Revealing the Spatial Pattern of Brain Hemodynamic Sensitivity to Healthy Aging through Sparse Dynamic Causal Model
Age-related changes in the BOLD response could reflect neurovascular coupling modifications rather than simply impairments in neural functioning. In this study, we propose the use of a sparse dynamic causal model (sDCM) to decouple neuronal and vascular factors in the BOLD signal, with the aim of ch...
Saved in:
Published in | The Journal of neuroscience Vol. 45; no. 1; p. e1940232024 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Age-related changes in the BOLD response could reflect neurovascular coupling modifications rather than simply impairments in neural functioning. In this study, we propose the use of a sparse dynamic causal model (sDCM) to decouple neuronal and vascular factors in the BOLD signal, with the aim of characterizing the whole-brain spatial pattern of hemodynamic sensitivity to healthy aging, as well as to test the role of hemodynamic features as independent predictors in an age-classification model. sDCM was applied to the resting-state functional magnetic resonance imaging data of a cohort of 126 healthy individuals in a wide age range (31 females), providing reliable estimates of the hemodynamic response function (HRF) for each subject and each region of interest. Then, some features characterizing each HRF curve were extracted and used to fit a multivariate logistic regression model predicting the age class of each individual. Ultimately, we tested the final predictive model on an independent dataset of 338 healthy subjects (173 females) selected from the Human Connectome Project in Aging and Development cohorts. Our results entail the spatial heterogeneity of the age effects on the hemodynamic component, since its impact resulted to be strongly region- and population-specific, discouraging any space-invariant–corrective procedures that attempt to correct for vascular factors when carrying out functional studies involving groups with different ages. Moreover, we demonstrated that a strong interaction exists between certain right-hemisphere hemodynamic features and age, further supporting the essential role of the hemodynamic factor as independent predictor of biological aging, rather than a simple confounding variable. |
---|---|
AbstractList | Age-related changes in the BOLD response could reflect neurovascular coupling modifications rather than simply impairments in neural functioning. In this study, we propose the use of a sparse dynamic causal model (sDCM) to decouple neuronal and vascular factors in the BOLD signal, with the aim of characterizing the whole-brain spatial pattern of hemodynamic sensitivity to healthy aging, as well as to test the role of hemodynamic features as independent predictors in an age-classification model. sDCM was applied to the resting-state functional magnetic resonance imaging data of a cohort of 126 healthy individuals in a wide age range (31 females), providing reliable estimates of the hemodynamic response function (HRF) for each subject and each region of interest. Then, some features characterizing each HRF curve were extracted and used to fit a multivariate logistic regression model predicting the age class of each individual. Ultimately, we tested the final predictive model on an independent dataset of 338 healthy subjects (173 females) selected from the Human Connectome Project in Aging and Development cohorts. Our results entail the spatial heterogeneity of the age effects on the hemodynamic component, since its impact resulted to be strongly region- and population-specific, discouraging any space-invariant–corrective procedures that attempt to correct for vascular factors when carrying out functional studies involving groups with different ages. Moreover, we demonstrated that a strong interaction exists between certain right-hemisphere hemodynamic features and age, further supporting the essential role of the hemodynamic factor as independent predictor of biological aging, rather than a simple confounding variable. Age-related changes in the BOLD response could reflect neurovascular coupling modifications rather than simply impairments in neural functioning. In this study, we propose the use of a sparse dynamic causal model (sDCM) to decouple neuronal and vascular factors in the BOLD signal, with the aim of characterizing the whole-brain spatial pattern of hemodynamic sensitivity to healthy aging, as well as to test the role of hemodynamic features as independent predictors in an age-classification model. sDCM was applied to the resting-state functional magnetic resonance imaging data of a cohort of 126 healthy individuals in a wide age range (31 females), providing reliable estimates of the hemodynamic response function (HRF) for each subject and each region of interest. Then, some features characterizing each HRF curve were extracted and used to fit a multivariate logistic regression model predicting the age class of each individual. Ultimately, we tested the final predictive model on an independent dataset of 338 healthy subjects (173 females) selected from the Human Connectome Project in Aging and Development cohorts. Our results entail the spatial heterogeneity of the age effects on the hemodynamic component, since its impact resulted to be strongly region- and population-specific, discouraging any space-invariant-corrective procedures that attempt to correct for vascular factors when carrying out functional studies involving groups with different ages. Moreover, we demonstrated that a strong interaction exists between certain right-hemisphere hemodynamic features and age, further supporting the essential role of the hemodynamic factor as independent predictor of biological aging, rather than a simple confounding variable.Age-related changes in the BOLD response could reflect neurovascular coupling modifications rather than simply impairments in neural functioning. In this study, we propose the use of a sparse dynamic causal model (sDCM) to decouple neuronal and vascular factors in the BOLD signal, with the aim of characterizing the whole-brain spatial pattern of hemodynamic sensitivity to healthy aging, as well as to test the role of hemodynamic features as independent predictors in an age-classification model. sDCM was applied to the resting-state functional magnetic resonance imaging data of a cohort of 126 healthy individuals in a wide age range (31 females), providing reliable estimates of the hemodynamic response function (HRF) for each subject and each region of interest. Then, some features characterizing each HRF curve were extracted and used to fit a multivariate logistic regression model predicting the age class of each individual. Ultimately, we tested the final predictive model on an independent dataset of 338 healthy subjects (173 females) selected from the Human Connectome Project in Aging and Development cohorts. Our results entail the spatial heterogeneity of the age effects on the hemodynamic component, since its impact resulted to be strongly region- and population-specific, discouraging any space-invariant-corrective procedures that attempt to correct for vascular factors when carrying out functional studies involving groups with different ages. Moreover, we demonstrated that a strong interaction exists between certain right-hemisphere hemodynamic features and age, further supporting the essential role of the hemodynamic factor as independent predictor of biological aging, rather than a simple confounding variable. |
Author | Chiuso, Alessandro Silvestri, Erica Baron, Giorgia Benozzo, Danilo Bertoldo, Alessandra |
AuthorAffiliation | 2 Padova Neuroscience Center, University of Padova , Padova 35131, Italy 1 Department of Information Engineering, University of Padova , Padova 35131, Italy |
AuthorAffiliation_xml | – name: 1 Department of Information Engineering, University of Padova , Padova 35131, Italy – name: 2 Padova Neuroscience Center, University of Padova , Padova 35131, Italy |
Author_xml | – sequence: 1 givenname: Giorgia orcidid: 0000-0002-0866-4982 surname: Baron fullname: Baron, Giorgia – sequence: 2 givenname: Erica orcidid: 0000-0002-1853-0777 surname: Silvestri fullname: Silvestri, Erica – sequence: 3 givenname: Danilo orcidid: 0000-0003-0480-8704 surname: Benozzo fullname: Benozzo, Danilo – sequence: 4 givenname: Alessandro orcidid: 0000-0002-4410-6101 surname: Chiuso fullname: Chiuso, Alessandro – sequence: 5 givenname: Alessandra orcidid: 0000-0002-6262-6354 surname: Bertoldo fullname: Bertoldo, Alessandra |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39455255$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkV1r2zAYRkXpaNOuf6EIdrMbZ_q07KvSZd3a0a2jWa-FLMuJii1lkhzIv59MsrANBAI9R0eveC7AqfPOAHCN0RxzQj98_X738vy0XDzMcc1QQeicIMJOwCyndUEYwqdghohARckEOwcXMb4ihATC4gyc05pxTjifgfhstkb11q1gWhu43KhkVQ9_qJRMcNB38GNQ1sF7M_h259RgNVwaF22yW5t2MPkcqT6td_B2tbcEP67WkylEAz8d7izUGLP3m29N_xa86VQfzdVhvwQvn-9-Lu6Lx6cvD4vbx0JTxFmBSVkJRXXVlYwrJGhbM9zQrmG6ZRwTrlXdVppRVXPaEGaYILTRFSaqrVrD6CW42Xs3YzOYVhuXgurlJthBhZ30ysp_E2fXcuW3EuOyZgzxbHh_MAT_azQxycFGbfpeOePHKCkmGPFa8Omxd_-hr34MLv8vU5wIIvLK1PXfIx1n-VNIBso9oIOPMZjuiGAkp-blsXk5NS_zydQ8_Q057aJu |
Cites_doi | 10.1016/j.nicl.2014.07.003 10.3389/fnagi.2019.00259 10.3389/fnagi.2017.00152 10.1016/S1053-8119(03)00202-7 10.1016/j.neuroimage.2003.11.029 10.1016/S1053-8119(02)91132-8 10.1109/MIPRO.2015.7160458 10.1007/s11682-019-00157-w 10.1016/j.neuroimage.2009.11.062 10.1016/j.neuroimage.2019.116150 10.1109/TMI.2010.2046908 10.1016/j.compbiomed.2019.103375 10.1038/sdata.2018.308 10.1016/j.neuroimage.2014.12.012 10.1016/j.neuroimage.2012.02.018 10.1111/j.1467-8721.2008.00570.x 10.1016/J.NEUROIMAGE.2018.02.061 10.1016/j.neuroimage.2019.116081 10.1016/j.neuroimage.2011.10.018 10.1016/j.neuroimage.2021.118418 10.1016/j.jneumeth.2014.11.014 10.1177/0271678X19828327 10.1016/j.pscychresns.2011.09.014 10.1007/s40656-021-00367-w 10.1098/rstb.2019.0631 10.1016/j.neuroimage.2014.03.034 10.1016/j.neurobiolaging.2018.06.017 10.1016/j.neuroimage.2013.04.127 10.1016/j.neuroimage.2018.09.060 10.1016/j.brainres.2009.08.004 10.1016/J.NEUROIMAGE.2018.06.056 10.1523/JNEUROSCI.2612-10.2010 10.3389/fnins.2022.1009295 10.1016/j.neuroimage.2013.01.067 10.1371/journal.pone.0140174 10.1038/s41592-021-01186-4 10.1016/j.wocn.2018.09.004 10.1016/J.NEUROIMAGE.2014.07.067 10.1523/JNEUROSCI.2919-17.2018 10.3389/fpsyg.2013.00244 10.1038/35094500 10.1016/j.neuroimage.2013.04.113 10.1016/j.neuroimage.2018.12.012 10.1016/j.neuroimage.2019.01.041 10.1016/j.neuroimage.2017.07.059 10.1016/j.neurobiolaging.2016.02.020 10.1002/hbm.23653 10.1016/j.neuroimage.2015.07.075 10.1016/S1053-8119(03)00336-7 10.1111/psyp.13714 