Offline Uncertainty Sampling in Data-driven Stochastic MPC

In this work, we exploit an offline-sampling based strategy for the constrained data-driven predictive control of an unknown linear system subject to random measurement noise. The strategy uses only past measured, potentially noisy data in a non-parametric system representation and does not require...

Full description

Saved in:
Bibliographic Details
Published inIFAC-PapersOnLine Vol. 56; no. 2; pp. 650 - 656
Main Authors Teutsch, Johannes, Kerz, Sebastian, Brüdigam, Tim, Wollherr, Dirk, Leibold, Marion
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text
ISSN2405-8963
2405-8963
DOI10.1016/j.ifacol.2023.10.1641

Cover

Abstract In this work, we exploit an offline-sampling based strategy for the constrained data-driven predictive control of an unknown linear system subject to random measurement noise. The strategy uses only past measured, potentially noisy data in a non-parametric system representation and does not require any prior model identification. The approximation of chance constraints using uncertainty sampling leads to efficient constraint tightening. Under mild assumptions, robust recursive feasibility and closed-loop constraint satisfaction is shown. In a simulation example, we provide evidence for the improved control performance of the proposed control scheme in comparison to a purely robust data-driven predictive control approach.
AbstractList In this work, we exploit an offline-sampling based strategy for the constrained data-driven predictive control of an unknown linear system subject to random measurement noise. The strategy uses only past measured, potentially noisy data in a non-parametric system representation and does not require any prior model identification. The approximation of chance constraints using uncertainty sampling leads to efficient constraint tightening. Under mild assumptions, robust recursive feasibility and closed-loop constraint satisfaction is shown. In a simulation example, we provide evidence for the improved control performance of the proposed control scheme in comparison to a purely robust data-driven predictive control approach.
Author Wollherr, Dirk
Teutsch, Johannes
Leibold, Marion
Brüdigam, Tim
Kerz, Sebastian
Author_xml – sequence: 1
  givenname: Johannes
  surname: Teutsch
  fullname: Teutsch, Johannes
  email: johannes.teutsch@tum.de
  organization: Technical University of Munich, Department of Computer Engineering, Chair of Automatic Control Engineering (LSR), Theresienstraße 90, 80333 Munich, Germany
– sequence: 2
  givenname: Sebastian
  surname: Kerz
  fullname: Kerz, Sebastian
  email: s.kerz@tum.de
  organization: Technical University of Munich, Department of Computer Engineering, Chair of Automatic Control Engineering (LSR), Theresienstraße 90, 80333 Munich, Germany
– sequence: 3
  givenname: Tim
  surname: Brüdigam
  fullname: Brüdigam, Tim
  email: tim.bruedigam@tum.de
  organization: Technical University of Munich, Department of Computer Engineering, Chair of Automatic Control Engineering (LSR), Theresienstraße 90, 80333 Munich, Germany
– sequence: 4
  givenname: Dirk
  surname: Wollherr
  fullname: Wollherr, Dirk
  email: dw@tum.de
  organization: Technical University of Munich, Department of Computer Engineering, Chair of Automatic Control Engineering (LSR), Theresienstraße 90, 80333 Munich, Germany
– sequence: 5
  givenname: Marion
  surname: Leibold
  fullname: Leibold, Marion
  email: marion.leibold@tum.de
  organization: Technical University of Munich, Department of Computer Engineering, Chair of Automatic Control Engineering (LSR), Theresienstraße 90, 80333 Munich, Germany
BookMark eNqFkN1KAzEQRoNUsGofQdgX2DU7SXYTb0TqL1Qq1F6HmJ1oSpstSSj07d1aL7zzaoYD38fMOSej0Ack5KqmVU3r5npVeWdsv66AAqsOtOH1CRkDp6KUqmGjP_sZmaS0opSCanir5JjczJ1b-4DFMliM2fiQ98XCbLYD_Cx8KO5NNmUX_Q5Dsci9_TIpe1u8vk0vyakz64ST33lBlo8P79PncjZ_epnezUrLKM-lcWhUKz4Mt-BER5lToAS0jLvWUgCDIDhlEkAqxUUHsnFWKqQdKmUlZxdEHHtt7FOK6PQ2-o2Je11TfXCgV_roQB8c_NDBwZC7PeZwOG7nMepkPQ5vdj6izbrr_T8N3xkHZ5E
Cites_doi 10.1016/j.automatica.2014.10.035
10.1109/TAC.2019.2959924
10.1109/TAC.2020.2966717
10.1016/j.arcontrol.2021.09.005
10.1002/rnc.3915
10.1007/978-1-4939-1384-8_8
10.1109/TPWRS.2018.2879451
10.1016/j.automatica.2014.10.128
10.1109/TAC.2020.3000182
10.1016/j.automatica.2017.03.031
10.1016/j.sysconle.2004.09.003
10.1515/auto-2021-0024
10.1109/MCS.2016.2602087
10.1109/TAC.2016.2625048
10.1002/rnc.5686
10.1002/rnc.5636
10.1109/TAC.2009.2031207
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ifacol.2023.10.1641
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2405-8963
EndPage 656
ExternalDocumentID 10_1016_j_ifacol_2023_10_1641
S2405896323020505
GroupedDBID 0R~
0SF
457
6I.
AAFTH
AAJQP
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ATDSJ
EBS
EJD
FDB
HX~
KQ8
O9-
ROL
AAYWO
AAYXX
CITATION
ID FETCH-LOGICAL-c304t-afea975ba4c2f5d03f92952734f7c022ae2540382289945d286fc89e0de99c843
ISSN 2405-8963
IngestDate Tue Jul 01 03:01:01 EDT 2025
Sat Oct 26 15:44:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Keywords Linear systems
Uncertain systems
Data-driven optimal control
Data-based control
Constrained control
Stochastic optimal control problems
Predictive control
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c304t-afea975ba4c2f5d03f92952734f7c022ae2540382289945d286fc89e0de99c843
OpenAccessLink https://dx.doi.org/10.1016/j.ifacol.2023.10.1641
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_ifacol_2023_10_1641
elsevier_sciencedirect_doi_10_1016_j_ifacol_2023_10_1641
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IFAC-PapersOnLine
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Willems, Rapisarda, Markovsky, De Moor (bib0027) 2005; 54
Brüdigam, Olbrich, Wollherr, Leibold (bib0008) 2021
De Persis, Tesi (bib0011) 2019; 65
Brüdigam, Gaßmann, Wollherr, Leibold (bib0007) 2021; 31
Kim, Pasupathy, Henderson (bib0017) 2015
Mesbah (bib0022) 2016; 36
Alamo, Tempo, Camacho (bib0001) 2009; 54
Wabersich, Hewing, Carron, Zeilinger (bib0026) 2021
Markovsky, Dörfler (bib0020) 2021
Berberich, Köhler, Müller, Allgöwer (bib0004) 2021; 69
Herceg, Kvasnica, Jones, Morari (bib0014) 2013
Lorenzen, Dabbene, Tempo, Allgöwer (bib0019) 2017; 81
Pan, Ou, Faulwasser (bib0023) 2022
Berberich, Köhler, Müller, Allgöwer (bib0003) 2020
Graf Plessen, Puglia, Gabbriellini, Bemporad (bib0013) 2019; 29
Elokda, Coulson, Beuchat, Lygeros, Dörfler (bib0012) 2021; 31
Mayne (bib0021) 2014; 50
Coulson, Lygeros, Dorfler (bib0010) 2021
Schildbach, Fagiano, Frei, Morari (bib0024) 2014; 50
Blanchini, Miani (bib0006) 2015
Berberich, Köhler, Müller, Allgöwer (bib0005) 2021; 66
Lorenzen, Dabbene, Tempo, Allgöwer (bib0018) 2016; 62
Coulson, Lygeros, Dörfler (bib0009) 2019
Kerz, Teutsch, Brüdigam, Wollherr, Leibold (bib0016) 2023
Berberich, Allgöwer (bib0002) 2020
van Waarde, Eising, Trentelman (bib0025) 2020; 65
Jiang, Wan, Wang, Song, Dong (bib0015) 2019; 34
Willems (10.1016/j.ifacol.2023.10.1641_bib0027) 2005; 54
Jiang (10.1016/j.ifacol.2023.10.1641_bib0015) 2019; 34
Mayne (10.1016/j.ifacol.2023.10.1641_bib0021) 2014; 50
Pan (10.1016/j.ifacol.2023.10.1641_bib0023) 2022
Blanchini (10.1016/j.ifacol.2023.10.1641_bib0006) 2015
Mesbah (10.1016/j.ifacol.2023.10.1641_bib0022) 2016; 36
Berberich (10.1016/j.ifacol.2023.10.1641_bib0005) 2021; 66
De Persis (10.1016/j.ifacol.2023.10.1641_bib0011) 2019; 65
Coulson (10.1016/j.ifacol.2023.10.1641_bib0010) 2021
Herceg (10.1016/j.ifacol.2023.10.1641_bib0014) 2013
Graf Plessen (10.1016/j.ifacol.2023.10.1641_bib0013) 2019; 29
Lorenzen (10.1016/j.ifacol.2023.10.1641_bib0018) 2016; 62
Markovsky (10.1016/j.ifacol.2023.10.1641_bib0020) 2021
Schildbach (10.1016/j.ifacol.2023.10.1641_bib0024) 2014; 50
Berberich (10.1016/j.ifacol.2023.10.1641_bib0004) 2021; 69
Wabersich (10.1016/j.ifacol.2023.10.1641_bib0026) 2021
Alamo (10.1016/j.ifacol.2023.10.1641_bib0001) 2009; 54
Berberich (10.1016/j.ifacol.2023.10.1641_bib0003) 2020
Lorenzen (10.1016/j.ifacol.2023.10.1641_bib0019) 2017; 81
Berberich (10.1016/j.ifacol.2023.10.1641_bib0002) 2020
Coulson (10.1016/j.ifacol.2023.10.1641_bib0009) 2019
Elokda (10.1016/j.ifacol.2023.10.1641_bib0012) 2021; 31
van Waarde (10.1016/j.ifacol.2023.10.1641_bib0025) 2020; 65
Brüdigam (10.1016/j.ifacol.2023.10.1641_bib0008) 2021
Kim (10.1016/j.ifacol.2023.10.1641_bib0017) 2015
Brüdigam (10.1016/j.ifacol.2023.10.1641_bib0007) 2021; 31
Kerz (10.1016/j.ifacol.2023.10.1641_bib0016) 2023
References_xml – volume: 66
  start-page: 1702
  year: 2021
  end-page: 1717
  ident: bib0005
  article-title: Data-driven model predictive control with stability and robustness guarantees
  publication-title: IEEE Transactions on Automatic Control
– year: 2021
  ident: bib0010
  article-title: Distributionally robust chance constrained data-enabled predictive control
  publication-title: IEEE Transactions on Automatic Control
– start-page: 1
  year: 2021
  ident: bib0008
  article-title: Stochastic model predictive control with a safety guarantee for automated driving
  publication-title: IEEE Transactions on Intelligent Vehicles
– volume: 54
  start-page: 325
  year: 2005
  end-page: 329
  ident: bib0027
  article-title: A note on persistency of excitation
  publication-title: Systems & Control Letters
– volume: 65
  start-page: 4753
  year: 2020
  end-page: 4768
  ident: bib0025
  article-title: Data informativity: A new perspective on data-driven analysis and control
  publication-title: IEEE Transactions on Automatic Control
– start-page: 1260
  year: 2020
  end-page: 1267
  ident: bib0003
  article-title: Robust constraint satisfaction in data-driven MPC
  publication-title: 2020 59th IEEE Conference on Decision and Control (CDC)
– start-page: 307
  year: 2019
  end-page: 312
  ident: bib0009
  article-title: Data-enabled predictive control: In the shallows of the DeePC
  publication-title: 2019 18th European Control Conference (ECC)
– volume: 81
  start-page: 176
  year: 2017
  end-page: 183
  ident: bib0019
  article-title: Stochastic MPC with ofine uncertainty sampling
  publication-title: Automatica
– start-page: 1365
  year: 2020
  end-page: 1370
  ident: bib0002
  article-title: A trajectory-based framework for data-driven system analysis and control
  publication-title: 2020 European Control Conference (ECC)
– year: 2023
  ident: bib0016
  article-title: Data-driven tube-based stochastic predictive control
  publication-title: arXiv preprint
– volume: 31
  start-page: 8916
  year: 2021
  end-page: 8936
  ident: bib0012
  article-title: Data-enabled predictive control for quadcopters
  publication-title: International Journal of Robust and Nonlinear Control
– start-page: 1
  year: 2021
  ident: bib0026
  article-title: Probabilistic model predictive safety certification for learning-based control
  publication-title: IEEE Transactions on Automatic Control
– volume: 50
  start-page: 2967
  year: 2014
  end-page: 2986
  ident: bib0021
  article-title: Model predictive control: Recent developments and future promise
  publication-title: Automatica
– volume: 36
  start-page: 30
  year: 2016
  end-page: 44
  ident: bib0022
  article-title: Stochastic model predictive control: An overview and perspectives for future research
  publication-title: IEEE Control Systems Magazine
– volume: 34
  start-page: 1325
  year: 2019
  end-page: 1341
  ident: bib0015
  article-title: Stochastic receding horizon control of active distribution networks with distributed renewables
  publication-title: IEEE Transactions on Power Systems
– start-page: 502
  year: 2013
  end-page: 510
  ident: bib0014
  article-title: Multi-Parametric Toolbox 3.0
  publication-title: Proc. of the European Control Conference
– volume: 65
  start-page: 909
  year: 2019
  end-page: 924
  ident: bib0011
  article-title: Formulas for data-driven control: Stabilization, optimality, and robustness
  publication-title: IEEE Transactions on Automatic Control
– year: 2022
  ident: bib0023
  article-title: On a stochastic fundamental lemma and its use for data-driven optimal control
  publication-title: IEEE Transactions on Automatic Control
– year: 2015
  ident: bib0006
  article-title: Set-theoretic methods in control
– volume: 50
  start-page: 3009
  year: 2014
  end-page: 3018
  ident: bib0024
  article-title: The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations
  publication-title: Automatica
– volume: 62
  start-page: 3165
  year: 2016
  end-page: 3177
  ident: bib0018
  article-title: Constraint-tightening and stability in stochastic model predictive control
  publication-title: IEEE Transactions on Automatic Control
– year: 2021
  ident: bib0020
  article-title: Behavioral systems theory in data-driven analysis, signal processing, and control
  publication-title: Annual Reviews in Control
– volume: 69
  start-page: 608
  year: 2021
  end-page: 618
  ident: bib0004
  article-title: Data-driven model predictive control: closed-loop guarantees and experimental results
  publication-title: at - Automatisierungstechnik
– volume: 29
  start-page: 5058
  year: 2019
  end-page: 5077
  ident: bib0013
  article-title: Dynamic option hedging with transaction costs: A stochastic model predictive control approach
  publication-title: International Journal of Robust and Nonlinear Control
– volume: 54
  start-page: 2545
  year: 2009
  end-page: 2559
  ident: bib0001
  article-title: Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems
  publication-title: IEEE Transactions on Automatic Control
– start-page: 207
  year: 2015
  end-page: 243
  ident: bib0017
  article-title: A guide to sample average approximation
  publication-title: Handbook of simulation optimization
– volume: 31
  start-page: 6740
  year: 2021
  end-page: 6772
  ident: bib0007
  article-title: Minimization of constraint violation probability in model predictive control
  publication-title: International Journal of Robust and Nonlinear Control
– volume: 50
  start-page: 3009
  issue: 12
  year: 2014
  ident: 10.1016/j.ifacol.2023.10.1641_bib0024
  article-title: The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.10.035
– start-page: 1365
  year: 2020
  ident: 10.1016/j.ifacol.2023.10.1641_bib0002
  article-title: A trajectory-based framework for data-driven system analysis and control
– start-page: 502
  year: 2013
  ident: 10.1016/j.ifacol.2023.10.1641_bib0014
  article-title: Multi-Parametric Toolbox 3.0
– start-page: 1
  year: 2021
  ident: 10.1016/j.ifacol.2023.10.1641_bib0026
  article-title: Probabilistic model predictive safety certification for learning-based control
  publication-title: IEEE Transactions on Automatic Control
– volume: 65
  start-page: 909
  issue: 3
  year: 2019
  ident: 10.1016/j.ifacol.2023.10.1641_bib0011
  article-title: Formulas for data-driven control: Stabilization, optimality, and robustness
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2019.2959924
– volume: 65
  start-page: 4753
  issue: 11
  year: 2020
  ident: 10.1016/j.ifacol.2023.10.1641_bib0025
  article-title: Data informativity: A new perspective on data-driven analysis and control
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2020.2966717
– year: 2023
  ident: 10.1016/j.ifacol.2023.10.1641_bib0016
  article-title: Data-driven tube-based stochastic predictive control
  publication-title: arXiv preprint
– year: 2021
  ident: 10.1016/j.ifacol.2023.10.1641_bib0020
  article-title: Behavioral systems theory in data-driven analysis, signal processing, and control
  publication-title: Annual Reviews in Control
  doi: 10.1016/j.arcontrol.2021.09.005
– volume: 29
  start-page: 5058
  issue: 15
  year: 2019
  ident: 10.1016/j.ifacol.2023.10.1641_bib0013
  article-title: Dynamic option hedging with transaction costs: A stochastic model predictive control approach
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.3915
– start-page: 207
  year: 2015
  ident: 10.1016/j.ifacol.2023.10.1641_bib0017
  article-title: A guide to sample average approximation
  publication-title: Handbook of simulation optimization
  doi: 10.1007/978-1-4939-1384-8_8
– volume: 34
  start-page: 1325
  issue: 2
  year: 2019
  ident: 10.1016/j.ifacol.2023.10.1641_bib0015
  article-title: Stochastic receding horizon control of active distribution networks with distributed renewables
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2018.2879451
– volume: 50
  start-page: 2967
  issue: 12
  year: 2014
  ident: 10.1016/j.ifacol.2023.10.1641_bib0021
  article-title: Model predictive control: Recent developments and future promise
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.10.128
– volume: 66
  start-page: 1702
  issue: 4
  year: 2021
  ident: 10.1016/j.ifacol.2023.10.1641_bib0005
  article-title: Data-driven model predictive control with stability and robustness guarantees
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2020.3000182
– volume: 81
  start-page: 176
  year: 2017
  ident: 10.1016/j.ifacol.2023.10.1641_bib0019
  article-title: Stochastic MPC with ofine uncertainty sampling
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.03.031
– year: 2021
  ident: 10.1016/j.ifacol.2023.10.1641_bib0010
  article-title: Distributionally robust chance constrained data-enabled predictive control
  publication-title: IEEE Transactions on Automatic Control
– volume: 54
  start-page: 325
  issue: 4
  year: 2005
  ident: 10.1016/j.ifacol.2023.10.1641_bib0027
  article-title: A note on persistency of excitation
  publication-title: Systems & Control Letters
  doi: 10.1016/j.sysconle.2004.09.003
– volume: 69
  start-page: 608
  issue: 7
  year: 2021
  ident: 10.1016/j.ifacol.2023.10.1641_bib0004
  article-title: Data-driven model predictive control: closed-loop guarantees and experimental results
  publication-title: at - Automatisierungstechnik
  doi: 10.1515/auto-2021-0024
– start-page: 1260
  year: 2020
  ident: 10.1016/j.ifacol.2023.10.1641_bib0003
  article-title: Robust constraint satisfaction in data-driven MPC
– start-page: 1
  year: 2021
  ident: 10.1016/j.ifacol.2023.10.1641_bib0008
  article-title: Stochastic model predictive control with a safety guarantee for automated driving
  publication-title: IEEE Transactions on Intelligent Vehicles
– volume: 36
  start-page: 30
  issue: 6
  year: 2016
  ident: 10.1016/j.ifacol.2023.10.1641_bib0022
  article-title: Stochastic model predictive control: An overview and perspectives for future research
  publication-title: IEEE Control Systems Magazine
  doi: 10.1109/MCS.2016.2602087
– volume: 62
  start-page: 3165
  issue: 7
  year: 2016
  ident: 10.1016/j.ifacol.2023.10.1641_bib0018
  article-title: Constraint-tightening and stability in stochastic model predictive control
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2016.2625048
– start-page: 307
  year: 2019
  ident: 10.1016/j.ifacol.2023.10.1641_bib0009
  article-title: Data-enabled predictive control: In the shallows of the DeePC
– volume: 31
  start-page: 8916
  issue: 18
  year: 2021
  ident: 10.1016/j.ifacol.2023.10.1641_bib0012
  article-title: Data-enabled predictive control for quadcopters
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.5686
– year: 2022
  ident: 10.1016/j.ifacol.2023.10.1641_bib0023
  article-title: On a stochastic fundamental lemma and its use for data-driven optimal control
  publication-title: IEEE Transactions on Automatic Control
– volume: 31
  start-page: 6740
  issue: 14
  year: 2021
  ident: 10.1016/j.ifacol.2023.10.1641_bib0007
  article-title: Minimization of constraint violation probability in model predictive control
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.5636
– year: 2015
  ident: 10.1016/j.ifacol.2023.10.1641_bib0006
– volume: 54
  start-page: 2545
  issue: 11
  year: 2009
  ident: 10.1016/j.ifacol.2023.10.1641_bib0001
  article-title: Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2009.2031207
SSID ssj0002964798
Score 1.9082842
Snippet In this work, we exploit an offline-sampling based strategy for the constrained data-driven predictive control of an unknown linear system subject to random...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 650
SubjectTerms Constrained control
Data-based control
Data-driven optimal control
Linear systems
Predictive control
Stochastic optimal control problems
Uncertain systems
Title Offline Uncertainty Sampling in Data-driven Stochastic MPC
URI https://dx.doi.org/10.1016/j.ifacol.2023.10.1641
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUquHBBIEDsyoEbcijZza0UKrbSIlqJW-R4gXIIqKQc-HrGS5MAFaJcoshKnGWexs8znmeEDoB0CiAaEYbRmuJAcoITnnF8zDMGkPHhXIUGurfRxTC4eggfGo332qqlSZG57GNmXcl_rAptYFdVJTuHZctOoQHOwb5wBAvD8U827kmpWeIQLKcz-8Co76laI24KVc5oQTEfK4emVLfZE1WqzIfdfrvOSS87rTbu01cggr38ppZnH4hJ8Wa2irp6eaLgkavMjxjryPO9yKh2EtW0XqXeT9t89GigBmAoHT9gTilBaj83sjVCNuLg-bWIg3ZMQAJCnBDrmMSMNutZjWS4RZBXc5OREZu1I25krvvhzE1c4dkdSaXg7apXcVV7ZKSyvopnfxvUyqWG01Vsz6npJlXdpKo1UnoHi14c6_T-9V1SxuZUKjrW2yiXn1UVfx3NfKHZtKZGVQYraNnOMZyWAcwqaoh8DZ1YsDg1sDhTsDij3KmBxanA4gBY1tGwcz5oX2C7cQZmfjMoMJWCkjjMaMA8GfKmL4EEK6W9QMYMSBsVHhB1H7ghzLaDkHtJJFlCRJMLQlgS-BtoIX_JxSZyjonMMkY8HgggzoyTWCae3XdUApfeQu70u9NXo4-S_vrLt1Ay_TupJXmGvKVg9t9v3Z73WTtoqcLvLlooxhOxBxyyyPa1wT8BXRRtEA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Offline+Uncertainty+Sampling+in+Data-driven+Stochastic+MPC&rft.jtitle=IFAC-PapersOnLine&rft.au=Teutsch%2C+Johannes&rft.au=Kerz%2C+Sebastian&rft.au=Br%C3%BCdigam%2C+Tim&rft.au=Wollherr%2C+Dirk&rft.date=2023-01-01&rft.issn=2405-8963&rft.eissn=2405-8963&rft.volume=56&rft.issue=2&rft.spage=650&rft.epage=656&rft_id=info:doi/10.1016%2Fj.ifacol.2023.10.1641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ifacol_2023_10_1641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8963&client=summon