Active and Dynamic Approaches for Clustering Time Dependent Information: Lag Target Time Series Clustering and Multi-Factor Time Series Clustering

One of data mining schemes in statistics is clustering panel data such as longitudinal data and time series data. Classical approaches to cluster such time dependent information do not properly count time dependencies among objects we are interested to analyze. In the present study, we propose an ap...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical theory and applications Vol. 17; no. 3; pp. 462 - 477
Main Authors Kim, Doo Young, Tsokos, Chris P.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2018
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of data mining schemes in statistics is clustering panel data such as longitudinal data and time series data. Classical approaches to cluster such time dependent information do not properly count time dependencies among objects we are interested to analyze. In the present study, we propose an approach which takes time dependencies into our consideration by introducing appropriate weight factors with an add-on approach which allows us to measure pairwise distances in multi-dimensional space not just in two dimension. We refer to these approaches LTTC (Lag Target Time Series Clustering) and MFTC (Multi-Factor Time Series Clustering) , respectively. These proposed methods in the present study are applicable to any time dependent information from various research areas, and we have applied these methods to state level brain cancer mortality rates in the United States that illustrates the importance of subject methods.
AbstractList One of data mining schemes in statistics is clustering panel data such as longitudinal data and time series data. Classical approaches to cluster such time dependent information do not properly count time dependencies among objects we are interested to analyze. In the present study, we propose an approach which takes time dependencies into our consideration by introducing appropriate weight factors with an add-on approach which allows us to measure pairwise distances in multi-dimensional space not just in two dimension. We refer to these approaches LTTC (Lag Target Time Series Clustering) and MFTC (Multi-Factor Time Series Clustering), respectively. These proposed methods in the present study are applicable to any time dependent information from various research areas, and we have applied these methods to state level brain cancer mortality rates in the United States that illustrates the importance of subject methods.
One of data mining schemes in statistics is clustering panel data such as longitudinal data and time series data. Classical approaches to cluster such time dependent information do not properly count time dependencies among objects we are interested to analyze. In the present study, we propose an approach which takes time dependencies into our consideration by introducing appropriate weight factors with an add-on approach which allows us to measure pairwise distances in multi-dimensional space not just in two dimension. We refer to these approaches LTTC (Lag Target Time Series Clustering) and MFTC (Multi-Factor Time Series Clustering) , respectively. These proposed methods in the present study are applicable to any time dependent information from various research areas, and we have applied these methods to state level brain cancer mortality rates in the United States that illustrates the importance of subject methods.
Author Kim, Doo Young
Tsokos, Chris P.
Author_xml – sequence: 1
  givenname: Doo Young
  surname: Kim
  fullname: Kim, Doo Young
  email: dkim@shsu.edu
  organization: Department of Mathematics and Statistics, Sam Houston State University
– sequence: 2
  givenname: Chris P.
  surname: Tsokos
  fullname: Tsokos, Chris P.
  organization: Department of Mathematics and Statistics, University of South Florida
BookMark eNp1kU2P0zAQhi20SJRl7xwjcU7xV_zBreqyUKmIA71bjj0prlon2C7S_o39xTgEAQc4WeN532dG875EN3GMgNBrgtdUa_L2lItdU0zUmsg1W3fP0IpSwlsihbhBK9Ix1Uql5At0l3Poccc1I5LpFXrauBK-Q2Ojb-4fo70E12ymKY3WfYXcDGNqtudrLpBCPDaHcIHmHiaIHmJpdrH2L7aEMb5r9rb2bTpCWWRfqqUS_nLPMz5dzyW0D9aVSv637hV6Pthzhrtf7y06PLw_bD-2-88fdtvNvnUM89KqDih0bvDaMgmMc69VLz2jPe4lpVw6r6WwUoKSgLnQSnjRiw5rbmvFbtFuwfrRnsyUwsWmRzPaYH5-jOlobCrBncFYzrzA2nrhJO_poBTtuh7AeUyEhKGy3iyserhvV8jFnMZrinV7QzUlmBGGZVXhReXSmHOC4fdUgs2co5lzNHOOhkjDTFctZLHkaT4NpD_g_3p-AI59pLQ
ContentType Journal Article
Copyright the Authors 2018
the Authors 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: the Authors 2018
– notice: the Authors 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.2991/jsta.2018.17.3.5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2214-1766
1538-7887
EndPage 477
ExternalDocumentID oai_doaj_org_article_a43d609ad6c74b2f88255beecd0167ef
10_2991_jsta_2018_17_3_5
GroupedDBID AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ACACY
ACULB
ADBBV
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
FRP
GROUPED_DOAJ
HCIFZ
J9A
K7-
OK1
P2P
PIMPY
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c304t-85e2e5cfd9a37e344d98b7d32b0b72247cd976a77e87e046986d6b65094a4693
IEDL.DBID DOA
ISSN 1538-7887
IngestDate Wed Aug 27 01:29:49 EDT 2025
Fri Jul 25 23:45:49 EDT 2025
Tue Jul 01 03:30:18 EDT 2025
Fri Feb 21 02:40:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Clustering
Mahalanobis Distance
Time Dependent Information
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c304t-85e2e5cfd9a37e344d98b7d32b0b72247cd976a77e87e046986d6b65094a4693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/a43d609ad6c74b2f88255beecd0167ef
PQID 2921031307
PQPubID 5642901
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_a43d609ad6c74b2f88255beecd0167ef
proquest_journals_2921031307
crossref_primary_10_2991_jsta_2018_17_3_5
springer_journals_10_2991_jsta_2018_17_3_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Melbourne
PublicationTitle Journal of statistical theory and applications
PublicationTitleAbbrev J Stat Theory Appl
PublicationYear 2018
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References C. Hervada-Sala and E. Jarauta-Bragulat, A Program to Perform Ward’s Clustering Method on Several Regionalized Variables, Computers & Geosciences, 30 (8) (2004) pp. 881–886.
R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, The Mahalanobis Distance, Chemometrics and Intelligent Laboratory Systems, 50 (1) (2000) pp. 1–18.
N. Breslow, A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship, Biometrika, 57 (3) (1970) pp. 579–594.
X. Wang and R. Hyndman, Characteristic-Based Clustering for Time Series Data, Data Mining and Knowledge Discovery, 13 (2006) pp. 335–364.
S. Hayashi, Y. Tanaka, and E. Kodama, A New Manufacturing Control System Using Mahalanobis Distance for Maximising Productivity, Semiconductor Manufacturing Symposium (2001) pp. 59–62.
T. Warren Liao, Clustering of time series data: A survey, Pattern Recognition, 38 (11) (2005) pp. 1857–1874.
S. Deorah, C. F. Lynch, Z. A. Sibenaller, and T. C. Ryken, Trends in brain cancer incidence and survival in the United States: Surveillance, Epidemiology, and End Results Program, 1973 to 2001, Neurosurgical Focus, 20 (4) (2006) pp. E1.
M. A. Smith, B. Freidlin, L. A. G. Ries, and R. Simon, Trends in Reported Incidence of Primary Malignant Brain Tumors in Children in the United States, Journal of the National Cancer Institute, 90 (17) (1998) pp. 1269–1277.
A. El-Hamdouchi and P. Willett, Hierarchic Document Classification Using Ward’s Clustering Method, Proceedings of the 9th annual international ACM SIGIR conference on Research and development in information retrieval (1986) pp. 149–156.
K. Kalpakis, D. Gada, and V. Puttagunta, Distance Measures for Effective Clustering of ARIMA Time Series, Data Mining, (ICDM2001) (2001) pp. 273–280.
W. H. Kruskal and W. A. Wallis, Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association, 47 (260) (1952) pp. 583–621.
Y. Xiong, Mixtures of ARMA models for model-based time series clustering, Data Mining, ICDM proceedings, (2002) pp. 717–720.
A. M. Alonso, J.R. Berrendero, A. Hernandez, and A. Justel, Time Series Clustering Based on Forecast Densities, Computational Statistics & Data Analysis, 51 (2) (2006) pp. 762–776.
G. J. Szekely, Hierarchical clustering via joint between-within distances: Extending ward’s minimum variance method, Journal of Classification, 22 (2005) pp. 151–183.
P. C. Mahalanobis, On the generalized distance in statistics, Proceedings of the National Institute of Sciences (Calcutta), 2 (1936) pp. 49–55.
Y. Xiong and D. Yeung, Time Series Clustering with ARMA Mixtures, Pattern Recognition, 37 (8) (2004) pp. 1675–1689.
T. A. Dolecek, J. M. Propp, N. E. Stroup, and C. Kruchko, CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2005?2009, Neuro-Oncology, 14 (5) (2012) pp. v1–v49.
M. Corduas and D. Piccolo, Time Series Clustering and Classification by the Autoregressive Metric, Computational Statistics & Data Analysis, 52 (4) (2008) pp. 1860–1872.
C. Goutte, P. Toft, E. Rostrup, F. Nielsen, and L. Hansen, On Clustering fMRI Time Series, NeuroImage, 9 (3) (1999) pp. 298–310.
E. J. Keogh and M. J. Pazzani, An enhanced Representation of Time Series which Allows Fast and Accurate Classification, Clustering and Relevance Feedback, KDD-98 Proceedings, (1998) pp. 239–278.
E.Theodorsson-Norheim, Kruskal-Wallis Test: BASIC Computer Program to Perform Nonparametric One-way Analysis of Variance and Multiple Comparisons on Ranks of Several Independent Samples, Computer Methods and Programs in Biomedicine, 23 (1) (1986) pp. 57–62.
D. Jiang, J, Pei, and A. Zhang, DHC: A Density-based Hierarchical Clustering Method for Time Series Gene Expression Data, Bioinformatics and Bioengineering, Proceedings, (2003) pp. 393–400.
Y. Kakizawa, R. H. Shumway, and M. Taniguchi, Discrimination and Clustering for Multivariate Time Series, Journal of the American Statistical Association, 93 (441) (1998) pp. 328–340.
References_xml – reference: N. Breslow, A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship, Biometrika, 57 (3) (1970) pp. 579–594.
– reference: A. M. Alonso, J.R. Berrendero, A. Hernandez, and A. Justel, Time Series Clustering Based on Forecast Densities, Computational Statistics & Data Analysis, 51 (2) (2006) pp. 762–776.
– reference: D. Jiang, J, Pei, and A. Zhang, DHC: A Density-based Hierarchical Clustering Method for Time Series Gene Expression Data, Bioinformatics and Bioengineering, Proceedings, (2003) pp. 393–400.
– reference: A. El-Hamdouchi and P. Willett, Hierarchic Document Classification Using Ward’s Clustering Method, Proceedings of the 9th annual international ACM SIGIR conference on Research and development in information retrieval (1986) pp. 149–156.
– reference: S. Hayashi, Y. Tanaka, and E. Kodama, A New Manufacturing Control System Using Mahalanobis Distance for Maximising Productivity, Semiconductor Manufacturing Symposium (2001) pp. 59–62.
– reference: Y. Kakizawa, R. H. Shumway, and M. Taniguchi, Discrimination and Clustering for Multivariate Time Series, Journal of the American Statistical Association, 93 (441) (1998) pp. 328–340.
– reference: C. Goutte, P. Toft, E. Rostrup, F. Nielsen, and L. Hansen, On Clustering fMRI Time Series, NeuroImage, 9 (3) (1999) pp. 298–310.
– reference: T. Warren Liao, Clustering of time series data: A survey, Pattern Recognition, 38 (11) (2005) pp. 1857–1874.
– reference: W. H. Kruskal and W. A. Wallis, Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association, 47 (260) (1952) pp. 583–621.
– reference: M. A. Smith, B. Freidlin, L. A. G. Ries, and R. Simon, Trends in Reported Incidence of Primary Malignant Brain Tumors in Children in the United States, Journal of the National Cancer Institute, 90 (17) (1998) pp. 1269–1277.
– reference: P. C. Mahalanobis, On the generalized distance in statistics, Proceedings of the National Institute of Sciences (Calcutta), 2 (1936) pp. 49–55.
– reference: R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, The Mahalanobis Distance, Chemometrics and Intelligent Laboratory Systems, 50 (1) (2000) pp. 1–18.
– reference: G. J. Szekely, Hierarchical clustering via joint between-within distances: Extending ward’s minimum variance method, Journal of Classification, 22 (2005) pp. 151–183.
– reference: Y. Xiong, Mixtures of ARMA models for model-based time series clustering, Data Mining, ICDM proceedings, (2002) pp. 717–720.
– reference: E. J. Keogh and M. J. Pazzani, An enhanced Representation of Time Series which Allows Fast and Accurate Classification, Clustering and Relevance Feedback, KDD-98 Proceedings, (1998) pp. 239–278.
– reference: S. Deorah, C. F. Lynch, Z. A. Sibenaller, and T. C. Ryken, Trends in brain cancer incidence and survival in the United States: Surveillance, Epidemiology, and End Results Program, 1973 to 2001, Neurosurgical Focus, 20 (4) (2006) pp. E1.
– reference: K. Kalpakis, D. Gada, and V. Puttagunta, Distance Measures for Effective Clustering of ARIMA Time Series, Data Mining, (ICDM2001) (2001) pp. 273–280.
– reference: X. Wang and R. Hyndman, Characteristic-Based Clustering for Time Series Data, Data Mining and Knowledge Discovery, 13 (2006) pp. 335–364.
– reference: C. Hervada-Sala and E. Jarauta-Bragulat, A Program to Perform Ward’s Clustering Method on Several Regionalized Variables, Computers & Geosciences, 30 (8) (2004) pp. 881–886.
– reference: E.Theodorsson-Norheim, Kruskal-Wallis Test: BASIC Computer Program to Perform Nonparametric One-way Analysis of Variance and Multiple Comparisons on Ranks of Several Independent Samples, Computer Methods and Programs in Biomedicine, 23 (1) (1986) pp. 57–62.
– reference: T. A. Dolecek, J. M. Propp, N. E. Stroup, and C. Kruchko, CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2005?2009, Neuro-Oncology, 14 (5) (2012) pp. v1–v49.
– reference: M. Corduas and D. Piccolo, Time Series Clustering and Classification by the Autoregressive Metric, Computational Statistics & Data Analysis, 52 (4) (2008) pp. 1860–1872.
– reference: Y. Xiong and D. Yeung, Time Series Clustering with ARMA Mixtures, Pattern Recognition, 37 (8) (2004) pp. 1675–1689.
SSID ssib054931739
ssj0000800523
Score 2.0406082
Snippet One of data mining schemes in statistics is clustering panel data such as longitudinal data and time series data. Classical approaches to cluster such time...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 462
SubjectTerms Clustering
Data mining
Mahalanobis Distance
Research Article
Time dependence
Time Dependent Information
Time series
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46X_RBvGK9kQdfFLp1bdK0vsi8DBEdIgp7C0mTCkO2ucsf8Rd7TpqqE_Sl0DZtx05y8p3knO8j5CRNhTZxVIRKFWXIsjwK8xJiHgZHriOmclck9tBLb1_YXZ_3_YLb1KdV1j7ROWozKnCNvBXnMSoSQJe8GL-HqBqFu6teQmOZrIALziD4Wrm86T0-1T0Kgh-YHz3v5cDjI-4039xIx1S6au8SvHK7NQBAhtleWbMtmkmTL8xVjtJ_AYf-2jp1M1J3g6x7KEk7le03yZIdbpG1hy8e1uk2-eg4d0bV0NDrSnuedjyLuJ1SAKz06m2OXAnwBYrlIPTaq-LOqK9UQsud03sF913WeNUMV9XgDT-exm-4ct6w6zR8_mi3Q567N89Xt6FXYQiLJGKzMOM2trwoTa4SYRPGTJ5pYZJYR1oAABCFAUijhLCZsE6QMjWpdsR8Cs6SXdIYjoZ2j9BSQTRXWsDzVjODXH-6bQEeQUileG5FQE7rv1uOK64NCTEKmkaiaSSaRraFTCQPyCXa46sdsmS7C6PJq_SDTiqWmDTKlUkLwXRcQjTBuba2MFh8YcuAHNbWlH7oTuV3RwvIWW3h79t__aD9_991QFaxcZWddkgas8ncHgGcmelj32c_AeP48ls
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqK85IEFpJQkfiVspaWqEGUCic2yY2dAqCDa_hF-MXeOCy2CgSWS40sc5c72d7bvO0LOpFTW5WmVGFPVCS_KNClr8Hk4XIVNuSlDkNjoXg4f-e2TeIrrHRgLs7B_DwNldvkMGAkPYBWdTHVYR6ySNZExifbbk7255YCTA_Ng5Ld8jjhIhNxuoUfjkblmj_LXly7NSYG6fwlv_tgiDTPPYItsRshIu42Ot8mKH--QjdEX3-pkl3x0w7BFzdjRfpNjnnYjW7ifUACmtPcyQ04EaIFi2Aftx-y3UxojklBDV_TOQH04Hd6I4eoZvGHhaWwjhO0mg5Cr5w-5PfIwuHnoDZOYbSGpWMqnSSF87kVVu9Iw5Rnnriysciy3qVUw0avKAXQxSvlC-ZB4UjppAwGfgRLbJ63x69gfEFob8NpqD7jdW-6Q089mHmAQuE5GlF61yfn8d-u3hlNDgy-CqtGoGo2q0ZnSTIs2uUZ9fMkhG3a4AUaiY-fShjMn09I4WSlu8xq8BiGs95XDIAtft8nxXJs6dtEJNJdjigsY49rkYq7h7-q_PujwP8JHZB1LzZm0Y9Kavs_8CYCYqT0N9vsJvEPqoQ
  priority: 102
  providerName: Springer Nature
Title Active and Dynamic Approaches for Clustering Time Dependent Information: Lag Target Time Series Clustering and Multi-Factor Time Series Clustering
URI https://link.springer.com/article/10.2991/jsta.2018.17.3.5
https://www.proquest.com/docview/2921031307
https://doaj.org/article/a43d609ad6c74b2f88255beecd0167ef
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BWWBAPEWhVB5YQEqbJnacsPVBQQgQQiCxWXbsDBUqiLZ_hF_MnZOWgoRYWCI5dmLL59x9F5-_AzhJEmlsFOaB1nkR8DQLg6xAn4fjVZiQ68wfEru9S66e-PWzeF5K9UUxYSU9cDlxbc1jm4SZtkkuuYkKRIRCGOdySwH0riDtizZvyZkaVTgIXaxyXxI1bqc9QrBFkVxpqyNbcUt8s0Oerv8bxvyxLeqtzXALNiuYyLrl8LZhxY13YON2wbE62YWPrldVTI8tG5R55Vm3Ygh3E4ZglPVfZsSDgD0wOurBBlXG2ymrTiGRVM7ZjcZ6HxFeNqM_ZviGpaepD39UNxj6_Dy_tNuDx-HFY_8qqDIsBHkc8mmQChc5kRc207F0Mec2S420cWRCI9G4y9wiXNFSulQ6n2wysYnxpHsaS_E-1MavY3cArNDoqRUOsboz3BKPn-k4hD7oLmmROVmH0_l0q7eSR0Oh_0GiUSQaRaJRHaliJerQI3ks2hEDtr-B60JV60L9tS7q0JhLU1Wf5QS7iyitBeq1OpzNJfxV_duADv9jQEewTq8s49MaUJu-z9wxApqpacJqOrxswlrv4u7-AUv9pN_06_kTHEH4SA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N8QA8IP5q3Qb4AR5ASpfGdhwjIVRWSsfaPRVpb5YdO0gTasfaCfE1-B58R-4cZ2NI420vldI4TpQ7390vvrsfwMuyVM4XeZ1ZWzeZqHSe6QYxj8Bf6XJhdSwSmx2Vky_i87E83oDfXS0MpVV2NjEaar-s6Rv5XqELYiRAlXx_-j0j1ijaXe0oNFq1OAw_fyBkW707GKF8XxXF-ON8f5IlVoGsRui-zioZiiDrxmvLVeBCeF055XnhcqfQoanao4u2SoVKhUiwWPrSxUZzFo84TnsLbgvONS2oavypU19EWuiMU5PNkxSMyUgwF80K5e21G6XoAgZ7Jxj9UWpZ1R-oPu_LK44x8gdcCXr_2aeN7m_8AO6nuJUNW0V7CBth8QjuzS6avq4ew69htJ3MLjwbtUT3bJhalocVw-iY7X87p8YMeAdGtSdslCh41yyVRZGavGVTi-djino7jD7h4Qx_XU33iLXD2TgSBl0z7gnMb0I4T2FzsVyELWCNRejYBAQPwQlPjQXdIGAshvjNSh1UD153r9ucto09DAIiEo0h0RgSjRkow43swQeSx8U4askd_1iefTVphRsruC9zbX1ZK-GKBqGLlC6E2lOlR2h6sNtJ0yQ7sTKXWt2DN52EL09f90Db_5_rBdyZzGdTMz04OtyBu3Rhmxa3C5vrs_PwDOOotXsetZeBueHV8gcOyywW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB_qFUQfxL94WnUf9EEhd7lkN5sIItdej9a2R5EKfVt2sxOhyF3tXRG_ht_Gb-fMZtNaob715SCXzSZkZmfml52ZH8DrotDOZ2mdWFs3iSyrNKkawjySfpVLpa1CkdjBrNj5Ij8dq-M1-N3VwnBaZWcTg6H2i5q_kQ-zKmNGAlLJYRPTIg4n04-n3xNmkOKd1o5Oo1WRPfz5g-Db8sPuhGT9Jsum20dbO0lkGEhqgvGrpFSYoaobX9lcYy6lr0qnfZ651Glybrr25K6t1lhqDGSLhS9caDpn6SinaW_BuiZQlPZgfXN7dvi5U2bCXeSaY8vNkxiaqUA3F4wMZ_G126bkEEbDE4oFOdGsHIz0IB-oK24ysAlcCYH_2bUNznB6H-7FKFaMW7V7AGs4fwh3Dy5awC4fwa9xsKTCzr2YtLT3YhwbmONSUKwstr6dc5sGuoPgShQxiYS8KxGLpFhp3ot9S-dDwno7jD_o0Qx_Xc33CJXEyTTQB10z7jEc3YR4nkBvvpjjUxCNJSDZIEEJdNJzm0E3QorMCM1ZVaHuw9vudZvTts2HIXjEojEsGsOiMSNtcqP6sMnyuBjHDbrDH4uzryaud2Nl7ou0sr6otXRZQ0BGKYdYe677wKYPG500TbQaS3Op431410n48vR1D_Ts_3O9gtu0Usz-7mzvOdzh69ocuQ3orc7O8QUFVSv3MqqvAHPDC-YPJkUxqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+and+Dynamic+Approaches+for+Clustering+Time+Dependent+Information%3A+Lag+Target+Time+Series+Clustering+and+Multi-Factor+Time+Series+Clustering&rft.jtitle=Journal+of+statistical+theory+and+applications&rft.au=Doo+Young+Kim&rft.au=Chris+P.+Tsokos&rft.date=2018-09-01&rft.pub=Springer&rft.eissn=1538-7887&rft.volume=17&rft.issue=3&rft_id=info:doi/10.2991%2Fjsta.2018.17.3.5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a43d609ad6c74b2f88255beecd0167ef
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7887&client=summon