10.1016/j.neuroimage.2010.09.025 10.1155/2013/935154 10.1016/j.neuroimage.2004.07.051 10.1016/j.neuroimage.2019.06.031 10.1111/j.1552-6569.2008.00277.x 10.1109/ACCESS.2021.3092884 10.1002/hbm.25714 10.2307/2581267 10.1016/j.jtbi.2013.12.027 10.1002/jmri.22345 10.1016/j.neurobiolaging.2006.10.031 10.1016/j.neuroimage.2018.04.076 10.1093/cercor/bhu012 10.1016/j.eswa.2016.12.035 10.1016/j.acra.2013.09.010 10.1016/j.neurobiolaging.2012.11.002 10.3389/fnhum.2015.00285 10.1016/j.neuroimage.2019.116367 10.1002/mrm.27146 10.1016/j.neuroimage.2023.120224 10.1016/j.neuroimage.2010.07.033 10.1002/mrm.26845 10.1016/B978-012372560-8/50014-0 10.1016/j.neuroimage.2009.06.060 10.1037/0882-7974.17.1.85 10.1007/s00429-020-02083-w 10.1523/JNEUROSCI.2733-15.2016 10.1016/j.neuroimage.2020.117299 10.1016/j.media.2013.01.003 10.1016/S0149-7634(02)00068-4 10.1002/mrm.1910390602 10.1093/braincomms/fcac082 |
ContentType | Journal Article |
Copyright | Copyright © 2024 the authors. Copyright Society for Neuroscience Jan 1, 2025 Copyright © 2024 the authors 2024 |
Copyright_xml | – notice: Copyright © 2024 the authors. – notice: Copyright Society for Neuroscience Jan 1, 2025 – notice: Copyright © 2024 the authors 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
DOI | 10.1523/JNEUROSCI.1940-23.2024 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts Animal Behavior Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
ExternalDocumentID | PMC11694405 39455255 10_1523_JNEUROSCI_1940_23_2024 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U01 MH109589 – fundername: NIA NIH HHS grantid: U01 AG052564 – fundername: Department of Information Engineering, University of Padova |
GroupedDBID | --- -DZ -~X .55 18M 34G 39C 5GY 5RE AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADHGD AENEX AFCFT AFHIN AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 H~9 KQ8 L7B OK1 P0W P2P QZG R.V RHI RPM TFN TR2 WH7 WOQ X7M YBU YHG YKV YNH YSK 2WC 5VS CGR CUY CVF ECM EIF HYE NPM W8F 7QG 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
ID | FETCH-LOGICAL-c3054-12687a3c8f645a073d941b3fb4cd45125ca9d8c43a953b24e4723bc812ad8de43 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:33:41 EDT 2025 Thu Jul 10 23:29:29 EDT 2025 Wed Aug 13 08:02:50 EDT 2025 Thu Jul 31 01:53:58 EDT 2025 Tue Jul 01 00:59:25 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | hemodynamic response function dynamic causal modelling aging |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 Copyright © 2024 the authors. SfN exclusive license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3054-12687a3c8f645a073d941b3fb4cd45125ca9d8c43a953b24e4723bc812ad8de43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 G.B. and D.B. were supported by the DEI Proactive grant "Personalized whole-brain models for neuroscience: inference and validation” from the Department of Information Engineering of the University of Padova (Italy). The Human Connectome Project (HCP)-Aging dataset reported in this study was supported by grants of the National Institute on Aging of the National Institutes of Health under Award Number U01AG052564 and by funds provided by the McDonnell Center for Systems Neuroscience at Washington University in St. Louis. The HCP-Aging 2.0 Release data used in this report came from http://dx.doi.org/10.15154/1520707. The HCP-Development dataset reported in this study was supported by grants of the National Institute of Mental Health of the National Institutes of Health under Award Number U01MH109589 and by funds provided by the McDonnell Center for Systems Neuroscience at Washington University in St. Louis. The HCP-Development 2.0 Release data used in this report came from http://dx.doi.org/10.15154/1520708. Author contributions: G.B., E.S., D.B., A.C., and A.B. designed research; G.B. and E.S. performed research; G.B. analyzed data; G.B. wrote the paper. The authors declare no competing financial interests. |
ORCID | 0000-0003-0480-8704 0000-0002-1853-0777 0000-0002-0866-4982 0000-0002-4410-6101 0000-0002-6262-6354 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11694405 |
PMID | 39455255 |
PQID | 3152727727 |
PQPubID | 2049535 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11694405 proquest_miscellaneous_3121059754 proquest_journals_3152727727 pubmed_primary_39455255 crossref_primary_10_1523_JNEUROSCI_1940_23_2024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2025 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2025010111000995000_45.1.e1940232024.29 2025010111000995000_45.1.e1940232024.27 2025010111000995000_45.1.e1940232024.28 2025010111000995000_45.1.e1940232024.25 2025010111000995000_45.1.e1940232024.69 2025010111000995000_45.1.e1940232024.26 2025010111000995000_45.1.e1940232024.23 2025010111000995000_45.1.e1940232024.67 2025010111000995000_45.1.e1940232024.24 2025010111000995000_45.1.e1940232024.68 2025010111000995000_45.1.e1940232024.21 2025010111000995000_45.1.e1940232024.65 2025010111000995000_45.1.e1940232024.22 2025010111000995000_45.1.e1940232024.66 2025010111000995000_45.1.e1940232024.63 2025010111000995000_45.1.e1940232024.20 2025010111000995000_45.1.e1940232024.61 Jo (2025010111000995000_45.1.e1940232024.43) 2013; 2013 2025010111000995000_45.1.e1940232024.62 2025010111000995000_45.1.e1940232024.60 2025010111000995000_45.1.e1940232024.18 2025010111000995000_45.1.e1940232024.19 2025010111000995000_45.1.e1940232024.16 2025010111000995000_45.1.e1940232024.17 2025010111000995000_45.1.e1940232024.14 2025010111000995000_45.1.e1940232024.58 2025010111000995000_45.1.e1940232024.15 2025010111000995000_45.1.e1940232024.59 2025010111000995000_45.1.e1940232024.12 2025010111000995000_45.1.e1940232024.56 2025010111000995000_45.1.e1940232024.13 2025010111000995000_45.1.e1940232024.57 2025010111000995000_45.1.e1940232024.10 2025010111000995000_45.1.e1940232024.54 2025010111000995000_45.1.e1940232024.11 2025010111000995000_45.1.e1940232024.55 2025010111000995000_45.1.e1940232024.52 2025010111000995000_45.1.e1940232024.53 2025010111000995000_45.1.e1940232024.50 2025010111000995000_45.1.e1940232024.51 2025010111000995000_45.1.e1940232024.49 2025010111000995000_45.1.e1940232024.47 2025010111000995000_45.1.e1940232024.48 2025010111000995000_45.1.e1940232024.45 2025010111000995000_45.1.e1940232024.46 2025010111000995000_45.1.e1940232024.44 2025010111000995000_45.1.e1940232024.41 Goodro (2025010111000995000_45.1.e1940232024.32) 2012; 203 2025010111000995000_45.1.e1940232024.42 2025010111000995000_45.1.e1940232024.83 2025010111000995000_45.1.e1940232024.40 2025010111000995000_45.1.e1940232024.81 2025010111000995000_45.1.e1940232024.82 2025010111000995000_45.1.e1940232024.80 2025010111000995000_45.1.e1940232024.9 2025010111000995000_45.1.e1940232024.8 2025010111000995000_45.1.e1940232024.7 Silvestri (2025010111000995000_45.1.e1940232024.64) 2022; 4 2025010111000995000_45.1.e1940232024.2 2025010111000995000_45.1.e1940232024.1 2025010111000995000_45.1.e1940232024.38 2025010111000995000_45.1.e1940232024.39 2025010111000995000_45.1.e1940232024.6 2025010111000995000_45.1.e1940232024.36 2025010111000995000_45.1.e1940232024.5 2025010111000995000_45.1.e1940232024.37 2025010111000995000_45.1.e1940232024.4 2025010111000995000_45.1.e1940232024.34 2025010111000995000_45.1.e1940232024.78 2025010111000995000_45.1.e1940232024.3 2025010111000995000_45.1.e1940232024.35 2025010111000995000_45.1.e1940232024.79 2025010111000995000_45.1.e1940232024.76 2025010111000995000_45.1.e1940232024.33 2025010111000995000_45.1.e1940232024.77 2025010111000995000_45.1.e1940232024.30 2025010111000995000_45.1.e1940232024.74 2025010111000995000_45.1.e1940232024.31 2025010111000995000_45.1.e1940232024.75 2025010111000995000_45.1.e1940232024.72 2025010111000995000_45.1.e1940232024.73 2025010111000995000_45.1.e1940232024.70 2025010111000995000_45.1.e1940232024.71 |
References_xml | – ident: 2025010111000995000_45.1.e1940232024.19 doi: 10.1016/j.nicl.2014.07.003 – ident: 2025010111000995000_45.1.e1940232024.77 doi: 10.3389/fnagi.2019.00259 – ident: 2025010111000995000_45.1.e1940232024.5 doi: 10.3389/fnagi.2017.00152 – ident: 2025010111000995000_45.1.e1940232024.25 doi: 10.1016/S1053-8119(03)00202-7 – ident: 2025010111000995000_45.1.e1940232024.38 doi: 10.1016/j.neuroimage.2003.11.029 – ident: 2025010111000995000_45.1.e1940232024.42 doi: 10.1016/S1053-8119(02)91132-8 – ident: 2025010111000995000_45.1.e1940232024.44 doi: 10.1109/MIPRO.2015.7160458 – ident: 2025010111000995000_45.1.e1940232024.63 – ident: 2025010111000995000_45.1.e1940232024.26 doi: 10.1007/s11682-019-00157-w – ident: 2025010111000995000_45.1.e1940232024.20 doi: 10.1016/j.neuroimage.2009.11.062 – ident: 2025010111000995000_45.1.e1940232024.46 doi: 10.1016/j.neuroimage.2019.116150 – ident: 2025010111000995000_45.1.e1940232024.75 doi: 10.1109/TMI.2010.2046908 – ident: 2025010111000995000_45.1.e1940232024.59 doi: 10.1016/j.compbiomed.2019.103375 – ident: 2025010111000995000_45.1.e1940232024.6 doi: 10.1038/sdata.2018.308 – ident: 2025010111000995000_45.1.e1940232024.14 doi: 10.1016/j.neuroimage.2014.12.012 – ident: 2025010111000995000_45.1.e1940232024.76 doi: 10.1016/j.neuroimage.2012.02.018 – ident: 2025010111000995000_45.1.e1940232024.60 doi: 10.1111/j.1467-8721.2008.00570.x – ident: 2025010111000995000_45.1.e1940232024.67 doi: 10.1016/J.NEUROIMAGE.2018.02.061 – ident: 2025010111000995000_45.1.e1940232024.12 doi: 10.1016/j.neuroimage.2019.116081 – ident: 2025010111000995000_45.1.e1940232024.55 doi: 10.1016/j.neuroimage.2011.10.018 – ident: 2025010111000995000_45.1.e1940232024.17 doi: 10.1016/j.neuroimage.2021.118418 – ident: 2025010111000995000_45.1.e1940232024.62 doi: 10.1016/j.jneumeth.2014.11.014 – ident: 2025010111000995000_45.1.e1940232024.69 doi: 10.1177/0271678X19828327 – volume: 203 start-page: 38 year: 2012 ident: 2025010111000995000_45.1.e1940232024.32 article-title: Age effect on subcortical structures in healthy adults publication-title: Psychiatry Res doi: 10.1016/j.pscychresns.2011.09.014 – ident: 2025010111000995000_45.1.e1940232024.34 doi: 10.1007/s40656-021-00367-w – ident: 2025010111000995000_45.1.e1940232024.72 doi: 10.1098/rstb.2019.0631 – ident: 2025010111000995000_45.1.e1940232024.36 doi: 10.1016/j.neuroimage.2014.03.034 – ident: 2025010111000995000_45.1.e1940232024.51 doi: 10.1016/j.neurobiolaging.2018.06.017 – ident: 2025010111000995000_45.1.e1940232024.30 doi: 10.1016/j.neuroimage.2013.04.127 – ident: 2025010111000995000_45.1.e1940232024.39 doi: 10.1016/j.neuroimage.2018.09.060 – ident: 2025010111000995000_45.1.e1940232024.52 doi: 10.1016/j.brainres.2009.08.004 – ident: 2025010111000995000_45.1.e1940232024.50 doi: 10.1016/J.NEUROIMAGE.2018.06.056 – ident: 2025010111000995000_45.1.e1940232024.83 doi: 10.1523/JNEUROSCI.2612-10.2010 – ident: 2025010111000995000_45.1.e1940232024.47 doi: 10.3389/fnins.2022.1009295 – ident: 2025010111000995000_45.1.e1940232024.45 doi: 10.1016/j.neuroimage.2013.01.067 – ident: 2025010111000995000_45.1.e1940232024.78 doi: 10.1371/journal.pone.0140174 – ident: 2025010111000995000_45.1.e1940232024.48 doi: 10.1038/s41592-021-01186-4 – ident: 2025010111000995000_45.1.e1940232024.68 doi: 10.1016/j.wocn.2018.09.004 – ident: 2025010111000995000_45.1.e1940232024.10 doi: 10.1016/J.NEUROIMAGE.2014.07.067 – ident: 2025010111000995000_45.1.e1940232024.74 doi: 10.1523/JNEUROSCI.2919-17.2018 – ident: 2025010111000995000_45.1.e1940232024.41 doi: 10.3389/fpsyg.2013.00244 – ident: 2025010111000995000_45.1.e1940232024.57 doi: 10.1038/35094500 – ident: 2025010111000995000_45.1.e1940232024.23 doi: 10.1016/j.neuroimage.2013.04.113 – ident: 2025010111000995000_45.1.e1940232024.79 doi: 10.1016/j.neuroimage.2018.12.012 – ident: 2025010111000995000_45.1.e1940232024.82 doi: 10.1016/j.neuroimage.2019.01.041 – ident: 2025010111000995000_45.1.e1940232024.18 doi: 10.1016/j.neuroimage.2017.07.059 – ident: 2025010111000995000_45.1.e1940232024.33 doi: 10.1016/j.neurobiolaging.2016.02.020 – ident: 2025010111000995000_45.1.e1940232024.29 doi: 10.1002/hbm.23653 – ident: 2025010111000995000_45.1.e1940232024.61 doi: 10.1016/j.neuroimage.2015.07.075 – ident: 2025010111000995000_45.1.e1940232024.2 doi: 10.1016/S1053-8119(03)00336-7 – ident: 2025010111000995000_45.1.e1940232024.71 doi: 10.1111/psyp.13714 – ident: 2025010111000995000_45.1.e1940232024.4 doi: 10.1016/j.neuroimage.2010.09.025 – volume: 2013 start-page: 935154 year: 2013 ident: 2025010111000995000_45.1.e1940232024.43 article-title: Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI publication-title: J Appl Math doi: 10.1155/2013/935154 – ident: 2025010111000995000_45.1.e1940232024.66 doi: 10.1016/j.neuroimage.2004.07.051 – ident: 2025010111000995000_45.1.e1940232024.81 doi: 10.1016/j.neuroimage.2019.06.031 – ident: 2025010111000995000_45.1.e1940232024.49 doi: 10.1111/j.1552-6569.2008.00277.x – ident: 2025010111000995000_45.1.e1940232024.53 doi: 10.1109/ACCESS.2021.3092884 – ident: 2025010111000995000_45.1.e1940232024.54 doi: 10.1002/hbm.25714 – ident: 2025010111000995000_45.1.e1940232024.8 doi: 10.2307/2581267 – ident: 2025010111000995000_45.1.e1940232024.3 doi: 10.1016/j.jtbi.2013.12.027 – ident: 2025010111000995000_45.1.e1940232024.16 doi: 10.1002/jmri.22345 – ident: 2025010111000995000_45.1.e1940232024.7 doi: 10.1016/j.neurobiolaging.2006.10.031 – ident: 2025010111000995000_45.1.e1940232024.31 doi: 10.1016/j.neuroimage.2018.04.076 – ident: 2025010111000995000_45.1.e1940232024.28 doi: 10.1093/cercor/bhu012 – ident: 2025010111000995000_45.1.e1940232024.37 doi: 10.1016/j.eswa.2016.12.035 – ident: 2025010111000995000_45.1.e1940232024.22 doi: 10.1016/j.acra.2013.09.010 – ident: 2025010111000995000_45.1.e1940232024.27 doi: 10.1016/j.neurobiolaging.2012.11.002 – ident: 2025010111000995000_45.1.e1940232024.70 doi: 10.3389/fnhum.2015.00285 – ident: 2025010111000995000_45.1.e1940232024.56 doi: 10.1016/j.neuroimage.2019.116367 – ident: 2025010111000995000_45.1.e1940232024.58 doi: 10.1002/mrm.27146 – ident: 2025010111000995000_45.1.e1940232024.15 doi: 10.1016/j.neuroimage.2023.120224 – ident: 2025010111000995000_45.1.e1940232024.24 doi: 10.1016/j.neuroimage.2010.07.033 – ident: 2025010111000995000_45.1.e1940232024.65 doi: 10.1002/mrm.26845 – ident: 2025010111000995000_45.1.e1940232024.40 doi: 10.1016/B978-012372560-8/50014-0 – ident: 2025010111000995000_45.1.e1940232024.35 doi: 10.1016/j.neuroimage.2009.06.060 – ident: 2025010111000995000_45.1.e1940232024.13 doi: 10.1037/0882-7974.17.1.85 – ident: 2025010111000995000_45.1.e1940232024.1 doi: 10.1007/s00429-020-02083-w – ident: 2025010111000995000_45.1.e1940232024.73 doi: 10.1523/JNEUROSCI.2733-15.2016 – ident: 2025010111000995000_45.1.e1940232024.9 doi: 10.1016/j.neuroimage.2020.117299 – ident: 2025010111000995000_45.1.e1940232024.80 doi: 10.1016/j.media.2013.01.003 – ident: 2025010111000995000_45.1.e1940232024.21 doi: 10.1016/S0149-7634(02)00068-4 – ident: 2025010111000995000_45.1.e1940232024.11 doi: 10.1002/mrm.1910390602 – volume: 4 start-page: 2 year: 2022 ident: 2025010111000995000_45.1.e1940232024.64 article-title: Widespread cortical functional disconnection in gliomas: an individual network mapping approach publication-title: Brain Commun doi: 10.1093/braincomms/fcac082 |
SSID | ssj0007017 |
Score | 2.473208 |
Snippet | Age-related changes in the BOLD response could reflect neurovascular coupling modifications rather than simply impairments in neural functioning. In this... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | e1940232024 |
SubjectTerms | Adolescent Adult Age Aged Aging Aging - physiology Brain Brain - blood supply Brain - diagnostic imaging Brain - physiology Brain mapping Connectome - methods Female Females Functional magnetic resonance imaging Healthy Aging - physiology Hemispheric laterality Hemodynamic responses Hemodynamics Hemodynamics - physiology Heterogeneity Humans Image processing Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Middle Aged Models, Neurological Neuroimaging Neurovascular Coupling - physiology Prediction models Regression models Response functions Sensitivity Sensitivity analysis Spatial heterogeneity Young Adult |
Title | Revealing the Spatial Pattern of Brain Hemodynamic Sensitivity to Healthy Aging through Sparse Dynamic Causal Model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39455255 https://www.proquest.com/docview/3152727727 https://www.proquest.com/docview/3121059754 https://pubmed.ncbi.nlm.nih.gov/PMC11694405 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeNSGMhIiJcp3RLbuTyWchlDTMA2aW-R7Tij0pagpkVafxc_kHNsJ01HhRgvUZXYJ03Ol3Oxz4WQV3FodKlKHbBS64ALbYI0i1RgQLuVWQEKxvZY-nwUH5zywzNxNhj86kUtLeZqpJcb80r-h6twDviKWbI34GxHFE7Ab-AvHIHDcPwnHn8zP8HOaxOesLswrn9_sSUzrRn4BhtAgGq5rAvXeR5kQ4VRWrZjBJidLgvpand87qi4pj1AadaY3bd-zkQuGkzhxaY5fWN2lVZmDdpeaczVVr2cuW39D9N6dj7tdMDx9ALre7g0dyuLuxmmqpfLuk1_v6hXAQjTRdMm5TSNxEoL_TWLSPTWLJxoixJwWrnrzzMyXvRGdq8n7MtmV2pyDYNO0JowA88Xm7_zjYpA2IIUh0cYD3k8-TjC4UHERu2E9crb1zRiF6eIHhJQyjs6OdLJ4QzSuUVuR-CcoHT99HVVoz7Zt32eu2f0eelAZ2_z_1k3if7wc66H6_bsn5N75K7nMx07FN4nA1M9INvjSs7ryyv6mtpQYrtHs02aDpgUgEk9MKkHJq1LaoFJe8CkPWDSeU09MKkFJvXApA6Y1AOTOmBSC8yH5PT9u5PJQeC7ewQadAwWy4zTRDKdljEXEjRNkfFQsVJxXXAwQ4WWWZFqzmQmmIq44fCqlQaDVBZpYTh7RLaqujJPCI2TkhUs1DqNNcxOVKFMpKQWMt5XYBAPyV77gvMfrohL_nfWDslOy4fcf_BNzrAFNHI8GZKX3WUQx7jHJitTL3BMhB5LIoDEY8e27pYs40KACz8k6RpDuwFY6n39SjX9bku-h2GccfCtnt74SZ6RO6svcIdszWcL8xzs6Ll6YWH7G0uQyRU |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+Spatial+Pattern+of+Brain+Hemodynamic+Sensitivity+to+Healthy+Aging+through+Sparse+Dynamic+Causal+Model&rft.jtitle=The+Journal+of+neuroscience&rft.au=Baron%2C+Giorgia&rft.au=Silvestri%2C+Erica&rft.au=Benozzo%2C+Danilo&rft.au=Chiuso%2C+Alessandro&rft.date=2025-01-01&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=45&rft.issue=1&rft.spage=e1940232024&rft_id=info:doi/10.1523%2FJNEUROSCI.1940-23.2024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_1940_23_2024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |