Orientation-based face recognition using multispectral imagery and score fusion

A new orientation-based face recognition method is proposed in this paper. The orientation analysis is performed with Gabor wavelet transform (GWT). The multispectral imagery includes the visible (RGB) and thermal (long-wave infrared) face images from the same group of subjects. The recognition perf...

Full description

Saved in:
Bibliographic Details
Published inOptical Engineering Vol. 50; no. 11; p. 117202
Main Author Zheng, Yufeng
Format Journal Article
LanguageEnglish
Published 01.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new orientation-based face recognition method is proposed in this paper. The orientation analysis is performed with Gabor wavelet transform (GWT). The multispectral imagery includes the visible (RGB) and thermal (long-wave infrared) face images from the same group of subjects. The recognition performance of the new method is compared with that of three classical algorithms, principle component analysis, linear discriminant analysis, and elastic bunch graph matching. A score-level fusion of several algorithms versus multispectral images is explored and presented. Specifically, at each frequency band of GWT, an index number representing the strongest orientational response is selected, and then encoded in a binary number to favor the Hamming distance calculation. Multiple-band orientation codes are then organized into a face pattern byte (FPB) by using order statistics. With the FPB, Hamming distances are calculated and compared to achieve face identification. The FPB has the dimensionality of 8 bits per pixel and its performance will be compared to that of face pattern word (32 bits per pixel). The dimensionality of FPB can be further reduced down to 4 bits per pixel, called face pattern nibble. Experimental results with the multispectral faces of 96 subjects show that the proposed orientation-based face recognition method is very promising in contrast with three classical methods. Furthermore, the recognition performance with score-level fusion achieves 100% when tested on the entire multispectral database.
AbstractList A new orientation-based face recognition method is proposed in this paper. The orientation analysis is performed with Gabor wavelet transform (GWT). The multispectral imagery includes the visible (RGB) and thermal (long-wave infrared) face images from the same group of subjects. The recognition performance of the new method is compared with that of three classical algorithms, principle component analysis, linear discriminant analysis, and elastic bunch graph matching. A score-level fusion of several algorithms versus multispectral images is explored and presented. Specifically, at each frequency band of GWT, an index number representing the strongest orientational response is selected, and then encoded in a binary number to favor the Hamming distance calculation. Multiple-band orientation codes are then organized into a face pattern byte (FPB) by using order statistics. With the FPB, Hamming distances are calculated and compared to achieve face identification. The FPB has the dimensionality of 8 bits per pixel and its performance will be compared to that of face pattern word (32 bits per pixel). The dimensionality of FPB can be further reduced down to 4 bits per pixel, called face pattern nibble. Experimental results with the multispectral faces of 96 subjects show that the proposed orientation-based face recognition method is very promising in contrast with three classical methods. Furthermore, the recognition performance with score-level fusion achieves 100% when tested on the entire multispectral database.
Author Zheng, Yufeng
Author_xml – sequence: 1
  givenname: Yufeng
  surname: Zheng
  fullname: Zheng, Yufeng
  organization: Alcorn State Univ. (United States)
BookMark eNptkMFLwzAUxoNMcJse_A96Ew91L0mTJscx5hQGE9FzydLXEenSmnSH_fe2dHgQL-_xPn7fg--bkYlvPBJyT-GJUpov6BOXGc-ZviJTKiSkjAOfkCmApilnSt6QWYxfAMC0UlOy2wWHvjOda3y6NxHLpDIWk4C2OXg3yMkpOn9Ijqe6c7FF2wVTJ-5oDhjOifFlEm0TMKl6rPG35LoydcS7y56Tz-f1x-ol3e42r6vlNrUcsi7VsgJpQAkmpOVKlQrAskqUTANWBkptrDRGalRqD6yESu9FZiSUpWaAGZ-Th_FvG5rvE8auOLposa6Nx-YUCy25ErkQeU8uRtKGJsaAVWHdmLcP4uqCQjE0V9Di0lzvePzjaEOfN5z_ZdnIxtbhL7d7W2-W733JIIYBdHAxYOPBfwBff34G
CODEN OPEGAR
CitedBy_id crossref_primary_10_1016_j_patcog_2016_01_023
crossref_primary_10_1109_ACCESS_2020_3037451
crossref_primary_10_1016_j_patcog_2020_107632
crossref_primary_10_1109_TCYB_2018_2876591
Cites_doi 10.1068/p2896
10.1109/3477.990871
10.1016/j.imavis.2006.01.017
10.1023/A:1009715923555
10.1109/34.982906
10.1109/TIP.2010.2041397
10.21236/ADA453159
10.1109/TPAMI.2008.185
10.1109/TCSVT.2003.818350
10.1162/jocn.1991.3.1.71
10.1109/36.927446
10.1109/AVSS.2006.86
10.1109/34.598235
10.1007/978-3-540-74272-2
10.1152/jn.1987.58.6.1187
10.1109/TNN.2002.806647
10.1109/AFGR.1998.670971
10.1201/9780203750520-11
10.1117/12.850664
10.1109/5.18626
10.1145/954339.954342
10.1109/TPAMI.2007.1007
10.1109/TPAMI.2007.70796
10.1016/j.cviu.2004.04.001
ContentType Journal Article
Copyright 2012 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Copyright_xml – notice: 2012 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1117/1.3643729
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
Physics
EISSN 1560-2303
EndPage 117202
ExternalDocumentID 10_1117_1_3643729
OPEGAR000050000011117202000001
GroupedDBID FQ0
UT2
-~X
.DC
0R~
123
29N
4.4
6TJ
AAYXX
ABEFU
ABJNI
ACGFO
ACGFS
ADMLS
AENEX
AKROS
ALMA_UNASSIGNED_HOLDINGS
CITATION
CS3
DU5
F5P
HZ~
M4W
M4X
NU.
O9-
P-S
P2P
RNS
SPBNH
TAE
TWZ
WH7
XJE
~02
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c304t-96f06a085256c388d800c2f5d290efa0d9ac6aa69e88b02d0f9b54a60dd920e43
ISSN 0091-3286
1560-2303
IngestDate Fri Jul 11 16:33:35 EDT 2025
Tue Jul 01 05:18:09 EDT 2025
Thu Apr 24 22:50:43 EDT 2025
Tue Jun 19 12:41:56 EDT 2018
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c304t-96f06a085256c388d800c2f5d290efa0d9ac6aa69e88b02d0f9b54a60dd920e43
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 963857557
PQPubID 23500
PageCount 1
ParticipantIDs proquest_miscellaneous_963857557
crossref_citationtrail_10_1117_1_3643729
crossref_primary_10_1117_1_3643729
spie_primary_OPEGAR000050000011117202000001
ProviderPackageCode FQ0
UT2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Optical Engineering
PublicationYear 2011
References 10.1117/1.3643729_r8
10.1117/1.3643729_r15
10.1117/1.3643729_r9
10.1117/1.3643729_r16
10.1117/1.3643729_r18
10.1117/1.3643729_r11
10.1117/1.3643729_r12
10.1117/1.3643729_r13
10.1117/1.3643729_r14
10.1117/1.3643729_r30
10.1117/1.3643729_r31
10.1117/1.3643729_r10
10.1117/1.3643729_r26
10.1117/1.3643729_r27
10.1117/1.3643729_r28
10.1117/1.3643729_r29
10.1117/1.3643729_r22
10.1117/1.3643729_r23
10.1117/1.3643729_r24
10.1117/1.3643729_r25
10.1117/1.3643729_r20
10.1117/1.3643729_r21
10.1117/1.3643729_r1
10.1117/1.3643729_r2
10.1117/1.3643729_r3
10.1117/1.3643729_r4
10.1117/1.3643729_r19
10.1117/1.3643729_r5
10.1117/1.3643729_r6
Jones (10.1117/1.3643729_r17) 1987; 58
10.1117/1.3643729_r7
References_xml – ident: 10.1117/1.3643729_r2
  doi: 10.1068/p2896
– ident: 10.1117/1.3643729_r24
  doi: 10.1109/3477.990871
– ident: 10.1117/1.3643729_r9
  doi: 10.1016/j.imavis.2006.01.017
– ident: 10.1117/1.3643729_r26
– ident: 10.1117/1.3643729_r27
  doi: 10.1023/A:1009715923555
– ident: 10.1117/1.3643729_r23
  doi: 10.1109/34.982906
– ident: 10.1117/1.3643729_r28
  doi: 10.1109/TIP.2010.2041397
– ident: 10.1117/1.3643729_r8
  doi: 10.21236/ADA453159
– ident: 10.1117/1.3643729_r21
  doi: 10.1109/TPAMI.2008.185
– ident: 10.1117/1.3643729_r20
  doi: 10.1109/TCSVT.2003.818350
– ident: 10.1117/1.3643729_r1
  doi: 10.1162/jocn.1991.3.1.71
– ident: 10.1117/1.3643729_r30
  doi: 10.1109/36.927446
– ident: 10.1117/1.3643729_r12
  doi: 10.1109/AVSS.2006.86
– ident: 10.1117/1.3643729_r14
– ident: 10.1117/1.3643729_r5
  doi: 10.1109/34.598235
– ident: 10.1117/1.3643729_r19
  doi: 10.1007/978-3-540-74272-2
– ident: 10.1117/1.3643729_r18
– ident: 10.1117/1.3643729_r31
– ident: 10.1117/1.3643729_r16
– volume: 58
  start-page: 1187
  year: 1987
  ident: 10.1117/1.3643729_r17
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1987.58.6.1187
– ident: 10.1117/1.3643729_r4
  doi: 10.1109/TNN.2002.806647
– ident: 10.1117/1.3643729_r3
  doi: 10.1109/AFGR.1998.670971
– ident: 10.1117/1.3643729_r6
  doi: 10.1201/9780203750520-11
– ident: 10.1117/1.3643729_r25
– ident: 10.1117/1.3643729_r15
  doi: 10.1117/12.850664
– ident: 10.1117/1.3643729_r29
  doi: 10.1109/5.18626
– ident: 10.1117/1.3643729_r11
– ident: 10.1117/1.3643729_r7
  doi: 10.1145/954339.954342
– ident: 10.1117/1.3643729_r10
  doi: 10.1109/TPAMI.2007.1007
– ident: 10.1117/1.3643729_r22
  doi: 10.1109/TPAMI.2007.70796
– ident: 10.1117/1.3643729_r13
  doi: 10.1016/j.cviu.2004.04.001
SSID ssj0002988
Score 2.0673695
Snippet A new orientation-based face recognition method is proposed in this paper. The orientation analysis is performed with Gabor wavelet transform (GWT). The...
SourceID proquest
crossref
spie
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117202
SubjectTerms Algorithms
Face recognition
Mathematical analysis
Orientation
Pixels
Recognition
Title Orientation-based face recognition using multispectral imagery and score fusion
URI http://dx.doi.org/10.1117/1.3643729
https://www.proquest.com/docview/963857557
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7qFkEfiq2Kq1UG8UEoqbO5TDKPS7ttkW0juCvrU5jMBRY0XZrNi7_eM5dcigtqX0IyDIcw33BuM-c7CH3gSUZJxssgTMsoiHkqAm5oK7nx5iUFnZmYeufrG3q1jD-vklXfo8hWl2zLU_FrZ13JQ1CFMcDVVMn-B7KdUBiAd8AXnoAwPP8J4_xu7UuHqsCYI2na55g-KP5SECDb2FyAvTZoiyotycZPQ1zhiJdqQ2N5opu6xcc7qvnGJblVz1fY55iVUxDfG638sOwSoZMub-BVHSUBBCDRUBc6EtgW88lAs1VyYCPdxw7ta-v3TyN3GtibmPZY_SYvLpbzebGYrRaP0H4Irj3opv3p-fX8a2c_Q2a7hXb_5_mgQPinTvR9L6IPDUb1Zq0GDsLiGTrwnj2eOpgO0Z6qjtDTAd_jEXps79uKGsa_revGza6fo_wPILEBEg-AxBZIfA9I7IHEACS2QGIH5Au0vJgtzq4C3-kiEBGJtwGjmlAO3i84oCLKMgluvAh1IkNGlOZEMi4o55SpLCtJKIlmZRJzSqRkIVFx9BKNqttKvUK41Nq0kxY6UipmhPGQWJI-lcYypiUZo4_tyhXC08CbbiQ_ChcOpsWk8Is8Ru-7qRvHfbJrEm6XvwDNZI6beKVum7owqh2CgSQdoxMDSycj_zK7nNpGh4mNUY3VTuE33cfrvwt8g570O_oYjbZ3jXoLvuG2fOc3029DAmUA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orientation-based+face+recognition+using+multispectral+imagery+and+score+fusion&rft.jtitle=Optical+engineering&rft.au=Zheng%2C+Yufeng&rft.date=2011-11-01&rft.issn=1560-2303&rft.volume=50&rft.issue=11&rft.spage=nd&rft.epage=nd&rft_id=info:doi/10.1117%2F1.3643729&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-3286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-3286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-3286&client=summon