Baroreflex dysfunction induced by microgravity: potential relevance to postflight orthostatic intolerance
Microgravity imposes adaptive changes in the human body. This review focuses on the changes in baroreflex function produced by actual spaceflight, or by experimental models that simulate microgravity, e.g., bed rest. We will analyze separately studies involving baroreflexes arising from carotid sinu...
Saved in:
Published in | Clinical autonomic research Vol. 10; no. 5; pp. 269 - 277 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Legacy CDMS
01.10.2000
|
Subjects | |
Online Access | Get full text |
ISSN | 0959-9851 1619-1560 |
DOI | 10.1007/BF02281109 |
Cover
Loading…
Abstract | Microgravity imposes adaptive changes in the human body. This review focuses on the changes in baroreflex function produced by actual spaceflight, or by experimental models that simulate microgravity, e.g., bed rest. We will analyze separately studies involving baroreflexes arising from carotid sinus and aortic arch afferents ("high-pressure baroreceptors"), and cardiopulmonary afferents ("low-pressure receptors"). Studies from unrelated laboratories using different techniques have concluded that actual or simulated exposure to microgravity reduces baroreflex function arising from carotid sinus afferents ("carotic-cardiac baroreflex"). The techniques used to study the carotid-cardiac baroreflex, using neck suction and compression to simulate changes in blood pressure, have been extensively validated. In contrast, it is more difficult to selectively study aortic arch or cardiopulmonary baroreceptors. Nonetheless, studies that have examined these baroreceptors suggest that microgravity produces the opposite effect, ie, an increase in the gain of aortic arch and cardiopulmonary baroreflexes. Furthermore, most studies have focus on instantaneous changes in heart rate, which almost exclusively examines the vagal limb of the baroreflex. In comparison, there is limited information about the effect of microgravity on sympathetic function. A substantial proportion of subjects exposed to microgravity develop transient orthostatic intolerance. It has been proposed that alterations in baroreflex function play a role in the orthostatic intolerance induced by microgravity. The evidence in favor and against this hypothesis is reviewed. |
---|---|
AbstractList | Microgravity imposes adaptive changes in the human body. This review focuses on the changes in baroreflex function produced by actual spaceflight, or by experimental models that simulate microgravity, e.g., bed rest. We will analyze separately studies involving baroreflexes arising from carotid sinus and aortic arch afferents ("high-pressure baroreceptors"), and cardiopulmonary afferents ("low-pressure receptors"). Studies from unrelated laboratories using different techniques have concluded that actual or simulated exposure to microgravity reduces baroreflex function arising from carotid sinus afferents ("carotic-cardiac baroreflex"). The techniques used to study the carotid-cardiac baroreflex, using neck suction and compression to simulate changes in blood pressure, have been extensively validated. In contrast, it is more difficult to selectively study aortic arch or cardiopulmonary baroreceptors. Nonetheless, studies that have examined these baroreceptors suggest that microgravity produces the opposite effect, ie, an increase in the gain of aortic arch and cardiopulmonary baroreflexes. Furthermore, most studies have focus on instantaneous changes in heart rate, which almost exclusively examines the vagal limb of the baroreflex. In comparison, there is limited information about the effect of microgravity on sympathetic function. A substantial proportion of subjects exposed to microgravity develop transient orthostatic intolerance. It has been proposed that alterations in baroreflex function play a role in the orthostatic intolerance induced by microgravity. The evidence in favor and against this hypothesis is reviewed.Microgravity imposes adaptive changes in the human body. This review focuses on the changes in baroreflex function produced by actual spaceflight, or by experimental models that simulate microgravity, e.g., bed rest. We will analyze separately studies involving baroreflexes arising from carotid sinus and aortic arch afferents ("high-pressure baroreceptors"), and cardiopulmonary afferents ("low-pressure receptors"). Studies from unrelated laboratories using different techniques have concluded that actual or simulated exposure to microgravity reduces baroreflex function arising from carotid sinus afferents ("carotic-cardiac baroreflex"). The techniques used to study the carotid-cardiac baroreflex, using neck suction and compression to simulate changes in blood pressure, have been extensively validated. In contrast, it is more difficult to selectively study aortic arch or cardiopulmonary baroreceptors. Nonetheless, studies that have examined these baroreceptors suggest that microgravity produces the opposite effect, ie, an increase in the gain of aortic arch and cardiopulmonary baroreflexes. Furthermore, most studies have focus on instantaneous changes in heart rate, which almost exclusively examines the vagal limb of the baroreflex. In comparison, there is limited information about the effect of microgravity on sympathetic function. A substantial proportion of subjects exposed to microgravity develop transient orthostatic intolerance. It has been proposed that alterations in baroreflex function play a role in the orthostatic intolerance induced by microgravity. The evidence in favor and against this hypothesis is reviewed. Microgravity imposes adaptive changes in the human body. This review focuses on the changes in baroreflex function produced by actual spaceflight, or by experimental models that simulate microgravity, e.g., bed rest. We will analyze separately studies involving baroreflexes arising from carotid sinus and aortic arch afferents ("high-pressure baroreceptors"), and cardiopulmonary afferents ("low-pressure receptors"). Studies from unrelated laboratories using different techniques have concluded that actual or simulated exposure to microgravity reduces baroreflex function arising from carotid sinus afferents ("carotic-cardiac baroreflex"). The techniques used to study the carotid-cardiac baroreflex, using neck suction and compression to simulate changes in blood pressure, have been extensively validated. In contrast, it is more difficult to selectively study aortic arch or cardiopulmonary baroreceptors. Nonetheless, studies that have examined these baroreceptors suggest that microgravity produces the opposite effect, ie, an increase in the gain of aortic arch and cardiopulmonary baroreflexes. Furthermore, most studies have focus on instantaneous changes in heart rate, which almost exclusively examines the vagal limb of the baroreflex. In comparison, there is limited information about the effect of microgravity on sympathetic function. A substantial proportion of subjects exposed to microgravity develop transient orthostatic intolerance. It has been proposed that alterations in baroreflex function play a role in the orthostatic intolerance induced by microgravity. The evidence in favor and against this hypothesis is reviewed. |
Audience | PUBLIC |
Author | Robertson, D. Ertl, A. C. Diedrich, A. Biaggioni, I. |
Author_xml | – sequence: 1 givenname: A. C. surname: Ertl fullname: Ertl, A. C. organization: School of Medicine, Vanderbilt University – sequence: 2 givenname: A. surname: Diedrich fullname: Diedrich, A. – sequence: 3 givenname: I. surname: Biaggioni fullname: Biaggioni, I. – sequence: 4 givenname: D. surname: Robertson fullname: Robertson, D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11198482$$D View this record in MEDLINE/PubMed |
BookMark | eNptkEFrFTEUhYNU7Gt141pkVi4Ko_dmJjMZd7a0KhTc6DpkMjdtJC95Jpni-_fm8aqCuLqcy3cOnHPGTkIMxNhLhLcIML67vAHOJSJMT9gGB5xaFAOcsA1MYmonKfCUneX8HQCF7PAZO0XESfaSb5i71Ckmsp5-Nss-2zWY4mJoXFhWQ0sz75utMyneJf3gyv59s4uFQnHaN4k8PehgqCmxvnOx3t3dlyamcl-VLs7UmBI9pQP1nD212md68XjP2beb669Xn9rbLx8_X324bU0HfWkXM4_ayJ6kFraTswUg7AQfR7GIaala4qz5YMfZcGt7PvOJhNDj0OtF9NCdszfH3F2KP1bKRW1dNuS9DhTXrEYueo7iAL5-BNd5S4vaJbfVaa9-j1MBOAK1f851JGXcoVYMJWnnFYI67K_-7l8tF_9Y_qT-D351hIPOWtXQrDhAD4hcDLz7BZUEj4s |
CitedBy_id | crossref_primary_10_1007_s12217_014_9381_1 crossref_primary_10_1152_ajpregu_90624_2008 crossref_primary_10_1081_PRG_200059828 crossref_primary_10_1006_jtbi_2001_2461 crossref_primary_10_1016_j_autneu_2017_04_004 crossref_primary_10_18137_cardiometry_2024_31_198207 crossref_primary_10_1097_MAJ_0b013e318065b89b crossref_primary_10_1152_ajpheart_00391_2012 crossref_primary_10_1055_s_0040_1712839 crossref_primary_10_1152_japplphysiol_00986_2015 crossref_primary_10_34133_space_0123 crossref_primary_10_1097_00127893_200205000_00004 crossref_primary_10_1093_bja_aex336 crossref_primary_10_1002_advs_202302327 crossref_primary_10_1152_japplphysiol_90625_2008 |
Cites_doi | 10.1161/01.CIR.98.1.1 10.1152/jappl.1989.67.5.1820 10.1097/00006842-199011000-00002 10.1152/jappl.1996.80.3.910 10.1172/JCI119463 10.1523/JNEUROSCI.04-02-00474.1984 10.1152/jappl.1996.81.5.2134 10.1152/jappl.1994.77.5.2134 10.1152/jappl.1996.81.1.7 10.1097/00005768-199602000-00009 10.1152/jappl.1990.68.4.1458 10.1249/00003677-199001000-00007 10.1212/WNL.43.1_Part_1.132 10.1056/NEJM199311113292003 10.1159/000169528 10.1097/00005768-199610000-00038 10.1161/01.RES.40.1.72 10.1016/S0002-9629(15)40482-3 10.1152/jappl.1986.60.2.727 10.1113/jphysiol.1995.sp020585 10.1111/j.1748-1716.1988.tb08401.x 10.1152/jappl.1992.73.2.664 10.1152/jappl.1994.77.1.69 10.1161/01.CIR.96.8.2509 10.1152/ajpcell.1989.256.3.C549 10.1161/01.HYP.9.3.309 10.1097/00004872-198812040-00165 |
ContentType | Journal Article |
Contributor | Biaggioni, I Robertson, D |
Contributor_xml | – sequence: 1 givenname: I surname: Biaggioni fullname: Biaggioni, I organization: Vanderbilt U, Nashville, TN – sequence: 2 givenname: D surname: Robertson fullname: Robertson, D organization: Vanderbilt U, Nashville, TN |
DBID | CYE CYI AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1007/BF02281109 |
DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology |
EISSN | 1619-1560 |
EndPage | 277 |
ExternalDocumentID | 11198482 10_1007_BF02281109 20040112562 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Review Journal Article |
GrantInformation | HL56693 NS33460 |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: NS33460 – fundername: NHLBI NIH HHS grantid: HL56693 |
GroupedDBID | --- -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 203 29B 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 36B 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6J9 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABRTQ ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHBYD AHIZS AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP CYE CYI DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EMB EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9S PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV ROL RPX RRX RSV RZK S16 S27 S37 S3B SAP SDH SHX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZ9 SZN T13 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 2.D 28- 5QI 7X7 88E 8AO 8FI 8FJ AACDK AATNV AATVU AAYXX ABUWG ACDTI ACMFV ACUDM ADBBV AEFIE AFEXP AFKRA AFOHR AGGDS AHAVH AIIXL ALIPV BBWZM BENPR BPHCQ BVXVI CCPQU CITATION EBD EMOBN FYUFA GRRUI H13 HMCUK IHE KOW M1P NDZJH PHGZM PHGZT PQQKQ PROAC PSQYO Q2X R4E RIG RNI S1Z S26 S28 SCLPG SDE SISQX SSXJD SV3 T16 UKHRP -53 -5E -5G -BR -EM 3V. ADINQ CGR CUY CVF ECM EIF GQ6 NPM Z82 Z8V 7X8 |
ID | FETCH-LOGICAL-c304t-dcb7ac84e8a5f38bf00e1352775d59dbf081ba26f7bc2ff42b29e55a764ad5403 |
ISSN | 0959-9851 |
IngestDate | Fri Sep 05 07:29:23 EDT 2025 Wed Feb 19 01:25:39 EST 2025 Thu Apr 24 22:59:55 EDT 2025 Tue Jul 01 02:05:07 EDT 2025 Fri Aug 15 15:30:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Blood Pressure Support, U.s. Gov't, Non-P.h.s Human Heart Rate Support, U.s. Gov't, P.h.s Non-Nasa Center Review Pressoreceptors/physiopathology Hypotension, Orthostatic/etiology/physiopathology Space Flight Short Duration Weightlessness/adverse Effects Sts Shuttle Project Flight Experiment Sympathetic Nervous System/physiopathology Nasa Discipline Regulatory Physiology Manned Review, Tutorial Baroreflex/physiology NASA Discipline Regulatory Physiology Non-NASA Center |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c304t-dcb7ac84e8a5f38bf00e1352775d59dbf081ba26f7bc2ff42b29e55a764ad5403 |
Notes | CDMS Legacy CDMS ISSN: 0959-9851 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 11198482 |
PQID | 72542150 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_72542150 pubmed_primary_11198482 crossref_citationtrail_10_1007_BF02281109 crossref_primary_10_1007_BF02281109 nasa_ntrs_20040112562 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2000-10-01 |
PublicationDateYYYYMMDD | 2000-10-01 |
PublicationDate_xml | – month: 10 year: 2000 text: 2000-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Legacy CDMS |
PublicationPlace_xml | – name: Legacy CDMS – name: Germany |
PublicationTitle | Clinical autonomic research |
PublicationTitleAlternate | Clin Auton Res |
PublicationYear | 2000 |
References | B Ditto (BF02281109_CR45) 1990; 52 MA Nathan (BF02281109_CR13) 1977; 40 CA Morillo (BF02281109_CR42) 1997; 96 KM Spyer (BF02281109_CR12) 1981; 88 R Mosqueda-Garcia (BF02281109_CR41) 1997; 99 JM Fritsch (BF02281109_CR17) 1989; 256 BB Kent (BF02281109_CR19) 1972; 57 CG Crandall (BF02281109_CR29) 2000; 94 VA Convertino (BF02281109_CR3) 1990; 18 CA Ross (BF02281109_CR16) 1984; 4 DL Eckberg (BF02281109_CR37) 1988; 133 VA Convertino (BF02281109_CR25) 1990; 68 Y Yamada (BF02281109_CR44) 1988; 6 JE Greenleaf (BF02281109_CR38) 1989; 60 KA Engelke (BF02281109_CR27) 1995; 95 D Robertson (BF02281109_CR15) 1993; 329 JM Fritsch-Yelle (BF02281109_CR2) 1996; 80 VA Convertino (BF02281109_CR35) 1997; 273 CA Thompson (BF02281109_CR26) 1990; 259 JM Fritsch-Yelle (BF02281109_CR40) 1996; 81 JE Greenleaf (BF02281109_CR39) 1989; 67 VA Convertino (BF02281109_CR32) 1997; 68 VA Convertino (BF02281109_CR33) 2000; 94 G Jacob (BF02281109_CR10) 1999; 317 JC Buckey Jr. (BF02281109_CR5) 1996; 81 DE Watenpaugh (BF02281109_CR6) 1995 I Biaggioni (BF02281109_CR8) 2000 DL Eckberg (BF02281109_CR20) 1992; 92 RL Hughson (BF02281109_CR28) 2000; 77 JA Pawelczyk (BF02281109_CR36) 1996; 27 D Robertson (BF02281109_CR7) 1996; 96 VS Bishop (BF02281109_CR31) 1983 JM Sprenkle (BF02281109_CR18) 1986; 60 JM Fritsch (BF02281109_CR23) 1992; 73 RF Smith (BF02281109_CR1) 1973; 2 JM Fritsch (BF02281109_CR22) 1992; 63 VA Convertino (BF02281109_CR46) 1992; 92 JM Fritsch-Yelle (BF02281109_CR24) 2000; 94 TR Aksamit (BF02281109_CR43) 1987; 9 DS O'Leary (BF02281109_CR21) 1996; 28 A Ertl (BF02281109_CR4) 1998; 98 I Biaggioni (BF02281109_CR14) 2000; 94 CG Crandall (BF02281109_CR30) 2000; 77 CG Blomqvist (BF02281109_CR11) 1983 JA Taylor (BF02281109_CR34) 1995; 95 R Schondorf (BF02281109_CR9) 1993; 43 3241250 - J Hypertens Suppl. 1988 Dec;6(4):S525-8 2287701 - Psychosom Med. 1990 Nov-Dec;52(6):610-20 8941538 - J Appl Physiol (1985). 1996 Nov;81(5):2134-41 2221146 - Am J Physiol. 1990 Oct;259(4 Pt 2):R792-8 2916705 - Am J Physiol. 1989 Feb;256(2 Pt 2):R549-53 1636791 - Am J Physiol. 1992 Jul;263(1 Pt 2):R215-20 2751583 - Aviat Space Environ Med. 1989 Jun;60(6):537-42 3227916 - Acta Physiol Scand. 1988 Jun;133(2):221-31 8423877 - Neurology. 1993 Jan;43(1):132-7 9169504 - J Clin Invest. 1997 Jun 1;99(11):2736-44 7573564 - Am J Physiol. 1995 Sep;269(3 Pt 2):R614-20 8144218 - Hypertension. 1994 Apr;23(4):491-5 3949673 - J Appl Physiol (1985). 1986 Feb;60(2):727-32 187359 - Circ Res. 1977 Jan;40(1):72-81 10037112 - Am J Med Sci. 1999 Feb;317(2):88-101 2192891 - Exerc Sport Sci Rev. 1990;18:119-66 8413455 - N Engl J Med. 1993 Nov 11;329(20):1449-55 7836199 - J Appl Physiol (1985). 1994 Oct;77(4):1776-83 7872911 - Aviat Space Environ Med. 1994 Dec;65(12):1105-9 9355886 - Circulation. 1997 Oct 21;96(8):2509-13 7961277 - J Appl Physiol (1985). 1994 Jul;77(1):69-77 8897409 - Med Sci Sports Exerc. 1996 Oct;28(10 Suppl):S80-4 7010509 - Rev Physiol Biochem Pharmacol. 1981;88:24-124 6699683 - J Neurosci. 1984 Feb;4(2):474-94 8964756 - J Appl Physiol (1985). 1996 Mar;80(3):910-4 7868425 - J Appl Physiol (1985). 1994 Nov;77(5):2134-9 2347788 - J Appl Physiol (1985). 1990 Apr;68(4):1458-64 8024053 - Am J Physiol. 1994 Jun;266(6 Pt 2):R1962-9 1524534 - Aviat Space Environ Med. 1992 Sep;63(9):785-8 8775156 - Med Sci Sports Exerc. 1996 Feb;28(2):210-7 3818023 - Hypertension. 1987 Mar;9(3):309-14 8828642 - J Appl Physiol (1985). 1996 Jul;81(1):7-18 4651782 - Cardiology. 1972;57(5):295-310 2600015 - J Appl Physiol (1985). 1989 Nov;67(5):1820-6 9249537 - Am J Physiol. 1997 Jul;273(1 Pt 2):R93-9 9293354 - Aviat Space Environ Med. 1997 Sep;68(9):838-43 7776239 - J Physiol. 1995 Feb 15;483 ( Pt 1):289-98 1399995 - J Appl Physiol (1985). 1992 Aug;73(2):664-71 11841097 - Acta Astronaut. 1975 Jan-Feb;2(1-2):89-102 |
References_xml | – volume: 98 start-page: 1 year: 1998 ident: BF02281109_CR4 publication-title: Circulation doi: 10.1161/01.CIR.98.1.1 – volume: 94 start-page: 1776 issue: 4 year: 2000 ident: BF02281109_CR24 publication-title: J Appl Physiol – volume: 68 start-page: 838 issue: 9 Pt 1 year: 1997 ident: BF02281109_CR32 publication-title: Aviat Space Environ Med – volume: 67 start-page: 1820 year: 1989 ident: BF02281109_CR39 publication-title: J Appl Physiol doi: 10.1152/jappl.1989.67.5.1820 – volume: 52 start-page: 610 issue: 6 year: 1990 ident: BF02281109_CR45 publication-title: Psychosom Med doi: 10.1097/00006842-199011000-00002 – volume: 63 start-page: 439 year: 1992 ident: BF02281109_CR22 publication-title: Aviat Space Environ Med – volume: 94 start-page: 1105 issue: 12 year: 2000 ident: BF02281109_CR29 publication-title: Aviat Space Environ Med – volume: 95 start-page: R614 issue: pt 2 year: 1995 ident: BF02281109_CR27 publication-title: Am J Physiol – volume: 80 start-page: 910 issue: 3 year: 1996 ident: BF02281109_CR2 publication-title: J Appl Physiol doi: 10.1152/jappl.1996.80.3.910 – volume: 99 start-page: 2736 issue: 11 year: 1997 ident: BF02281109_CR41 publication-title: J Clin Invest doi: 10.1172/JCI119463 – volume: 2 start-page: 89 year: 1973 ident: BF02281109_CR1 publication-title: Acta – volume: 4 start-page: 474 year: 1984 ident: BF02281109_CR16 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.04-02-00474.1984 – volume: 92 start-page: R215 issue: pt 2 year: 1992 ident: BF02281109_CR20 publication-title: Am J Physiol – volume: 81 start-page: 2134 issue: 5 year: 1996 ident: BF02281109_CR40 publication-title: J Appl Physiol doi: 10.1152/jappl.1996.81.5.2134 – start-page: 497 volume-title: Handbook of physiology: the cardiovascular system year: 1983 ident: BF02281109_CR31 – start-page: 968 volume-title: Handbook of physiology year: 1983 ident: BF02281109_CR11 – volume: 77 start-page: 2134 issue: 5 year: 2000 ident: BF02281109_CR30 publication-title: J Appl Physiol doi: 10.1152/jappl.1994.77.5.2134 – volume: 81 start-page: 7 issue: 1 year: 1996 ident: BF02281109_CR5 publication-title: J Appl Physiol doi: 10.1152/jappl.1996.81.1.7 – volume: 28 start-page: 210 year: 1996 ident: BF02281109_CR21 publication-title: Med Sci Sports Exerc doi: 10.1097/00005768-199602000-00009 – volume: 68 start-page: 1458 year: 1990 ident: BF02281109_CR25 publication-title: J Appl Physiol doi: 10.1152/jappl.1990.68.4.1458 – volume: 60 start-page: 537 year: 1989 ident: BF02281109_CR38 publication-title: Aviat Space Environ Med – volume: 18 start-page: 119 year: 1990 ident: BF02281109_CR3 publication-title: Exerc Sport Sci Rev doi: 10.1249/00003677-199001000-00007 – volume: 88 start-page: 24 year: 1981 ident: BF02281109_CR12 publication-title: Rev Physiol Biochem Pharmacol – volume: 27 start-page: 31 issue: suppl 5 year: 1996 ident: BF02281109_CR36 publication-title: Med Sci Sports Exerc – start-page: 631 volume-title: Handbook of physiology year: 1995 ident: BF02281109_CR6 – volume: 43 start-page: 132 year: 1993 ident: BF02281109_CR9 publication-title: Neurology doi: 10.1212/WNL.43.1_Part_1.132 – volume: 94 start-page: 491 issue: 4 year: 2000 ident: BF02281109_CR14 publication-title: Hypotension – start-page: 271 volume-title: Disorders of the autonomic nervous system year: 2000 ident: BF02281109_CR8 – volume: 329 start-page: 1449 year: 1993 ident: BF02281109_CR15 publication-title: N Engl J Med doi: 10.1056/NEJM199311113292003 – volume: 57 start-page: 295 issue: 5 year: 1972 ident: BF02281109_CR19 publication-title: Cardiology doi: 10.1159/000169528 – volume: 96 start-page: S80 issue: Suppl 10 year: 1996 ident: BF02281109_CR7 publication-title: Med Sci Sports Exerc doi: 10.1097/00005768-199610000-00038 – volume: 40 start-page: 72 year: 1977 ident: BF02281109_CR13 publication-title: Circ Res doi: 10.1161/01.RES.40.1.72 – volume: 92 start-page: 785 issue: 9 year: 1992 ident: BF02281109_CR46 publication-title: Aviat Space Environ Med – volume: 317 start-page: 88 issue: 2 year: 1999 ident: BF02281109_CR10 publication-title: Am J Med Sci doi: 10.1016/S0002-9629(15)40482-3 – volume: 60 start-page: 727 year: 1986 ident: BF02281109_CR18 publication-title: J Appl Physiol doi: 10.1152/jappl.1986.60.2.727 – volume: 95 start-page: 289 issue: pt 1 year: 1995 ident: BF02281109_CR34 publication-title: J Physiol doi: 10.1113/jphysiol.1995.sp020585 – volume: 133 start-page: 211 year: 1988 ident: BF02281109_CR37 publication-title: Acta Physiol Scand doi: 10.1111/j.1748-1716.1988.tb08401.x – volume: 73 start-page: 664 issue: 2 year: 1992 ident: BF02281109_CR23 publication-title: J Appl Physiol doi: 10.1152/jappl.1992.73.2.664 – volume: 77 start-page: 69 issue: 1 year: 2000 ident: BF02281109_CR28 publication-title: J Appl Physiol doi: 10.1152/jappl.1994.77.1.69 – volume: 96 start-page: 2509 issue: 8 year: 1997 ident: BF02281109_CR42 publication-title: Circulation doi: 10.1161/01.CIR.96.8.2509 – volume: 259 start-page: R792 issue: pt 2 year: 1990 ident: BF02281109_CR26 publication-title: Am J Physiol – volume: 94 start-page: R1962 issue: pt 2 year: 2000 ident: BF02281109_CR33 publication-title: Am J Physiol – volume: 273 start-page: R93 year: 1997 ident: BF02281109_CR35 publication-title: Am J Physiol – volume: 256 start-page: 549 year: 1989 ident: BF02281109_CR17 publication-title: Am J Physiol doi: 10.1152/ajpcell.1989.256.3.C549 – volume: 9 start-page: 309 year: 1987 ident: BF02281109_CR43 publication-title: Hypotension doi: 10.1161/01.HYP.9.3.309 – volume: 6 start-page: S525 issue: 4 year: 1988 ident: BF02281109_CR44 publication-title: J Hypertens doi: 10.1097/00004872-198812040-00165 – reference: 7961277 - J Appl Physiol (1985). 1994 Jul;77(1):69-77 – reference: 2287701 - Psychosom Med. 1990 Nov-Dec;52(6):610-20 – reference: 2916705 - Am J Physiol. 1989 Feb;256(2 Pt 2):R549-53 – reference: 7010509 - Rev Physiol Biochem Pharmacol. 1981;88:24-124 – reference: 3949673 - J Appl Physiol (1985). 1986 Feb;60(2):727-32 – reference: 2221146 - Am J Physiol. 1990 Oct;259(4 Pt 2):R792-8 – reference: 9249537 - Am J Physiol. 1997 Jul;273(1 Pt 2):R93-9 – reference: 9293354 - Aviat Space Environ Med. 1997 Sep;68(9):838-43 – reference: 8897409 - Med Sci Sports Exerc. 1996 Oct;28(10 Suppl):S80-4 – reference: 7868425 - J Appl Physiol (1985). 1994 Nov;77(5):2134-9 – reference: 8941538 - J Appl Physiol (1985). 1996 Nov;81(5):2134-41 – reference: 7776239 - J Physiol. 1995 Feb 15;483 ( Pt 1):289-98 – reference: 8024053 - Am J Physiol. 1994 Jun;266(6 Pt 2):R1962-9 – reference: 11841097 - Acta Astronaut. 1975 Jan-Feb;2(1-2):89-102 – reference: 10037112 - Am J Med Sci. 1999 Feb;317(2):88-101 – reference: 4651782 - Cardiology. 1972;57(5):295-310 – reference: 8775156 - Med Sci Sports Exerc. 1996 Feb;28(2):210-7 – reference: 7836199 - J Appl Physiol (1985). 1994 Oct;77(4):1776-83 – reference: 6699683 - J Neurosci. 1984 Feb;4(2):474-94 – reference: 187359 - Circ Res. 1977 Jan;40(1):72-81 – reference: 1636791 - Am J Physiol. 1992 Jul;263(1 Pt 2):R215-20 – reference: 8423877 - Neurology. 1993 Jan;43(1):132-7 – reference: 7872911 - Aviat Space Environ Med. 1994 Dec;65(12):1105-9 – reference: 2751583 - Aviat Space Environ Med. 1989 Jun;60(6):537-42 – reference: 8828642 - J Appl Physiol (1985). 1996 Jul;81(1):7-18 – reference: 3818023 - Hypertension. 1987 Mar;9(3):309-14 – reference: 1399995 - J Appl Physiol (1985). 1992 Aug;73(2):664-71 – reference: 2600015 - J Appl Physiol (1985). 1989 Nov;67(5):1820-6 – reference: 9355886 - Circulation. 1997 Oct 21;96(8):2509-13 – reference: 9169504 - J Clin Invest. 1997 Jun 1;99(11):2736-44 – reference: 8413455 - N Engl J Med. 1993 Nov 11;329(20):1449-55 – reference: 2192891 - Exerc Sport Sci Rev. 1990;18:119-66 – reference: 8964756 - J Appl Physiol (1985). 1996 Mar;80(3):910-4 – reference: 3241250 - J Hypertens Suppl. 1988 Dec;6(4):S525-8 – reference: 7573564 - Am J Physiol. 1995 Sep;269(3 Pt 2):R614-20 – reference: 1524534 - Aviat Space Environ Med. 1992 Sep;63(9):785-8 – reference: 3227916 - Acta Physiol Scand. 1988 Jun;133(2):221-31 – reference: 2347788 - J Appl Physiol (1985). 1990 Apr;68(4):1458-64 – reference: 8144218 - Hypertension. 1994 Apr;23(4):491-5 |
SSID | ssj0015831 |
Score | 1.6352342 |
SecondaryResourceType | review_article |
Snippet | Microgravity imposes adaptive changes in the human body. This review focuses on the changes in baroreflex function produced by actual spaceflight, or by... |
SourceID | proquest pubmed crossref nasa |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 269 |
SubjectTerms | Aerospace Medicine Baroreflex - physiology Blood Pressure Heart Rate Humans Hypotension, Orthostatic - etiology Hypotension, Orthostatic - physiopathology Pressoreceptors - physiopathology Space Flight Sympathetic Nervous System - physiopathology Weightlessness - adverse effects |
Title | Baroreflex dysfunction induced by microgravity: potential relevance to postflight orthostatic intolerance |
URI | https://ntrs.nasa.gov/citations/20040112562 https://www.ncbi.nlm.nih.gov/pubmed/11198482 https://www.proquest.com/docview/72542150 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WiuKLaK26Xgf0RZaUyexMMvGtlkoV6lMXii9hbqmFuFl2E7A--8M9J_e1FaovYZNNJiTny5nvzLkR8la6LFSxE4FOtAyEFmGgpUkCoZixIddO1V0iTr5Exwvx-UyeTSa_RlFLVWn27c9r80r-R6pwDOSKWbL_INl-UDgAv0G-sAUJw_ZGMv6g19gnJPc_Zu5yg1NUG7roKtswy-8Yb4cthrD4Pxj_q6LE8KC6mn_ua_c_ss9VsSmzHO30GfpxCkwzurBYS6LI_boHRlfRoMum1FXZpDXP2ppB_dry0brMh3jJ2eF-T5iB8oLq_db92Tjqh6V6fY4B0nWIwSdcWNpalWB9fNt4eTFRbTFZ3yhXMNYCzNze0r5shDI5VqVNC5d2VuZNs5crCp91YeycKyyeOkxrnSv_j9muj0Hs6jUP194it-E2HBuALPhB74uSqulq2T3RdpHb9totWrOz1Bv9d5Olpi6nD8j91uagBw2AHpKJX-6SuydtVMUuufO1qJ0rj8jFgCg6QhRtEUXNJR0j6j3t8UR7PNGyoAOe6AhPdISnPbL4eHR6eBy0zTgCO2eiDJw1sbZKeKVlNlcmY8yHwN7jWDqZONgHA0jzKIuN5VkmuOGJl1LHkdAOzIL5Y3gtxdI_JTQzihtmQ60YsF9nlYrijEfScJuwuYym5F33LlPbVqrHhil5elVmU_KmP3fV1Ge59qw9FEkKw2yw8aqAWQ24Pp-S152MUlCr6CvTS19UmzTmUgAbZlPypBHdMHoYJkoo_uxGd35O7g2fxwuyU64r_xJobGle1Sj7DS1EnMQ |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Baroreflex+dysfunction+induced+by+microgravity%3A+potential+relevance+to+postflight+orthostatic+intolerance&rft.jtitle=Clinical+autonomic+research&rft.au=Ertl%2C+Andrew+C.&rft.au=Diedrich%2C+Andr%C3%A9&rft.au=Biaggioni%2C+Italo&rft.date=2000-10-01&rft.issn=0959-9851&rft.eissn=1619-1560&rft.volume=10&rft.issue=5&rft.spage=269&rft.epage=277&rft_id=info:doi/10.1007%2FBF02281109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_BF02281109 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-9851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-9851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-9851&client=summon |