Modelling relations with prototypes for visual relation detection

Relations between objects drive our understanding of images. Modelling them poses several challenges due to the combinatorial nature of the problem and the complex structure of natural language. This paper tackles the task of predicting relationships in the form of (subject, relation, object) triple...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 15; pp. 22465 - 22486
Main Authors Plesse, François, Ginsca, Alexandru, Delezoide, Bertrand, Prêteux, Françoise
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2021
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Relations between objects drive our understanding of images. Modelling them poses several challenges due to the combinatorial nature of the problem and the complex structure of natural language. This paper tackles the task of predicting relationships in the form of (subject, relation, object) triplets from still images. To address these issues, we propose a framework for learning relation prototypes that aims to capture the complex nature of relation distributions. Concurrently, a network is trained to define a space in which relationship triplets with similar spatial layouts, interacting objects and relations are clustered together. Finally, the network is compared to two models explicitly tackling the problem of synonymy among relations. For this, two well known scene-graph labelling benchmarks are used for training and testing: VRD and Visual Genome. Prediction of relations based on distance to prototype provides a significant increase in the diversity of predicted relations, improving the average relation recall from 40.3% to 41.7% on the first and 31.3% to 35.4% on the second.
AbstractList Relations between objects drive our understanding of images. Modelling them poses several challenges due to the combinatorial nature of the problem and the complex structure of natural language. This paper tackles the task of predicting relationships in the form of (subject, relation, object) triplets from still images. To address these issues, we propose a framework for learning relation prototypes that aims to capture the complex nature of relation distributions. Concurrently, a network is trained to define a space in which relationship triplets with similar spatial layouts, interacting objects and relations are clustered together. Finally, the network is compared to two models explicitly tackling the problem of synonymy among relations. For this, two well known scene-graph labelling benchmarks are used for training and testing: VRD and Visual Genome. Prediction of relations based on distance to prototype provides a significant increase in the diversity of predicted relations, improving the average relation recall from 40.3% to 41.7% on the first and 31.3% to 35.4% on the second.
Author Prêteux, Françoise
Plesse, François
Ginsca, Alexandru
Delezoide, Bertrand
Author_xml – sequence: 1
  givenname: François
  orcidid: 0000-0002-8631-3758
  surname: Plesse
  fullname: Plesse, François
  email: francois.plesse@gmail.com
  organization: CEA, LIST, CERMICS, Ecole des Ponts
– sequence: 2
  givenname: Alexandru
  surname: Ginsca
  fullname: Ginsca, Alexandru
  organization: CEA, LIST
– sequence: 3
  givenname: Bertrand
  surname: Delezoide
  fullname: Delezoide, Bertrand
  organization: CEA, LIST
– sequence: 4
  givenname: Françoise
  surname: Prêteux
  fullname: Prêteux, Françoise
  organization: CERMICS, Ecole des Ponts
BackLink https://cea.hal.science/cea-04575385$$DView record in HAL
BookMark eNp9kE9PAjEQxRuDiYB-AU-bePJQnf6HIyEqJhgvem663S4sWbfYFgzf3uIavHmaN8nvvcy8ERp0vnMIXRO4IwDqPhICnGKggGEKQLA8Q0MiFMNKUTLImk0AKwHkAo1i3GRECsqHaPbiK9e2TbcqgmtNanwXi68mrYtt8Mmnw9bFovah2DdxZ9oTVFQuOXtUl-i8Nm10V79zjN4fH97mC7x8fXqez5bYMuAJq0opJSVIS2rm8lYaMFXNbUkkYUaxklHLuRJG1pLJSjBFuAPLROkoKMbG6LbPXZtWb0PzYcJBe9PoxWyprTMauFCCTcSeZPamZ_MTnzsXk974XejyeZoKPgE6ncIxkfaUDT7G4OpTLAF9rFX3tepcq_6pVctsYr0pZrhbufAX_Y_rG9pxeuo
Cites_doi 10.1109/CVPR.2018.00872
10.1109/IJCNN.2019.8851814
10.1007/978-3-030-01219-9_20
10.1109/ICCV.2015.122
10.1109/CVPR.2017.766
10.1139/h11-025
10.1109/WACV45572.2020.9093605
10.1109/CVPR.2018.00717
10.1109/CVPR.2017.352
10.1007/s11042-015-2757-4
10.1109/CVPR.2016.90
10.1109/CVPR.2017.10
10.24963/ijcai.2017/230
10.1109/CVPR.2018.00611
10.1109/ICME.2018.8486503
10.1109/CVPR.2015.7298682
10.1007/978-3-319-10590-1_4
10.1109/ICCV.2015.169
10.1609/aaai.v32i1.12274
10.18653/v1/P16-1228
10.1109/CVPR.2017.469
10.1109/ICCV.2017.554
10.1109/CVPR.2017.653
10.1007/978-3-319-46448-0_51
10.1016/j.infsof.2008.09.005
10.1109/ICME.2017.8019448
10.1109/ICCV.2017.121
10.1109/CVPR.2015.7299054
10.1162/153244303322533223
10.1007/s11263-016-0981-7
10.1109/CVPR.2017.330
10.1109/CVPR.2016.130
10.1109/CVPR.2016.91
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
1XC
DOI 10.1007/s11042-020-09001-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 22486
ExternalDocumentID oai_HAL_cea_04575385v1
10_1007_s11042_020_09001_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
1XC
ID FETCH-LOGICAL-c304t-7d7776606c1f3e7d7ba0adf4cb1613a73b32c4475a6f636d53714e0c35be20733
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Thu Jul 10 07:47:08 EDT 2025
Sat Jul 26 00:02:55 EDT 2025
Tue Jul 01 04:13:05 EDT 2025
Fri Feb 21 02:48:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Visual relation detection
Synonyms
Prototype
Nearest neighbors
Metric learning
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c304t-7d7776606c1f3e7d7ba0adf4cb1613a73b32c4475a6f636d53714e0c35be20733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8631-3758
PQID 2548029903
PQPubID 54626
PageCount 22
ParticipantIDs hal_primary_oai_HAL_cea_04575385v1
proquest_journals_2548029903
crossref_primary_10_1007_s11042_020_09001_6
springer_journals_10_1007_s11042_020_09001_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Herzig R, Raboh M, Chechik G, Berant J, Globerson A (2018) Mapping images to scene graphs with Permutation-Invariant structured prediction. In: NIPS
Johnson J, Douze M, Jégou H Billion-scale similarity search with GPUs
Zhu Y, Jiang S, Li X (2017) Visual relationship detection with object spatial distribution. In: ICME
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR
Chao YW, Wang Z, He Y, Wang J, Deng J (2015) HICO: A benchmark for recognizing human-object interactions in images. In: ICCV. https://doi.org/10.1109/ICCV.2015.122
Girshick R (2015) Fast r-CNN. In: ICCV
Zellers R, Yatskar M, Thomson S, Choi Y (2018) Neural motifs: Scene graph parsing with global context. In: CVPR
Deng J, Ding N, Jia Y, Frome A, Murphy K, Bengio S, Li Y, Neven H, Adam H (2014) Large-Scale Object classification using label relation graphs. In: European conference on computer vision
Yin G, Sheng L, Liu B, Yu N, Wang X, Shao J, Loy CC (2018) Zoom-Net: Mining Deep feature interactions for visual relationship recognition. In: ECCV
Speer R, Havasi C (2012) Representing General Relational Knowledge in ConceptNet 5. In: LREC
Van Der MaatenLHintonGVisualizing Data using t-SNEJournal of Machine Learning Research20089257926051225.68219
Plesse F, Ginsca A, Delezoide B, Prêteux F (2020) Focusing visual relation detection on relevant relations with prior potentials. In: WACV
Dai B, Zhang Y, Lin D (2017) Detecting visual relationships with deep relational networks. In: CVPR. https://doi.org/10.1109/CVPR.2017.352
Krishna R, Zhu Y, Groth O, Johnson J, Hata K, Kravitz J, Chen S, Kalantidis Y, Li LJ, Shamma DA, Bernstein M, Fei-Fei L (2016) Visual genome: Connecting language and vision using crowdsourced dense image annotations. https://doi.org/10.1007/s11263-016-0981-7
Sarullo A, Mu T (2019) On Class Imbalance and Background Filtering in Visual Relationship Detection
Peyre J, Laptev I, Schmid C, Sivic J (2017) Weakly-supervised learning of visual relations. In: ICCV
Lu C, Krishna R, Bernstein M, Fei-Fei L (2016) Visual relationship detection with language priors. In: ECCV. https://doi.org/10.1007/978-3-319-46448-0_51
Koch G, Zemel R, Salakhutdinov R Siamese Neural Networks for One-shot Image Recognition. Technical report. https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
Newell A, Deng J (2017) Pixels to graphs by associative embedding. In: NIPS
Kaiser L, Nachum O, Roy A, Bengio S (2017) Learning to remember rare events. In: ICLR
Long Y, Liu L, Shao L, Shen F, Ding G, Han J (2017) From zero-shot learning to conventional supervised classification: Unseen visual data synthesis. In: CVPR. https://doi.org/10.1109/CVPR.2017.653
Cui Y, Zhou F, Lin Y, Belongie S (2016) Fine-grained Categorization and Dataset Bootstrapping using Deep Metric Learning with Humans in the Loop. In: CVPR
Mikolov T, Corrado G, Chen K, Dean J (2013) Efficient estimation of word representations in vector space. In: ICLR. https://doi.org/10.1162/153244303322533223
Fang Y, Kuan K, Lin J, Tan C, Chandrasekhar V (2017) Object detection meets knowledge graphs. IJCAI, pp 1661–1667
Vinyals O, Deepmind G, Blundell C, Lillicrap T, Kavukcuoglu K, Wierstra D (2016) Matching networks for one shot learning. In: NIPS
Simonyan K, Zisserman A (2015) Very deep convolutional networks for Large-Scale image recognition. In: ICLR. https://doi.org/10.1016/j.infsof.2008.09.005
Hu Z, Ma X, Liu Z, Hovy E, Xing E (2016) Harnessing deep neural networks with logic rules. In: ACL. https://doi.org/10.18653/v1/P16-1228
Li Y, Ouyang W, Wang X, Tang X (2017) Vip-CNN: Visual Phrase Guided Convolutional Neural Network. In: CVPR. https://doi.org/10.1109/CVPR.2017.766
Macqueen J (1967) Some methods for classification and analysis of multivariate observations. In: Fifth berkeley symposium on mathematical statistics and probability
Woo S, Kim D, Daejeon K, Cho DE, So Kweon IE (2018) LinkNet: Relational Embedding for Scene Graph. In: NIPS. arXiv:1811.06410.pdf
Plesse F, Ginsca A, Delezoide B, Prêteux F (2018) Visual relationship detection based on guided proposals and semantic knowledge distillation. In: ICME
Yu R, Li A, Morariu VI, Davis LS (2017) Visual relationship detection with internal and external linguistic knowledge distillation. In: ICCV
Chao YW, Wang Z, Mihalcea R, Deng J (2015) Mining semantic affordances of visual object categories. In: CVPR. https://doi.org/10.1109/CVPR.2015.7299054
Marino K, Salakhutdinov R, Gupta A (2017) The more you know: Using knowledge graphs for image classification. In: CVPR. https://doi.org/10.1109/CVPR.2017.10
Wang X, Ye Y, Gupta A (2018) Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs. In: CVPR
Gkioxari G, Girshick R, Dollár P, He K (2018) Detecting and recognizing Human-Object interactions. In: CVPR
Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, Real-Time Object Detection. In: CVPR. https://doi.org/10.1109/CVPR.2016.91
Schroff F, Philbin J (2015) Facenet: A Unified Embedding for Face Recognition and Clustering. In: CVPR
Fellbaum C (1998) Wordnet: An Electronic Lexical database, vol 71. Bradford Books. https://doi.org/10.1139/h11-025
Ren S, He K, Girshick R, Sun J (2015) Faster r-CNN: Towards Real-Time object detection with region proposal networks. In: NIPS
Xu D, Zhu Y, Choy CB, Fei-Fei L (2017) Scene graph generation by iterative message passing. In: CVPR. https://doi.org/10.1109/CVPR.2017.330
de BoerMSchutteKKraaijWKnowledge based query expansion in complex multimedia event detectionMultimed Tools Appl201675159025904310.1007/s11042-015-2757-4https://doi.org/10.1007/s11042-015-2757-4
Liang K, Guo Y, Chang H, Chen X (2018) Visual relationship detection with deep structural ranking. In: AAAI
Liang X, Lee L, Xing EP (2017) Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection. In: CVPR. 10.1109/CVPR.2017.469. arXiv:1703.03054
Weinberger KQ, Blitzer J, Saul LK (2009) Distance metric learning for large margin nearest neighbor classification journal of machine learning research
9001_CR13
9001_CR35
M de Boer (9001_CR5) 2016; 75
9001_CR14
9001_CR15
9001_CR37
9001_CR16
9001_CR38
9001_CR17
9001_CR39
9001_CR18
9001_CR19
9001_CR30
9001_CR31
9001_CR10
9001_CR32
9001_CR11
9001_CR33
9001_CR12
9001_CR34
9001_CR7
9001_CR6
9001_CR9
9001_CR8
9001_CR24
9001_CR25
9001_CR26
9001_CR27
9001_CR28
9001_CR29
9001_CR3
9001_CR2
L Van Der Maaten (9001_CR36) 2008; 9
9001_CR40
9001_CR4
9001_CR41
9001_CR20
9001_CR42
9001_CR21
9001_CR43
9001_CR1
9001_CR22
9001_CR44
9001_CR23
9001_CR45
References_xml – reference: Newell A, Deng J (2017) Pixels to graphs by associative embedding. In: NIPS
– reference: Long Y, Liu L, Shao L, Shen F, Ding G, Han J (2017) From zero-shot learning to conventional supervised classification: Unseen visual data synthesis. In: CVPR. https://doi.org/10.1109/CVPR.2017.653
– reference: Johnson J, Douze M, Jégou H Billion-scale similarity search with GPUs
– reference: Zellers R, Yatskar M, Thomson S, Choi Y (2018) Neural motifs: Scene graph parsing with global context. In: CVPR
– reference: Schroff F, Philbin J (2015) Facenet: A Unified Embedding for Face Recognition and Clustering. In: CVPR
– reference: Gkioxari G, Girshick R, Dollár P, He K (2018) Detecting and recognizing Human-Object interactions. In: CVPR
– reference: Cui Y, Zhou F, Lin Y, Belongie S (2016) Fine-grained Categorization and Dataset Bootstrapping using Deep Metric Learning with Humans in the Loop. In: CVPR
– reference: Deng J, Ding N, Jia Y, Frome A, Murphy K, Bengio S, Li Y, Neven H, Adam H (2014) Large-Scale Object classification using label relation graphs. In: European conference on computer vision
– reference: Macqueen J (1967) Some methods for classification and analysis of multivariate observations. In: Fifth berkeley symposium on mathematical statistics and probability
– reference: Vinyals O, Deepmind G, Blundell C, Lillicrap T, Kavukcuoglu K, Wierstra D (2016) Matching networks for one shot learning. In: NIPS
– reference: Plesse F, Ginsca A, Delezoide B, Prêteux F (2020) Focusing visual relation detection on relevant relations with prior potentials. In: WACV
– reference: Simonyan K, Zisserman A (2015) Very deep convolutional networks for Large-Scale image recognition. In: ICLR. https://doi.org/10.1016/j.infsof.2008.09.005
– reference: Van Der MaatenLHintonGVisualizing Data using t-SNEJournal of Machine Learning Research20089257926051225.68219
– reference: Lu C, Krishna R, Bernstein M, Fei-Fei L (2016) Visual relationship detection with language priors. In: ECCV. https://doi.org/10.1007/978-3-319-46448-0_51
– reference: Krishna R, Zhu Y, Groth O, Johnson J, Hata K, Kravitz J, Chen S, Kalantidis Y, Li LJ, Shamma DA, Bernstein M, Fei-Fei L (2016) Visual genome: Connecting language and vision using crowdsourced dense image annotations. https://doi.org/10.1007/s11263-016-0981-7
– reference: Sarullo A, Mu T (2019) On Class Imbalance and Background Filtering in Visual Relationship Detection
– reference: Chao YW, Wang Z, Mihalcea R, Deng J (2015) Mining semantic affordances of visual object categories. In: CVPR. https://doi.org/10.1109/CVPR.2015.7299054
– reference: Plesse F, Ginsca A, Delezoide B, Prêteux F (2018) Visual relationship detection based on guided proposals and semantic knowledge distillation. In: ICME
– reference: Xu D, Zhu Y, Choy CB, Fei-Fei L (2017) Scene graph generation by iterative message passing. In: CVPR. https://doi.org/10.1109/CVPR.2017.330
– reference: Yu R, Li A, Morariu VI, Davis LS (2017) Visual relationship detection with internal and external linguistic knowledge distillation. In: ICCV
– reference: Girshick R (2015) Fast r-CNN. In: ICCV
– reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR
– reference: Hu Z, Ma X, Liu Z, Hovy E, Xing E (2016) Harnessing deep neural networks with logic rules. In: ACL. https://doi.org/10.18653/v1/P16-1228
– reference: Mikolov T, Corrado G, Chen K, Dean J (2013) Efficient estimation of word representations in vector space. In: ICLR. https://doi.org/10.1162/153244303322533223
– reference: Peyre J, Laptev I, Schmid C, Sivic J (2017) Weakly-supervised learning of visual relations. In: ICCV
– reference: Fang Y, Kuan K, Lin J, Tan C, Chandrasekhar V (2017) Object detection meets knowledge graphs. IJCAI, pp 1661–1667
– reference: Weinberger KQ, Blitzer J, Saul LK (2009) Distance metric learning for large margin nearest neighbor classification journal of machine learning research
– reference: Ren S, He K, Girshick R, Sun J (2015) Faster r-CNN: Towards Real-Time object detection with region proposal networks. In: NIPS
– reference: Woo S, Kim D, Daejeon K, Cho DE, So Kweon IE (2018) LinkNet: Relational Embedding for Scene Graph. In: NIPS. arXiv:1811.06410.pdf
– reference: Dai B, Zhang Y, Lin D (2017) Detecting visual relationships with deep relational networks. In: CVPR. https://doi.org/10.1109/CVPR.2017.352
– reference: Koch G, Zemel R, Salakhutdinov R Siamese Neural Networks for One-shot Image Recognition. Technical report. https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
– reference: Wang X, Ye Y, Gupta A (2018) Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs. In: CVPR
– reference: Yin G, Sheng L, Liu B, Yu N, Wang X, Shao J, Loy CC (2018) Zoom-Net: Mining Deep feature interactions for visual relationship recognition. In: ECCV
– reference: Herzig R, Raboh M, Chechik G, Berant J, Globerson A (2018) Mapping images to scene graphs with Permutation-Invariant structured prediction. In: NIPS
– reference: Liang K, Guo Y, Chang H, Chen X (2018) Visual relationship detection with deep structural ranking. In: AAAI
– reference: de BoerMSchutteKKraaijWKnowledge based query expansion in complex multimedia event detectionMultimed Tools Appl201675159025904310.1007/s11042-015-2757-4https://doi.org/10.1007/s11042-015-2757-4
– reference: Li Y, Ouyang W, Wang X, Tang X (2017) Vip-CNN: Visual Phrase Guided Convolutional Neural Network. In: CVPR. https://doi.org/10.1109/CVPR.2017.766
– reference: Fellbaum C (1998) Wordnet: An Electronic Lexical database, vol 71. Bradford Books. https://doi.org/10.1139/h11-025
– reference: Chao YW, Wang Z, He Y, Wang J, Deng J (2015) HICO: A benchmark for recognizing human-object interactions in images. In: ICCV. https://doi.org/10.1109/ICCV.2015.122
– reference: Kaiser L, Nachum O, Roy A, Bengio S (2017) Learning to remember rare events. In: ICLR
– reference: Speer R, Havasi C (2012) Representing General Relational Knowledge in ConceptNet 5. In: LREC
– reference: Liang X, Lee L, Xing EP (2017) Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection. In: CVPR. 10.1109/CVPR.2017.469. arXiv:1703.03054
– reference: Marino K, Salakhutdinov R, Gupta A (2017) The more you know: Using knowledge graphs for image classification. In: CVPR. https://doi.org/10.1109/CVPR.2017.10
– reference: Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, Real-Time Object Detection. In: CVPR. https://doi.org/10.1109/CVPR.2016.91
– reference: Zhu Y, Jiang S, Li X (2017) Visual relationship detection with object spatial distribution. In: ICME
– ident: 9001_CR10
  doi: 10.1109/CVPR.2018.00872
– ident: 9001_CR32
  doi: 10.1109/IJCNN.2019.8851814
– ident: 9001_CR42
  doi: 10.1007/978-3-030-01219-9_20
– ident: 9001_CR1
  doi: 10.1109/ICCV.2015.122
– ident: 9001_CR18
  doi: 10.1109/CVPR.2017.766
– ident: 9001_CR8
  doi: 10.1139/h11-025
– ident: 9001_CR28
  doi: 10.1109/WACV45572.2020.9093605
– ident: 9001_CR15
– ident: 9001_CR40
– ident: 9001_CR38
  doi: 10.1109/CVPR.2018.00717
– ident: 9001_CR4
  doi: 10.1109/CVPR.2017.352
– volume: 75
  start-page: 9025
  issue: 15
  year: 2016
  ident: 9001_CR5
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-015-2757-4
– ident: 9001_CR26
– ident: 9001_CR11
  doi: 10.1109/CVPR.2016.90
– ident: 9001_CR24
  doi: 10.1109/CVPR.2017.10
– ident: 9001_CR7
  doi: 10.24963/ijcai.2017/230
– ident: 9001_CR44
  doi: 10.1109/CVPR.2018.00611
– ident: 9001_CR31
– ident: 9001_CR29
  doi: 10.1109/ICME.2018.8486503
– ident: 9001_CR33
  doi: 10.1109/CVPR.2015.7298682
– ident: 9001_CR6
  doi: 10.1007/978-3-319-10590-1_4
– ident: 9001_CR9
  doi: 10.1109/ICCV.2015.169
– ident: 9001_CR19
  doi: 10.1609/aaai.v32i1.12274
– ident: 9001_CR13
  doi: 10.18653/v1/P16-1228
– ident: 9001_CR20
  doi: 10.1109/CVPR.2017.469
– ident: 9001_CR14
– ident: 9001_CR27
  doi: 10.1109/ICCV.2017.554
– ident: 9001_CR37
– ident: 9001_CR39
– ident: 9001_CR12
– ident: 9001_CR35
– ident: 9001_CR16
– ident: 9001_CR21
  doi: 10.1109/CVPR.2017.653
– ident: 9001_CR22
  doi: 10.1007/978-3-319-46448-0_51
– ident: 9001_CR34
  doi: 10.1016/j.infsof.2008.09.005
– ident: 9001_CR45
  doi: 10.1109/ICME.2017.8019448
– ident: 9001_CR43
  doi: 10.1109/ICCV.2017.121
– ident: 9001_CR2
  doi: 10.1109/CVPR.2015.7299054
– ident: 9001_CR23
– ident: 9001_CR25
  doi: 10.1162/153244303322533223
– ident: 9001_CR17
  doi: 10.1007/s11263-016-0981-7
– volume: 9
  start-page: 2579
  year: 2008
  ident: 9001_CR36
  publication-title: Journal of Machine Learning Research
– ident: 9001_CR41
  doi: 10.1109/CVPR.2017.330
– ident: 9001_CR3
  doi: 10.1109/CVPR.2016.130
– ident: 9001_CR30
  doi: 10.1109/CVPR.2016.91
SSID ssj0016524
Score 2.247168
Snippet Relations between objects drive our understanding of images. Modelling them poses several challenges due to the combinatorial nature of the problem and the...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 22465
SubjectTerms Combinatorial analysis
Computer Communication Networks
Computer Science
Computer Vision and Pattern Recognition
Data Structures and Information Theory
Modelling
Multimedia
Multimedia Information Systems
Neural networks
Object recognition
Prototypes
Special Purpose and Application-Based Systems
Training
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5svejBR1WMVlnEmwaS3WSTHINYiqgnC70t2UfQSypN2t_vTpptq-jBY8iyC7OP-eb1DcAtSxVVaVT4SZYZP9LSvoMmLnxVlipIFUsChRHdl1c-nkRP03jaFYXVLtvdhSTbl3pT7BZiKQmaO0GGiUC8B7sx2u72FE9ovo4d8LhrZZsGvtWHYVcq8_sc39RR7x2TIbeQ5o_gaKtzRkdw0IFFkq929xh2TDWAQ9eIgXT3cgD7W6yCJ5Bjf7OWapvMXaobQX8rQVKGGTpda2KxKll-1As7vRtEtGnaxKzqFCajx7eHsd91SvAVC6LGT3SSJNzaIiosmbFfsggKXUZKWkDHioRJRhVS-xW85IzrGHn6TKBYLA3Fto1n0K9mlTkHYg0uzY3OFI1lJHUowyCjmnGEQpwl0oM7JzDxuSLEEBvqYxSvsOIVrXgF9-DGynQ9ELmsx_mzUKYQFktaUymNl6EHQydy0d2gWlAkokNdyTy4d9uw-f33khf_G34JexTTVFrHyhD6zXxhrizOaOR1e6y-AI67xuA
  priority: 102
  providerName: Springer Nature
Title Modelling relations with prototypes for visual relation detection
URI https://link.springer.com/article/10.1007/s11042-020-09001-6
https://www.proquest.com/docview/2548029903
https://cea.hal.science/cea-04575385
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JT4QwFH5xnIse3I24TBrjTYlAocDJoJklbjHGSfTU0IXoZWYc0N9vH1Nm1ESPQAPJK3393tLvAzihiQxkEuZunKbaDZUwflBHuSuLQnqJpLEnsaJ7d88Gw_D6OXq2CbfStlU2PrF21GosMUd-HiAxGfpOejF5d1E1CqurVkKjBW3jghMTfLUvu_cPj_M6AousrG3iuWZv9O2xmdnhOR-PpmD45KXYWMR-bE2tV2yM_IY6fxVK6_2ntwFrFjiSbDbTm7CkR1uw3ogyELtGt2D1G8PgNmSodVbTbpNp0_ZGMPdKkKBhjAnYkhjcSj7fyg_z-mYQUbqqm7RGOzDsdZ-uBq5VTXAl9cLKjVUcx8zEJdIvqDZXIvdyVYRSGHBH85gKGkik-ctZwShTEXL2aU_SSOgAJRx3YXk0Huk9ICb4UkyrVAaRCIXyhe-lgaIMYRGjsXDgtDEYn8zIMfiCBhnNy415eW1ezhw4NjadD0Re60F2y6XOucGVJmxKok_fgcPG5NyuppIv5t6Bs2YaFo___uT-_287gJUAW1TqpMohLFfTD31kMEYlOtBKev0OtLP-y023Y38rc3cYZF9AIM7k
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BOLQceKStCE3LqmpPrVV7117bB1RFLSGUJCeQuC3ehwWXBEgI4k_xGzvjeJO0UrlxtGytpdnZ2W9e3wB8FpnhJouLIM1zF8RWox10SRGYsjRhZkQaGsroDoaydx7_vkgu1uDJ98JQWaW3iZWhtmNDMfLvnIjJyHaKHze3AU2NouyqH6ExV4tT9_iALtvk8OQX7u8XzrtHZz97QT1VIDDouk-D1KZpKhG3m6gUDp90ERa2jI1G8COKVGjBDdHgFbKUQtqEOO1caESiHacRh7juOmzEQuR0orLu8SJrIZN6iG4WBngTR3WTzrxVL6JGGHLWwpzKmORfF-H6FZVhrmDcf9Ky1W3X3YGtGqayzlyvdmHNjZqw7UdAsNoiNGFzhc_wDXRoslpF8s3ufJEdo0gvIzqIMYV7JwxRMptdT-5xef8Rs25alYSN3sL5i0jzHTRG45HbA4aunpXO5oYnOtY20lGYcyskgTApUt2Cr15g6mZOxaGWpMskXoXiVZV4lWzBJ5Tp4kNi0e51-sq4QiGKRSctS2ZRC9pe5Ko-uxO11LQWfPPbsHz9_1_uP7_aAbzqnQ36qn8yPH0PrzkVx1ThnDY0pnf37gOim6n-WKkUg8uX1uE_yhgF8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIlXtAQot6lIoVlVObURiJ3ZyQGgprJYCK1QViZuJHxG97NJ9gPhr_XXMZGOWVmpvHKNYjjSejL95fQPwSeSW2zwtI1UUPkqdQTvoszKyVWXj3AoVW8ronvVl7yL9dpldLsDv0AtDZZXBJtaG2g0txch3ORGTke0Uu1VTFnF-2N2_-RXRBCnKtIZxGjMVOfH3d-i-jfeOD_GsdzjvHv342ouaCQORRTd-EimnlJKI4W1SCY9PpoxLV6XWIBASpRJGcEuUeKWspJAuI347H1uRGc9p3CHuuwhLCr2iuAVLB0f98--POQyZNSN18zjCezlpWnZmjXsJtcWQ6xYXVNQk_7gWF6-pKPMJ4v0rSVvffd3XsNyAVtaZadkqLPjBGqyEgRCssQ9r8OoJu-Eb6NCctZrym41CyR2juC8jcoghBX_HDDEzu_05nuL2YRFzflIXiA3ewsWzyHMdWoPhwL8Dho6fk94VlmcmNS4xSVxwJyRBMimUacPnIDB9MyPm0HMKZhKvRvHqWrxatuEjyvRxIXFq9zqn2vpSI6ZFly3PbpM2bAaR6-ZPHuu53rXhSziG-et_f3Lj_7ttwwvUX3163D95Dy85VcrUsZ1NaE1GU7-FUGdiPjQ6xeDqudX4AaATC4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+relations+with+prototypes+for+visual+relation+detection&rft.jtitle=Multimedia+tools+and+applications&rft.au=Plesse%2C+Fran%C3%A7ois&rft.au=Ginsca%2C+Alexandru&rft.au=Delezoide%2C+Bertrand&rft.au=Pr%C3%AAteux%2C+Fran%C3%A7oise&rft.date=2021-06-01&rft.pub=Springer+Verlag&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=15&rft.spage=22465&rft.epage=22486&rft_id=info:doi/10.1007%2Fs11042-020-09001-6&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_cea_04575385v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon