Modelling relations with prototypes for visual relation detection
Relations between objects drive our understanding of images. Modelling them poses several challenges due to the combinatorial nature of the problem and the complex structure of natural language. This paper tackles the task of predicting relationships in the form of (subject, relation, object) triple...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 15; pp. 22465 - 22486 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2021
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Relations between objects drive our understanding of images. Modelling them poses several challenges due to the combinatorial nature of the problem and the complex structure of natural language. This paper tackles the task of predicting relationships in the form of (subject, relation, object) triplets from still images. To address these issues, we propose a framework for learning relation prototypes that aims to capture the complex nature of relation distributions. Concurrently, a network is trained to define a space in which relationship triplets with similar spatial layouts, interacting objects and relations are clustered together. Finally, the network is compared to two models explicitly tackling the problem of synonymy among relations. For this, two well known scene-graph labelling benchmarks are used for training and testing: VRD and Visual Genome. Prediction of relations based on distance to prototype provides a significant increase in the diversity of predicted relations, improving the average relation recall from 40.3% to 41.7% on the first and 31.3% to 35.4% on the second. |
---|---|
AbstractList | Relations between objects drive our understanding of images. Modelling them poses several challenges due to the combinatorial nature of the problem and the complex structure of natural language. This paper tackles the task of predicting relationships in the form of (subject, relation, object) triplets from still images. To address these issues, we propose a framework for learning relation prototypes that aims to capture the complex nature of relation distributions. Concurrently, a network is trained to define a space in which relationship triplets with similar spatial layouts, interacting objects and relations are clustered together. Finally, the network is compared to two models explicitly tackling the problem of synonymy among relations. For this, two well known scene-graph labelling benchmarks are used for training and testing: VRD and Visual Genome. Prediction of relations based on distance to prototype provides a significant increase in the diversity of predicted relations, improving the average relation recall from 40.3% to 41.7% on the first and 31.3% to 35.4% on the second. |
Author | Prêteux, Françoise Plesse, François Ginsca, Alexandru Delezoide, Bertrand |
Author_xml | – sequence: 1 givenname: François orcidid: 0000-0002-8631-3758 surname: Plesse fullname: Plesse, François email: francois.plesse@gmail.com organization: CEA, LIST, CERMICS, Ecole des Ponts – sequence: 2 givenname: Alexandru surname: Ginsca fullname: Ginsca, Alexandru organization: CEA, LIST – sequence: 3 givenname: Bertrand surname: Delezoide fullname: Delezoide, Bertrand organization: CEA, LIST – sequence: 4 givenname: Françoise surname: Prêteux fullname: Prêteux, Françoise organization: CERMICS, Ecole des Ponts |
BackLink | https://cea.hal.science/cea-04575385$$DView record in HAL |
BookMark | eNp9kE9PAjEQxRuDiYB-AU-bePJQnf6HIyEqJhgvem663S4sWbfYFgzf3uIavHmaN8nvvcy8ERp0vnMIXRO4IwDqPhICnGKggGEKQLA8Q0MiFMNKUTLImk0AKwHkAo1i3GRECsqHaPbiK9e2TbcqgmtNanwXi68mrYtt8Mmnw9bFovah2DdxZ9oTVFQuOXtUl-i8Nm10V79zjN4fH97mC7x8fXqez5bYMuAJq0opJSVIS2rm8lYaMFXNbUkkYUaxklHLuRJG1pLJSjBFuAPLROkoKMbG6LbPXZtWb0PzYcJBe9PoxWyprTMauFCCTcSeZPamZ_MTnzsXk974XejyeZoKPgE6ncIxkfaUDT7G4OpTLAF9rFX3tepcq_6pVctsYr0pZrhbufAX_Y_rG9pxeuo |
Cites_doi | 10.1109/CVPR.2018.00872 10.1109/IJCNN.2019.8851814 10.1007/978-3-030-01219-9_20 10.1109/ICCV.2015.122 10.1109/CVPR.2017.766 10.1139/h11-025 10.1109/WACV45572.2020.9093605 10.1109/CVPR.2018.00717 10.1109/CVPR.2017.352 10.1007/s11042-015-2757-4 10.1109/CVPR.2016.90 10.1109/CVPR.2017.10 10.24963/ijcai.2017/230 10.1109/CVPR.2018.00611 10.1109/ICME.2018.8486503 10.1109/CVPR.2015.7298682 10.1007/978-3-319-10590-1_4 10.1109/ICCV.2015.169 10.1609/aaai.v32i1.12274 10.18653/v1/P16-1228 10.1109/CVPR.2017.469 10.1109/ICCV.2017.554 10.1109/CVPR.2017.653 10.1007/978-3-319-46448-0_51 10.1016/j.infsof.2008.09.005 10.1109/ICME.2017.8019448 10.1109/ICCV.2017.121 10.1109/CVPR.2015.7299054 10.1162/153244303322533223 10.1007/s11263-016-0981-7 10.1109/CVPR.2017.330 10.1109/CVPR.2016.130 10.1109/CVPR.2016.91 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U 1XC |
DOI | 10.1007/s11042-020-09001-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 22486 |
ExternalDocumentID | oai_HAL_cea_04575385v1 10_1007_s11042_020_09001_6 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U 1XC |
ID | FETCH-LOGICAL-c304t-7d7776606c1f3e7d7ba0adf4cb1613a73b32c4475a6f636d53714e0c35be20733 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Thu Jul 10 07:47:08 EDT 2025 Sat Jul 26 00:02:55 EDT 2025 Tue Jul 01 04:13:05 EDT 2025 Fri Feb 21 02:48:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Visual relation detection Synonyms Prototype Nearest neighbors Metric learning |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c304t-7d7776606c1f3e7d7ba0adf4cb1613a73b32c4475a6f636d53714e0c35be20733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8631-3758 |
PQID | 2548029903 |
PQPubID | 54626 |
PageCount | 22 |
ParticipantIDs | hal_primary_oai_HAL_cea_04575385v1 proquest_journals_2548029903 crossref_primary_10_1007_s11042_020_09001_6 springer_journals_10_1007_s11042_020_09001_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
References | Herzig R, Raboh M, Chechik G, Berant J, Globerson A (2018) Mapping images to scene graphs with Permutation-Invariant structured prediction. In: NIPS Johnson J, Douze M, Jégou H Billion-scale similarity search with GPUs Zhu Y, Jiang S, Li X (2017) Visual relationship detection with object spatial distribution. In: ICME He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR Chao YW, Wang Z, He Y, Wang J, Deng J (2015) HICO: A benchmark for recognizing human-object interactions in images. In: ICCV. https://doi.org/10.1109/ICCV.2015.122 Girshick R (2015) Fast r-CNN. In: ICCV Zellers R, Yatskar M, Thomson S, Choi Y (2018) Neural motifs: Scene graph parsing with global context. In: CVPR Deng J, Ding N, Jia Y, Frome A, Murphy K, Bengio S, Li Y, Neven H, Adam H (2014) Large-Scale Object classification using label relation graphs. In: European conference on computer vision Yin G, Sheng L, Liu B, Yu N, Wang X, Shao J, Loy CC (2018) Zoom-Net: Mining Deep feature interactions for visual relationship recognition. In: ECCV Speer R, Havasi C (2012) Representing General Relational Knowledge in ConceptNet 5. In: LREC Van Der MaatenLHintonGVisualizing Data using t-SNEJournal of Machine Learning Research20089257926051225.68219 Plesse F, Ginsca A, Delezoide B, Prêteux F (2020) Focusing visual relation detection on relevant relations with prior potentials. In: WACV Dai B, Zhang Y, Lin D (2017) Detecting visual relationships with deep relational networks. In: CVPR. https://doi.org/10.1109/CVPR.2017.352 Krishna R, Zhu Y, Groth O, Johnson J, Hata K, Kravitz J, Chen S, Kalantidis Y, Li LJ, Shamma DA, Bernstein M, Fei-Fei L (2016) Visual genome: Connecting language and vision using crowdsourced dense image annotations. https://doi.org/10.1007/s11263-016-0981-7 Sarullo A, Mu T (2019) On Class Imbalance and Background Filtering in Visual Relationship Detection Peyre J, Laptev I, Schmid C, Sivic J (2017) Weakly-supervised learning of visual relations. In: ICCV Lu C, Krishna R, Bernstein M, Fei-Fei L (2016) Visual relationship detection with language priors. In: ECCV. https://doi.org/10.1007/978-3-319-46448-0_51 Koch G, Zemel R, Salakhutdinov R Siamese Neural Networks for One-shot Image Recognition. Technical report. https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf Newell A, Deng J (2017) Pixels to graphs by associative embedding. In: NIPS Kaiser L, Nachum O, Roy A, Bengio S (2017) Learning to remember rare events. In: ICLR Long Y, Liu L, Shao L, Shen F, Ding G, Han J (2017) From zero-shot learning to conventional supervised classification: Unseen visual data synthesis. In: CVPR. https://doi.org/10.1109/CVPR.2017.653 Cui Y, Zhou F, Lin Y, Belongie S (2016) Fine-grained Categorization and Dataset Bootstrapping using Deep Metric Learning with Humans in the Loop. In: CVPR Mikolov T, Corrado G, Chen K, Dean J (2013) Efficient estimation of word representations in vector space. In: ICLR. https://doi.org/10.1162/153244303322533223 Fang Y, Kuan K, Lin J, Tan C, Chandrasekhar V (2017) Object detection meets knowledge graphs. IJCAI, pp 1661–1667 Vinyals O, Deepmind G, Blundell C, Lillicrap T, Kavukcuoglu K, Wierstra D (2016) Matching networks for one shot learning. In: NIPS Simonyan K, Zisserman A (2015) Very deep convolutional networks for Large-Scale image recognition. In: ICLR. https://doi.org/10.1016/j.infsof.2008.09.005 Hu Z, Ma X, Liu Z, Hovy E, Xing E (2016) Harnessing deep neural networks with logic rules. In: ACL. https://doi.org/10.18653/v1/P16-1228 Li Y, Ouyang W, Wang X, Tang X (2017) Vip-CNN: Visual Phrase Guided Convolutional Neural Network. In: CVPR. https://doi.org/10.1109/CVPR.2017.766 Macqueen J (1967) Some methods for classification and analysis of multivariate observations. In: Fifth berkeley symposium on mathematical statistics and probability Woo S, Kim D, Daejeon K, Cho DE, So Kweon IE (2018) LinkNet: Relational Embedding for Scene Graph. In: NIPS. arXiv:1811.06410.pdf Plesse F, Ginsca A, Delezoide B, Prêteux F (2018) Visual relationship detection based on guided proposals and semantic knowledge distillation. In: ICME Yu R, Li A, Morariu VI, Davis LS (2017) Visual relationship detection with internal and external linguistic knowledge distillation. In: ICCV Chao YW, Wang Z, Mihalcea R, Deng J (2015) Mining semantic affordances of visual object categories. In: CVPR. https://doi.org/10.1109/CVPR.2015.7299054 Marino K, Salakhutdinov R, Gupta A (2017) The more you know: Using knowledge graphs for image classification. In: CVPR. https://doi.org/10.1109/CVPR.2017.10 Wang X, Ye Y, Gupta A (2018) Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs. In: CVPR Gkioxari G, Girshick R, Dollár P, He K (2018) Detecting and recognizing Human-Object interactions. In: CVPR Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, Real-Time Object Detection. In: CVPR. https://doi.org/10.1109/CVPR.2016.91 Schroff F, Philbin J (2015) Facenet: A Unified Embedding for Face Recognition and Clustering. In: CVPR Fellbaum C (1998) Wordnet: An Electronic Lexical database, vol 71. Bradford Books. https://doi.org/10.1139/h11-025 Ren S, He K, Girshick R, Sun J (2015) Faster r-CNN: Towards Real-Time object detection with region proposal networks. In: NIPS Xu D, Zhu Y, Choy CB, Fei-Fei L (2017) Scene graph generation by iterative message passing. In: CVPR. https://doi.org/10.1109/CVPR.2017.330 de BoerMSchutteKKraaijWKnowledge based query expansion in complex multimedia event detectionMultimed Tools Appl201675159025904310.1007/s11042-015-2757-4https://doi.org/10.1007/s11042-015-2757-4 Liang K, Guo Y, Chang H, Chen X (2018) Visual relationship detection with deep structural ranking. In: AAAI Liang X, Lee L, Xing EP (2017) Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection. In: CVPR. 10.1109/CVPR.2017.469. arXiv:1703.03054 Weinberger KQ, Blitzer J, Saul LK (2009) Distance metric learning for large margin nearest neighbor classification journal of machine learning research 9001_CR13 9001_CR35 M de Boer (9001_CR5) 2016; 75 9001_CR14 9001_CR15 9001_CR37 9001_CR16 9001_CR38 9001_CR17 9001_CR39 9001_CR18 9001_CR19 9001_CR30 9001_CR31 9001_CR10 9001_CR32 9001_CR11 9001_CR33 9001_CR12 9001_CR34 9001_CR7 9001_CR6 9001_CR9 9001_CR8 9001_CR24 9001_CR25 9001_CR26 9001_CR27 9001_CR28 9001_CR29 9001_CR3 9001_CR2 L Van Der Maaten (9001_CR36) 2008; 9 9001_CR40 9001_CR4 9001_CR41 9001_CR20 9001_CR42 9001_CR21 9001_CR43 9001_CR1 9001_CR22 9001_CR44 9001_CR23 9001_CR45 |
References_xml | – reference: Newell A, Deng J (2017) Pixels to graphs by associative embedding. In: NIPS – reference: Long Y, Liu L, Shao L, Shen F, Ding G, Han J (2017) From zero-shot learning to conventional supervised classification: Unseen visual data synthesis. In: CVPR. https://doi.org/10.1109/CVPR.2017.653 – reference: Johnson J, Douze M, Jégou H Billion-scale similarity search with GPUs – reference: Zellers R, Yatskar M, Thomson S, Choi Y (2018) Neural motifs: Scene graph parsing with global context. In: CVPR – reference: Schroff F, Philbin J (2015) Facenet: A Unified Embedding for Face Recognition and Clustering. In: CVPR – reference: Gkioxari G, Girshick R, Dollár P, He K (2018) Detecting and recognizing Human-Object interactions. In: CVPR – reference: Cui Y, Zhou F, Lin Y, Belongie S (2016) Fine-grained Categorization and Dataset Bootstrapping using Deep Metric Learning with Humans in the Loop. In: CVPR – reference: Deng J, Ding N, Jia Y, Frome A, Murphy K, Bengio S, Li Y, Neven H, Adam H (2014) Large-Scale Object classification using label relation graphs. In: European conference on computer vision – reference: Macqueen J (1967) Some methods for classification and analysis of multivariate observations. In: Fifth berkeley symposium on mathematical statistics and probability – reference: Vinyals O, Deepmind G, Blundell C, Lillicrap T, Kavukcuoglu K, Wierstra D (2016) Matching networks for one shot learning. In: NIPS – reference: Plesse F, Ginsca A, Delezoide B, Prêteux F (2020) Focusing visual relation detection on relevant relations with prior potentials. In: WACV – reference: Simonyan K, Zisserman A (2015) Very deep convolutional networks for Large-Scale image recognition. In: ICLR. https://doi.org/10.1016/j.infsof.2008.09.005 – reference: Van Der MaatenLHintonGVisualizing Data using t-SNEJournal of Machine Learning Research20089257926051225.68219 – reference: Lu C, Krishna R, Bernstein M, Fei-Fei L (2016) Visual relationship detection with language priors. In: ECCV. https://doi.org/10.1007/978-3-319-46448-0_51 – reference: Krishna R, Zhu Y, Groth O, Johnson J, Hata K, Kravitz J, Chen S, Kalantidis Y, Li LJ, Shamma DA, Bernstein M, Fei-Fei L (2016) Visual genome: Connecting language and vision using crowdsourced dense image annotations. https://doi.org/10.1007/s11263-016-0981-7 – reference: Sarullo A, Mu T (2019) On Class Imbalance and Background Filtering in Visual Relationship Detection – reference: Chao YW, Wang Z, Mihalcea R, Deng J (2015) Mining semantic affordances of visual object categories. In: CVPR. https://doi.org/10.1109/CVPR.2015.7299054 – reference: Plesse F, Ginsca A, Delezoide B, Prêteux F (2018) Visual relationship detection based on guided proposals and semantic knowledge distillation. In: ICME – reference: Xu D, Zhu Y, Choy CB, Fei-Fei L (2017) Scene graph generation by iterative message passing. In: CVPR. https://doi.org/10.1109/CVPR.2017.330 – reference: Yu R, Li A, Morariu VI, Davis LS (2017) Visual relationship detection with internal and external linguistic knowledge distillation. In: ICCV – reference: Girshick R (2015) Fast r-CNN. In: ICCV – reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR – reference: Hu Z, Ma X, Liu Z, Hovy E, Xing E (2016) Harnessing deep neural networks with logic rules. In: ACL. https://doi.org/10.18653/v1/P16-1228 – reference: Mikolov T, Corrado G, Chen K, Dean J (2013) Efficient estimation of word representations in vector space. In: ICLR. https://doi.org/10.1162/153244303322533223 – reference: Peyre J, Laptev I, Schmid C, Sivic J (2017) Weakly-supervised learning of visual relations. In: ICCV – reference: Fang Y, Kuan K, Lin J, Tan C, Chandrasekhar V (2017) Object detection meets knowledge graphs. IJCAI, pp 1661–1667 – reference: Weinberger KQ, Blitzer J, Saul LK (2009) Distance metric learning for large margin nearest neighbor classification journal of machine learning research – reference: Ren S, He K, Girshick R, Sun J (2015) Faster r-CNN: Towards Real-Time object detection with region proposal networks. In: NIPS – reference: Woo S, Kim D, Daejeon K, Cho DE, So Kweon IE (2018) LinkNet: Relational Embedding for Scene Graph. In: NIPS. arXiv:1811.06410.pdf – reference: Dai B, Zhang Y, Lin D (2017) Detecting visual relationships with deep relational networks. In: CVPR. https://doi.org/10.1109/CVPR.2017.352 – reference: Koch G, Zemel R, Salakhutdinov R Siamese Neural Networks for One-shot Image Recognition. Technical report. https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf – reference: Wang X, Ye Y, Gupta A (2018) Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs. In: CVPR – reference: Yin G, Sheng L, Liu B, Yu N, Wang X, Shao J, Loy CC (2018) Zoom-Net: Mining Deep feature interactions for visual relationship recognition. In: ECCV – reference: Herzig R, Raboh M, Chechik G, Berant J, Globerson A (2018) Mapping images to scene graphs with Permutation-Invariant structured prediction. In: NIPS – reference: Liang K, Guo Y, Chang H, Chen X (2018) Visual relationship detection with deep structural ranking. In: AAAI – reference: de BoerMSchutteKKraaijWKnowledge based query expansion in complex multimedia event detectionMultimed Tools Appl201675159025904310.1007/s11042-015-2757-4https://doi.org/10.1007/s11042-015-2757-4 – reference: Li Y, Ouyang W, Wang X, Tang X (2017) Vip-CNN: Visual Phrase Guided Convolutional Neural Network. In: CVPR. https://doi.org/10.1109/CVPR.2017.766 – reference: Fellbaum C (1998) Wordnet: An Electronic Lexical database, vol 71. Bradford Books. https://doi.org/10.1139/h11-025 – reference: Chao YW, Wang Z, He Y, Wang J, Deng J (2015) HICO: A benchmark for recognizing human-object interactions in images. In: ICCV. https://doi.org/10.1109/ICCV.2015.122 – reference: Kaiser L, Nachum O, Roy A, Bengio S (2017) Learning to remember rare events. In: ICLR – reference: Speer R, Havasi C (2012) Representing General Relational Knowledge in ConceptNet 5. In: LREC – reference: Liang X, Lee L, Xing EP (2017) Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection. In: CVPR. 10.1109/CVPR.2017.469. arXiv:1703.03054 – reference: Marino K, Salakhutdinov R, Gupta A (2017) The more you know: Using knowledge graphs for image classification. In: CVPR. https://doi.org/10.1109/CVPR.2017.10 – reference: Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, Real-Time Object Detection. In: CVPR. https://doi.org/10.1109/CVPR.2016.91 – reference: Zhu Y, Jiang S, Li X (2017) Visual relationship detection with object spatial distribution. In: ICME – ident: 9001_CR10 doi: 10.1109/CVPR.2018.00872 – ident: 9001_CR32 doi: 10.1109/IJCNN.2019.8851814 – ident: 9001_CR42 doi: 10.1007/978-3-030-01219-9_20 – ident: 9001_CR1 doi: 10.1109/ICCV.2015.122 – ident: 9001_CR18 doi: 10.1109/CVPR.2017.766 – ident: 9001_CR8 doi: 10.1139/h11-025 – ident: 9001_CR28 doi: 10.1109/WACV45572.2020.9093605 – ident: 9001_CR15 – ident: 9001_CR40 – ident: 9001_CR38 doi: 10.1109/CVPR.2018.00717 – ident: 9001_CR4 doi: 10.1109/CVPR.2017.352 – volume: 75 start-page: 9025 issue: 15 year: 2016 ident: 9001_CR5 publication-title: Multimed Tools Appl doi: 10.1007/s11042-015-2757-4 – ident: 9001_CR26 – ident: 9001_CR11 doi: 10.1109/CVPR.2016.90 – ident: 9001_CR24 doi: 10.1109/CVPR.2017.10 – ident: 9001_CR7 doi: 10.24963/ijcai.2017/230 – ident: 9001_CR44 doi: 10.1109/CVPR.2018.00611 – ident: 9001_CR31 – ident: 9001_CR29 doi: 10.1109/ICME.2018.8486503 – ident: 9001_CR33 doi: 10.1109/CVPR.2015.7298682 – ident: 9001_CR6 doi: 10.1007/978-3-319-10590-1_4 – ident: 9001_CR9 doi: 10.1109/ICCV.2015.169 – ident: 9001_CR19 doi: 10.1609/aaai.v32i1.12274 – ident: 9001_CR13 doi: 10.18653/v1/P16-1228 – ident: 9001_CR20 doi: 10.1109/CVPR.2017.469 – ident: 9001_CR14 – ident: 9001_CR27 doi: 10.1109/ICCV.2017.554 – ident: 9001_CR37 – ident: 9001_CR39 – ident: 9001_CR12 – ident: 9001_CR35 – ident: 9001_CR16 – ident: 9001_CR21 doi: 10.1109/CVPR.2017.653 – ident: 9001_CR22 doi: 10.1007/978-3-319-46448-0_51 – ident: 9001_CR34 doi: 10.1016/j.infsof.2008.09.005 – ident: 9001_CR45 doi: 10.1109/ICME.2017.8019448 – ident: 9001_CR43 doi: 10.1109/ICCV.2017.121 – ident: 9001_CR2 doi: 10.1109/CVPR.2015.7299054 – ident: 9001_CR23 – ident: 9001_CR25 doi: 10.1162/153244303322533223 – ident: 9001_CR17 doi: 10.1007/s11263-016-0981-7 – volume: 9 start-page: 2579 year: 2008 ident: 9001_CR36 publication-title: Journal of Machine Learning Research – ident: 9001_CR41 doi: 10.1109/CVPR.2017.330 – ident: 9001_CR3 doi: 10.1109/CVPR.2016.130 – ident: 9001_CR30 doi: 10.1109/CVPR.2016.91 |
SSID | ssj0016524 |
Score | 2.247168 |
Snippet | Relations between objects drive our understanding of images. Modelling them poses several challenges due to the combinatorial nature of the problem and the... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 22465 |
SubjectTerms | Combinatorial analysis Computer Communication Networks Computer Science Computer Vision and Pattern Recognition Data Structures and Information Theory Modelling Multimedia Multimedia Information Systems Neural networks Object recognition Prototypes Special Purpose and Application-Based Systems Training |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5svejBR1WMVlnEmwaS3WSTHINYiqgnC70t2UfQSypN2t_vTpptq-jBY8iyC7OP-eb1DcAtSxVVaVT4SZYZP9LSvoMmLnxVlipIFUsChRHdl1c-nkRP03jaFYXVLtvdhSTbl3pT7BZiKQmaO0GGiUC8B7sx2u72FE9ovo4d8LhrZZsGvtWHYVcq8_sc39RR7x2TIbeQ5o_gaKtzRkdw0IFFkq929xh2TDWAQ9eIgXT3cgD7W6yCJ5Bjf7OWapvMXaobQX8rQVKGGTpda2KxKll-1As7vRtEtGnaxKzqFCajx7eHsd91SvAVC6LGT3SSJNzaIiosmbFfsggKXUZKWkDHioRJRhVS-xW85IzrGHn6TKBYLA3Fto1n0K9mlTkHYg0uzY3OFI1lJHUowyCjmnGEQpwl0oM7JzDxuSLEEBvqYxSvsOIVrXgF9-DGynQ9ELmsx_mzUKYQFktaUymNl6EHQydy0d2gWlAkokNdyTy4d9uw-f33khf_G34JexTTVFrHyhD6zXxhrizOaOR1e6y-AI67xuA priority: 102 providerName: Springer Nature |
Title | Modelling relations with prototypes for visual relation detection |
URI | https://link.springer.com/article/10.1007/s11042-020-09001-6 https://www.proquest.com/docview/2548029903 https://cea.hal.science/cea-04575385 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JT4QwFH5xnIse3I24TBrjTYlAocDJoJklbjHGSfTU0IXoZWYc0N9vH1Nm1ESPQAPJK3393tLvAzihiQxkEuZunKbaDZUwflBHuSuLQnqJpLEnsaJ7d88Gw_D6OXq2CbfStlU2PrF21GosMUd-HiAxGfpOejF5d1E1CqurVkKjBW3jghMTfLUvu_cPj_M6AousrG3iuWZv9O2xmdnhOR-PpmD45KXYWMR-bE2tV2yM_IY6fxVK6_2ntwFrFjiSbDbTm7CkR1uw3ogyELtGt2D1G8PgNmSodVbTbpNp0_ZGMPdKkKBhjAnYkhjcSj7fyg_z-mYQUbqqm7RGOzDsdZ-uBq5VTXAl9cLKjVUcx8zEJdIvqDZXIvdyVYRSGHBH85gKGkik-ctZwShTEXL2aU_SSOgAJRx3YXk0Huk9ICb4UkyrVAaRCIXyhe-lgaIMYRGjsXDgtDEYn8zIMfiCBhnNy415eW1ezhw4NjadD0Re60F2y6XOucGVJmxKok_fgcPG5NyuppIv5t6Bs2YaFo___uT-_287gJUAW1TqpMohLFfTD31kMEYlOtBKev0OtLP-y023Y38rc3cYZF9AIM7k |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BOLQceKStCE3LqmpPrVV7117bB1RFLSGUJCeQuC3ehwWXBEgI4k_xGzvjeJO0UrlxtGytpdnZ2W9e3wB8FpnhJouLIM1zF8RWox10SRGYsjRhZkQaGsroDoaydx7_vkgu1uDJ98JQWaW3iZWhtmNDMfLvnIjJyHaKHze3AU2NouyqH6ExV4tT9_iALtvk8OQX7u8XzrtHZz97QT1VIDDouk-D1KZpKhG3m6gUDp90ERa2jI1G8COKVGjBDdHgFbKUQtqEOO1caESiHacRh7juOmzEQuR0orLu8SJrIZN6iG4WBngTR3WTzrxVL6JGGHLWwpzKmORfF-H6FZVhrmDcf9Ky1W3X3YGtGqayzlyvdmHNjZqw7UdAsNoiNGFzhc_wDXRoslpF8s3ufJEdo0gvIzqIMYV7JwxRMptdT-5xef8Rs25alYSN3sL5i0jzHTRG45HbA4aunpXO5oYnOtY20lGYcyskgTApUt2Cr15g6mZOxaGWpMskXoXiVZV4lWzBJ5Tp4kNi0e51-sq4QiGKRSctS2ZRC9pe5Ko-uxO11LQWfPPbsHz9_1_uP7_aAbzqnQ36qn8yPH0PrzkVx1ThnDY0pnf37gOim6n-WKkUg8uX1uE_yhgF8g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIlXtAQot6lIoVlVObURiJ3ZyQGgprJYCK1QViZuJHxG97NJ9gPhr_XXMZGOWVmpvHKNYjjSejL95fQPwSeSW2zwtI1UUPkqdQTvoszKyVWXj3AoVW8ronvVl7yL9dpldLsDv0AtDZZXBJtaG2g0txch3ORGTke0Uu1VTFnF-2N2_-RXRBCnKtIZxGjMVOfH3d-i-jfeOD_GsdzjvHv342ouaCQORRTd-EimnlJKI4W1SCY9PpoxLV6XWIBASpRJGcEuUeKWspJAuI347H1uRGc9p3CHuuwhLCr2iuAVLB0f98--POQyZNSN18zjCezlpWnZmjXsJtcWQ6xYXVNQk_7gWF6-pKPMJ4v0rSVvffd3XsNyAVtaZadkqLPjBGqyEgRCssQ9r8OoJu-Eb6NCctZrym41CyR2juC8jcoghBX_HDDEzu_05nuL2YRFzflIXiA3ewsWzyHMdWoPhwL8Dho6fk94VlmcmNS4xSVxwJyRBMimUacPnIDB9MyPm0HMKZhKvRvHqWrxatuEjyvRxIXFq9zqn2vpSI6ZFly3PbpM2bAaR6-ZPHuu53rXhSziG-et_f3Lj_7ttwwvUX3163D95Dy85VcrUsZ1NaE1GU7-FUGdiPjQ6xeDqudX4AaATC4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+relations+with+prototypes+for+visual+relation+detection&rft.jtitle=Multimedia+tools+and+applications&rft.au=Plesse%2C+Fran%C3%A7ois&rft.au=Ginsca%2C+Alexandru&rft.au=Delezoide%2C+Bertrand&rft.au=Pr%C3%AAteux%2C+Fran%C3%A7oise&rft.date=2021-06-01&rft.pub=Springer+Verlag&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=15&rft.spage=22465&rft.epage=22486&rft_id=info:doi/10.1007%2Fs11042-020-09001-6&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_cea_04575385v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |