A 3D graph convolutional networks model for 2D skeleton‐based human action recognition
With the popularity of cameras, the application of action recognition is more and more extensive. After the emergence of RGB‐D cameras and human pose estimation algorithms, human actions can be represented by a sequence of skeleton joints. Therefore, skeleton‐based action recognition has been a rese...
Saved in:
Published in | IET image processing Vol. 17; no. 3; pp. 773 - 783 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the popularity of cameras, the application of action recognition is more and more extensive. After the emergence of RGB‐D cameras and human pose estimation algorithms, human actions can be represented by a sequence of skeleton joints. Therefore, skeleton‐based action recognition has been a research hotspot. In this paper, a novel 3D Graph Convolutional Network model (3D‐GCN) with space‐time attention mechanism for 2D skeleton data is proposed. Three‐dimensional graph convolution is employed to extract spatiotemporal features of skeleton descriptor that is composed of joint coordinates, frame differences and angles. Meanwhile, different joints and different frames are given different attention to achieve action classification. A zebra crossing pedestrian dataset named ZCP is also provided, which simulates possible pedestrian actions on the zebra crossing in real scenes. Experimental evaluation is carried out on ZCP dataset and NTU RGB+D dataset. Experimental results show that our method is better than current 2D‐based methods and is comparable with 3D methods. |
---|---|
AbstractList | Abstract With the popularity of cameras, the application of action recognition is more and more extensive. After the emergence of RGB‐D cameras and human pose estimation algorithms, human actions can be represented by a sequence of skeleton joints. Therefore, skeleton‐based action recognition has been a research hotspot. In this paper, a novel 3D Graph Convolutional Network model (3D‐GCN) with space‐time attention mechanism for 2D skeleton data is proposed. Three‐dimensional graph convolution is employed to extract spatiotemporal features of skeleton descriptor that is composed of joint coordinates, frame differences and angles. Meanwhile, different joints and different frames are given different attention to achieve action classification. A zebra crossing pedestrian dataset named ZCP is also provided, which simulates possible pedestrian actions on the zebra crossing in real scenes. Experimental evaluation is carried out on ZCP dataset and NTU RGB+D dataset. Experimental results show that our method is better than current 2D‐based methods and is comparable with 3D methods. With the popularity of cameras, the application of action recognition is more and more extensive. After the emergence of RGB‐D cameras and human pose estimation algorithms, human actions can be represented by a sequence of skeleton joints. Therefore, skeleton‐based action recognition has been a research hotspot. In this paper, a novel 3D Graph Convolutional Network model (3D‐GCN) with space‐time attention mechanism for 2D skeleton data is proposed. Three‐dimensional graph convolution is employed to extract