Computational insights into the reactivity for the [2+5] cycloaddition reactions of norbornene-linked group 14 element/P-based and Si/group 15 element-based frustrated Lewis pairs with benzaldehyde

The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based (G14 = group 14 element) and Si/G15-based (G15 = group 14 element) frustrated Lewis pair (FLP)-type molecules with benzaldehyde were theoretica...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 25; no. 1; pp. 7423 - 7435
Main Authors Zhang, Zheng-Feng, Su, Ming-Der
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 08.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based (G14 = group 14 element) and Si/G15-based (G15 = group 14 element) frustrated Lewis pair (FLP)-type molecules with benzaldehyde were theoretically examined via density functional theory and several sophisticated methods. The theoretical findings indicated that among the above nine norbornene-linked G14/G15-based FLPs, only the Si/N-Rea , Si/P-Rea , and Si/As-Rea FLP-assisted compounds can readily undergo cycloaddition reactions with doubly bonded organic systems from kinetic and thermodynamic viewpoints. The energy decomposition analysis showed that the bonding interactions between the norbornene-based G14/G15-FLPs and benzaldehyde are better described in terms of the singlet-singlet model (donor-acceptor model) rather than the triplet-triplet model (electron-sharing model). In particular, natural orbitals for chemical valence findings revealed that the forward bonding is the lone pair (G15) → p-π*(C) interaction, which is a significantly strong FLP-to-benzaldehyde interaction. However, the back-bonding is the p-π*(G14) ← lone-pair orbital(O) interaction, which is a weak benzaldehyde-to-FLP interaction. The analyses based on the activation strain model showed that the larger the atomic radius of either the G14(LA) or the G15(LB) atom, the greater the G14 G15 separation distance in the norbornene-based G14/G15-FLP molecule, the smaller the orbital overlaps between G14/G15-FLP and Ph(H)C&z.dbd;O, and the higher the activation barrier during its cycloaddition reaction with benzaldehyde. Only Si/P-based, Si/N-based, and Si/As-based FLPs can facilitate the [2+5] cycloaddition reaction with benzaldehyde both kinetically and thermodynamically.
AbstractList The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based (G14 = group 14 element) and Si/G15-based (G15 = group 14 element) frustrated Lewis pair (FLP)-type molecules with benzaldehyde were theoretically examined via density functional theory and several sophisticated methods. The theoretical findings indicated that among the above nine norbornene-linked G14/G15-based FLPs, only the Si/N-Rea, Si/P-Rea, and Si/As-Rea FLP-assisted compounds can readily undergo cycloaddition reactions with doubly bonded organic systems from kinetic and thermodynamic viewpoints. The energy decomposition analysis showed that the bonding interactions between the norbornene-based G14/G15-FLPs and benzaldehyde are better described in terms of the singlet–singlet model (donor–acceptor model) rather than the triplet–triplet model (electron-sharing model). In particular, natural orbitals for chemical valence findings revealed that the forward bonding is the lone pair (G15) → p–π*(C) interaction, which is a significantly strong FLP-to-benzaldehyde interaction. However, the back-bonding is the p–π*(G14) ← lone-pair orbital(O) interaction, which is a weak benzaldehyde-to-FLP interaction. The analyses based on the activation strain model showed that the larger the atomic radius of either the G14(LA) or the G15(LB) atom, the greater the G14⋯G15 separation distance in the norbornene-based G14/G15-FLP molecule, the smaller the orbital overlaps between G14/G15-FLP and Ph(H)C=O, and the higher the activation barrier during its cycloaddition reaction with benzaldehyde.
The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based (G14 = group 14 element) and Si/G15-based (G15 = group 14 element) frustrated Lewis pair (FLP)-type molecules with benzaldehyde were theoretically examined density functional theory and several sophisticated methods. The theoretical findings indicated that among the above nine norbornene-linked G14/G15-based FLPs, only the Si/N-Rea, Si/P-Rea, and Si/As-Rea FLP-assisted compounds can readily undergo cycloaddition reactions with doubly bonded organic systems from kinetic and thermodynamic viewpoints. The energy decomposition analysis showed that the bonding interactions between the norbornene-based G14/G15-FLPs and benzaldehyde are better described in terms of the singlet-singlet model (donor-acceptor model) rather than the triplet-triplet model (electron-sharing model). In particular, natural orbitals for chemical valence findings revealed that the forward bonding is the lone pair (G15) → p-π*(C) interaction, which is a significantly strong FLP-to-benzaldehyde interaction. However, the back-bonding is the p-π*(G14) ← lone-pair orbital(O) interaction, which is a weak benzaldehyde-to-FLP interaction. The analyses based on the activation strain model showed that the larger the atomic radius of either the G14(LA) or the G15(LB) atom, the greater the G14⋯G15 separation distance in the norbornene-based G14/G15-FLP molecule, the smaller the orbital overlaps between G14/G15-FLP and Ph(H)CO, and the higher the activation barrier during its cycloaddition reaction with benzaldehyde.
The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based (G14 = group 14 element) and Si/G15-based (G15 = group 14 element) frustrated Lewis pair (FLP)-type molecules with benzaldehyde were theoretically examined via density functional theory and several sophisticated methods. The theoretical findings indicated that among the above nine norbornene-linked G14/G15-based FLPs, only the Si/N-Rea , Si/P-Rea , and Si/As-Rea FLP-assisted compounds can readily undergo cycloaddition reactions with doubly bonded organic systems from kinetic and thermodynamic viewpoints. The energy decomposition analysis showed that the bonding interactions between the norbornene-based G14/G15-FLPs and benzaldehyde are better described in terms of the singlet-singlet model (donor-acceptor model) rather than the triplet-triplet model (electron-sharing model). In particular, natural orbitals for chemical valence findings revealed that the forward bonding is the lone pair (G15) → p-π*(C) interaction, which is a significantly strong FLP-to-benzaldehyde interaction. However, the back-bonding is the p-π*(G14) ← lone-pair orbital(O) interaction, which is a weak benzaldehyde-to-FLP interaction. The analyses based on the activation strain model showed that the larger the atomic radius of either the G14(LA) or the G15(LB) atom, the greater the G14 G15 separation distance in the norbornene-based G14/G15-FLP molecule, the smaller the orbital overlaps between G14/G15-FLP and Ph(H)C&z.dbd;O, and the higher the activation barrier during its cycloaddition reaction with benzaldehyde. Only Si/P-based, Si/N-based, and Si/As-based FLPs can facilitate the [2+5] cycloaddition reaction with benzaldehyde both kinetically and thermodynamically.
The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based (G14 = group 14 element) and Si/G15-based (G15 = group 14 element) frustrated Lewis pair (FLP)-type molecules with benzaldehyde were theoretically examined via density functional theory and several sophisticated methods. The theoretical findings indicated that among the above nine norbornene-linked G14/G15-based FLPs, only the Si/N-Rea, Si/P-Rea, and Si/As-Rea FLP-assisted compounds can readily undergo cycloaddition reactions with doubly bonded organic systems from kinetic and thermodynamic viewpoints. The energy decomposition analysis showed that the bonding interactions between the norbornene-based G14/G15-FLPs and benzaldehyde are better described in terms of the singlet–singlet model (donor–acceptor model) rather than the triplet–triplet model (electron-sharing model). In particular, natural orbitals for chemical valence findings revealed that the forward bonding is the lone pair (G15) → p–π*(C) interaction, which is a significantly strong FLP-to-benzaldehyde interaction. However, the back-bonding is the p–π*(G14) ← lone-pair orbital(O) interaction, which is a weak benzaldehyde-to-FLP interaction. The analyses based on the activation strain model showed that the larger the atomic radius of either the G14(LA) or the G15(LB) atom, the greater the G14⋯G15 separation distance in the norbornene-based G14/G15-FLP molecule, the smaller the orbital overlaps between G14/G15-FLP and Ph(H)CO, and the higher the activation barrier during its cycloaddition reaction with benzaldehyde.
Author Su, Ming-Der
Zhang, Zheng-Feng
AuthorAffiliation National Chiayi University
Kaohsiung Medical University
Department of Applied Chemistry
Department of Medicinal and Applied Chemistry
AuthorAffiliation_xml – sequence: 0
  name: National Chiayi University
– sequence: 0
  name: Kaohsiung Medical University
– sequence: 0
  name: Department of Medicinal and Applied Chemistry
– sequence: 0
  name: Department of Applied Chemistry
Author_xml – sequence: 1
  givenname: Zheng-Feng
  surname: Zhang
  fullname: Zhang, Zheng-Feng
– sequence: 2
  givenname: Ming-Der
  surname: Su
  fullname: Su, Ming-Der
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36847783$$D View this record in MEDLINE/PubMed
BookMark eNptkstuFDEQRS2UiDxgwx5kiR2oGT_7sUQTApFGIhKwQqjlbpczDj12x3YTDf-X_8LJdAYJsapy3XNrUdcn6MB5Bwi9oOQdJbxZaNaPRFIu9RN0TEXJi4bU4mDfV-UROonxmhBCM_YUHfGyFlVV82N0t_SbcUoqWe_UgK2L9mqdYm6Sx2kNOIDqk_1l0xYbHx5G39lb-QP3237wSmt7b50x7yL2BjsfOh8cOCgG636CxlfBTyOmAsMAG3BpcVl0KmZBOY2_2MWsy0d9Vk2YYgoq5XYFtzbiUdkQ8a1Na9yB-60GDeuthmfo0KghwvO5nqJv5x--Lj8Vq88fL5bvV0XPiUhFRcrOEFNLwowshQDZ1B1rCJccKkOzyJk2ostvypVQijdAwDCAxjSUcX6KXu_2jsHfTBBTe-2nkA8XW1bVgkmWS6ZezdTUbUC3Y7AbFbbt49Uz8GYH9MHHGMDsEUra-0jbM7a8fIj0LMPkH7i3u7zyZezwf8vLnSXEfr_67y_hfwCBSa-i
CitedBy_id crossref_primary_10_1021_acs_organomet_4c00278
crossref_primary_10_1039_D4RA03568B
Cites_doi 10.1021/cr940246k
10.1021/acs.organomet.0c00489
10.1021/ja01607a027
10.1021/acs.organomet.1c00599
10.1021/acs.chemrev.0c00062
10.1002/jcc.25584
10.1002/jcc.21759
10.1103/PhysRevB.37.785
10.1039/C5CS00522A
10.1002/anie.201701486
10.1021/acs.chemrev.0c00160
10.1002/anie.201409800
10.1021/ct800503d
10.1039/c0cc03621h
10.1039/C7CS00324B
10.1002/chem.201805215
10.1021/cr040636z
10.1021/ar500375j
10.1002/chem.201100260
10.1016/j.ccr.2011.06.028
10.1007/BF02401406
10.1039/C9NJ01294J
10.1126/science.aaf7229
10.1021/acs.chemrev.6b00466
10.1002/chem.201605997
10.1016/0009-2614(89)87234-3
10.1021/ar3000844
10.1021/ar50038a003
10.1002/jcc.10255
10.1021/jacs.5b06794
10.1063/1.2190220
10.1063/1.466059
10.1002/wcms.30
10.1002/wcms.1221
10.1007/s00894-008-0276-1
10.1039/C6CS00713A
10.1039/C4CS00055B
10.1021/cr0103726
10.1021/acs.chemrev.0c00832
10.1002/ange.19640761405
10.1039/c0cc03620j
10.1021/ic50196a034
10.1039/b801115j
10.1016/j.trechm.2019.01.006
10.1007/s00894-006-0149-4
10.1039/b926828f
10.1021/ic50197a006
10.1021/ja993835m
10.1039/B711474E
10.1039/b515623h
10.1126/science.1134230
10.1002/tcr.201700010
10.1021/ja0734086
10.1021/jp075460u
10.1002/anie.201700420
10.1021/om700754n
10.1063/1.2065267
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/d2cp05135d
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 7435
ExternalDocumentID 36847783
10_1039_D2CP05135D
d2cp05135d
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29O
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
YNT
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c304t-706bf0f8502f5644e598b290353e7f16bf32df4b35313a4aa39e0ef2ee9f91233
ISSN 1463-9076
IngestDate Mon Jun 30 03:46:40 EDT 2025
Wed Feb 19 02:25:27 EST 2025
Tue Jul 01 00:54:26 EDT 2025
Thu Apr 24 23:03:43 EDT 2025
Tue Dec 17 20:58:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c304t-706bf0f8502f5644e598b290353e7f16bf32df4b35313a4aa39e0ef2ee9f91233
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d2cp05135d
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5847-4271
PMID 36847783
PQID 2784252278
PQPubID 2047499
PageCount 13
ParticipantIDs rsc_primary_d2cp05135d
pubmed_primary_36847783
crossref_primary_10_1039_D2CP05135D
crossref_citationtrail_10_1039_D2CP05135D
proquest_journals_2784252278
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-08
PublicationDateYYYYMMDD 2023-03-08
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-08
  day: 08
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Roglans (D2CP05135D/cit2/1) 2021; 121
Brady (D2CP05135D/cit15/1) 2000; 122
Milnes (D2CP05135D/cit7/1) 2016; 45
Mitoraj (D2CP05135D/cit53/1) 2009; 5
Jupp (D2CP05135D/cit26/1) 2019; 1
Stephan (D2CP05135D/cit21/1) 2015; 54
Lee (D2CP05135D/cit31/1) 1988; 37
Stephan (D2CP05135D/cit20/1) 2015; 54
Yang (D2CP05135D/cit40/1) 2022; 41
Grimme (D2CP05135D/cit38/1) 2011; 1
Stephan (D2CP05135D/cit23/1) 2015; 48
Scharf (D2CP05135D/cit61/1) 2017; 23
Ehrlich (D2CP05135D/cit39/1) 2013; 46
Wang (D2CP05135D/cit1/1) 2021; 121
Wender (D2CP05135D/cit17/1) 2005
Kuwajima (D2CP05135D/cit13/1) 2005; 105
Liang (D2CP05135D/cit6/1) 2011; 255
D2CP05135D/cit56/1
Schrock (D2CP05135D/cit30/1) 2002; 102
Klier (D2CP05135D/cit8/1) 2017; 46
Grimme (D2CP05135D/cit35/1) 2011; 32
Mitoraj (D2CP05135D/cit51/1) 2007; 13
Fukui (D2CP05135D/cit59/1) 1971; 2
Cordero (D2CP05135D/cit62/1) 2008
Kehr (D2CP05135D/cit25/1) 2017; 17
Ziegler (D2CP05135D/cit48/1) 1977; 46
Michalak (D2CP05135D/cit49/1) 2008; 112
Alder (D2CP05135D/cit14/1) 1996; 96
Lohse (D2CP05135D/cit12/1) 2011; 17
Van Lenthe (D2CP05135D/cit57/1) 1993; 99
Frühauf (D2CP05135D/cit5/1) 2011; 255
Bickelhaupt (D2CP05135D/cit44/1) 2017; 56
Fernandez (D2CP05135D/cit45/1) 2014; 43
Jerabek (D2CP05135D/cit60/1) 2019; 40
Svatunek (D2CP05135D/cit46/1) 2019; 25
Becke (D2CP05135D/cit36/1) 2005; 122
Weigend (D2CP05135D/cit33/1) 2006; 8
Mitoraj (D2CP05135D/cit50/1) 2007; 26
Mitoraj (D2CP05135D/cit52/1) 2008; 14
Bilodeau (D2CP05135D/cit3/1) 2021; 121
Ziegler (D2CP05135D/cit47/1) 1979; 18
Yang (D2CP05135D/cit28/1) 2019; 43
Bentley (D2CP05135D/cit16/1) 2008; 25
Ziegler (D2CP05135D/cit55/1) 1979; 18
Wolters (D2CP05135D/cit41/1) 2015; 5
Harmata (D2CP05135D/cit11/1) 2010; 46
van Zeist (D2CP05135D/cit42/1) 2010; 8
Ess (D2CP05135D/cit43/1) 2007; 129
Ziegler (D2CP05135D/cit54/1) 1979; 18
Harmata (D2CP05135D/cit10/1) 2010; 46
Dajnak (D2CP05135D/cit18/1) 2020; 39
Cheng (D2CP05135D/cit9/1) 2017; 46
Johansson (D2CP05135D/cit4/1) 2016; 116
Stephan (D2CP05135D/cit24/1) 2016; 354
Miehlich (D2CP05135D/cit32/1) 1989; 157
Welch (D2CP05135D/cit19/1) 2006; 314
Stephan (D2CP05135D/cit22/1) 2015; 137
Fischer (D2CP05135D/cit29/1) 1964; 76
Johnson (D2CP05135D/cit37/1) 2006; 124
Kundu (D2CP05135D/cit27/1) 2017; 56
Hammond (D2CP05135D/cit63/1) 1955; 77
Van Lenthe (D2CP05135D/cit58/1) 2003; 24
References_xml – issn: 2005
  publication-title: Modern Rhodium-Catalyzed Organic Reactions
  doi: Wender Gamber Williams
– issn: 2016
  publication-title: Gaussian 16, revision C.01
  doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery, Jr. Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox
– volume: 96
  start-page: 2097
  year: 1996
  ident: D2CP05135D/cit14/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr940246k
– volume: 39
  start-page: 3403
  year: 2020
  ident: D2CP05135D/cit18/1
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.0c00489
– volume: 77
  start-page: 334
  year: 1955
  ident: D2CP05135D/cit63/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01607a027
– volume: 41
  start-page: 374
  year: 2022
  ident: D2CP05135D/cit40/1
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.1c00599
– volume: 121
  start-page: 1894
  year: 2021
  ident: D2CP05135D/cit2/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00062
– volume: 40
  start-page: 247
  year: 2019
  ident: D2CP05135D/cit60/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.25584
– volume: 32
  start-page: 1456
  year: 2011
  ident: D2CP05135D/cit35/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 37
  start-page: 785
  year: 1988
  ident: D2CP05135D/cit31/1
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.37.785
– volume: 45
  start-page: 1019
  year: 2016
  ident: D2CP05135D/cit7/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00522A
– volume: 56
  start-page: 10070
  year: 2017
  ident: D2CP05135D/cit44/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201701486
– volume: 121
  start-page: 110
  year: 2021
  ident: D2CP05135D/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00160
– volume: 54
  start-page: 2
  year: 2015
  ident: D2CP05135D/cit20/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409800
– volume: 5
  start-page: 962
  year: 2009
  ident: D2CP05135D/cit53/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct800503d
– volume: 46
  start-page: 8904
  year: 2010
  ident: D2CP05135D/cit11/1
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc03621h
– volume: 46
  start-page: 5425
  year: 2017
  ident: D2CP05135D/cit9/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00324B
– volume: 25
  start-page: 754
  year: 2019
  ident: D2CP05135D/cit46/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201805215
– volume: 105
  start-page: 4661
  year: 2005
  ident: D2CP05135D/cit13/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr040636z
– volume: 48
  start-page: 306
  year: 2015
  ident: D2CP05135D/cit23/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500375j
– volume: 17
  start-page: 3812
  year: 2011
  ident: D2CP05135D/cit12/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201100260
– volume: 255
  start-page: 2933
  year: 2011
  ident: D2CP05135D/cit6/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2011.06.028
– volume: 46
  start-page: 1
  year: 1977
  ident: D2CP05135D/cit48/1
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF02401406
– volume: 43
  start-page: 9364
  year: 2019
  ident: D2CP05135D/cit28/1
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ01294J
– volume: 354
  start-page: aaf7229-1
  year: 2016
  ident: D2CP05135D/cit24/1
  publication-title: Science
  doi: 10.1126/science.aaf7229
– volume: 116
  start-page: 14726
  year: 2016
  ident: D2CP05135D/cit4/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00466
– volume: 23
  start-page: 4422
  year: 2017
  ident: D2CP05135D/cit61/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201605997
– volume: 157
  start-page: 200
  year: 1989
  ident: D2CP05135D/cit32/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(89)87234-3
– volume: 46
  start-page: 916
  year: 2013
  ident: D2CP05135D/cit39/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar3000844
– volume: 2
  start-page: 57
  year: 1971
  ident: D2CP05135D/cit59/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar50038a003
– volume: 24
  start-page: 1142
  year: 2003
  ident: D2CP05135D/cit58/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10255
– volume: 137
  start-page: 10018
  year: 2015
  ident: D2CP05135D/cit22/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06794
– volume: 124
  start-page: 174104
  year: 2006
  ident: D2CP05135D/cit37/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2190220
– volume: 99
  start-page: 4597
  year: 1993
  ident: D2CP05135D/cit57/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466059
– volume: 1
  start-page: 211
  year: 2011
  ident: D2CP05135D/cit38/1
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.30
– volume: 5
  start-page: 324
  year: 2015
  ident: D2CP05135D/cit41/1
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1221
– volume: 14
  start-page: 681
  year: 2008
  ident: D2CP05135D/cit52/1
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-008-0276-1
– volume: 46
  start-page: 1080
  year: 2017
  ident: D2CP05135D/cit8/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00713A
– volume: 43
  start-page: 4953
  year: 2014
  ident: D2CP05135D/cit45/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00055B
– volume: 255
  start-page: 2933
  year: 2011
  ident: D2CP05135D/cit5/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2011.06.028
– volume: 102
  start-page: 145
  year: 2002
  ident: D2CP05135D/cit30/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr0103726
– volume: 121
  start-page: 6699
  year: 2021
  ident: D2CP05135D/cit3/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00832
– volume: 76
  start-page: 645
  year: 1964
  ident: D2CP05135D/cit29/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.19640761405
– volume: 46
  start-page: 8886
  year: 2010
  ident: D2CP05135D/cit10/1
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc03620j
– volume: 18
  start-page: 1558
  year: 1979
  ident: D2CP05135D/cit54/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50196a034
– start-page: 2832
  year: 2008
  ident: D2CP05135D/cit62/1
  publication-title: Dalton Trans.
  doi: 10.1039/b801115j
– volume: 1
  start-page: 35
  year: 2019
  ident: D2CP05135D/cit26/1
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.01.006
– volume: 13
  start-page: 347
  year: 2007
  ident: D2CP05135D/cit51/1
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-006-0149-4
– volume: 8
  start-page: 3118
  year: 2010
  ident: D2CP05135D/cit42/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b926828f
– volume: 18
  start-page: 1755
  year: 1979
  ident: D2CP05135D/cit47/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50197a006
– volume: 122
  start-page: 2116
  year: 2000
  ident: D2CP05135D/cit15/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja993835m
– volume: 25
  start-page: 118
  year: 2008
  ident: D2CP05135D/cit16/1
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/B711474E
– volume: 8
  start-page: 1057
  year: 2006
  ident: D2CP05135D/cit33/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b515623h
– volume: 314
  start-page: 1124
  year: 2006
  ident: D2CP05135D/cit19/1
  publication-title: Science
  doi: 10.1126/science.1134230
– volume: 54
  start-page: 6400
  year: 2015
  ident: D2CP05135D/cit21/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409800
– volume: 17
  start-page: 1
  year: 2017
  ident: D2CP05135D/cit25/1
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201700010
– volume: 129
  start-page: 10646
  year: 2007
  ident: D2CP05135D/cit43/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0734086
– volume: 112
  start-page: 1933
  year: 2008
  ident: D2CP05135D/cit49/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp075460u
– ident: D2CP05135D/cit56/1
– volume: 56
  start-page: 4219
  year: 2017
  ident: D2CP05135D/cit27/1
  publication-title: Angew Chem., Int. Ed.
  doi: 10.1002/anie.201700420
– volume: 26
  start-page: 6576
  year: 2007
  ident: D2CP05135D/cit50/1
  publication-title: Organometallics
  doi: 10.1021/om700754n
– volume: 18
  start-page: 1755
  year: 1979
  ident: D2CP05135D/cit55/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50197a006
– volume: 122
  start-page: 154101
  year: 2005
  ident: D2CP05135D/cit36/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2065267
– volume-title: Modern Rhodium-Catalyzed Organic Reactions
  year: 2005
  ident: D2CP05135D/cit17/1
SSID ssj0001513
Score 2.4254608
Snippet The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7423
SubjectTerms Atomic radius
Benzaldehyde
Bonding strength
Cycloaddition
Density functional theory
Lewis acid
Lewis base
Potential energy
Silicon compounds
Title Computational insights into the reactivity for the [2+5] cycloaddition reactions of norbornene-linked group 14 element/P-based and Si/group 15 element-based frustrated Lewis pairs with benzaldehyde
URI https://www.ncbi.nlm.nih.gov/pubmed/36847783
https://www.proquest.com/docview/2784252278
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dbtMwFMetsl3ADeJrrDCQJegFqkxTO06Ty63tNFA1KtFKFQhFieOwSlVatZ3Q9n68Bs_C8VeSahUCbqLUcd2059fjv0-ObYTeSugGhPQk6YVdQXwYQZDEzwJCE6bUQkJZqlf7vAwupv7HGZ81Gr9qWUvX2_S9uN07r-R_rAplYFc1S_YfLFs2CgVwDvaFI1gYjn9lY7MlgwvnzYuNGmmrBCsrKEEQCrs7hMsmbPEz2qJnvMUHbXEjFkuVUKQZMJVtWlyxXAMcBThCoh7xgirV0z_aXb8tTcI53PWYqD4wM9mf6mvYOtzVsdfztQ6oKG07kj_mm_ZKPUQyIeBUFrfJIpNXN9lOUtLY8SPcjnTmTBWZaMxGRzPG_X45Q-3LlSy-E7CQdl86FF7yBD00Gcg1OMp6nIMynegVlmSaaIpLZdWpKvbja97bDxiB0b5dW7teZvahcy7fzLV2aHs1B64eXNfEAOgrvrej8ZhapzWjYgVejfGs6k5dCsHlp_h8OhrFk-Fscg8dUhjGgB8-PB1OPoxKrQB6i5n5b-bG3QK6LOpUbe9KpjvjIFBFa7dbjVZFk0fooR3O4FPD5mPUkMUTdL_80Z6inzuMYscoVoxiABJXjGJgVBd9pW3-De_QiUs68TLHd-jEmjzc9bElr2PZxMAm_jzv2Osc75CJKzKxJhNrMrEiE9fJfIam58NJ_4LYrUOIYJ6_JT0vSHMvD7lHcw6SX_IoTGnkMc5kL-_CRUaz3E_hdZclfgKeCRxWTqWM8gjEHDtCB8WykMcIhzxN0iCEFhIfzCTDVCZeBG-VUuQJzZronbNOLOy6-mp7l0Ws8ztYFA9of6wtOWiiN2XdlVlNZm-tE2fk2HqbTawSBChXE9eb6LkxfNkEC0Bj9kLWREdAQllcEfTizy2-RA-qf9wJOtiur-Ur0Nrb9LUF9jeMeN0A
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+insights+into+the+reactivity+for+the+%5B2%2B5%5D+cycloaddition+reactions+of+norbornene-linked+group+14+element%2FP-based+and+Si%2Fgroup+15+element-based+frustrated+Lewis+pairs+with+benzaldehyde&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zheng-Feng%2C+Zhang&rft.au=Ming-Der+Su&rft.date=2023-03-08&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=25&rft.issue=10&rft.spage=7423&rft.epage=7435&rft_id=info:doi/10.1039%2Fd2cp05135d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon