.catena.2017.04.010
– ident: e_1_2_7_26_1
  doi: 10.2166/9781780401867
– ident: e_1_2_7_34_1
  doi: 10.1111/1752-1688.12389
– ident: e_1_2_7_33_1
  doi: 10.3390/rs10060885
– ident: e_1_2_7_23_1
SSID ssj0015183
Score 2.4642193
Snippet ABSTRACT The Soil and Water Assessment Tool (SWAT) model is commonly used to predict the impacts of agricultural practices on water quality and quantity....
The Soil and Water Assessment Tool (SWAT) model is commonly used to predict the impacts of agricultural practices on water quality and quantity. Although...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1545
SubjectTerms Agricultural ecosystems
Agricultural practices
agroecosystems
Computer applications
Data sources
Frameworks
Government agencies
Hydrologic models
Modelling
non‐point source pollution
Public domain
rivers/streams
simulation
Soil and Water Assessment Tool model
Soil water
spatially distributed modeling
streamflow
surface water hydrology
SWAT
water
Water quality
Watersheds
Title Development of a Field Scale SWAT+ Modeling Framework for the Contiguous U.S
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1752-1688.13056
https://www.proquest.com/docview/2759169025
https://www.proquest.com/docview/3153547207
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9-POiL-Inziwg-CFJt0ySXPg51jKEizqFvJUkTFWQTtz3435vr2jkFEV9CoE1a7nLJr73f3RFyJKWOZeZkxIUOjdZxZDT4CDLDwRZGy5Lyf30j2z3eeRQ1mxBjYSb5IaY_3NAyyv0aDVyb4YyRh3OPRYlUCgsaCzlPFjHAFpc647dTR4JI1IRjn6URB_5YZfdBMs-PCb4fTF9ocxazlodOa5WsVGiRNifqXSNzrr9Olupg4mHoV0XMnz82yNUMAYgOPNW0hfQ02g1qcLT70Lw_oVj6DAPQaasmZdGAWmlAgRTzVL08jQfjIe2ddjdJr3V5f96OqmIJkcW3j1LvPJeFNIJBAdYEnGcAvEoQ0hXMaoVFz8ECFAzAppnwTknuYpsamTqdbpGF_qDvtgn14JPYWqMTabiyUolY-9iYTIX5ZWIb5LSWVG6rTOJY0OI1r78oULQ5ijYvRdsgx9MBb5MkGr_fuleLPq-saZgzEBm685hokMPp5WAH6NzQfRckk6dh6xYcWAwNclaq7K9H5Z3mw13Z2_n3iF2yzDAOouS17JGF0fvY7Qd0MjIH5foL7cUd-wSvFNa8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Bb9MwFH4a22Fc0BggCmMYiQMSykgc2885VmhVt3UToq3Wm2U7NkyaWkTXA_9-fmlSChJCu0SWEjvRc5792f7e-wDeK2VzVQWVCWnTxdo8cxZjhpUT6GtnVUP5v7xSw6k4n8nZVizMOj_EZsONPKMZr8nBaUN6y8vTxMezQmlNisZSPYI9oTiSfAMXXzYnCbLQa5J9VWYCxaxN70Nsnr8a-HNm-g03t0FrM-sMDuBJCxdZf92_T2EnzA9hv4smXqZyq2L-_dczGG0xgNgiMssGxE9j49QPgY2v-5OPjLTPKAKdDTpWFkuwlSUYyChR1c231WK1ZNOT8XOYDk4nn4dZq5aQefr6rIwhClUrJznW6F0Ceg4x6oIwXc291aR6jh6x5oi-rGQMWomQ-9KpMtjyBezOF_PwEljEWOTeO1soJ7RXWuY25s5VOrWvCt-Dk85SxrepxEnR4tZ0SwoyrSHTmsa0PfiwqfBjnUXj348edaY3rTstDUdZ0Xkelz14t7mdHIFON-w8JMuYMo3dUiDPsQefmi7736vMef_6a1N69eAab2F_OLkcmdHZ1cVreMwpKKIhuRzB7t3PVXiToMqdO27-xXtOidk_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BkMZeEOOHVhibkXhAQhmJY_ucxwoWjTGmaV21vVm2Yw-kqa3o-sB_jy9Nug4JIV4iS4md6M5nf859dwfwTimbqyqoTEibLtbmmbMYM6ycQN84q1rK_7dTdTQWx1eyZxNSLMwyP8TqhxtZRrtek4HPmrhm5Gnf41mhtKaCxlI9hEfk8qNJzsXZypEgC73k2FdlJlBcddl9iMzzxwD3N6Y7tLmOWdtNp34KTzq0yIZL9W7DgzB5Bo_7YOJ5andFzL__eg4nawQgNo3MsproaWyU1BDY6HJ48YFR6TMKQGd1T8piCbWyhAIZ5an6cb2YLuZsfDB6AeP68OLTUdYVS8g8fX1WxhCFapSTHBv0LuE8hxh1QZCu4d5qKnqOHrHhiL6sZAxaiZD70qky2PIlbEymk7ADLGIscu-dLZQT2istcxtz5yqdxleFH8BBLynju0ziVNDixvQnChKtIdGaVrQDeL_qMFsm0fj7o7u96E1nTXPDUVbkzuNyAG9Xt5MdkHPDTkKSjCnT0i0F8hwH8LFV2b9eZY6Hl-dt69V_99iHzbPPtTn5cvr1NWxxColoKS67sHH7cxHeJKBy6_baqfgbHlPYcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+Field+Scale+SWAT%2B+Modeling+Framework+for+the+Contiguous+U.S&rft.jtitle=Journal+of+the+American+Water+Resources+Association&rft.au=White%2C+Michael+J.&rft.au=Arnold%2C+Jeffrey+G.&rft.au=Bieger%2C+Katrin&rft.au=Allen%2C+Peter+M.&rft.date=2022-12-01&rft.issn=1093-474X&rft.eissn=1752-1688&rft.volume=58&rft.issue=6&rft.spage=1545&rft.epage=1560&rft_id=info:doi/10.1111%2F1752-1688.13056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1752_1688_13056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-474X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-474X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-474X&client=summon