Revealing the Spatial Pattern of Brain Hemodynamic Sensitivity to Healthy Aging through Sparse Dynamic Causal Model

Age-related changes in the BOLD response could reflect neurovascular coupling modifications rather than simply impairments in neural functioning. In this study, we propose the use of a sparse dynamic causal model (sDCM) to decouple neuronal and vascular factors in the BOLD signal, with the aim of ch...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 45; no. 1; p. e1940232024
Main Authors Baron, Giorgia, Silvestri, Erica, Benozzo, Danilo, Chiuso, Alessandro, Bertoldo, Alessandra
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Age-related changes in the BOLD response could reflect neurovascular coupling modifications rather than simply impairments in neural functioning. In this study, we propose the use of a sparse dynamic causal model (sDCM) to decouple neuronal and vascular factors in the BOLD signal, with the aim of characterizing the whole-brain spatial pattern of hemodynamic sensitivity to healthy aging, as well as to test the role of hemodynamic features as independent predictors in an age-classification model. sDCM was applied to the resting-state functional magnetic resonance imaging data of a cohort of 126 healthy individuals in a wide age range (31 females), providing reliable estimates of the hemodynamic response function (HRF) for each subject and each region of interest. Then, some features characterizing each HRF curve were extracted and used to fit a multivariate logistic regression model predicting the age class of each individual. Ultimately, we tested the final predictive model on an independent dataset of 338 healthy subjects (173 females) selected from the Human Connectome Project in Aging and Development cohorts. Our results entail the spatial heterogeneity of the age effects on the hemodynamic component, since its impact resulted to be strongly region- and population-specific, discouraging any space-invariant–corrective procedures that attempt to correct for vascular factors when carrying out functional studies involving groups with different ages. Moreover, we demonstrated that a strong interaction exists between certain right-hemisphere hemodynamic features and age, further supporting the essential role of the hemodynamic factor as independent predictor of biological aging, rather than a simple confounding variable.
AbstractList Age-related changes in the BOLD response could reflect neurovascular coupling modifications rather than simply impairments in neural functioning. In this study, we propose the use of a sparse dynamic causal model (sDCM) to decouple neuronal and vascular factors in the BOLD signal, with the aim of characterizing the whole-brain spatial pattern of hemodynamic sensitivity to healthy aging, as well as to test the role of hemodynamic features as independent predictors in an age-classification model. sDCM was applied to the resting-state functional magnetic resonance imaging data of a cohort of 126 healthy individuals in a wide age range (31 females), providing reliable estimates of the hemodynamic response function (HRF) for each subject and each region of interest. Then, some features characterizing each HRF curve were extracted and used to fit a multivariate logistic regression model predicting the age class of each individual. Ultimately, we tested the final predictive model on an independent dataset of 338 healthy subjects (173 females) selected from the Human Connectome Project in Aging and Development cohorts. Our results entail the spatial heterogeneity of the age effects on the hemodynamic component, since its impact resulted to be strongly region- and population-specific, discouraging any space-invariant–corrective procedures that attempt to correct for vascular factors when carrying out functional studies involving groups with different ages. Moreover, we demonstrated that a strong interaction exists between certain right-hemisphere hemodynamic features and age, further supporting the essential role of the hemodynamic factor as independent predictor of biological aging, rather than a simple confounding variable.
Age-related changes in the BOLD response could reflect neurovascular coupling modifications rather than simply impairments in neural functioning. In this study, we propose the use of a sparse dynamic causal model (sDCM) to decouple neuronal and vascular factors in the BOLD signal, with the aim of characterizing the whole-brain spatial pattern of hemodynamic sensitivity to healthy aging, as well as to test the role of hemodynamic features as independent predictors in an age-classification model. sDCM was applied to the resting-state functional magnetic resonance imaging data of a cohort of 126 healthy individuals in a wide age range (31 females), providing reliable estimates of the hemodynamic response function (HRF) for each subject and each region of interest. Then, some features characterizing each HRF curve were extracted and used to fit a multivariate logistic regression model predicting the age class of each individual. Ultimately, we tested the final predictive model on an independent dataset of 338 healthy subjects (173 females) selected from the Human Connectome Project in Aging and Development cohorts. Our results entail the spatial heterogeneity of the age effects on the hemodynamic component, since its impact resulted to be strongly region- and population-specific, discouraging any space-invariant-corrective procedures that attempt to correct for vascular factors when carrying out functional studies involving groups with different ages. Moreover, we demonstrated that a strong interaction exists between certain right-hemisphere hemodynamic features and age, further supporting the essential role of the hemodynamic factor as independent predictor of biological aging, rather than a simple confounding variable.Age-related changes in the BOLD response could reflect neurovascular coupling modifications rather than simply impairments in neural functioning. In this study, we propose the use of a sparse dynamic causal model (sDCM) to decouple neuronal and vascular factors in the BOLD signal, with the aim of characterizing the whole-brain spatial pattern of hemodynamic sensitivity to healthy aging, as well as to test the role of hemodynamic features as independent predictors in an age-classification model. sDCM was applied to the resting-state functional magnetic resonance imaging data of a cohort of 126 healthy individuals in a wide age range (31 females), providing reliable estimates of the hemodynamic response function (HRF) for each subject and each region of interest. Then, some features characterizing each HRF curve were extracted and used to fit a multivariate logistic regression model predicting the age class of each individual. Ultimately, we tested the final predictive model on an independent dataset of 338 healthy subjects (173 females) selected from the Human Connectome Project in Aging and Development cohorts. Our results entail the spatial heterogeneity of the age effects on the hemodynamic component, since its impact resulted to be strongly region- and population-specific, discouraging any space-invariant-corrective procedures that attempt to correct for vascular factors when carrying out functional studies involving groups with different ages. Moreover, we demonstrated that a strong interaction exists between certain right-hemisphere hemodynamic features and age, further supporting the essential role of the hemodynamic factor as independent predictor of biological aging, rather than a simple confounding variable.
Author Chiuso, Alessandro
Silvestri, Erica
Baron, Giorgia
Benozzo, Danilo
Bertoldo, Alessandra
AuthorAffiliation 2 Padova Neuroscience Center, University of Padova , Padova 35131, Italy
1 Department of Information Engineering, University of Padova , Padova 35131, Italy
AuthorAffiliation_xml – name: 1 Department of Information Engineering, University of Padova , Padova 35131, Italy
– name: 2 Padova Neuroscience Center, University of Padova , Padova 35131, Italy
Author_xml – sequence: 1
  givenname: Giorgia
  orcidid: 0000-0002-0866-4982
  surname: Baron
  fullname: Baron, Giorgia
– sequence: 2
  givenname: Erica
  orcidid: 0000-0002-1853-0777
  surname: Silvestri
  fullname: Silvestri, Erica
– sequence: 3
  givenname: Danilo
  orcidid: 0000-0003-0480-8704
  surname: Benozzo
  fullname: Benozzo, Danilo
– sequence: 4
  givenname: Alessandro
  orcidid: 0000-0002-4410-6101
  surname: Chiuso
  fullname: Chiuso, Alessandro
– sequence: 5
  givenname: Alessandra
  orcidid: 0000-0002-6262-6354
  surname: Bertoldo
  fullname: Bertoldo, Alessandra
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39455255$$D View this record in MEDLINE/PubMed
BookMark eNpdkV1r2zAYRkXpaNOuf6EIdrMbZ_q07KvSZd3a0a2jWa-FLMuJii1lkhzIv59MsrANBAI9R0eveC7AqfPOAHCN0RxzQj98_X738vy0XDzMcc1QQeicIMJOwCyndUEYwqdghohARckEOwcXMb4ihATC4gyc05pxTjifgfhstkb11q1gWhu43KhkVQ9_qJRMcNB38GNQ1sF7M_h259RgNVwaF22yW5t2MPkcqT6td_B2tbcEP67WkylEAz8d7izUGLP3m29N_xa86VQfzdVhvwQvn-9-Lu6Lx6cvD4vbx0JTxFmBSVkJRXXVlYwrJGhbM9zQrmG6ZRwTrlXdVppRVXPaEGaYILTRFSaqrVrD6CW42Xs3YzOYVhuXgurlJthBhZ30ysp_E2fXcuW3EuOyZgzxbHh_MAT_azQxycFGbfpeOePHKCkmGPFa8Omxd_-hr34MLv8vU5wIIvLK1PXfIx1n-VNIBso9oIOPMZjuiGAkp-blsXk5NS_zydQ8_Q057aJu
Cites_doi 10.1016/j.nicl.2014.07.003
10.3389/fnagi.2019.00259
10.3389/fnagi.2017.00152
10.1016/S1053-8119(03)00202-7
10.1016/j.neuroimage.2003.11.029
10.1016/S1053-8119(02)91132-8
10.1109/MIPRO.2015.7160458
10.1007/s11682-019-00157-w
10.1016/j.neuroimage.2009.11.062
10.1016/j.neuroimage.2019.116150
10.1109/TMI.2010.2046908
10.1016/j.compbiomed.2019.103375
10.1038/sdata.2018.308
10.1016/j.neuroimage.2014.12.012
10.1016/j.neuroimage.2012.02.018
10.1111/j.1467-8721.2008.00570.x
10.1016/J.NEUROIMAGE.2018.02.061
10.1016/j.neuroimage.2019.116081
10.1016/j.neuroimage.2011.10.018
10.1016/j.neuroimage.2021.118418
10.1016/j.jneumeth.2014.11.014
10.1177/0271678X19828327
10.1016/j.pscychresns.2011.09.014
10.1007/s40656-021-00367-w
10.1098/rstb.2019.0631
10.1016/j.neuroimage.2014.03.034
10.1016/j.neurobiolaging.2018.06.017
10.1016/j.neuroimage.2013.04.127
10.1016/j.neuroimage.2018.09.060
10.1016/j.brainres.2009.08.004
10.1016/J.NEUROIMAGE.2018.06.056
10.1523/JNEUROSCI.2612-10.2010
10.3389/fnins.2022.1009295
10.1016/j.neuroimage.2013.01.067
10.1371/journal.pone.0140174
10.1038/s41592-021-01186-4
10.1016/j.wocn.2018.09.004
10.1016/J.NEUROIMAGE.2014.07.067
10.1523/JNEUROSCI.2919-17.2018
10.3389/fpsyg.2013.00244
10.1038/35094500
10.1016/j.neuroimage.2013.04.113
10.1016/j.neuroimage.2018.12.012
10.1016/j.neuroimage.2019.01.041
10.1016/j.neuroimage.2017.07.059
10.1016/j.neurobiolaging.2016.02.020
10.1002/hbm.23653
10.1016/j.neuroimage.2015.07.075
10.1016/S1053-8119(03)00336-7
10.1111/psyp.13714
10.1016/j.neuroimage.2010.09.025
10.1155/2013/935154
10.1016/j.neuroimage.2004.07.051
10.1016/j.neuroimage.2019.06.031
10.1111/j.1552-6569.2008.00277.x
10.1109/ACCESS.2021.3092884
10.1002/hbm.25714
10.2307/2581267
10.1016/j.jtbi.2013.12.027
10.1002/jmri.22345
10.1016/j.neurobiolaging.2006.10.031
10.1016/j.neuroimage.2018.04.076
10.1093/cercor/bhu012
10.1016/j.eswa.2016.12.035
10.1016/j.acra.2013.09.010
10.1016/j.neurobiolaging.2012.11.002
10.3389/fnhum.2015.00285
10.1016/j.neuroimage.2019.116367
10.1002/mrm.27146
10.1016/j.neuroimage.2023.120224
10.1016/j.neuroimage.2010.07.033
10.1002/mrm.26845
10.1016/B978-012372560-8/50014-0
10.1016/j.neuroimage.2009.06.060
10.1037/0882-7974.17.1.85
10.1007/s00429-020-02083-w
10.1523/JNEUROSCI.2733-15.2016
10.1016/j.neuroimage.2020.117299
10.1016/j.media.2013.01.003
10.1016/S0149-7634(02)00068-4
10.1002/mrm.1910390602
10.1093/braincomms/fcac082
ContentType Journal Article
Copyright Copyright © 2024 the authors.
Copyright Society for Neuroscience Jan 1, 2025
Copyright © 2024 the authors 2024
Copyright_xml – notice: Copyright © 2024 the authors.
– notice: Copyright Society for Neuroscience Jan 1, 2025
– notice: Copyright © 2024 the authors 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
DOI 10.1523/JNEUROSCI.1940-23.2024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
Animal Behavior Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
ExternalDocumentID PMC11694405
39455255
10_1523_JNEUROSCI_1940_23_2024
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U01 MH109589
– fundername: NIA NIH HHS
  grantid: U01 AG052564
– fundername: Department of Information Engineering, University of Padova
GroupedDBID ---
-DZ
-~X
.55
18M
34G
39C
5GY
5RE
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADHGD
AENEX
AFCFT
AFHIN
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
WH7
WOQ
X7M
YBU
YHG
YKV
YNH
YSK
2WC
5VS
CGR
CUY
CVF
ECM
EIF
HYE
NPM
W8F
7QG
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
ID FETCH-LOGICAL-c3054-12687a3c8f645a073d941b3fb4cd45125ca9d8c43a953b24e4723bc812ad8de43
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 18:33:41 EDT 2025
Thu Jul 10 23:29:29 EDT 2025
Wed Aug 13 08:02:50 EDT 2025
Thu Jul 31 01:53:58 EDT 2025
Tue Jul 01 00:59:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords hemodynamic response function
dynamic causal modelling
aging
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
Copyright © 2024 the authors.
SfN exclusive license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3054-12687a3c8f645a073d941b3fb4cd45125ca9d8c43a953b24e4723bc812ad8de43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
G.B. and D.B. were supported by the DEI Proactive grant "Personalized whole-brain models for neuroscience: inference and validation” from the Department of Information Engineering of the University of Padova (Italy). The Human Connectome Project (HCP)-Aging dataset reported in this study was supported by grants of the National Institute on Aging of the National Institutes of Health under Award Number U01AG052564 and by funds provided by the McDonnell Center for Systems Neuroscience at Washington University in St. Louis. The HCP-Aging 2.0 Release data used in this report came from http://dx.doi.org/10.15154/1520707. The HCP-Development dataset reported in this study was supported by grants of the National Institute of Mental Health of the National Institutes of Health under Award Number U01MH109589 and by funds provided by the McDonnell Center for Systems Neuroscience at Washington University in St. Louis. The HCP-Development 2.0 Release data used in this report came from http://dx.doi.org/10.15154/1520708.
Author contributions: G.B., E.S., D.B., A.C., and A.B. designed research; G.B. and E.S. performed research; G.B. analyzed data; G.B. wrote the paper.
The authors declare no competing financial interests.
ORCID 0000-0003-0480-8704
0000-0002-1853-0777
0000-0002-0866-4982
0000-0002-4410-6101
0000-0002-6262-6354
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11694405
PMID 39455255
PQID 3152727727
PQPubID 2049535
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11694405
proquest_miscellaneous_3121059754
proquest_journals_3152727727
pubmed_primary_39455255
crossref_primary_10_1523_JNEUROSCI_1940_23_2024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Baltimore
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2025
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2025010111000995000_45.1.e1940232024.29
2025010111000995000_45.1.e1940232024.27
2025010111000995000_45.1.e1940232024.28
2025010111000995000_45.1.e1940232024.25
2025010111000995000_45.1.e1940232024.69
2025010111000995000_45.1.e1940232024.26
2025010111000995000_45.1.e1940232024.23
2025010111000995000_45.1.e1940232024.67
2025010111000995000_45.1.e1940232024.24
2025010111000995000_45.1.e1940232024.68
2025010111000995000_45.1.e1940232024.21
2025010111000995000_45.1.e1940232024.65
2025010111000995000_45.1.e1940232024.22
2025010111000995000_45.1.e1940232024.66
2025010111000995000_45.1.e1940232024.63
2025010111000995000_45.1.e1940232024.20
2025010111000995000_45.1.e1940232024.61
Jo (2025010111000995000_45.1.e1940232024.43) 2013; 2013
2025010111000995000_45.1.e1940232024.62
2025010111000995000_45.1.e1940232024.60
2025010111000995000_45.1.e1940232024.18
2025010111000995000_45.1.e1940232024.19
2025010111000995000_45.1.e1940232024.16
2025010111000995000_45.1.e1940232024.17
2025010111000995000_45.1.e1940232024.14
2025010111000995000_45.1.e1940232024.58
2025010111000995000_45.1.e1940232024.15
2025010111000995000_45.1.e1940232024.59
2025010111000995000_45.1.e1940232024.12
2025010111000995000_45.1.e1940232024.56
2025010111000995000_45.1.e1940232024.13
2025010111000995000_45.1.e1940232024.57
2025010111000995000_45.1.e1940232024.10
2025010111000995000_45.1.e1940232024.54
2025010111000995000_45.1.e1940232024.11
2025010111000995000_45.1.e1940232024.55
2025010111000995000_45.1.e1940232024.52
2025010111000995000_45.1.e1940232024.53
2025010111000995000_45.1.e1940232024.50
2025010111000995000_45.1.e1940232024.51
2025010111000995000_45.1.e1940232024.49
2025010111000995000_45.1.e1940232024.47
2025010111000995000_45.1.e1940232024.48
2025010111000995000_45.1.e1940232024.45
2025010111000995000_45.1.e1940232024.46
2025010111000995000_45.1.e1940232024.44
2025010111000995000_45.1.e1940232024.41
Goodro (2025010111000995000_45.1.e1940232024.32) 2012; 203
2025010111000995000_45.1.e1940232024.42
2025010111000995000_45.1.e1940232024.83
2025010111000995000_45.1.e1940232024.40
2025010111000995000_45.1.e1940232024.81
2025010111000995000_45.1.e1940232024.82
2025010111000995000_45.1.e1940232024.80
2025010111000995000_45.1.e1940232024.9
2025010111000995000_45.1.e1940232024.8
2025010111000995000_45.1.e1940232024.7
Silvestri (2025010111000995000_45.1.e1940232024.64) 2022; 4
2025010111000995000_45.1.e1940232024.2
2025010111000995000_45.1.e1940232024.1
2025010111000995000_45.1.e1940232024.38
2025010111000995000_45.1.e1940232024.39
2025010111000995000_45.1.e1940232024.6
2025010111000995000_45.1.e1940232024.36
2025010111000995000_45.1.e1940232024.5
2025010111000995000_45.1.e1940232024.37
2025010111000995000_45.1.e1940232024.4
2025010111000995000_45.1.e1940232024.34
2025010111000995000_45.1.e1940232024.78
2025010111000995000_45.1.e1940232024.3
2025010111000995000_45.1.e1940232024.35
2025010111000995000_45.1.e1940232024.79
2025010111000995000_45.1.e1940232024.76
2025010111000995000_45.1.e1940232024.33
2025010111000995000_45.1.e1940232024.77
2025010111000995000_45.1.e1940232024.30
2025010111000995000_45.1.e1940232024.74
2025010111000995000_45.1.e1940232024.31
2025010111000995000_45.1.e1940232024.75
2025010111000995000_45.1.e1940232024.72
2025010111000995000_45.1.e1940232024.73
2025010111000995000_45.1.e1940232024.70
2025010111000995000_45.1.e1940232024.71
References_xml – ident: 2025010111000995000_45.1.e1940232024.19
  doi: 10.1016/j.nicl.2014.07.003
– ident: 2025010111000995000_45.1.e1940232024.77
  doi: 10.3389/fnagi.2019.00259
– ident: 2025010111000995000_45.1.e1940232024.5
  doi: 10.3389/fnagi.2017.00152
– ident: 2025010111000995000_45.1.e1940232024.25
  doi: 10.1016/S1053-8119(03)00202-7
– ident: 2025010111000995000_45.1.e1940232024.38
  doi: 10.1016/j.neuroimage.2003.11.029
– ident: 2025010111000995000_45.1.e1940232024.42
  doi: 10.1016/S1053-8119(02)91132-8
– ident: 2025010111000995000_45.1.e1940232024.44
  doi: 10.1109/MIPRO.2015.7160458
– ident: 2025010111000995000_45.1.e1940232024.63
– ident: 2025010111000995000_45.1.e1940232024.26
  doi: 10.1007/s11682-019-00157-w
– ident: 2025010111000995000_45.1.e1940232024.20
  doi: 10.1016/j.neuroimage.2009.11.062
– ident: 2025010111000995000_45.1.e1940232024.46
  doi: 10.1016/j.neuroimage.2019.116150
– ident: 2025010111000995000_45.1.e1940232024.75
  doi: 10.1109/TMI.2010.2046908
– ident: 2025010111000995000_45.1.e1940232024.59
  doi: 10.1016/j.compbiomed.2019.103375
– ident: 2025010111000995000_45.1.e1940232024.6
  doi: 10.1038/sdata.2018.308
– ident: 2025010111000995000_45.1.e1940232024.14
  doi: 10.1016/j.neuroimage.2014.12.012
– ident: 2025010111000995000_45.1.e1940232024.76
  doi: 10.1016/j.neuroimage.2012.02.018
– ident: 2025010111000995000_45.1.e1940232024.60
  doi: 10.1111/j.1467-8721.2008.00570.x
– ident: 2025010111000995000_45.1.e1940232024.67
  doi: 10.1016/J.NEUROIMAGE.2018.02.061
– ident: 2025010111000995000_45.1.e1940232024.12
  doi: 10.1016/j.neuroimage.2019.116081
– ident: 2025010111000995000_45.1.e1940232024.55
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: 2025010111000995000_45.1.e1940232024.17
  doi: 10.1016/j.neuroimage.2021.118418
– ident: 2025010111000995000_45.1.e1940232024.62
  doi: 10.1016/j.jneumeth.2014.11.014
– ident: 2025010111000995000_45.1.e1940232024.69
  doi: 10.1177/0271678X19828327
– volume: 203
  start-page: 38
  year: 2012
  ident: 2025010111000995000_45.1.e1940232024.32
  article-title: Age effect on subcortical structures in healthy adults
  publication-title: Psychiatry Res
  doi: 10.1016/j.pscychresns.2011.09.014
– ident: 2025010111000995000_45.1.e1940232024.34
  doi: 10.1007/s40656-021-00367-w
– ident: 2025010111000995000_45.1.e1940232024.72
  doi: 10.1098/rstb.2019.0631
– ident: 2025010111000995000_45.1.e1940232024.36
  doi: 10.1016/j.neuroimage.2014.03.034
– ident: 2025010111000995000_45.1.e1940232024.51
  doi: 10.1016/j.neurobiolaging.2018.06.017
– ident: 2025010111000995000_45.1.e1940232024.30
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: 2025010111000995000_45.1.e1940232024.39
  doi: 10.1016/j.neuroimage.2018.09.060
– ident: 2025010111000995000_45.1.e1940232024.52
  doi: 10.1016/j.brainres.2009.08.004
– ident: 2025010111000995000_45.1.e1940232024.50
  doi: 10.1016/J.NEUROIMAGE.2018.06.056
– ident: 2025010111000995000_45.1.e1940232024.83
  doi: 10.1523/JNEUROSCI.2612-10.2010
– ident: 2025010111000995000_45.1.e1940232024.47
  doi: 10.3389/fnins.2022.1009295
– ident: 2025010111000995000_45.1.e1940232024.45
  doi: 10.1016/j.neuroimage.2013.01.067
– ident: 2025010111000995000_45.1.e1940232024.78
  doi: 10.1371/journal.pone.0140174
– ident: 2025010111000995000_45.1.e1940232024.48
  doi: 10.1038/s41592-021-01186-4
– ident: 2025010111000995000_45.1.e1940232024.68
  doi: 10.1016/j.wocn.2018.09.004
– ident: 2025010111000995000_45.1.e1940232024.10
  doi: 10.1016/J.NEUROIMAGE.2014.07.067
– ident: 2025010111000995000_45.1.e1940232024.74
  doi: 10.1523/JNEUROSCI.2919-17.2018
– ident: 2025010111000995000_45.1.e1940232024.41
  doi: 10.3389/fpsyg.2013.00244
– ident: 2025010111000995000_45.1.e1940232024.57
  doi: 10.1038/35094500
– ident: 2025010111000995000_45.1.e1940232024.23
  doi: 10.1016/j.neuroimage.2013.04.113
– ident: 2025010111000995000_45.1.e1940232024.79
  doi: 10.1016/j.neuroimage.2018.12.012
– ident: 2025010111000995000_45.1.e1940232024.82
  doi: 10.1016/j.neuroimage.2019.01.041
– ident: 2025010111000995000_45.1.e1940232024.18
  doi: 10.1016/j.neuroimage.2017.07.059
– ident: 2025010111000995000_45.1.e1940232024.33
  doi: 10.1016/j.neurobiolaging.2016.02.020
– ident: 2025010111000995000_45.1.e1940232024.29
  doi: 10.1002/hbm.23653
– ident: 2025010111000995000_45.1.e1940232024.61
  doi: 10.1016/j.neuroimage.2015.07.075
– ident: 2025010111000995000_45.1.e1940232024.2
  doi: 10.1016/S1053-8119(03)00336-7
– ident: 2025010111000995000_45.1.e1940232024.71
  doi: 10.1111/psyp.13714
– ident: 2025010111000995000_45.1.e1940232024.4
  doi: 10.1016/j.neuroimage.2010.09.025
– volume: 2013
  start-page: 935154
  year: 2013
  ident: 2025010111000995000_45.1.e1940232024.43
  article-title: Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI
  publication-title: J Appl Math
  doi: 10.1155/2013/935154
– ident: 2025010111000995000_45.1.e1940232024.66
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: 2025010111000995000_45.1.e1940232024.81
  doi: 10.1016/j.neuroimage.2019.06.031
– ident: 2025010111000995000_45.1.e1940232024.49
  doi: 10.1111/j.1552-6569.2008.00277.x
– ident: 2025010111000995000_45.1.e1940232024.53
  doi: 10.1109/ACCESS.2021.3092884
– ident: 2025010111000995000_45.1.e1940232024.54
  doi: 10.1002/hbm.25714
– ident: 2025010111000995000_45.1.e1940232024.8
  doi: 10.2307/2581267
– ident: 2025010111000995000_45.1.e1940232024.3
  doi: 10.1016/j.jtbi.2013.12.027
– ident: 2025010111000995000_45.1.e1940232024.16
  doi: 10.1002/jmri.22345
– ident: 2025010111000995000_45.1.e1940232024.7
  doi: 10.1016/j.neurobiolaging.2006.10.031
– ident: 2025010111000995000_45.1.e1940232024.31
  doi: 10.1016/j.neuroimage.2018.04.076
– ident: 2025010111000995000_45.1.e1940232024.28
  doi: 10.1093/cercor/bhu012
– ident: 2025010111000995000_45.1.e1940232024.37
  doi: 10.1016/j.eswa.2016.12.035
– ident: 2025010111000995000_45.1.e1940232024.22
  doi: 10.1016/j.acra.2013.09.010
– ident: 2025010111000995000_45.1.e1940232024.27
  doi: 10.1016/j.neurobiolaging.2012.11.002
– ident: 2025010111000995000_45.1.e1940232024.70
  doi: 10.3389/fnhum.2015.00285
– ident: 2025010111000995000_45.1.e1940232024.56
  doi: 10.1016/j.neuroimage.2019.116367
– ident: 2025010111000995000_45.1.e1940232024.58
  doi: 10.1002/mrm.27146
– ident: 2025010111000995000_45.1.e1940232024.15
  doi: 10.1016/j.neuroimage.2023.120224
– ident: 2025010111000995000_45.1.e1940232024.24
  doi: 10.1016/j.neuroimage.2010.07.033
– ident: 2025010111000995000_45.1.e1940232024.65
  doi: 10.1002/mrm.26845
– ident: 2025010111000995000_45.1.e1940232024.40
  doi: 10.1016/B978-012372560-8/50014-0
– ident: 2025010111000995000_45.1.e1940232024.35
  doi: 10.1016/j.neuroimage.2009.06.060
– ident: 2025010111000995000_45.1.e1940232024.13
  doi: 10.1037/0882-7974.17.1.85
– ident: 2025010111000995000_45.1.e1940232024.1
  doi: 10.1007/s00429-020-02083-w
– ident: 2025010111000995000_45.1.e1940232024.73
  doi: 10.1523/JNEUROSCI.2733-15.2016
– ident: 2025010111000995000_45.1.e1940232024.9
  doi: 10.1016/j.neuroimage.2020.117299
– ident: 2025010111000995000_45.1.e1940232024.80
  doi: 10.1016/j.media.2013.01.003
– ident: 2025010111000995000_45.1.e1940232024.21
  doi: 10.1016/S0149-7634(02)00068-4
– ident: 2025010111000995000_45.1.e1940232024.11
  doi: 10.1002/mrm.1910390602
– volume: 4
  start-page: 2
  year: 2022
  ident: 2025010111000995000_45.1.e1940232024.64
  article-title: Widespread cortical functional disconnection in gliomas: an individual network mapping approach
  publication-title: Brain Commun
  doi: 10.1093/braincomms/fcac082
SSID ssj0007017
Score 2.473208
Snippet Age-related changes in the BOLD response could reflect neurovascular coupling modifications rather than simply impairments in neural functioning. In this...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage e1940232024
SubjectTerms Adolescent
Adult
Age
Aged
Aging
Aging - physiology
Brain
Brain - blood supply
Brain - diagnostic imaging
Brain - physiology
Brain mapping
Connectome - methods
Female
Females
Functional magnetic resonance imaging
Healthy Aging - physiology
Hemispheric laterality
Hemodynamic responses
Hemodynamics
Hemodynamics - physiology
Heterogeneity
Humans
Image processing
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Middle Aged
Models, Neurological
Neuroimaging
Neurovascular Coupling - physiology
Prediction models
Regression models
Response functions
Sensitivity
Sensitivity analysis
Spatial heterogeneity
Young Adult
Title Revealing the Spatial Pattern of Brain Hemodynamic Sensitivity to Healthy Aging through Sparse Dynamic Causal Model
URI https://www.ncbi.nlm.nih.gov/pubmed/39455255
https://www.proquest.com/docview/3152727727
https://www.proquest.com/docview/3121059754
https://pubmed.ncbi.nlm.nih.gov/PMC11694405
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeNSGMhIiJcp3RLbuTyWchlDTMA2aW-R7Tij0pagpkVafxc_kHNsJ01HhRgvUZXYJ03Ol3Oxz4WQV3FodKlKHbBS64ALbYI0i1RgQLuVWQEKxvZY-nwUH5zywzNxNhj86kUtLeZqpJcb80r-h6twDviKWbI34GxHFE7Ab-AvHIHDcPwnHn8zP8HOaxOesLswrn9_sSUzrRn4BhtAgGq5rAvXeR5kQ4VRWrZjBJidLgvpand87qi4pj1AadaY3bd-zkQuGkzhxaY5fWN2lVZmDdpeaczVVr2cuW39D9N6dj7tdMDx9ALre7g0dyuLuxmmqpfLuk1_v6hXAQjTRdMm5TSNxEoL_TWLSPTWLJxoixJwWrnrzzMyXvRGdq8n7MtmV2pyDYNO0JowA88Xm7_zjYpA2IIUh0cYD3k8-TjC4UHERu2E9crb1zRiF6eIHhJQyjs6OdLJ4QzSuUVuR-CcoHT99HVVoz7Zt32eu2f0eelAZ2_z_1k3if7wc66H6_bsn5N75K7nMx07FN4nA1M9INvjSs7ryyv6mtpQYrtHs02aDpgUgEk9MKkHJq1LaoFJe8CkPWDSeU09MKkFJvXApA6Y1AOTOmBSC8yH5PT9u5PJQeC7ewQadAwWy4zTRDKdljEXEjRNkfFQsVJxXXAwQ4WWWZFqzmQmmIq44fCqlQaDVBZpYTh7RLaqujJPCI2TkhUs1DqNNcxOVKFMpKQWMt5XYBAPyV77gvMfrohL_nfWDslOy4fcf_BNzrAFNHI8GZKX3WUQx7jHJitTL3BMhB5LIoDEY8e27pYs40KACz8k6RpDuwFY6n39SjX9bku-h2GccfCtnt74SZ6RO6svcIdszWcL8xzs6Ll6YWH7G0uQyRU
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+Spatial+Pattern+of+Brain+Hemodynamic+Sensitivity+to+Healthy+Aging+through+Sparse+Dynamic+Causal+Model&rft.jtitle=The+Journal+of+neuroscience&rft.au=Baron%2C+Giorgia&rft.au=Silvestri%2C+Erica&rft.au=Benozzo%2C+Danilo&rft.au=Chiuso%2C+Alessandro&rft.date=2025-01-01&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=45&rft.issue=1&rft.spage=e1940232024&rft_id=info:doi/10.1523%2FJNEUROSCI.1940-23.2024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_1940_23_2024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon