Active and Dynamic Approaches for Clustering Time Dependent Information: Lag Target Time Series Clustering and Multi-Factor Time Series Clustering
One of data mining schemes in statistics is clustering panel data such as longitudinal data and time series data. Classical approaches to cluster such time dependent information do not properly count time dependencies among objects we are interested to analyze. In the present study, we propose an ap...
Saved in:
Published in | Journal of statistical theory and applications Vol. 17; no. 3; pp. 462 - 477 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.09.2018
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of data mining schemes in statistics is clustering panel data such as longitudinal data and time series data. Classical approaches to cluster such time dependent information do not properly count time dependencies among objects we are interested to analyze. In the present study, we propose an approach which takes time dependencies into our consideration by introducing appropriate weight factors with an add-on approach which allows us to measure pairwise distances in multi-dimensional space not just in two dimension. We refer to these approaches
LTTC (Lag Target Time Series Clustering)
and
MFTC (Multi-Factor Time Series Clustering)
, respectively. These proposed methods in the present study are applicable to any time dependent information from various research areas, and we have applied these methods to state level brain cancer mortality rates in the United States that illustrates the importance of subject methods. |
---|---|
AbstractList | One of data mining schemes in statistics is clustering panel data such as longitudinal data and time series data. Classical approaches to cluster such time dependent information do not properly count time dependencies among objects we are interested to analyze. In the present study, we propose an approach which takes time dependencies into our consideration by introducing appropriate weight factors with an add-on approach which allows us to measure pairwise distances in multi-dimensional space not just in two dimension. We refer to these approaches LTTC (Lag Target Time Series Clustering) and MFTC (Multi-Factor Time Series Clustering), respectively. These proposed methods in the present study are applicable to any time dependent information from various research areas, and we have applied these methods to state level brain cancer mortality rates in the United States that illustrates the importance of subject methods. One of data mining schemes in statistics is clustering panel data such as longitudinal data and time series data. Classical approaches to cluster such time dependent information do not properly count time dependencies among objects we are interested to analyze. In the present study, we propose an approach which takes time dependencies into our consideration by introducing appropriate weight factors with an add-on approach which allows us to measure pairwise distances in multi-dimensional space not just in two dimension. We refer to these approaches LTTC (Lag Target Time Series Clustering) and MFTC (Multi-Factor Time Series Clustering) , respectively. These proposed methods in the present study are applicable to any time dependent information from various research areas, and we have applied these methods to state level brain cancer mortality rates in the United States that illustrates the importance of subject methods. |
Author | Kim, Doo Young Tsokos, Chris P. |
Author_xml | – sequence: 1 givenname: Doo Young surname: Kim fullname: Kim, Doo Young email: dkim@shsu.edu organization: Department of Mathematics and Statistics, Sam Houston State University – sequence: 2 givenname: Chris P. surname: Tsokos fullname: Tsokos, Chris P. organization: Department of Mathematics and Statistics, University of South Florida |
BookMark | eNp1kU2P0zAQhi20SJRl7xwjcU7xV_zBreqyUKmIA71bjj0prlon2C7S_o39xTgEAQc4WeN532dG875EN3GMgNBrgtdUa_L2lItdU0zUmsg1W3fP0IpSwlsihbhBK9Ix1Uql5At0l3Poccc1I5LpFXrauBK-Q2Ojb-4fo70E12ymKY3WfYXcDGNqtudrLpBCPDaHcIHmHiaIHmJpdrH2L7aEMb5r9rb2bTpCWWRfqqUS_nLPMz5dzyW0D9aVSv637hV6Pthzhrtf7y06PLw_bD-2-88fdtvNvnUM89KqDih0bvDaMgmMc69VLz2jPe4lpVw6r6WwUoKSgLnQSnjRiw5rbmvFbtFuwfrRnsyUwsWmRzPaYH5-jOlobCrBncFYzrzA2nrhJO_poBTtuh7AeUyEhKGy3iyserhvV8jFnMZrinV7QzUlmBGGZVXhReXSmHOC4fdUgs2co5lzNHOOhkjDTFctZLHkaT4NpD_g_3p-AI59pLQ |
ContentType | Journal Article |
Copyright | the Authors 2018 the Authors 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: the Authors 2018 – notice: the Authors 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.2991/jsta.2018.17.3.5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2214-1766 1538-7887 |
EndPage | 477 |
ExternalDocumentID | oai_doaj_org_article_a43d609ad6c74b2f88255beecd0167ef 10_2991_jsta_2018_17_3_5 |
GroupedDBID | AAFWJ AAJSJ AAKKN AAYZJ ABEEZ ACACY ACULB ADBBV AFGXO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ C24 C6C CCPQU EBLON EBS FRP GROUPED_DOAJ HCIFZ J9A K7- OK1 P2P PIMPY RSV SOJ AASML AAYXX CITATION PHGZM PHGZT 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c304t-85e2e5cfd9a37e344d98b7d32b0b72247cd976a77e87e046986d6b65094a4693 |
IEDL.DBID | DOA |
ISSN | 1538-7887 |
IngestDate | Wed Aug 27 01:29:49 EDT 2025 Fri Jul 25 23:45:49 EDT 2025 Tue Jul 01 03:30:18 EDT 2025 Fri Feb 21 02:40:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Clustering Mahalanobis Distance Time Dependent Information |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c304t-85e2e5cfd9a37e344d98b7d32b0b72247cd976a77e87e046986d6b65094a4693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/a43d609ad6c74b2f88255beecd0167ef |
PQID | 2921031307 |
PQPubID | 5642901 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a43d609ad6c74b2f88255beecd0167ef proquest_journals_2921031307 crossref_primary_10_2991_jsta_2018_17_3_5 springer_journals_10_2991_jsta_2018_17_3_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Melbourne |
PublicationTitle | Journal of statistical theory and applications |
PublicationTitleAbbrev | J Stat Theory Appl |
PublicationYear | 2018 |
Publisher | Springer Netherlands Springer Nature B.V Springer |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer |
References | C. Hervada-Sala and E. Jarauta-Bragulat, A Program to Perform Ward’s Clustering Method on Several Regionalized Variables, Computers & Geosciences, 30 (8) (2004) pp. 881–886. R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, The Mahalanobis Distance, Chemometrics and Intelligent Laboratory Systems, 50 (1) (2000) pp. 1–18. N. Breslow, A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship, Biometrika, 57 (3) (1970) pp. 579–594. X. Wang and R. Hyndman, Characteristic-Based Clustering for Time Series Data, Data Mining and Knowledge Discovery, 13 (2006) pp. 335–364. S. Hayashi, Y. Tanaka, and E. Kodama, A New Manufacturing Control System Using Mahalanobis Distance for Maximising Productivity, Semiconductor Manufacturing Symposium (2001) pp. 59–62. T. Warren Liao, Clustering of time series data: A survey, Pattern Recognition, 38 (11) (2005) pp. 1857–1874. S. Deorah, C. F. Lynch, Z. A. Sibenaller, and T. C. Ryken, Trends in brain cancer incidence and survival in the United States: Surveillance, Epidemiology, and End Results Program, 1973 to 2001, Neurosurgical Focus, 20 (4) (2006) pp. E1. M. A. Smith, B. Freidlin, L. A. G. Ries, and R. Simon, Trends in Reported Incidence of Primary Malignant Brain Tumors in Children in the United States, Journal of the National Cancer Institute, 90 (17) (1998) pp. 1269–1277. A. El-Hamdouchi and P. Willett, Hierarchic Document Classification Using Ward’s Clustering Method, Proceedings of the 9th annual international ACM SIGIR conference on Research and development in information retrieval (1986) pp. 149–156. K. Kalpakis, D. Gada, and V. Puttagunta, Distance Measures for Effective Clustering of ARIMA Time Series, Data Mining, (ICDM2001) (2001) pp. 273–280. W. H. Kruskal and W. A. Wallis, Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association, 47 (260) (1952) pp. 583–621. Y. Xiong, Mixtures of ARMA models for model-based time series clustering, Data Mining, ICDM proceedings, (2002) pp. 717–720. A. M. Alonso, J.R. Berrendero, A. Hernandez, and A. Justel, Time Series Clustering Based on Forecast Densities, Computational Statistics & Data Analysis, 51 (2) (2006) pp. 762–776. G. J. Szekely, Hierarchical clustering via joint between-within distances: Extending ward’s minimum variance method, Journal of Classification, 22 (2005) pp. 151–183. P. C. Mahalanobis, On the generalized distance in statistics, Proceedings of the National Institute of Sciences (Calcutta), 2 (1936) pp. 49–55. Y. Xiong and D. Yeung, Time Series Clustering with ARMA Mixtures, Pattern Recognition, 37 (8) (2004) pp. 1675–1689. T. A. Dolecek, J. M. Propp, N. E. Stroup, and C. Kruchko, CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2005?2009, Neuro-Oncology, 14 (5) (2012) pp. v1–v49. M. Corduas and D. Piccolo, Time Series Clustering and Classification by the Autoregressive Metric, Computational Statistics & Data Analysis, 52 (4) (2008) pp. 1860–1872. C. Goutte, P. Toft, E. Rostrup, F. Nielsen, and L. Hansen, On Clustering fMRI Time Series, NeuroImage, 9 (3) (1999) pp. 298–310. E. J. Keogh and M. J. Pazzani, An enhanced Representation of Time Series which Allows Fast and Accurate Classification, Clustering and Relevance Feedback, KDD-98 Proceedings, (1998) pp. 239–278. E.Theodorsson-Norheim, Kruskal-Wallis Test: BASIC Computer Program to Perform Nonparametric One-way Analysis of Variance and Multiple Comparisons on Ranks of Several Independent Samples, Computer Methods and Programs in Biomedicine, 23 (1) (1986) pp. 57–62. D. Jiang, J, Pei, and A. Zhang, DHC: A Density-based Hierarchical Clustering Method for Time Series Gene Expression Data, Bioinformatics and Bioengineering, Proceedings, (2003) pp. 393–400. Y. Kakizawa, R. H. Shumway, and M. Taniguchi, Discrimination and Clustering for Multivariate Time Series, Journal of the American Statistical Association, 93 (441) (1998) pp. 328–340. |
References_xml | – reference: N. Breslow, A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship, Biometrika, 57 (3) (1970) pp. 579–594. – reference: A. M. Alonso, J.R. Berrendero, A. Hernandez, and A. Justel, Time Series Clustering Based on Forecast Densities, Computational Statistics & Data Analysis, 51 (2) (2006) pp. 762–776. – reference: D. Jiang, J, Pei, and A. Zhang, DHC: A Density-based Hierarchical Clustering Method for Time Series Gene Expression Data, Bioinformatics and Bioengineering, Proceedings, (2003) pp. 393–400. – reference: A. El-Hamdouchi and P. Willett, Hierarchic Document Classification Using Ward’s Clustering Method, Proceedings of the 9th annual international ACM SIGIR conference on Research and development in information retrieval (1986) pp. 149–156. – reference: S. Hayashi, Y. Tanaka, and E. Kodama, A New Manufacturing Control System Using Mahalanobis Distance for Maximising Productivity, Semiconductor Manufacturing Symposium (2001) pp. 59–62. – reference: Y. Kakizawa, R. H. Shumway, and M. Taniguchi, Discrimination and Clustering for Multivariate Time Series, Journal of the American Statistical Association, 93 (441) (1998) pp. 328–340. – reference: C. Goutte, P. Toft, E. Rostrup, F. Nielsen, and L. Hansen, On Clustering fMRI Time Series, NeuroImage, 9 (3) (1999) pp. 298–310. – reference: T. Warren Liao, Clustering of time series data: A survey, Pattern Recognition, 38 (11) (2005) pp. 1857–1874. – reference: W. H. Kruskal and W. A. Wallis, Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association, 47 (260) (1952) pp. 583–621. – reference: M. A. Smith, B. Freidlin, L. A. G. Ries, and R. Simon, Trends in Reported Incidence of Primary Malignant Brain Tumors in Children in the United States, Journal of the National Cancer Institute, 90 (17) (1998) pp. 1269–1277. – reference: P. C. Mahalanobis, On the generalized distance in statistics, Proceedings of the National Institute of Sciences (Calcutta), 2 (1936) pp. 49–55. – reference: R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, The Mahalanobis Distance, Chemometrics and Intelligent Laboratory Systems, 50 (1) (2000) pp. 1–18. – reference: G. J. Szekely, Hierarchical clustering via joint between-within distances: Extending ward’s minimum variance method, Journal of Classification, 22 (2005) pp. 151–183. – reference: Y. Xiong, Mixtures of ARMA models for model-based time series clustering, Data Mining, ICDM proceedings, (2002) pp. 717–720. – reference: E. J. Keogh and M. J. Pazzani, An enhanced Representation of Time Series which Allows Fast and Accurate Classification, Clustering and Relevance Feedback, KDD-98 Proceedings, (1998) pp. 239–278. – reference: S. Deorah, C. F. Lynch, Z. A. Sibenaller, and T. C. Ryken, Trends in brain cancer incidence and survival in the United States: Surveillance, Epidemiology, and End Results Program, 1973 to 2001, Neurosurgical Focus, 20 (4) (2006) pp. E1. – reference: K. Kalpakis, D. Gada, and V. Puttagunta, Distance Measures for Effective Clustering of ARIMA Time Series, Data Mining, (ICDM2001) (2001) pp. 273–280. – reference: X. Wang and R. Hyndman, Characteristic-Based Clustering for Time Series Data, Data Mining and Knowledge Discovery, 13 (2006) pp. 335–364. – reference: C. Hervada-Sala and E. Jarauta-Bragulat, A Program to Perform Ward’s Clustering Method on Several Regionalized Variables, Computers & Geosciences, 30 (8) (2004) pp. 881–886. – reference: E.Theodorsson-Norheim, Kruskal-Wallis Test: BASIC Computer Program to Perform Nonparametric One-way Analysis of Variance and Multiple Comparisons on Ranks of Several Independent Samples, Computer Methods and Programs in Biomedicine, 23 (1) (1986) pp. 57–62. – reference: T. A. Dolecek, J. M. Propp, N. E. Stroup, and C. Kruchko, CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2005?2009, Neuro-Oncology, 14 (5) (2012) pp. v1–v49. – reference: M. Corduas and D. Piccolo, Time Series Clustering and Classification by the Autoregressive Metric, Computational Statistics & Data Analysis, 52 (4) (2008) pp. 1860–1872. – reference: Y. Xiong and D. Yeung, Time Series Clustering with ARMA Mixtures, Pattern Recognition, 37 (8) (2004) pp. 1675–1689. |
SSID | ssib054931739 ssj0000800523 |
Score | 2.0406082 |
Snippet | One of data mining schemes in statistics is clustering panel data such as longitudinal data and time series data. Classical approaches to cluster such time... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 462 |
SubjectTerms | Clustering Data mining Mahalanobis Distance Research Article Time dependence Time Dependent Information Time series |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46X_RBvGK9kQdfFLp1bdK0vsi8DBEdIgp7C0mTCkO2ucsf8Rd7TpqqE_Sl0DZtx05y8p3knO8j5CRNhTZxVIRKFWXIsjwK8xJiHgZHriOmclck9tBLb1_YXZ_3_YLb1KdV1j7ROWozKnCNvBXnMSoSQJe8GL-HqBqFu6teQmOZrIALziD4Wrm86T0-1T0Kgh-YHz3v5cDjI-4039xIx1S6au8SvHK7NQBAhtleWbMtmkmTL8xVjtJ_AYf-2jp1M1J3g6x7KEk7le03yZIdbpG1hy8e1uk2-eg4d0bV0NDrSnuedjyLuJ1SAKz06m2OXAnwBYrlIPTaq-LOqK9UQsud03sF913WeNUMV9XgDT-exm-4ct6w6zR8_mi3Q567N89Xt6FXYQiLJGKzMOM2trwoTa4SYRPGTJ5pYZJYR1oAABCFAUijhLCZsE6QMjWpdsR8Cs6SXdIYjoZ2j9BSQTRXWsDzVjODXH-6bQEeQUileG5FQE7rv1uOK64NCTEKmkaiaSSaRraFTCQPyCXa46sdsmS7C6PJq_SDTiqWmDTKlUkLwXRcQjTBuba2MFh8YcuAHNbWlH7oTuV3RwvIWW3h79t__aD9_991QFaxcZWddkgas8ncHgGcmelj32c_AeP48ls priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqK85IEFpJQkfiVspaWqEGUCic2yY2dAqCDa_hF-MXeOCy2CgSWS40sc5c72d7bvO0LOpFTW5WmVGFPVCS_KNClr8Hk4XIVNuSlDkNjoXg4f-e2TeIrrHRgLs7B_DwNldvkMGAkPYBWdTHVYR6ySNZExifbbk7255YCTA_Ng5Ld8jjhIhNxuoUfjkblmj_LXly7NSYG6fwlv_tgiDTPPYItsRshIu42Ot8mKH--QjdEX3-pkl3x0w7BFzdjRfpNjnnYjW7ifUACmtPcyQ04EaIFi2Aftx-y3UxojklBDV_TOQH04Hd6I4eoZvGHhaWwjhO0mg5Cr5w-5PfIwuHnoDZOYbSGpWMqnSSF87kVVu9Iw5Rnnriysciy3qVUw0avKAXQxSvlC-ZB4UjppAwGfgRLbJ63x69gfEFob8NpqD7jdW-6Q089mHmAQuE5GlF61yfn8d-u3hlNDgy-CqtGoGo2q0ZnSTIs2uUZ9fMkhG3a4AUaiY-fShjMn09I4WSlu8xq8BiGs95XDIAtft8nxXJs6dtEJNJdjigsY49rkYq7h7-q_PujwP8JHZB1LzZm0Y9Kavs_8CYCYqT0N9vsJvEPqoQ priority: 102 providerName: Springer Nature |
Title | Active and Dynamic Approaches for Clustering Time Dependent Information: Lag Target Time Series Clustering and Multi-Factor Time Series Clustering |
URI | https://link.springer.com/article/10.2991/jsta.2018.17.3.5 https://www.proquest.com/docview/2921031307 https://doaj.org/article/a43d609ad6c74b2f88255beecd0167ef |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BWWBAPEWhVB5YQEqbJnacsPVBQQgQQiCxWXbsDBUqiLZ_hF_MnZOWgoRYWCI5dmLL59x9F5-_AzhJEmlsFOaB1nkR8DQLg6xAn4fjVZiQ68wfEru9S66e-PWzeF5K9UUxYSU9cDlxbc1jm4SZtkkuuYkKRIRCGOdySwH0riDtizZvyZkaVTgIXaxyXxI1bqc9QrBFkVxpqyNbcUt8s0Oerv8bxvyxLeqtzXALNiuYyLrl8LZhxY13YON2wbE62YWPrldVTI8tG5R55Vm3Ygh3E4ZglPVfZsSDgD0wOurBBlXG2ymrTiGRVM7ZjcZ6HxFeNqM_ZviGpaepD39UNxj6_Dy_tNuDx-HFY_8qqDIsBHkc8mmQChc5kRc207F0Mec2S420cWRCI9G4y9wiXNFSulQ6n2wysYnxpHsaS_E-1MavY3cArNDoqRUOsboz3BKPn-k4hD7oLmmROVmH0_l0q7eSR0Oh_0GiUSQaRaJRHaliJerQI3ks2hEDtr-B60JV60L9tS7q0JhLU1Wf5QS7iyitBeq1OpzNJfxV_duADv9jQEewTq8s49MaUJu-z9wxApqpacJqOrxswlrv4u7-AUv9pN_06_kTHEH4SA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N8QA8IP5q3Qb4AR5ASpfGdhwjIVRWSsfaPRVpb5YdO0gTasfaCfE1-B58R-4cZ2NI420vldI4TpQ7390vvrsfwMuyVM4XeZ1ZWzeZqHSe6QYxj8Bf6XJhdSwSmx2Vky_i87E83oDfXS0MpVV2NjEaar-s6Rv5XqELYiRAlXx_-j0j1ijaXe0oNFq1OAw_fyBkW707GKF8XxXF-ON8f5IlVoGsRui-zioZiiDrxmvLVeBCeF055XnhcqfQoanao4u2SoVKhUiwWPrSxUZzFo84TnsLbgvONS2oavypU19EWuiMU5PNkxSMyUgwF80K5e21G6XoAgZ7Jxj9UWpZ1R-oPu_LK44x8gdcCXr_2aeN7m_8AO6nuJUNW0V7CBth8QjuzS6avq4ew69htJ3MLjwbtUT3bJhalocVw-iY7X87p8YMeAdGtSdslCh41yyVRZGavGVTi-djino7jD7h4Qx_XU33iLXD2TgSBl0z7gnMb0I4T2FzsVyELWCNRejYBAQPwQlPjQXdIGAshvjNSh1UD153r9ucto09DAIiEo0h0RgSjRkow43swQeSx8U4askd_1iefTVphRsruC9zbX1ZK-GKBqGLlC6E2lOlR2h6sNtJ0yQ7sTKXWt2DN52EL09f90Db_5_rBdyZzGdTMz04OtyBu3Rhmxa3C5vrs_PwDOOotXsetZeBueHV8gcOyywW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB_qFUQfxL94WnUf9EEhd7lkN5sIItdej9a2R5EKfVt2sxOhyF3tXRG_ht_Gb-fMZtNaob715SCXzSZkZmfml52ZH8DrotDOZ2mdWFs3iSyrNKkawjySfpVLpa1CkdjBrNj5Ij8dq-M1-N3VwnBaZWcTg6H2i5q_kQ-zKmNGAlLJYRPTIg4n04-n3xNmkOKd1o5Oo1WRPfz5g-Db8sPuhGT9Jsum20dbO0lkGEhqgvGrpFSYoaobX9lcYy6lr0qnfZ651Glybrr25K6t1lhqDGSLhS9caDpn6SinaW_BuiZQlPZgfXN7dvi5U2bCXeSaY8vNkxiaqUA3F4wMZ_G126bkEEbDE4oFOdGsHIz0IB-oK24ysAlcCYH_2bUNznB6H-7FKFaMW7V7AGs4fwh3Dy5awC4fwa9xsKTCzr2YtLT3YhwbmONSUKwstr6dc5sGuoPgShQxiYS8KxGLpFhp3ot9S-dDwno7jD_o0Qx_Xc33CJXEyTTQB10z7jEc3YR4nkBvvpjjUxCNJSDZIEEJdNJzm0E3QorMCM1ZVaHuw9vudZvTts2HIXjEojEsGsOiMSNtcqP6sMnyuBjHDbrDH4uzryaud2Nl7ou0sr6otXRZQ0BGKYdYe677wKYPG500TbQaS3Op431410n48vR1D_Ts_3O9gtu0Usz-7mzvOdzh69ocuQ3orc7O8QUFVSv3MqqvAHPDC-YPJkUxqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+and+Dynamic+Approaches+for+Clustering+Time+Dependent+Information%3A+Lag+Target+Time+Series+Clustering+and+Multi-Factor+Time+Series+Clustering&rft.jtitle=Journal+of+statistical+theory+and+applications&rft.au=Doo+Young+Kim&rft.au=Chris+P.+Tsokos&rft.date=2018-09-01&rft.pub=Springer&rft.eissn=1538-7887&rft.volume=17&rft.issue=3&rft_id=info:doi/10.2991%2Fjsta.2018.17.3.5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a43d609ad6c74b2f88255beecd0167ef |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7887&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7887&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7887&client=summon |