A generalization of Banach’s lemma and its applications to perturbations of bounded linear operators
Let X be a Banach space and let P : X → X be a bounded linear operator. Using an algebraic inequality on the spectrum of P , we give a new sufficient condition that guarantees the existence of ( I – P ) −1 as a bounded linear operator on X , and a bound on its spectral radius is also obtained. This...
Saved in:
Published in | Applied Mathematics-A Journal of Chinese Universities Vol. 39; no. 2; pp. 363 - 369 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let
X
be a Banach space and let
P
:
X
→
X
be a bounded linear operator. Using an algebraic inequality on the spectrum of
P
, we give a new sufficient condition that guarantees the existence of (
I
–
P
)
−1
as a bounded linear operator on
X
, and a bound on its spectral radius is also obtained. This generalizes the classic Banach lemma. We apply the result to the perturbation analysis of general bounded linear operators on
X
with commutative perturbations. |
---|---|
AbstractList | Let
X
be a Banach space and let
P
:
X
→
X
be a bounded linear operator. Using an algebraic inequality on the spectrum of
P
, we give a new sufficient condition that guarantees the existence of (
I
–
P
)
−1
as a bounded linear operator on
X
, and a bound on its spectral radius is also obtained. This generalizes the classic Banach lemma. We apply the result to the perturbation analysis of general bounded linear operators on
X
with commutative perturbations. Let X be a Banach space and let P: X → X be a bounded linear operator. Using an algebraic inequality on the spectrum of P, we give a new sufficient condition that guarantees the existence of (I–P)−1 as a bounded linear operator on X, and a bound on its spectral radius is also obtained. This generalizes the classic Banach lemma. We apply the result to the perturbation analysis of general bounded linear operators on X with commutative perturbations. |
Author | Wang, Zi Ding, Jiu Wang, Yu-wen |
Author_xml | – sequence: 1 givenname: Zi surname: Wang fullname: Wang, Zi organization: School of Mathematics Sciences, Harbin Normal University – sequence: 2 givenname: Jiu surname: Ding fullname: Ding, Jiu organization: School of Mathematics and Natural Sciences, The University of Southern Mississippi – sequence: 3 givenname: Yu-wen surname: Wang fullname: Wang, Yu-wen email: wangyuwen1950@aliyun.com organization: School of Mathematics Sciences, Harbin Normal University, Academic Committee, Harbin Institute of Petroleum |
BookMark | eNp1kDtOAzEQhi0UJELIAegsUS-MH_twGSJeUiQaqK3ZXTtstLEXe1NAxTW4HifBkEhUVDOa-b4Z6T8lE-edIeScwSUDKK8iY2VRZMBlJquSZ-KITJlSIgMp80nqAfKMgWAnZB7jBgCYLGWeV1NiF3RtnAnYd-84dt5Rb-k1Omxevj4-I-3NdosUXUu7MVIchr5rfrlIR08HE8ZdqA-DZNZ-51rT0r5zBgP1CcDRh3hGji320cwPdUaeb2-elvfZ6vHuYblYZY0AOWYWyzZXvFK2VZZjWymjSlRGKGhrFCZvZFPYWoLkHFHkdcNBlYAFpJ0orJiRi_3dIfjXnYmj3vhdcOmlFlAUVZEzwRPF9lQTfIzBWD2EbovhTTPQP4nqfaI6Jap_EtUiOXzvxMS6tQl_l_-XvgFjhnyO |
Cites_doi | 10.1007/BF02648883 10.1006/jmaa.1997.5482 10.1016/B978-0-12-514250-2.50013-5 10.1080/01630563.2020.1813164 10.1016/S0024-3795(02)00493-7 |
ContentType | Journal Article |
Copyright | Editorial Committee of Applied Mathematics 2024 Editorial Committee of Applied Mathematics 2024. |
Copyright_xml | – notice: Editorial Committee of Applied Mathematics 2024 – notice: Editorial Committee of Applied Mathematics 2024. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11766-024-4872-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1993-0445 |
EndPage | 369 |
ExternalDocumentID | 10_1007_s11766_024_4872_3 |
GroupedDBID | -01 -0A -5D -5G -BR -EM -SA -S~ -Y2 -~C .VR 06D 0R~ 0VY 188 23M 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40E 5VR 5VS 5XA 5XB 6NX 8RM 8TC 92E 92I 92M 95- 95. 95~ 96X 9D9 9DA AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BAPOH BDATZ BGNMA CAG CAJEA CCEZO CCVFK CHBEP COF CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9R PF0 PT4 Q-- Q-0 QOK QOS R-A R89 R9I REI RHV ROL RPX RSV RT1 S.. S16 S1Z S27 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T8Q TCJ TGP TSG TUC U1F U1G U2A U5A U5K UG4 UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W48 YLTOR ZMTXR ZWQNP ~A9 ~L9 AAPKM AAYXX ABBRH ABDBE AFDZB AFOHR AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c304t-fa7d59289fd9f2ad89e97a9e390dba3e5c4c6fb40422aa35bc20970a603e536f3 |
IEDL.DBID | U2A |
ISSN | 1005-1031 |
IngestDate | Fri Jul 25 11:13:19 EDT 2025 Tue Jul 01 00:47:46 EDT 2025 Fri Feb 21 02:41:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Banach lemma perturbation analysis 65F20 47A55 generalized inverse spectral radius 15A09 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c304t-fa7d59289fd9f2ad89e97a9e390dba3e5c4c6fb40422aa35bc20970a603e536f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3066865132 |
PQPubID | 2043965 |
PageCount | 7 |
ParticipantIDs | proquest_journals_3066865132 crossref_primary_10_1007_s11766_024_4872_3 springer_journals_10_1007_s11766_024_4872_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Heidelberg |
PublicationTitle | Applied Mathematics-A Journal of Chinese Universities |
PublicationTitleAbbrev | Appl. Math. J. Chin. Univ |
PublicationYear | 2024 |
Publisher | Springer Nature Singapore Springer Nature B.V |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
References | M Z Nashed. Perturbations and approximations for generalized inverses and linear operator equations, Generalized Inverses and Applications, Academic Press, 1976, 325–396. CampbellS LMeyerC DGeneralized Inverses of Linear Transformations1979LondonPitman T Kato. Perturbation Theory for Linear Operators, Springer-Verlag, 1984. DingJNew perturbation results on pseudo-inverses of linear operators in Banach spacesLinear Algb Appl2003362229235195546710.1016/S0024-3795(02)00493-7 DingJHuangQOn the stable perturbation and Nashed’s condition for generalized inversesNumer Func Anal Optim2020411417611768420044110.1080/01630563.2020.1813164 CazassaP GChristensenOPerturbation of operators and applications to frame theoryJ Fourier Anal Appl199735543557149193310.1007/BF02648883 ChenGXueYPerturbation analysis for the operator equation Tx = b in Banach spacesJ Math Anal Appl1997212107125146018810.1006/jmaa.1997.5482 J Ding (4872_CR5) 2020; 41 S L Campbell (4872_CR1) 1979 J Ding (4872_CR4) 2003; 362 4872_CR6 G Chen (4872_CR3) 1997; 212 P G Cazassa (4872_CR2) 1997; 3 4872_CR7 |
References_xml | – reference: T Kato. Perturbation Theory for Linear Operators, Springer-Verlag, 1984. – reference: DingJNew perturbation results on pseudo-inverses of linear operators in Banach spacesLinear Algb Appl2003362229235195546710.1016/S0024-3795(02)00493-7 – reference: ChenGXueYPerturbation analysis for the operator equation Tx = b in Banach spacesJ Math Anal Appl1997212107125146018810.1006/jmaa.1997.5482 – reference: CampbellS LMeyerC DGeneralized Inverses of Linear Transformations1979LondonPitman – reference: CazassaP GChristensenOPerturbation of operators and applications to frame theoryJ Fourier Anal Appl199735543557149193310.1007/BF02648883 – reference: DingJHuangQOn the stable perturbation and Nashed’s condition for generalized inversesNumer Func Anal Optim2020411417611768420044110.1080/01630563.2020.1813164 – reference: M Z Nashed. Perturbations and approximations for generalized inverses and linear operator equations, Generalized Inverses and Applications, Academic Press, 1976, 325–396. – volume-title: Generalized Inverses of Linear Transformations year: 1979 ident: 4872_CR1 – volume: 3 start-page: 543 issue: 5 year: 1997 ident: 4872_CR2 publication-title: J Fourier Anal Appl doi: 10.1007/BF02648883 – volume: 212 start-page: 107 year: 1997 ident: 4872_CR3 publication-title: J Math Anal Appl doi: 10.1006/jmaa.1997.5482 – ident: 4872_CR6 – ident: 4872_CR7 doi: 10.1016/B978-0-12-514250-2.50013-5 – volume: 41 start-page: 1761 issue: 14 year: 2020 ident: 4872_CR5 publication-title: Numer Func Anal Optim doi: 10.1080/01630563.2020.1813164 – volume: 362 start-page: 229 year: 2003 ident: 4872_CR4 publication-title: Linear Algb Appl doi: 10.1016/S0024-3795(02)00493-7 |
SSID | ssj0001474558 ssj0064147 |
Score | 2.2836509 |
Snippet | Let
X
be a Banach space and let
P
:
X
→
X
be a bounded linear operator. Using an algebraic inequality on the spectrum of
P
, we give a new sufficient condition... Let X be a Banach space and let P: X → X be a bounded linear operator. Using an algebraic inequality on the spectrum of P, we give a new sufficient condition... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 363 |
SubjectTerms | Applications of Mathematics Banach spaces Linear operators Mathematics Mathematics and Statistics Operators (mathematics) Perturbation methods |
Title | A generalization of Banach’s lemma and its applications to perturbations of bounded linear operators |
URI | https://link.springer.com/article/10.1007/s11766-024-4872-3 https://www.proquest.com/docview/3066865132 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgXWBAPEWhVB6YQJaS-FWPAbVUoDJRqUyRndiABEnVhJ3f4Pf4Euw8SEEwsMaxh2Mn99x7fc8F4JQrJdkwUUj7BiPCqUaKKIr8IODS004xzMUhp7dsMiPXczqv67jz5rZ7k5Is_9RtsZvTMkTWpiBLsgOE10GXWtfd3eOaBWEbWCGcrEiGM-KXXcb8SnIT-01q87clvxunlnH-SJKWtme8DbZq0gjDapd3wJpOd8Hm9EtxNd8DJoQPlYJ0XVgJMwMvZCrjx4-39xw-65cXCWWawKcih6tpa1hkcKGX1vSo-oGdqVy3JZ1AR0LlEmYLXabj830wG4_uLieo7qGAYuyRAhnJEyqsV2USYQKZDIUWXAqNhZcoiTWNScyMIk4KTEpMVRx4gnuSeXYMM4MPQCfNUn0IoLG2XwucUBY7J9ISGTtPSU9x6tr68R44a8CLFpVURtSKIjukI4t05JCOcA_0G3ij-qvJI-u-sCGj1kHugfMG8nb4z8WO_vX2MdgI3JaXoZQ-6BTLV31imUWhBqAbXt3fjAblifoEN7nGWA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgDMCAeIry9MAEspTEr3gsiKpA26mVukV2YgMSTaom7PwGv8eXYKcJKQgG1jj2cOzknnuv77kAXHClJAsThbRvMCKcaqSIosgPAi497RTDXBxyMGS9Mbmf0ElVx53Xt93rlGT5p26K3ZyWIbI2BVmSHSC8CtYsFwjdUR4HnSawQjhZkgxnxC-7jPkLyU3s16nN35b8bpwaxvkjSVranu422KpII-wsdnkHrOh0F2wOvhRX8z1gOvBxoSBdFVbCzMBrmcr46ePtPYcvejqVUKYJfC5yuJy2hkUGZ3puTY-qHtiZynVb0gl0JFTOYTbTZTo-3wfj7u3opoeqHgooxh4pkJE8ocJ6VSYRJpBJKLTgUmgsvERJrGlMYmYUcVJgUmKq4sAT3JPMs2OYGXwAWmmW6kMAjbX9WuCEstg5kZbI2HlKeopT19aPt8FlDV40W0hlRI0oskM6skhHDukIt8FJDW9UfTV5ZN0XFjJqHeQ2uKohb4b_XOzoX2-fg_XeaNCP-nfDh2OwEbjtL8MqJ6BVzF_1qWUZhTorT9UneozHtw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFUUCvjACWQ1ibfmWJaKrRUHKvUW2bENSDStmnDnN_g9vgQ7CykIDlzj2Ic3jubNTOYNAMdcSsE6SiLtG4wIpxpJIinyg4ALTzvFMJeH7A_Y1ZDcjOionHOaVn-7VyXJoqfBqTQlWXuqTLtufHO6hsj6F2QJd4DwIlgirhnYXuhh0K2TLISTOflwRvx84phfyG9ivypz_nbkd0dVs88fBdPcD_XWwVpJIGG3sPgGWNDJJljtf6mvplvAdOFjoSZdNlnCiYFnIhHx08fbewpf9HgsoEgUfM5SOF_ChtkETvXMuiFZPrA7pZu8pBV0hFTM4GSq89J8ug2GvcuH8ytUzlNAMfZIhozgioY2wjIqNIFQnVCHXIQah56SAmsak5gZSZwsmBCYyjjwQu4J5tk1zAzeAY1kkuhdAI3lATrEirLYBZSW1Nh9UniSUzfijzfBSQVeNC1kM6JaINkhHVmkI4d0hJugVcEblV9QGtlQhnUYtUZtgtMK8nr5z8P2_vX2EVi-v-hFd9eD232wEjjr5xmWFmhks1d9YAlHJg_zS_UJMHXL6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalization+of+Banach%E2%80%99s+lemma+and+its+applications+to+perturbations+of+bounded+linear+operators&rft.jtitle=Applied+Mathematics-A+Journal+of+Chinese+Universities&rft.au=Wang%2C+Zi&rft.au=Ding%2C+Jiu&rft.au=Wang%2C+Yu-wen&rft.date=2024-06-01&rft.issn=1005-1031&rft.eissn=1993-0445&rft.volume=39&rft.issue=2&rft.spage=363&rft.epage=369&rft_id=info:doi/10.1007%2Fs11766-024-4872-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11766_024_4872_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1005-1031&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1005-1031&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1005-1031&client=summon |