Offline Uncertainty Sampling in Data-driven Stochastic MPC
In this work, we exploit an offline-sampling based strategy for the constrained data-driven predictive control of an unknown linear system subject to random measurement noise. The strategy uses only past measured, potentially noisy data in a non-parametric system representation and does not require...
Saved in:
Published in | IFAC-PapersOnLine Vol. 56; no. 2; pp. 650 - 656 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2405-8963 2405-8963 |
DOI | 10.1016/j.ifacol.2023.10.1641 |
Cover
Abstract | In this work, we exploit an offline-sampling based strategy for the constrained data-driven predictive control of an unknown linear system subject to random measurement noise. The strategy uses only past measured, potentially noisy data in a non-parametric system representation and does not require any prior model identification. The approximation of chance constraints using uncertainty sampling leads to efficient constraint tightening. Under mild assumptions, robust recursive feasibility and closed-loop constraint satisfaction is shown. In a simulation example, we provide evidence for the improved control performance of the proposed control scheme in comparison to a purely robust data-driven predictive control approach. |
---|---|
AbstractList | In this work, we exploit an offline-sampling based strategy for the constrained data-driven predictive control of an unknown linear system subject to random measurement noise. The strategy uses only past measured, potentially noisy data in a non-parametric system representation and does not require any prior model identification. The approximation of chance constraints using uncertainty sampling leads to efficient constraint tightening. Under mild assumptions, robust recursive feasibility and closed-loop constraint satisfaction is shown. In a simulation example, we provide evidence for the improved control performance of the proposed control scheme in comparison to a purely robust data-driven predictive control approach. |
Author | Wollherr, Dirk Teutsch, Johannes Leibold, Marion Brüdigam, Tim Kerz, Sebastian |
Author_xml | – sequence: 1 givenname: Johannes surname: Teutsch fullname: Teutsch, Johannes email: johannes.teutsch@tum.de organization: Technical University of Munich, Department of Computer Engineering, Chair of Automatic Control Engineering (LSR), Theresienstraße 90, 80333 Munich, Germany – sequence: 2 givenname: Sebastian surname: Kerz fullname: Kerz, Sebastian email: s.kerz@tum.de organization: Technical University of Munich, Department of Computer Engineering, Chair of Automatic Control Engineering (LSR), Theresienstraße 90, 80333 Munich, Germany – sequence: 3 givenname: Tim surname: Brüdigam fullname: Brüdigam, Tim email: tim.bruedigam@tum.de organization: Technical University of Munich, Department of Computer Engineering, Chair of Automatic Control Engineering (LSR), Theresienstraße 90, 80333 Munich, Germany – sequence: 4 givenname: Dirk surname: Wollherr fullname: Wollherr, Dirk email: dw@tum.de organization: Technical University of Munich, Department of Computer Engineering, Chair of Automatic Control Engineering (LSR), Theresienstraße 90, 80333 Munich, Germany – sequence: 5 givenname: Marion surname: Leibold fullname: Leibold, Marion email: marion.leibold@tum.de organization: Technical University of Munich, Department of Computer Engineering, Chair of Automatic Control Engineering (LSR), Theresienstraße 90, 80333 Munich, Germany |
BookMark | eNqFkN1KAzEQRoNUsGofQdgX2DU7SXYTb0TqL1Qq1F6HmJ1oSpstSSj07d1aL7zzaoYD38fMOSej0Ack5KqmVU3r5npVeWdsv66AAqsOtOH1CRkDp6KUqmGjP_sZmaS0opSCanir5JjczJ1b-4DFMliM2fiQ98XCbLYD_Cx8KO5NNmUX_Q5Dsci9_TIpe1u8vk0vyakz64ST33lBlo8P79PncjZ_epnezUrLKM-lcWhUKz4Mt-BER5lToAS0jLvWUgCDIDhlEkAqxUUHsnFWKqQdKmUlZxdEHHtt7FOK6PQ2-o2Je11TfXCgV_roQB8c_NDBwZC7PeZwOG7nMepkPQ5vdj6izbrr_T8N3xkHZ5E |
Cites_doi | 10.1016/j.automatica.2014.10.035 10.1109/TAC.2019.2959924 10.1109/TAC.2020.2966717 10.1016/j.arcontrol.2021.09.005 10.1002/rnc.3915 10.1007/978-1-4939-1384-8_8 10.1109/TPWRS.2018.2879451 10.1016/j.automatica.2014.10.128 10.1109/TAC.2020.3000182 10.1016/j.automatica.2017.03.031 10.1016/j.sysconle.2004.09.003 10.1515/auto-2021-0024 10.1109/MCS.2016.2602087 10.1109/TAC.2016.2625048 10.1002/rnc.5686 10.1002/rnc.5636 10.1109/TAC.2009.2031207 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.ifacol.2023.10.1641 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2405-8963 |
EndPage | 656 |
ExternalDocumentID | 10_1016_j_ifacol_2023_10_1641 S2405896323020505 |
GroupedDBID | 0R~ 0SF 457 6I. AAFTH AAJQP AALRI AAXUO ABMAC ACGFS ADBBV ADVLN AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ATDSJ EBS EJD FDB HX~ KQ8 O9- ROL AAYWO AAYXX CITATION |
ID | FETCH-LOGICAL-c304t-afea975ba4c2f5d03f92952734f7c022ae2540382289945d286fc89e0de99c843 |
ISSN | 2405-8963 |
IngestDate | Tue Jul 01 03:01:01 EDT 2025 Sat Oct 26 15:44:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Keywords | Linear systems Uncertain systems Data-driven optimal control Data-based control Constrained control Stochastic optimal control problems Predictive control |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c304t-afea975ba4c2f5d03f92952734f7c022ae2540382289945d286fc89e0de99c843 |
OpenAccessLink | https://dx.doi.org/10.1016/j.ifacol.2023.10.1641 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_ifacol_2023_10_1641 elsevier_sciencedirect_doi_10_1016_j_ifacol_2023_10_1641 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IFAC-PapersOnLine |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Willems, Rapisarda, Markovsky, De Moor (bib0027) 2005; 54 Brüdigam, Olbrich, Wollherr, Leibold (bib0008) 2021 De Persis, Tesi (bib0011) 2019; 65 Brüdigam, Gaßmann, Wollherr, Leibold (bib0007) 2021; 31 Kim, Pasupathy, Henderson (bib0017) 2015 Mesbah (bib0022) 2016; 36 Alamo, Tempo, Camacho (bib0001) 2009; 54 Wabersich, Hewing, Carron, Zeilinger (bib0026) 2021 Markovsky, Dörfler (bib0020) 2021 Berberich, Köhler, Müller, Allgöwer (bib0004) 2021; 69 Herceg, Kvasnica, Jones, Morari (bib0014) 2013 Lorenzen, Dabbene, Tempo, Allgöwer (bib0019) 2017; 81 Pan, Ou, Faulwasser (bib0023) 2022 Berberich, Köhler, Müller, Allgöwer (bib0003) 2020 Graf Plessen, Puglia, Gabbriellini, Bemporad (bib0013) 2019; 29 Elokda, Coulson, Beuchat, Lygeros, Dörfler (bib0012) 2021; 31 Mayne (bib0021) 2014; 50 Coulson, Lygeros, Dorfler (bib0010) 2021 Schildbach, Fagiano, Frei, Morari (bib0024) 2014; 50 Blanchini, Miani (bib0006) 2015 Berberich, Köhler, Müller, Allgöwer (bib0005) 2021; 66 Lorenzen, Dabbene, Tempo, Allgöwer (bib0018) 2016; 62 Coulson, Lygeros, Dörfler (bib0009) 2019 Kerz, Teutsch, Brüdigam, Wollherr, Leibold (bib0016) 2023 Berberich, Allgöwer (bib0002) 2020 van Waarde, Eising, Trentelman (bib0025) 2020; 65 Jiang, Wan, Wang, Song, Dong (bib0015) 2019; 34 Willems (10.1016/j.ifacol.2023.10.1641_bib0027) 2005; 54 Jiang (10.1016/j.ifacol.2023.10.1641_bib0015) 2019; 34 Mayne (10.1016/j.ifacol.2023.10.1641_bib0021) 2014; 50 Pan (10.1016/j.ifacol.2023.10.1641_bib0023) 2022 Blanchini (10.1016/j.ifacol.2023.10.1641_bib0006) 2015 Mesbah (10.1016/j.ifacol.2023.10.1641_bib0022) 2016; 36 Berberich (10.1016/j.ifacol.2023.10.1641_bib0005) 2021; 66 De Persis (10.1016/j.ifacol.2023.10.1641_bib0011) 2019; 65 Coulson (10.1016/j.ifacol.2023.10.1641_bib0010) 2021 Herceg (10.1016/j.ifacol.2023.10.1641_bib0014) 2013 Graf Plessen (10.1016/j.ifacol.2023.10.1641_bib0013) 2019; 29 Lorenzen (10.1016/j.ifacol.2023.10.1641_bib0018) 2016; 62 Markovsky (10.1016/j.ifacol.2023.10.1641_bib0020) 2021 Schildbach (10.1016/j.ifacol.2023.10.1641_bib0024) 2014; 50 Berberich (10.1016/j.ifacol.2023.10.1641_bib0004) 2021; 69 Wabersich (10.1016/j.ifacol.2023.10.1641_bib0026) 2021 Alamo (10.1016/j.ifacol.2023.10.1641_bib0001) 2009; 54 Berberich (10.1016/j.ifacol.2023.10.1641_bib0003) 2020 Lorenzen (10.1016/j.ifacol.2023.10.1641_bib0019) 2017; 81 Berberich (10.1016/j.ifacol.2023.10.1641_bib0002) 2020 Coulson (10.1016/j.ifacol.2023.10.1641_bib0009) 2019 Elokda (10.1016/j.ifacol.2023.10.1641_bib0012) 2021; 31 van Waarde (10.1016/j.ifacol.2023.10.1641_bib0025) 2020; 65 Brüdigam (10.1016/j.ifacol.2023.10.1641_bib0008) 2021 Kim (10.1016/j.ifacol.2023.10.1641_bib0017) 2015 Brüdigam (10.1016/j.ifacol.2023.10.1641_bib0007) 2021; 31 Kerz (10.1016/j.ifacol.2023.10.1641_bib0016) 2023 |
References_xml | – volume: 66 start-page: 1702 year: 2021 end-page: 1717 ident: bib0005 article-title: Data-driven model predictive control with stability and robustness guarantees publication-title: IEEE Transactions on Automatic Control – year: 2021 ident: bib0010 article-title: Distributionally robust chance constrained data-enabled predictive control publication-title: IEEE Transactions on Automatic Control – start-page: 1 year: 2021 ident: bib0008 article-title: Stochastic model predictive control with a safety guarantee for automated driving publication-title: IEEE Transactions on Intelligent Vehicles – volume: 54 start-page: 325 year: 2005 end-page: 329 ident: bib0027 article-title: A note on persistency of excitation publication-title: Systems & Control Letters – volume: 65 start-page: 4753 year: 2020 end-page: 4768 ident: bib0025 article-title: Data informativity: A new perspective on data-driven analysis and control publication-title: IEEE Transactions on Automatic Control – start-page: 1260 year: 2020 end-page: 1267 ident: bib0003 article-title: Robust constraint satisfaction in data-driven MPC publication-title: 2020 59th IEEE Conference on Decision and Control (CDC) – start-page: 307 year: 2019 end-page: 312 ident: bib0009 article-title: Data-enabled predictive control: In the shallows of the DeePC publication-title: 2019 18th European Control Conference (ECC) – volume: 81 start-page: 176 year: 2017 end-page: 183 ident: bib0019 article-title: Stochastic MPC with ofine uncertainty sampling publication-title: Automatica – start-page: 1365 year: 2020 end-page: 1370 ident: bib0002 article-title: A trajectory-based framework for data-driven system analysis and control publication-title: 2020 European Control Conference (ECC) – year: 2023 ident: bib0016 article-title: Data-driven tube-based stochastic predictive control publication-title: arXiv preprint – volume: 31 start-page: 8916 year: 2021 end-page: 8936 ident: bib0012 article-title: Data-enabled predictive control for quadcopters publication-title: International Journal of Robust and Nonlinear Control – start-page: 1 year: 2021 ident: bib0026 article-title: Probabilistic model predictive safety certification for learning-based control publication-title: IEEE Transactions on Automatic Control – volume: 50 start-page: 2967 year: 2014 end-page: 2986 ident: bib0021 article-title: Model predictive control: Recent developments and future promise publication-title: Automatica – volume: 36 start-page: 30 year: 2016 end-page: 44 ident: bib0022 article-title: Stochastic model predictive control: An overview and perspectives for future research publication-title: IEEE Control Systems Magazine – volume: 34 start-page: 1325 year: 2019 end-page: 1341 ident: bib0015 article-title: Stochastic receding horizon control of active distribution networks with distributed renewables publication-title: IEEE Transactions on Power Systems – start-page: 502 year: 2013 end-page: 510 ident: bib0014 article-title: Multi-Parametric Toolbox 3.0 publication-title: Proc. of the European Control Conference – volume: 65 start-page: 909 year: 2019 end-page: 924 ident: bib0011 article-title: Formulas for data-driven control: Stabilization, optimality, and robustness publication-title: IEEE Transactions on Automatic Control – year: 2022 ident: bib0023 article-title: On a stochastic fundamental lemma and its use for data-driven optimal control publication-title: IEEE Transactions on Automatic Control – year: 2015 ident: bib0006 article-title: Set-theoretic methods in control – volume: 50 start-page: 3009 year: 2014 end-page: 3018 ident: bib0024 article-title: The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations publication-title: Automatica – volume: 62 start-page: 3165 year: 2016 end-page: 3177 ident: bib0018 article-title: Constraint-tightening and stability in stochastic model predictive control publication-title: IEEE Transactions on Automatic Control – year: 2021 ident: bib0020 article-title: Behavioral systems theory in data-driven analysis, signal processing, and control publication-title: Annual Reviews in Control – volume: 69 start-page: 608 year: 2021 end-page: 618 ident: bib0004 article-title: Data-driven model predictive control: closed-loop guarantees and experimental results publication-title: at - Automatisierungstechnik – volume: 29 start-page: 5058 year: 2019 end-page: 5077 ident: bib0013 article-title: Dynamic option hedging with transaction costs: A stochastic model predictive control approach publication-title: International Journal of Robust and Nonlinear Control – volume: 54 start-page: 2545 year: 2009 end-page: 2559 ident: bib0001 article-title: Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems publication-title: IEEE Transactions on Automatic Control – start-page: 207 year: 2015 end-page: 243 ident: bib0017 article-title: A guide to sample average approximation publication-title: Handbook of simulation optimization – volume: 31 start-page: 6740 year: 2021 end-page: 6772 ident: bib0007 article-title: Minimization of constraint violation probability in model predictive control publication-title: International Journal of Robust and Nonlinear Control – volume: 50 start-page: 3009 issue: 12 year: 2014 ident: 10.1016/j.ifacol.2023.10.1641_bib0024 article-title: The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations publication-title: Automatica doi: 10.1016/j.automatica.2014.10.035 – start-page: 1365 year: 2020 ident: 10.1016/j.ifacol.2023.10.1641_bib0002 article-title: A trajectory-based framework for data-driven system analysis and control – start-page: 502 year: 2013 ident: 10.1016/j.ifacol.2023.10.1641_bib0014 article-title: Multi-Parametric Toolbox 3.0 – start-page: 1 year: 2021 ident: 10.1016/j.ifacol.2023.10.1641_bib0026 article-title: Probabilistic model predictive safety certification for learning-based control publication-title: IEEE Transactions on Automatic Control – volume: 65 start-page: 909 issue: 3 year: 2019 ident: 10.1016/j.ifacol.2023.10.1641_bib0011 article-title: Formulas for data-driven control: Stabilization, optimality, and robustness publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2019.2959924 – volume: 65 start-page: 4753 issue: 11 year: 2020 ident: 10.1016/j.ifacol.2023.10.1641_bib0025 article-title: Data informativity: A new perspective on data-driven analysis and control publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2020.2966717 – year: 2023 ident: 10.1016/j.ifacol.2023.10.1641_bib0016 article-title: Data-driven tube-based stochastic predictive control publication-title: arXiv preprint – year: 2021 ident: 10.1016/j.ifacol.2023.10.1641_bib0020 article-title: Behavioral systems theory in data-driven analysis, signal processing, and control publication-title: Annual Reviews in Control doi: 10.1016/j.arcontrol.2021.09.005 – volume: 29 start-page: 5058 issue: 15 year: 2019 ident: 10.1016/j.ifacol.2023.10.1641_bib0013 article-title: Dynamic option hedging with transaction costs: A stochastic model predictive control approach publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.3915 – start-page: 207 year: 2015 ident: 10.1016/j.ifacol.2023.10.1641_bib0017 article-title: A guide to sample average approximation publication-title: Handbook of simulation optimization doi: 10.1007/978-1-4939-1384-8_8 – volume: 34 start-page: 1325 issue: 2 year: 2019 ident: 10.1016/j.ifacol.2023.10.1641_bib0015 article-title: Stochastic receding horizon control of active distribution networks with distributed renewables publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2018.2879451 – volume: 50 start-page: 2967 issue: 12 year: 2014 ident: 10.1016/j.ifacol.2023.10.1641_bib0021 article-title: Model predictive control: Recent developments and future promise publication-title: Automatica doi: 10.1016/j.automatica.2014.10.128 – volume: 66 start-page: 1702 issue: 4 year: 2021 ident: 10.1016/j.ifacol.2023.10.1641_bib0005 article-title: Data-driven model predictive control with stability and robustness guarantees publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2020.3000182 – volume: 81 start-page: 176 year: 2017 ident: 10.1016/j.ifacol.2023.10.1641_bib0019 article-title: Stochastic MPC with ofine uncertainty sampling publication-title: Automatica doi: 10.1016/j.automatica.2017.03.031 – year: 2021 ident: 10.1016/j.ifacol.2023.10.1641_bib0010 article-title: Distributionally robust chance constrained data-enabled predictive control publication-title: IEEE Transactions on Automatic Control – volume: 54 start-page: 325 issue: 4 year: 2005 ident: 10.1016/j.ifacol.2023.10.1641_bib0027 article-title: A note on persistency of excitation publication-title: Systems & Control Letters doi: 10.1016/j.sysconle.2004.09.003 – volume: 69 start-page: 608 issue: 7 year: 2021 ident: 10.1016/j.ifacol.2023.10.1641_bib0004 article-title: Data-driven model predictive control: closed-loop guarantees and experimental results publication-title: at - Automatisierungstechnik doi: 10.1515/auto-2021-0024 – start-page: 1260 year: 2020 ident: 10.1016/j.ifacol.2023.10.1641_bib0003 article-title: Robust constraint satisfaction in data-driven MPC – start-page: 1 year: 2021 ident: 10.1016/j.ifacol.2023.10.1641_bib0008 article-title: Stochastic model predictive control with a safety guarantee for automated driving publication-title: IEEE Transactions on Intelligent Vehicles – volume: 36 start-page: 30 issue: 6 year: 2016 ident: 10.1016/j.ifacol.2023.10.1641_bib0022 article-title: Stochastic model predictive control: An overview and perspectives for future research publication-title: IEEE Control Systems Magazine doi: 10.1109/MCS.2016.2602087 – volume: 62 start-page: 3165 issue: 7 year: 2016 ident: 10.1016/j.ifacol.2023.10.1641_bib0018 article-title: Constraint-tightening and stability in stochastic model predictive control publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2625048 – start-page: 307 year: 2019 ident: 10.1016/j.ifacol.2023.10.1641_bib0009 article-title: Data-enabled predictive control: In the shallows of the DeePC – volume: 31 start-page: 8916 issue: 18 year: 2021 ident: 10.1016/j.ifacol.2023.10.1641_bib0012 article-title: Data-enabled predictive control for quadcopters publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.5686 – year: 2022 ident: 10.1016/j.ifacol.2023.10.1641_bib0023 article-title: On a stochastic fundamental lemma and its use for data-driven optimal control publication-title: IEEE Transactions on Automatic Control – volume: 31 start-page: 6740 issue: 14 year: 2021 ident: 10.1016/j.ifacol.2023.10.1641_bib0007 article-title: Minimization of constraint violation probability in model predictive control publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.5636 – year: 2015 ident: 10.1016/j.ifacol.2023.10.1641_bib0006 – volume: 54 start-page: 2545 issue: 11 year: 2009 ident: 10.1016/j.ifacol.2023.10.1641_bib0001 article-title: Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2009.2031207 |
SSID | ssj0002964798 |
Score | 1.9082842 |
Snippet | In this work, we exploit an offline-sampling based strategy for the constrained data-driven predictive control of an unknown linear system subject to random... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 650 |
SubjectTerms | Constrained control Data-based control Data-driven optimal control Linear systems Predictive control Stochastic optimal control problems Uncertain systems |
Title | Offline Uncertainty Sampling in Data-driven Stochastic MPC |
URI | https://dx.doi.org/10.1016/j.ifacol.2023.10.1641 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUquHBBIEDsyoEbcijZza0UKrbSIlqJW-R4gXIIqKQc-HrGS5MAFaJcoshKnGWexs8znmeEDoB0CiAaEYbRmuJAcoITnnF8zDMGkPHhXIUGurfRxTC4eggfGo332qqlSZG57GNmXcl_rAptYFdVJTuHZctOoQHOwb5wBAvD8U827kmpWeIQLKcz-8Co76laI24KVc5oQTEfK4emVLfZE1WqzIfdfrvOSS87rTbu01cggr38ppZnH4hJ8Wa2irp6eaLgkavMjxjryPO9yKh2EtW0XqXeT9t89GigBmAoHT9gTilBaj83sjVCNuLg-bWIg3ZMQAJCnBDrmMSMNutZjWS4RZBXc5OREZu1I25krvvhzE1c4dkdSaXg7apXcVV7ZKSyvopnfxvUyqWG01Vsz6npJlXdpKo1UnoHi14c6_T-9V1SxuZUKjrW2yiXn1UVfx3NfKHZtKZGVQYraNnOMZyWAcwqaoh8DZ1YsDg1sDhTsDij3KmBxanA4gBY1tGwcz5oX2C7cQZmfjMoMJWCkjjMaMA8GfKmL4EEK6W9QMYMSBsVHhB1H7ghzLaDkHtJJFlCRJMLQlgS-BtoIX_JxSZyjonMMkY8HgggzoyTWCae3XdUApfeQu70u9NXo4-S_vrLt1Ay_TupJXmGvKVg9t9v3Z73WTtoqcLvLlooxhOxBxyyyPa1wT8BXRRtEA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Offline+Uncertainty+Sampling+in+Data-driven+Stochastic+MPC&rft.jtitle=IFAC-PapersOnLine&rft.au=Teutsch%2C+Johannes&rft.au=Kerz%2C+Sebastian&rft.au=Br%C3%BCdigam%2C+Tim&rft.au=Wollherr%2C+Dirk&rft.date=2023-01-01&rft.issn=2405-8963&rft.eissn=2405-8963&rft.volume=56&rft.issue=2&rft.spage=650&rft.epage=656&rft_id=info:doi/10.1016%2Fj.ifacol.2023.10.1641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ifacol_2023_10_1641 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8963&client=summon |