A generalization of Banach’s lemma and its applications to perturbations of bounded linear operators

Let X be a Banach space and let P : X → X be a bounded linear operator. Using an algebraic inequality on the spectrum of P , we give a new sufficient condition that guarantees the existence of ( I – P ) −1 as a bounded linear operator on X , and a bound on its spectral radius is also obtained. This...

Full description

Saved in:
Bibliographic Details
Published inApplied Mathematics-A Journal of Chinese Universities Vol. 39; no. 2; pp. 363 - 369
Main Authors Wang, Zi, Ding, Jiu, Wang, Yu-wen
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let X be a Banach space and let P : X → X be a bounded linear operator. Using an algebraic inequality on the spectrum of P , we give a new sufficient condition that guarantees the existence of ( I – P ) −1 as a bounded linear operator on X , and a bound on its spectral radius is also obtained. This generalizes the classic Banach lemma. We apply the result to the perturbation analysis of general bounded linear operators on X with commutative perturbations.
AbstractList Let X be a Banach space and let P : X → X be a bounded linear operator. Using an algebraic inequality on the spectrum of P , we give a new sufficient condition that guarantees the existence of ( I – P ) −1 as a bounded linear operator on X , and a bound on its spectral radius is also obtained. This generalizes the classic Banach lemma. We apply the result to the perturbation analysis of general bounded linear operators on X with commutative perturbations.
Let X be a Banach space and let P: X → X be a bounded linear operator. Using an algebraic inequality on the spectrum of P, we give a new sufficient condition that guarantees the existence of (I–P)−1 as a bounded linear operator on X, and a bound on its spectral radius is also obtained. This generalizes the classic Banach lemma. We apply the result to the perturbation analysis of general bounded linear operators on X with commutative perturbations.
Author Wang, Zi
Ding, Jiu
Wang, Yu-wen
Author_xml – sequence: 1
  givenname: Zi
  surname: Wang
  fullname: Wang, Zi
  organization: School of Mathematics Sciences, Harbin Normal University
– sequence: 2
  givenname: Jiu
  surname: Ding
  fullname: Ding, Jiu
  organization: School of Mathematics and Natural Sciences, The University of Southern Mississippi
– sequence: 3
  givenname: Yu-wen
  surname: Wang
  fullname: Wang, Yu-wen
  email: wangyuwen1950@aliyun.com
  organization: School of Mathematics Sciences, Harbin Normal University, Academic Committee, Harbin Institute of Petroleum
BookMark eNp1kDtOAzEQhi0UJELIAegsUS-MH_twGSJeUiQaqK3ZXTtstLEXe1NAxTW4HifBkEhUVDOa-b4Z6T8lE-edIeScwSUDKK8iY2VRZMBlJquSZ-KITJlSIgMp80nqAfKMgWAnZB7jBgCYLGWeV1NiF3RtnAnYd-84dt5Rb-k1Omxevj4-I-3NdosUXUu7MVIchr5rfrlIR08HE8ZdqA-DZNZ-51rT0r5zBgP1CcDRh3hGji320cwPdUaeb2-elvfZ6vHuYblYZY0AOWYWyzZXvFK2VZZjWymjSlRGKGhrFCZvZFPYWoLkHFHkdcNBlYAFpJ0orJiRi_3dIfjXnYmj3vhdcOmlFlAUVZEzwRPF9lQTfIzBWD2EbovhTTPQP4nqfaI6Jap_EtUiOXzvxMS6tQl_l_-XvgFjhnyO
Cites_doi 10.1007/BF02648883
10.1006/jmaa.1997.5482
10.1016/B978-0-12-514250-2.50013-5
10.1080/01630563.2020.1813164
10.1016/S0024-3795(02)00493-7
ContentType Journal Article
Copyright Editorial Committee of Applied Mathematics 2024
Editorial Committee of Applied Mathematics 2024.
Copyright_xml – notice: Editorial Committee of Applied Mathematics 2024
– notice: Editorial Committee of Applied Mathematics 2024.
DBID AAYXX
CITATION
DOI 10.1007/s11766-024-4872-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1993-0445
EndPage 369
ExternalDocumentID 10_1007_s11766_024_4872_3
GroupedDBID -01
-0A
-5D
-5G
-BR
-EM
-SA
-S~
-Y2
-~C
.VR
06D
0R~
0VY
188
23M
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40E
5VR
5VS
5XA
5XB
6NX
8RM
8TC
92E
92I
92M
95-
95.
95~
96X
9D9
9DA
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
CAJEA
CCEZO
CCVFK
CHBEP
COF
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9R
PF0
PT4
Q--
Q-0
QOK
QOS
R-A
R89
R9I
REI
RHV
ROL
RPX
RSV
RT1
S..
S16
S1Z
S27
S3B
SAP
SCL
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T8Q
TCJ
TGP
TSG
TUC
U1F
U1G
U2A
U5A
U5K
UG4
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W48
YLTOR
ZMTXR
ZWQNP
~A9
~L9
AAPKM
AAYXX
ABBRH
ABDBE
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c304t-fa7d59289fd9f2ad89e97a9e390dba3e5c4c6fb40422aa35bc20970a603e536f3
IEDL.DBID U2A
ISSN 1005-1031
IngestDate Fri Jul 25 11:13:19 EDT 2025
Tue Jul 01 00:47:46 EDT 2025
Fri Feb 21 02:41:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Banach lemma
perturbation analysis
65F20
47A55
generalized inverse
spectral radius
15A09
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c304t-fa7d59289fd9f2ad89e97a9e390dba3e5c4c6fb40422aa35bc20970a603e536f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3066865132
PQPubID 2043965
PageCount 7
ParticipantIDs proquest_journals_3066865132
crossref_primary_10_1007_s11766_024_4872_3
springer_journals_10_1007_s11766_024_4872_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Applied Mathematics-A Journal of Chinese Universities
PublicationTitleAbbrev Appl. Math. J. Chin. Univ
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References M Z Nashed. Perturbations and approximations for generalized inverses and linear operator equations, Generalized Inverses and Applications, Academic Press, 1976, 325–396.
CampbellS LMeyerC DGeneralized Inverses of Linear Transformations1979LondonPitman
T Kato. Perturbation Theory for Linear Operators, Springer-Verlag, 1984.
DingJNew perturbation results on pseudo-inverses of linear operators in Banach spacesLinear Algb Appl2003362229235195546710.1016/S0024-3795(02)00493-7
DingJHuangQOn the stable perturbation and Nashed’s condition for generalized inversesNumer Func Anal Optim2020411417611768420044110.1080/01630563.2020.1813164
CazassaP GChristensenOPerturbation of operators and applications to frame theoryJ Fourier Anal Appl199735543557149193310.1007/BF02648883
ChenGXueYPerturbation analysis for the operator equation Tx = b in Banach spacesJ Math Anal Appl1997212107125146018810.1006/jmaa.1997.5482
J Ding (4872_CR5) 2020; 41
S L Campbell (4872_CR1) 1979
J Ding (4872_CR4) 2003; 362
4872_CR6
G Chen (4872_CR3) 1997; 212
P G Cazassa (4872_CR2) 1997; 3
4872_CR7
References_xml – reference: T Kato. Perturbation Theory for Linear Operators, Springer-Verlag, 1984.
– reference: DingJNew perturbation results on pseudo-inverses of linear operators in Banach spacesLinear Algb Appl2003362229235195546710.1016/S0024-3795(02)00493-7
– reference: ChenGXueYPerturbation analysis for the operator equation Tx = b in Banach spacesJ Math Anal Appl1997212107125146018810.1006/jmaa.1997.5482
– reference: CampbellS LMeyerC DGeneralized Inverses of Linear Transformations1979LondonPitman
– reference: CazassaP GChristensenOPerturbation of operators and applications to frame theoryJ Fourier Anal Appl199735543557149193310.1007/BF02648883
– reference: DingJHuangQOn the stable perturbation and Nashed’s condition for generalized inversesNumer Func Anal Optim2020411417611768420044110.1080/01630563.2020.1813164
– reference: M Z Nashed. Perturbations and approximations for generalized inverses and linear operator equations, Generalized Inverses and Applications, Academic Press, 1976, 325–396.
– volume-title: Generalized Inverses of Linear Transformations
  year: 1979
  ident: 4872_CR1
– volume: 3
  start-page: 543
  issue: 5
  year: 1997
  ident: 4872_CR2
  publication-title: J Fourier Anal Appl
  doi: 10.1007/BF02648883
– volume: 212
  start-page: 107
  year: 1997
  ident: 4872_CR3
  publication-title: J Math Anal Appl
  doi: 10.1006/jmaa.1997.5482
– ident: 4872_CR6
– ident: 4872_CR7
  doi: 10.1016/B978-0-12-514250-2.50013-5
– volume: 41
  start-page: 1761
  issue: 14
  year: 2020
  ident: 4872_CR5
  publication-title: Numer Func Anal Optim
  doi: 10.1080/01630563.2020.1813164
– volume: 362
  start-page: 229
  year: 2003
  ident: 4872_CR4
  publication-title: Linear Algb Appl
  doi: 10.1016/S0024-3795(02)00493-7
SSID ssj0001474558
ssj0064147
Score 2.2836509
Snippet Let X be a Banach space and let P : X → X be a bounded linear operator. Using an algebraic inequality on the spectrum of P , we give a new sufficient condition...
Let X be a Banach space and let P: X → X be a bounded linear operator. Using an algebraic inequality on the spectrum of P, we give a new sufficient condition...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 363
SubjectTerms Applications of Mathematics
Banach spaces
Linear operators
Mathematics
Mathematics and Statistics
Operators (mathematics)
Perturbation methods
Title A generalization of Banach’s lemma and its applications to perturbations of bounded linear operators
URI https://link.springer.com/article/10.1007/s11766-024-4872-3
https://www.proquest.com/docview/3066865132
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgXWBAPEWhVB6YQJaS-FWPAbVUoDJRqUyRndiABEnVhJ3f4Pf4Euw8SEEwsMaxh2Mn99x7fc8F4JQrJdkwUUj7BiPCqUaKKIr8IODS004xzMUhp7dsMiPXczqv67jz5rZ7k5Is_9RtsZvTMkTWpiBLsgOE10GXWtfd3eOaBWEbWCGcrEiGM-KXXcb8SnIT-01q87clvxunlnH-SJKWtme8DbZq0gjDapd3wJpOd8Hm9EtxNd8DJoQPlYJ0XVgJMwMvZCrjx4-39xw-65cXCWWawKcih6tpa1hkcKGX1vSo-oGdqVy3JZ1AR0LlEmYLXabj830wG4_uLieo7qGAYuyRAhnJEyqsV2USYQKZDIUWXAqNhZcoiTWNScyMIk4KTEpMVRx4gnuSeXYMM4MPQCfNUn0IoLG2XwucUBY7J9ISGTtPSU9x6tr68R44a8CLFpVURtSKIjukI4t05JCOcA_0G3ij-qvJI-u-sCGj1kHugfMG8nb4z8WO_vX2MdgI3JaXoZQ-6BTLV31imUWhBqAbXt3fjAblifoEN7nGWA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgDMCAeIry9MAEspTEr3gsiKpA26mVukV2YgMSTaom7PwGv8eXYKcJKQgG1jj2cOzknnuv77kAXHClJAsThbRvMCKcaqSIosgPAi497RTDXBxyMGS9Mbmf0ElVx53Xt93rlGT5p26K3ZyWIbI2BVmSHSC8CtYsFwjdUR4HnSawQjhZkgxnxC-7jPkLyU3s16nN35b8bpwaxvkjSVranu422KpII-wsdnkHrOh0F2wOvhRX8z1gOvBxoSBdFVbCzMBrmcr46ePtPYcvejqVUKYJfC5yuJy2hkUGZ3puTY-qHtiZynVb0gl0JFTOYTbTZTo-3wfj7u3opoeqHgooxh4pkJE8ocJ6VSYRJpBJKLTgUmgsvERJrGlMYmYUcVJgUmKq4sAT3JPMs2OYGXwAWmmW6kMAjbX9WuCEstg5kZbI2HlKeopT19aPt8FlDV40W0hlRI0oskM6skhHDukIt8FJDW9UfTV5ZN0XFjJqHeQ2uKohb4b_XOzoX2-fg_XeaNCP-nfDh2OwEbjtL8MqJ6BVzF_1qWUZhTorT9UneozHtw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFUUCvjACWQ1ibfmWJaKrRUHKvUW2bENSDStmnDnN_g9vgQ7CykIDlzj2Ic3jubNTOYNAMdcSsE6SiLtG4wIpxpJIinyg4ALTzvFMJeH7A_Y1ZDcjOionHOaVn-7VyXJoqfBqTQlWXuqTLtufHO6hsj6F2QJd4DwIlgirhnYXuhh0K2TLISTOflwRvx84phfyG9ivypz_nbkd0dVs88fBdPcD_XWwVpJIGG3sPgGWNDJJljtf6mvplvAdOFjoSZdNlnCiYFnIhHx08fbewpf9HgsoEgUfM5SOF_ChtkETvXMuiFZPrA7pZu8pBV0hFTM4GSq89J8ug2GvcuH8ytUzlNAMfZIhozgioY2wjIqNIFQnVCHXIQah56SAmsak5gZSZwsmBCYyjjwQu4J5tk1zAzeAY1kkuhdAI3lATrEirLYBZSW1Nh9UniSUzfijzfBSQVeNC1kM6JaINkhHVmkI4d0hJugVcEblV9QGtlQhnUYtUZtgtMK8nr5z8P2_vX2EVi-v-hFd9eD232wEjjr5xmWFmhks1d9YAlHJg_zS_UJMHXL6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalization+of+Banach%E2%80%99s+lemma+and+its+applications+to+perturbations+of+bounded+linear+operators&rft.jtitle=Applied+Mathematics-A+Journal+of+Chinese+Universities&rft.au=Wang%2C+Zi&rft.au=Ding%2C+Jiu&rft.au=Wang%2C+Yu-wen&rft.date=2024-06-01&rft.issn=1005-1031&rft.eissn=1993-0445&rft.volume=39&rft.issue=2&rft.spage=363&rft.epage=369&rft_id=info:doi/10.1007%2Fs11766-024-4872-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11766_024_4872_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1005-1031&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1005-1031&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1005-1031&client=summon