spatiotemporal features of skeleton descriptor that is composed of joint coordinates, frame differences and angles. Meanwhile, different joints and different frames are given different attention to achieve action classification. A zebra crossing pedestrian dataset named ZCP is also provided, which simulates possible pedestrian actions on the zebra crossing in real scenes. Experimental evaluation is carried out on ZCP dataset and NTU RGB+D dataset. Experimental results show that our method is better than current 2D‐based methods and is comparable with 3D methods. |
Author | Weng, Libo Shen, Xin Gao, Fei Lou, Weidong |
Author_xml | – sequence: 1 givenname: Libo surname: Weng fullname: Weng, Libo organization: Zhejiang University of Technology – sequence: 2 givenname: Weidong surname: Lou fullname: Lou, Weidong organization: Zhejiang University of Technology – sequence: 3 givenname: Xin surname: Shen fullname: Shen, Xin organization: Zhejiang University of Technology – sequence: 4 givenname: Fei orcidid: 0000-0003-1209-0608 surname: Gao fullname: Gao, Fei email: gfei_jack@163.com organization: Zhejiang University of Technology |
BookMark | eNp9UMtKw0AUHaSCtbrxC2YttM4jmcksS-ujUFBEwd1wZzJp06aZMkkt3fkJfqNfYtJIl67u4XJenEvUK33pELqhZERJpO7ybWAjyoSkZ6hPZUyHSgjZO-FYXaDLqloREiuSxH30McZ8ihcBtktsffnpi12d-xIKXLp678O6whufugJnPmA2xdXaFa725c_Xt4HKpXi520CJwbYqHJz1izJv8RU6z6Co3PXfHaD3h_u3ydNw_vw4m4znQ8tJU0lwJq1lNBVpxpUgNpHSMgnUplxYwaUjCU1NCgCxMYSBShgzTflGAYJxPkCzzjf1sNLbkG8gHLSHXB8fPiw0hDq3hdM0to5GiUmMNJHhkVE8skrJxGUOXBM2QLedlw2-qoLLTn6U6HZf3e6rj_s2ZNqR93nhDv8w9ezllXWaX2WPgDo |
CitedBy_id | crossref_primary_10_1007_s42452_024_05774_9 crossref_primary_10_1016_j_neucom_2023_126903 |
Cites_doi | 10.3758/BF03212378 10.1049/iet‐ipr.2019.0030 10.1109/CVPR.2019.01230 10.1109/CVPR.2017.143 10.1109/TPAMI.2017.2691321 10.1007/s11042‐016‐3523‐y 10.1109/CVPR.2017.387 10.1109/TPAMI.2019.2896631 10.1109/ICME.2018.8486566 10.1145/1922649.1922653 10.1109/ICCV.2015.510 10.1109/IWAIT.2018.8369778 10.1109/CVPR.2011.5995316 10.1109/CVPR42600.2020.00022 10.1109/CVPR52688.2022.01955 10.1145/2696454.2696462 10.1109/ICCV48922.2021.01317 10.1109/ICCV48922.2021.01318 10.1049/iet‐cvi.2018.5014 10.1109/CVPR42600.2020.00026 10.1007/978-3-319-46487-9_50 10.1007/978-3-319-46484-8_2 10.1109/CVPR42600.2020.00119 10.1109/AVSS.2010.63 10.1109/CVPR.2017.502 10.1109/BRACIS.2019.00134 10.1109/MMUL.2012.24 10.1109/JSEN.2018.2876624 10.1109/ICCV48922.2021.01311 10.1109/CVPRW.2017.207 10.36227/techrxiv.13708270 10.1109/TMM.2019.2960588 10.1109/CVPR.2016.115 10.1109/CVPR.2015.7298878 10.1109/TCSVT.2019.2914137 10.1609/aaai.v32i1.12328 10.1109/CVPR42600.2020.01434 10.1109/TIP.2018.2815744 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P WIN AAYXX CITATION DOA |
DOI | 10.1049/ipr2.12671 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1751-9667 |
EndPage | 783 |
ExternalDocumentID | oai_doaj_org_article_15ce148b8b7b4b34b934c9978efeaec6 10_1049_ipr2_12671 IPR212671 |
Genre | article |
GroupedDBID | .DC 0R~ 1OC 24P 29I 5GY 6IK 8VB AAHHS AAHJG AAJGR ABQXS ACCFJ ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS ESX GROUPED_DOAJ HZ~ IAO IFIPE IPLJI JAVBF K1G LAI MCNEO MS~ O9- OCL OK1 P2P QWB RIE RNS ROL RUI WIN ZL0 4.4 8FE 8FG AAYXX ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU CITATION EJD HCIFZ ITC L6V M43 M7S P62 PTHSS S0W |
ID | FETCH-LOGICAL-c3051-6327cc21d6df3960c877c27a1cd36c637e081dbdaaa5bb02a9822b5901d6a6233 |
IEDL.DBID | 24P |
ISSN | 1751-9659 |
IngestDate | Tue Oct 22 15:15:22 EDT 2024 Thu Sep 26 16:57:48 EDT 2024 Sat Aug 24 01:01:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3051-6327cc21d6df3960c877c27a1cd36c637e081dbdaaa5bb02a9822b5901d6a6233 |
ORCID | 0000-0003-1209-0608 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12671 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_15ce148b8b7b4b34b934c9978efeaec6 crossref_primary_10_1049_ipr2_12671 wiley_primary_10_1049_ipr2_12671_IPR212671 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IET image processing |
PublicationYear | 2023 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2011 2022 2019; 41 2020; 30 2010 2021 2020 2019; 13 2017; 76 1973; 14 2019 2019; 19 2018 2011; 43 2012; 19 2017 2016 2015 2018; 40 2014 2020; 22 2018; 27 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – start-page: 13423 year: 2021 end-page: 13433 article-title: Skeleton cloud colorization for unsupervised 3d action representation learning – start-page: 4724 year: 2017 end-page: 4733 article-title: Action recognition? A new model and the kinetics dataset – start-page: 143 year: 2020 end-page: 152 article-title: Disentangling and unifying graph convolutions for skeleton‐based action recognition – start-page: 3633 year: 2017 end-page: 3642 article-title: Modeling temporal dynamics and spatial configurations of actions using two‐stream recurrent neural networks – start-page: 1112 year: 2020 end-page: 1121 article-title: Semantics‐guided neural networks for efficient skeleton‐based human action recognition – start-page: 48 year: 2010 end-page: 55 article-title: MuHAVi: A multicamera human action video dataset for the evaluation of action recognition methods – start-page: 295 year: 2015 end-page: 302 article-title: Robot‐centric activity prediction from first‐person videos: what will they do to me? – volume: 43 start-page: 16 issue: 3 year: 2011 article-title: Human activity analysis: A review publication-title: ACM Comput. Surv. – start-page: 1 year: 2018 end-page: 6 article-title: Skeleton‐based human action recognition using spatial temporal 3D convolutional neural networks – start-page: 13359 year: 2021 end-page: 13368 article-title: Channel‐wise topology refinement graph convolution for skeleton‐based action recognition – volume: 40 start-page: 1045 year: 2018 end-page: 1058 article-title: Deep multimodal feature analysis for action recognition in RGB+D videos publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 76 start-page: 4357 year: 2017 end-page: 4380 article-title: Depth completion for Kinect v2 sensor publication-title: Multimed. Tools Appl. – start-page: 1302 year: 2017 end-page: 1310 article-title: Realtime multi‐person 2D pose estimation using part affinity fields – start-page: 7444 year: 2018 end-page: 7452 article-title: Spatial temporal graph convolutional networks for skeleton‐based action recognition – volume: 30 start-page: 2129 year: 2020 end-page: 2140 article-title: Action recognition scheme based on skeleton representation with DS‐LSTM Network publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 270 year: 2018 article-title: Part‐based graph convolutional network for action recognition – year: 2022 article-title: Human action recognition from various data modalities: A review – volume: 13 start-page: 2572 year: 2019 end-page: 2578 article-title: Human activity recognition using 2D skeleton data and supervised machine learning publication-title: IET Image Process – volume: 22 start-page: 2481 year: 2020 end-page: 2496 article-title: 2‐D skeleton‐based action recognition via two‐branch stacked LSTM‐RNNs publication-title: IEEE Trans. Multimed. – volume: 19 start-page: 4 year: 2012 end-page: 10 article-title: Microsoft Kinect sensor and its effect publication-title: IEEE Multimed – start-page: 20 year: 2016 end-page: 36 – start-page: 1010 year: 2016 end-page: 1019 article-title: NTU RGB+D: A large scale dataset for 3D human activity analysis – start-page: 2625 year: 2015 end-page: 2634 article-title: Long‐term recurrent convolutional networks for visual recognition and description – volume: 41 start-page: 1963 year: 2019 end-page: 1978 article-title: View adaptive neural networks for high performance skeleton‐based human action recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 27 start-page: 3657 year: 2018 end-page: 3670 article-title: Action‐attending graphic neural network publication-title: IEEE Trans. Image Process. – start-page: 14333 year: 2020 end-page: 14342 article-title: Context aware graph convolution for skeleton‐based action recognition – start-page: 4489 year: 2015 end-page: 4497 article-title: Learning spatiotemporal features with 3D convolutional networks – volume: 14 start-page: 201 year: 1973 end-page: 211 article-title: Visual perception of biological motion and a model for its analysis publication-title: Percept. Psychophys. – volume: 13 start-page: 319 year: 2019 end-page: 328 article-title: Learning to recognise 3D human action from a new skeleton‐based representation using deep convolutional neural networks publication-title: IET Comput. Vis. – start-page: 747 year: 2019 end-page: 752 article-title: Human action recognition using 2D poses – start-page: 20186 year: 2022 end-page: 20196 article-title: InfoGCN: Representation learning for human skeleton‐based action recognition – start-page: 13434 year: 2021 end-page: 13443 article-title: Else‐net: Elastic semantic network for continual action recognition from skeleton data – start-page: 1297 year: 2011 end-page: 1304 article-title: Real‐time human pose recognition in parts from single depth images – start-page: 1623 year: 2017 end-page: 1631 article-title: Interpretable 3D human action analysis with temporal convolutional networks – start-page: 183 year: 2020 end-page: 192 article-title: Skeleton‐based action recognition with shift graph convolutional network – start-page: 816 year: 2016 end-page: 833 – start-page: 1 year: 2018 end-page: 4 article-title: Human fall‐down event detection based on 2D skeletons and deep learning approach – start-page: 568 year: 2014 end-page: 576 article-title: Two‐stream convolutional networks for action recognition in videos – start-page: 12018 year: 2019 end-page: 12027 article-title: Two‐stream adaptive graph convolutional networks for skeleton‐based action recognition – volume: 19 start-page: 171 year: 2019 end-page: 179 article-title: Influence of a marker‐based motion capture system on the performance of microsoft Kinect v2 skeleton algorithm publication-title: IEEE Sens. J. – ident: e_1_2_10_14_1 doi: 10.3758/BF03212378 – ident: e_1_2_10_32_1 doi: 10.1049/iet‐ipr.2019.0030 – ident: e_1_2_10_20_1 doi: 10.1109/CVPR.2019.01230 – ident: e_1_2_10_8_1 doi: 10.1109/CVPR.2017.143 – ident: e_1_2_10_39_1 doi: 10.1109/TPAMI.2017.2691321 – ident: e_1_2_10_7_1 doi: 10.1007/s11042‐016‐3523‐y – ident: e_1_2_10_38_1 doi: 10.1109/CVPR.2017.387 – ident: e_1_2_10_37_1 doi: 10.1109/TPAMI.2019.2896631 – ident: e_1_2_10_17_1 doi: 10.1109/ICME.2018.8486566 – ident: e_1_2_10_4_1 doi: 10.1145/1922649.1922653 – ident: e_1_2_10_12_1 doi: 10.1109/ICCV.2015.510 – ident: e_1_2_10_34_1 doi: 10.1109/IWAIT.2018.8369778 – ident: e_1_2_10_15_1 doi: 10.1109/CVPR.2011.5995316 – ident: e_1_2_10_24_1 doi: 10.1109/CVPR42600.2020.00022 – ident: e_1_2_10_21_1 – ident: e_1_2_10_30_1 doi: 10.1109/CVPR52688.2022.01955 – ident: e_1_2_10_3_1 doi: 10.1145/2696454.2696462 – ident: e_1_2_10_28_1 doi: 10.1109/ICCV48922.2021.01317 – ident: e_1_2_10_29_1 doi: 10.1109/ICCV48922.2021.01318 – ident: e_1_2_10_22_1 doi: 10.1049/iet‐cvi.2018.5014 – ident: e_1_2_10_26_1 doi: 10.1109/CVPR42600.2020.00026 – ident: e_1_2_10_16_1 doi: 10.1007/978-3-319-46487-9_50 – ident: e_1_2_10_10_1 doi: 10.1007/978-3-319-46484-8_2 – ident: e_1_2_10_25_1 doi: 10.1109/CVPR42600.2020.00119 – ident: e_1_2_10_2_1 doi: 10.1109/AVSS.2010.63 – ident: e_1_2_10_13_1 doi: 10.1109/CVPR.2017.502 – ident: e_1_2_10_33_1 doi: 10.1109/BRACIS.2019.00134 – ident: e_1_2_10_5_1 doi: 10.1109/MMUL.2012.24 – ident: e_1_2_10_6_1 doi: 10.1109/JSEN.2018.2876624 – ident: e_1_2_10_42_1 doi: 10.1109/ICCV48922.2021.01311 – ident: e_1_2_10_9_1 – ident: e_1_2_10_18_1 doi: 10.1109/CVPRW.2017.207 – ident: e_1_2_10_31_1 doi: 10.36227/techrxiv.13708270 – ident: e_1_2_10_35_1 doi: 10.1109/TMM.2019.2960588 – ident: e_1_2_10_27_1 doi: 10.1109/ICCV48922.2021.01311 – ident: e_1_2_10_36_1 doi: 10.1109/CVPR.2016.115 – ident: e_1_2_10_11_1 doi: 10.1109/CVPR.2015.7298878 – ident: e_1_2_10_41_1 doi: 10.1109/TCSVT.2019.2914137 – ident: e_1_2_10_19_1 doi: 10.1609/aaai.v32i1.12328 – ident: e_1_2_10_23_1 doi: 10.1109/CVPR42600.2020.01434 – ident: e_1_2_10_40_1 doi: 10.1109/TIP.2018.2815744 |
SSID | ssj0059085 |
Score | 2.329884 |
Snippet | With the popularity of cameras, the application of action recognition is more and more extensive. After the emergence of RGB‐D cameras and human pose... Abstract With the popularity of cameras, the application of action recognition is more and more extensive. After the emergence of RGB‐D cameras and human pose... |
SourceID | doaj crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 773 |
SubjectTerms | 2D human action recognition 3D convolutional neural networks attention mechanism graph convolutional neural networks skeleton sequences |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxffYn0R0JOwtnlssjlWa6mCImKhtyWvBRG2pa13f4K_0V_iJNmKvejF27JsyDKT2fmGnfk-hM45QHxtIZACV1fGK19kRnqRGcvzomIV4ZG--P5BDEf8bpyPf0h9hZ6wRA-cDNchufUA2U1hpOGGcaMYtwpqH1957W0i2-6qZTGVvsFByDuPo5BBRF7kaklMylXnZTqjl4QKSVZSUWTsX0WoMcUMttBGgw1xL73TNlrz9Q7abHAibqJwvovGPcz6OFJN49A13pweWFqnpu45jgI3GAAppn08f4XcAhjv8_0jJC2HozAfTiMN-LuFaFLvodHg5vl6mDUKCZmFOCWZYFRaS4kTrmJQi9hCSkulJtYxYQWTHjK-M05rnRvTpTqw9ZkwbuqEBuDD9lGrntT-AGHKbdVlnnYdRKh0RaGV94w4bgS1Sqs2Olsaq5wmIowy_sDmqgwmLaNJ2-gq2PH7iUBeHW-AS8vGpeVfLm2ji-iFX_Ypbx-faLw6_I8dj9B6kJFP3djHqLWYvfkTABsLcxrP1RcqtdE0 priority: 102 providerName: Directory of Open Access Journals |
Title | A 3D graph convolutional networks model for 2D skeleton‐based human action recognition |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12671 https://doaj.org/article/15ce148b8b7b4b34b934c9978efeaec6 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5FL158i_VRAnoSVrtJNtkFL9VaqqAUsdDbkteKCNvS1rs_wd_oL3Emu630InhbloTAJF_mm92Zbwg5F0DxtQUgoVZXJAqfRkZ5GRkrkrTgRSyCfPHjk-wPxcMoGTXI9aIWptKHWH5wQ2SE-xoBrk3VhQRILWzi22TKLmMmsYB8HSVjUDmficHiHsZm3kkoh8RG8jLJFuKkIrv6nbvijoJq_ypLDW6mt002a35IO9WG7pCGL3fJVs0VaY3E2R4ZdSjv0iA3TTFzvD5BMLWsErtnNDS5oUBKKevS2Tv4F-B5359f6LgcDc35aFXWQJdpRONynwx7dy-3_ajukhBZwGocSc6UtSx20hUc4hGbKmWZ0rF1XFrJlQev74zTWifGtJlGxT6DJadOaiA__ICslePSHxLKhC3a3LO2A5Qql6Y6857HThjJbKazJjlbGCufVGIYefiJLbIcTZoHkzbJDdpxOQIFrMOL8fQ1r_GQx4n1EImZ1CgjDBcm48JmENL6wmtvZZNchF34Y538fvDMwtPRfwYfkw1sGV9lXp-Qtfn0w58CsZibVjg_rRCW_wDPpcmN |
link.rule.ids | 315,783,787,867,2109,11574,27936,27937,46064,46488,50826,50935 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SHvTiW6zPgJ6E1W6STXaP1VpabYtIK8XLkteKCNvS1rs_wd_oLzGT3Va8CN6WZcPCJF_mm2TmG4TOmaP4UjsggVZXwDIbB0pYHijNojijWci8fHGvz9tDdjeKRmVuDtTCFPoQywM3QIbfrwHgcCBdBJwMRDJfJ1NyGRIOFeTVCC70KqjaeBo-DxdbMfTzjnxFJPSS51Gy0CdlydXP6F8eyQv3_yaq3tO0NtF6SRFxo5jTLbRi8220UdJFXIJxtoNGDUyb2CtOY0geLxeRG5oXud0z7PvcYMdLMWni2ZtzMY7qfX18gu8y2Pfnw0VlA15mEo3zXTRs3Q5u2kHZKCHQDq5hwCkRWpPQcJNRF5LoWAhNhAy1oVxzKqxz_EYZKWWkVJ1IEO1TUHVquHT8h-6hSj7O7T7ChOmsTi2pGwdUYeJYJtbS0DDFiU5kUkNnC2Olk0IPI_X32CxJwaSpN2kNXYMdl1-AhrV_MZ6-pCUk0jDS1gVjKlZCMUWZSijTiYtqbWal1byGLvws_PGftPPwSPzTwX8-PkWr7UGvm3Y7_ftDtAYd5ItE7CNUmU_f7bHjGXN1Uq6mb_E5zdI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA2lgrjxLdZnQFfCaCfJJBNwU62l9VGKWOgu5DUiwrS0de8n-I1-iUlmptKN4G4YEgI3Obnnztx7LgDnxFF8qR2QvFZXRDKbRopZGilNkjTDWUyCfPFTn3aH5H6UjGrguqqFKfQhFh_cPDLCfe0BPjFZEW8Sr5H5NpmiyxhRX0C-QhwP98r5iAyqe9g3805COaRvJE8TXomTEn71O3fJHQXV_mWWGtxMZxOsl_wQtooN3QI1m2-DjZIrwhKJsx0wakHchkFuGvrM8fIEual5kdg9g6HJDXSkFKI2nL07_-J43vfnl3dcBobmfLAoa4CLNKJxvguGnbuX225UdkmItMNqHFGMmNYoNtRk2MUjOmVMIyZjbTDVFDPrvL5RRkqZKNVE0iv2KV9yaqh05AfvgXo-zu0-gIjorIktahqHUmbSVHJrcWyIokhzyRvgrDKWmBRiGCL8xCZceJOKYNIGuPF2XIzwAtbhxXj6Kko8iDjR1kViKlVMEYWJ4pho7kJam1lpNW2Ai7ALf6wjeoNnFJ4O_jP4FKwO2h3x2Os_HII13z2-SMI-AvX59MMeO44xVyfhKP0A4U_LLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D+graph+convolutional+networks+model+for+2D+skeleton%E2%80%90based+human+action+recognition&rft.jtitle=IET+image+processing&rft.au=Weng%2C+Libo&rft.au=Lou%2C+Weidong&rft.au=Shen%2C+Xin&rft.au=Gao%2C+Fei&rft.date=2023-02-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=17&rft.issue=3&rft.spage=773&rft.epage=783&rft_id=info:doi/10.1049%2Fipr2.12671&rft.externalDBID=10.1049%252Fipr2.12671&rft.externalDocID=IPR212671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |