Computational insights into the reactivity for the [2+5] cycloaddition reactions of norbornene-linked group 14 element/P-based and Si/group 15 element-based frustrated Lewis pairs with benzaldehyde
The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based (G14 = group 14 element) and Si/G15-based (G15 = group 14 element) frustrated Lewis pair (FLP)-type molecules with benzaldehyde were theoretica...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 25; no. 1; pp. 7423 - 7435 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
08.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based (G14 = group 14 element) and Si/G15-based (G15 = group 14 element) frustrated Lewis pair (FLP)-type molecules with benzaldehyde were theoretically examined
via
density functional theory and several sophisticated methods. The theoretical findings indicated that among the above nine norbornene-linked G14/G15-based FLPs, only the
Si/N-Rea
,
Si/P-Rea
, and
Si/As-Rea
FLP-assisted compounds can readily undergo cycloaddition reactions with doubly bonded organic systems from kinetic and thermodynamic viewpoints. The energy decomposition analysis showed that the bonding interactions between the norbornene-based G14/G15-FLPs and benzaldehyde are better described in terms of the singlet-singlet model (donor-acceptor model) rather than the triplet-triplet model (electron-sharing model). In particular, natural orbitals for chemical valence findings revealed that the forward bonding is the lone pair (G15) → p-π*(C) interaction, which is a significantly strong FLP-to-benzaldehyde interaction. However, the back-bonding is the p-π*(G14) ← lone-pair orbital(O) interaction, which is a weak benzaldehyde-to-FLP interaction. The analyses based on the activation strain model showed that the larger the atomic radius of either the G14(LA) or the G15(LB) atom, the greater the G14 G15 separation distance in the norbornene-based G14/G15-FLP molecule, the smaller the orbital overlaps between G14/G15-FLP and Ph(H)C&z.dbd;O, and the higher the activation barrier during its cycloaddition reaction with benzaldehyde.
Only Si/P-based, Si/N-based, and Si/As-based FLPs can facilitate the [2+5] cycloaddition reaction with benzaldehyde both kinetically and thermodynamically. |
---|---|
AbstractList | The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based (G14 = group 14 element) and Si/G15-based (G15 = group 14 element) frustrated Lewis pair (FLP)-type molecules with benzaldehyde were theoretically examined via density functional theory and several sophisticated methods. The theoretical findings indicated that among the above nine norbornene-linked G14/G15-based FLPs, only the Si/N-Rea, Si/P-Rea, and Si/As-Rea FLP-assisted compounds can readily undergo cycloaddition reactions with doubly bonded organic systems from kinetic and thermodynamic viewpoints. The energy decomposition analysis showed that the bonding interactions between the norbornene-based G14/G15-FLPs and benzaldehyde are better described in terms of the singlet–singlet model (donor–acceptor model) rather than the triplet–triplet model (electron-sharing model). In particular, natural orbitals for chemical valence findings revealed that the forward bonding is the lone pair (G15) → p–π*(C) interaction, which is a significantly strong FLP-to-benzaldehyde interaction. However, the back-bonding is the p–π*(G14) ← lone-pair orbital(O) interaction, which is a weak benzaldehyde-to-FLP interaction. The analyses based on the activation strain model showed that the larger the atomic radius of either the G14(LA) or the G15(LB) atom, the greater the G14⋯G15 separation distance in the norbornene-based G14/G15-FLP molecule, the smaller the orbital overlaps between G14/G15-FLP and Ph(H)C=O, and the higher the activation barrier during its cycloaddition reaction with benzaldehyde. The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based (G14 = group 14 element) and Si/G15-based (G15 = group 14 element) frustrated Lewis pair (FLP)-type molecules with benzaldehyde were theoretically examined density functional theory and several sophisticated methods. The theoretical findings indicated that among the above nine norbornene-linked G14/G15-based FLPs, only the Si/N-Rea, Si/P-Rea, and Si/As-Rea FLP-assisted compounds can readily undergo cycloaddition reactions with doubly bonded organic systems from kinetic and thermodynamic viewpoints. The energy decomposition analysis showed that the bonding interactions between the norbornene-based G14/G15-FLPs and benzaldehyde are better described in terms of the singlet-singlet model (donor-acceptor model) rather than the triplet-triplet model (electron-sharing model). In particular, natural orbitals for chemical valence findings revealed that the forward bonding is the lone pair (G15) → p-π*(C) interaction, which is a significantly strong FLP-to-benzaldehyde interaction. However, the back-bonding is the p-π*(G14) ← lone-pair orbital(O) interaction, which is a weak benzaldehyde-to-FLP interaction. The analyses based on the activation strain model showed that the larger the atomic radius of either the G14(LA) or the G15(LB) atom, the greater the G14⋯G15 separation distance in the norbornene-based G14/G15-FLP molecule, the smaller the orbital overlaps between G14/G15-FLP and Ph(H)CO, and the higher the activation barrier during its cycloaddition reaction with benzaldehyde. The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based (G14 = group 14 element) and Si/G15-based (G15 = group 14 element) frustrated Lewis pair (FLP)-type molecules with benzaldehyde were theoretically examined via density functional theory and several sophisticated methods. The theoretical findings indicated that among the above nine norbornene-linked G14/G15-based FLPs, only the Si/N-Rea , Si/P-Rea , and Si/As-Rea FLP-assisted compounds can readily undergo cycloaddition reactions with doubly bonded organic systems from kinetic and thermodynamic viewpoints. The energy decomposition analysis showed that the bonding interactions between the norbornene-based G14/G15-FLPs and benzaldehyde are better described in terms of the singlet-singlet model (donor-acceptor model) rather than the triplet-triplet model (electron-sharing model). In particular, natural orbitals for chemical valence findings revealed that the forward bonding is the lone pair (G15) → p-π*(C) interaction, which is a significantly strong FLP-to-benzaldehyde interaction. However, the back-bonding is the p-π*(G14) ← lone-pair orbital(O) interaction, which is a weak benzaldehyde-to-FLP interaction. The analyses based on the activation strain model showed that the larger the atomic radius of either the G14(LA) or the G15(LB) atom, the greater the G14 G15 separation distance in the norbornene-based G14/G15-FLP molecule, the smaller the orbital overlaps between G14/G15-FLP and Ph(H)C&z.dbd;O, and the higher the activation barrier during its cycloaddition reaction with benzaldehyde. Only Si/P-based, Si/N-based, and Si/As-based FLPs can facilitate the [2+5] cycloaddition reaction with benzaldehyde both kinetically and thermodynamically. The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based (G14 = group 14 element) and Si/G15-based (G15 = group 14 element) frustrated Lewis pair (FLP)-type molecules with benzaldehyde were theoretically examined via density functional theory and several sophisticated methods. The theoretical findings indicated that among the above nine norbornene-linked G14/G15-based FLPs, only the Si/N-Rea, Si/P-Rea, and Si/As-Rea FLP-assisted compounds can readily undergo cycloaddition reactions with doubly bonded organic systems from kinetic and thermodynamic viewpoints. The energy decomposition analysis showed that the bonding interactions between the norbornene-based G14/G15-FLPs and benzaldehyde are better described in terms of the singlet–singlet model (donor–acceptor model) rather than the triplet–triplet model (electron-sharing model). In particular, natural orbitals for chemical valence findings revealed that the forward bonding is the lone pair (G15) → p–π*(C) interaction, which is a significantly strong FLP-to-benzaldehyde interaction. However, the back-bonding is the p–π*(G14) ← lone-pair orbital(O) interaction, which is a weak benzaldehyde-to-FLP interaction. The analyses based on the activation strain model showed that the larger the atomic radius of either the G14(LA) or the G15(LB) atom, the greater the G14⋯G15 separation distance in the norbornene-based G14/G15-FLP molecule, the smaller the orbital overlaps between G14/G15-FLP and Ph(H)CO, and the higher the activation barrier during its cycloaddition reaction with benzaldehyde. |
Author | Su, Ming-Der Zhang, Zheng-Feng |
AuthorAffiliation | National Chiayi University Kaohsiung Medical University Department of Applied Chemistry Department of Medicinal and Applied Chemistry |
AuthorAffiliation_xml | – sequence: 0 name: National Chiayi University – sequence: 0 name: Kaohsiung Medical University – sequence: 0 name: Department of Medicinal and Applied Chemistry – sequence: 0 name: Department of Applied Chemistry |
Author_xml | – sequence: 1 givenname: Zheng-Feng surname: Zhang fullname: Zhang, Zheng-Feng – sequence: 2 givenname: Ming-Der surname: Su fullname: Su, Ming-Der |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36847783$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstuFDEQRS2UiDxgwx5kiR2oGT_7sUQTApFGIhKwQqjlbpczDj12x3YTDf-X_8LJdAYJsapy3XNrUdcn6MB5Bwi9oOQdJbxZaNaPRFIu9RN0TEXJi4bU4mDfV-UROonxmhBCM_YUHfGyFlVV82N0t_SbcUoqWe_UgK2L9mqdYm6Sx2kNOIDqk_1l0xYbHx5G39lb-QP3237wSmt7b50x7yL2BjsfOh8cOCgG636CxlfBTyOmAsMAG3BpcVl0KmZBOY2_2MWsy0d9Vk2YYgoq5XYFtzbiUdkQ8a1Na9yB-60GDeuthmfo0KghwvO5nqJv5x--Lj8Vq88fL5bvV0XPiUhFRcrOEFNLwowshQDZ1B1rCJccKkOzyJk2ostvypVQijdAwDCAxjSUcX6KXu_2jsHfTBBTe-2nkA8XW1bVgkmWS6ZezdTUbUC3Y7AbFbbt49Uz8GYH9MHHGMDsEUra-0jbM7a8fIj0LMPkH7i3u7zyZezwf8vLnSXEfr_67y_hfwCBSa-i |
CitedBy_id | crossref_primary_10_1021_acs_organomet_4c00278 crossref_primary_10_1039_D4RA03568B |
Cites_doi | 10.1021/cr940246k 10.1021/acs.organomet.0c00489 10.1021/ja01607a027 10.1021/acs.organomet.1c00599 10.1021/acs.chemrev.0c00062 10.1002/jcc.25584 10.1002/jcc.21759 10.1103/PhysRevB.37.785 10.1039/C5CS00522A 10.1002/anie.201701486 10.1021/acs.chemrev.0c00160 10.1002/anie.201409800 10.1021/ct800503d 10.1039/c0cc03621h 10.1039/C7CS00324B 10.1002/chem.201805215 10.1021/cr040636z 10.1021/ar500375j 10.1002/chem.201100260 10.1016/j.ccr.2011.06.028 10.1007/BF02401406 10.1039/C9NJ01294J 10.1126/science.aaf7229 10.1021/acs.chemrev.6b00466 10.1002/chem.201605997 10.1016/0009-2614(89)87234-3 10.1021/ar3000844 10.1021/ar50038a003 10.1002/jcc.10255 10.1021/jacs.5b06794 10.1063/1.2190220 10.1063/1.466059 10.1002/wcms.30 10.1002/wcms.1221 10.1007/s00894-008-0276-1 10.1039/C6CS00713A 10.1039/C4CS00055B 10.1021/cr0103726 10.1021/acs.chemrev.0c00832 10.1002/ange.19640761405 10.1039/c0cc03620j 10.1021/ic50196a034 10.1039/b801115j 10.1016/j.trechm.2019.01.006 10.1007/s00894-006-0149-4 10.1039/b926828f 10.1021/ic50197a006 10.1021/ja993835m 10.1039/B711474E 10.1039/b515623h 10.1126/science.1134230 10.1002/tcr.201700010 10.1021/ja0734086 10.1021/jp075460u 10.1002/anie.201700420 10.1021/om700754n 10.1063/1.2065267 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/d2cp05135d |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 7435 |
ExternalDocumentID | 36847783 10_1039_D2CP05135D d2cp05135d |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29O 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- OK1 P2P R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 YNT AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c304t-706bf0f8502f5644e598b290353e7f16bf32df4b35313a4aa39e0ef2ee9f91233 |
ISSN | 1463-9076 |
IngestDate | Mon Jun 30 03:46:40 EDT 2025 Wed Feb 19 02:25:27 EST 2025 Tue Jul 01 00:54:26 EDT 2025 Thu Apr 24 23:03:43 EDT 2025 Tue Dec 17 20:58:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c304t-706bf0f8502f5644e598b290353e7f16bf32df4b35313a4aa39e0ef2ee9f91233 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d2cp05135d ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5847-4271 |
PMID | 36847783 |
PQID | 2784252278 |
PQPubID | 2047499 |
PageCount | 13 |
ParticipantIDs | rsc_primary_d2cp05135d pubmed_primary_36847783 crossref_primary_10_1039_D2CP05135D crossref_citationtrail_10_1039_D2CP05135D proquest_journals_2784252278 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-08 |
PublicationDateYYYYMMDD | 2023-03-08 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Roglans (D2CP05135D/cit2/1) 2021; 121 Brady (D2CP05135D/cit15/1) 2000; 122 Milnes (D2CP05135D/cit7/1) 2016; 45 Mitoraj (D2CP05135D/cit53/1) 2009; 5 Jupp (D2CP05135D/cit26/1) 2019; 1 Stephan (D2CP05135D/cit21/1) 2015; 54 Lee (D2CP05135D/cit31/1) 1988; 37 Stephan (D2CP05135D/cit20/1) 2015; 54 Yang (D2CP05135D/cit40/1) 2022; 41 Grimme (D2CP05135D/cit38/1) 2011; 1 Stephan (D2CP05135D/cit23/1) 2015; 48 Scharf (D2CP05135D/cit61/1) 2017; 23 Ehrlich (D2CP05135D/cit39/1) 2013; 46 Wang (D2CP05135D/cit1/1) 2021; 121 Wender (D2CP05135D/cit17/1) 2005 Kuwajima (D2CP05135D/cit13/1) 2005; 105 Liang (D2CP05135D/cit6/1) 2011; 255 D2CP05135D/cit56/1 Schrock (D2CP05135D/cit30/1) 2002; 102 Klier (D2CP05135D/cit8/1) 2017; 46 Grimme (D2CP05135D/cit35/1) 2011; 32 Mitoraj (D2CP05135D/cit51/1) 2007; 13 Fukui (D2CP05135D/cit59/1) 1971; 2 Cordero (D2CP05135D/cit62/1) 2008 Kehr (D2CP05135D/cit25/1) 2017; 17 Ziegler (D2CP05135D/cit48/1) 1977; 46 Michalak (D2CP05135D/cit49/1) 2008; 112 Alder (D2CP05135D/cit14/1) 1996; 96 Lohse (D2CP05135D/cit12/1) 2011; 17 Van Lenthe (D2CP05135D/cit57/1) 1993; 99 Frühauf (D2CP05135D/cit5/1) 2011; 255 Bickelhaupt (D2CP05135D/cit44/1) 2017; 56 Fernandez (D2CP05135D/cit45/1) 2014; 43 Jerabek (D2CP05135D/cit60/1) 2019; 40 Svatunek (D2CP05135D/cit46/1) 2019; 25 Becke (D2CP05135D/cit36/1) 2005; 122 Weigend (D2CP05135D/cit33/1) 2006; 8 Mitoraj (D2CP05135D/cit50/1) 2007; 26 Mitoraj (D2CP05135D/cit52/1) 2008; 14 Bilodeau (D2CP05135D/cit3/1) 2021; 121 Ziegler (D2CP05135D/cit47/1) 1979; 18 Yang (D2CP05135D/cit28/1) 2019; 43 Bentley (D2CP05135D/cit16/1) 2008; 25 Ziegler (D2CP05135D/cit55/1) 1979; 18 Wolters (D2CP05135D/cit41/1) 2015; 5 Harmata (D2CP05135D/cit11/1) 2010; 46 van Zeist (D2CP05135D/cit42/1) 2010; 8 Ess (D2CP05135D/cit43/1) 2007; 129 Ziegler (D2CP05135D/cit54/1) 1979; 18 Harmata (D2CP05135D/cit10/1) 2010; 46 Dajnak (D2CP05135D/cit18/1) 2020; 39 Cheng (D2CP05135D/cit9/1) 2017; 46 Johansson (D2CP05135D/cit4/1) 2016; 116 Stephan (D2CP05135D/cit24/1) 2016; 354 Miehlich (D2CP05135D/cit32/1) 1989; 157 Welch (D2CP05135D/cit19/1) 2006; 314 Stephan (D2CP05135D/cit22/1) 2015; 137 Fischer (D2CP05135D/cit29/1) 1964; 76 Johnson (D2CP05135D/cit37/1) 2006; 124 Kundu (D2CP05135D/cit27/1) 2017; 56 Hammond (D2CP05135D/cit63/1) 1955; 77 Van Lenthe (D2CP05135D/cit58/1) 2003; 24 |
References_xml | – issn: 2005 publication-title: Modern Rhodium-Catalyzed Organic Reactions doi: Wender Gamber Williams – issn: 2016 publication-title: Gaussian 16, revision C.01 doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery, Jr. Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox – volume: 96 start-page: 2097 year: 1996 ident: D2CP05135D/cit14/1 publication-title: Chem. Rev. doi: 10.1021/cr940246k – volume: 39 start-page: 3403 year: 2020 ident: D2CP05135D/cit18/1 publication-title: Organometallics doi: 10.1021/acs.organomet.0c00489 – volume: 77 start-page: 334 year: 1955 ident: D2CP05135D/cit63/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01607a027 – volume: 41 start-page: 374 year: 2022 ident: D2CP05135D/cit40/1 publication-title: Organometallics doi: 10.1021/acs.organomet.1c00599 – volume: 121 start-page: 1894 year: 2021 ident: D2CP05135D/cit2/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00062 – volume: 40 start-page: 247 year: 2019 ident: D2CP05135D/cit60/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.25584 – volume: 32 start-page: 1456 year: 2011 ident: D2CP05135D/cit35/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 37 start-page: 785 year: 1988 ident: D2CP05135D/cit31/1 publication-title: Phys. Rev. B: Solid State doi: 10.1103/PhysRevB.37.785 – volume: 45 start-page: 1019 year: 2016 ident: D2CP05135D/cit7/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00522A – volume: 56 start-page: 10070 year: 2017 ident: D2CP05135D/cit44/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201701486 – volume: 121 start-page: 110 year: 2021 ident: D2CP05135D/cit1/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00160 – volume: 54 start-page: 2 year: 2015 ident: D2CP05135D/cit20/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409800 – volume: 5 start-page: 962 year: 2009 ident: D2CP05135D/cit53/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct800503d – volume: 46 start-page: 8904 year: 2010 ident: D2CP05135D/cit11/1 publication-title: Chem. Commun. doi: 10.1039/c0cc03621h – volume: 46 start-page: 5425 year: 2017 ident: D2CP05135D/cit9/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00324B – volume: 25 start-page: 754 year: 2019 ident: D2CP05135D/cit46/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201805215 – volume: 105 start-page: 4661 year: 2005 ident: D2CP05135D/cit13/1 publication-title: Chem. Rev. doi: 10.1021/cr040636z – volume: 48 start-page: 306 year: 2015 ident: D2CP05135D/cit23/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar500375j – volume: 17 start-page: 3812 year: 2011 ident: D2CP05135D/cit12/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201100260 – volume: 255 start-page: 2933 year: 2011 ident: D2CP05135D/cit6/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2011.06.028 – volume: 46 start-page: 1 year: 1977 ident: D2CP05135D/cit48/1 publication-title: Theor. Chim. Acta doi: 10.1007/BF02401406 – volume: 43 start-page: 9364 year: 2019 ident: D2CP05135D/cit28/1 publication-title: New J. Chem. doi: 10.1039/C9NJ01294J – volume: 354 start-page: aaf7229-1 year: 2016 ident: D2CP05135D/cit24/1 publication-title: Science doi: 10.1126/science.aaf7229 – volume: 116 start-page: 14726 year: 2016 ident: D2CP05135D/cit4/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00466 – volume: 23 start-page: 4422 year: 2017 ident: D2CP05135D/cit61/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201605997 – volume: 157 start-page: 200 year: 1989 ident: D2CP05135D/cit32/1 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(89)87234-3 – volume: 46 start-page: 916 year: 2013 ident: D2CP05135D/cit39/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar3000844 – volume: 2 start-page: 57 year: 1971 ident: D2CP05135D/cit59/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar50038a003 – volume: 24 start-page: 1142 year: 2003 ident: D2CP05135D/cit58/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.10255 – volume: 137 start-page: 10018 year: 2015 ident: D2CP05135D/cit22/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06794 – volume: 124 start-page: 174104 year: 2006 ident: D2CP05135D/cit37/1 publication-title: J. Chem. Phys. doi: 10.1063/1.2190220 – volume: 99 start-page: 4597 year: 1993 ident: D2CP05135D/cit57/1 publication-title: J. Chem. Phys. doi: 10.1063/1.466059 – volume: 1 start-page: 211 year: 2011 ident: D2CP05135D/cit38/1 publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.30 – volume: 5 start-page: 324 year: 2015 ident: D2CP05135D/cit41/1 publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1221 – volume: 14 start-page: 681 year: 2008 ident: D2CP05135D/cit52/1 publication-title: J. Mol. Model. doi: 10.1007/s00894-008-0276-1 – volume: 46 start-page: 1080 year: 2017 ident: D2CP05135D/cit8/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00713A – volume: 43 start-page: 4953 year: 2014 ident: D2CP05135D/cit45/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00055B – volume: 255 start-page: 2933 year: 2011 ident: D2CP05135D/cit5/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2011.06.028 – volume: 102 start-page: 145 year: 2002 ident: D2CP05135D/cit30/1 publication-title: Chem. Rev. doi: 10.1021/cr0103726 – volume: 121 start-page: 6699 year: 2021 ident: D2CP05135D/cit3/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00832 – volume: 76 start-page: 645 year: 1964 ident: D2CP05135D/cit29/1 publication-title: Angew. Chem. doi: 10.1002/ange.19640761405 – volume: 46 start-page: 8886 year: 2010 ident: D2CP05135D/cit10/1 publication-title: Chem. Commun. doi: 10.1039/c0cc03620j – volume: 18 start-page: 1558 year: 1979 ident: D2CP05135D/cit54/1 publication-title: Inorg. Chem. doi: 10.1021/ic50196a034 – start-page: 2832 year: 2008 ident: D2CP05135D/cit62/1 publication-title: Dalton Trans. doi: 10.1039/b801115j – volume: 1 start-page: 35 year: 2019 ident: D2CP05135D/cit26/1 publication-title: Trends Chem. doi: 10.1016/j.trechm.2019.01.006 – volume: 13 start-page: 347 year: 2007 ident: D2CP05135D/cit51/1 publication-title: J. Mol. Model. doi: 10.1007/s00894-006-0149-4 – volume: 8 start-page: 3118 year: 2010 ident: D2CP05135D/cit42/1 publication-title: Org. Biomol. Chem. doi: 10.1039/b926828f – volume: 18 start-page: 1755 year: 1979 ident: D2CP05135D/cit47/1 publication-title: Inorg. Chem. doi: 10.1021/ic50197a006 – volume: 122 start-page: 2116 year: 2000 ident: D2CP05135D/cit15/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja993835m – volume: 25 start-page: 118 year: 2008 ident: D2CP05135D/cit16/1 publication-title: Nat. Prod. Rep. doi: 10.1039/B711474E – volume: 8 start-page: 1057 year: 2006 ident: D2CP05135D/cit33/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b515623h – volume: 314 start-page: 1124 year: 2006 ident: D2CP05135D/cit19/1 publication-title: Science doi: 10.1126/science.1134230 – volume: 54 start-page: 6400 year: 2015 ident: D2CP05135D/cit21/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409800 – volume: 17 start-page: 1 year: 2017 ident: D2CP05135D/cit25/1 publication-title: Chem. Rec. doi: 10.1002/tcr.201700010 – volume: 129 start-page: 10646 year: 2007 ident: D2CP05135D/cit43/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0734086 – volume: 112 start-page: 1933 year: 2008 ident: D2CP05135D/cit49/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp075460u – ident: D2CP05135D/cit56/1 – volume: 56 start-page: 4219 year: 2017 ident: D2CP05135D/cit27/1 publication-title: Angew Chem., Int. Ed. doi: 10.1002/anie.201700420 – volume: 26 start-page: 6576 year: 2007 ident: D2CP05135D/cit50/1 publication-title: Organometallics doi: 10.1021/om700754n – volume: 18 start-page: 1755 year: 1979 ident: D2CP05135D/cit55/1 publication-title: Inorg. Chem. doi: 10.1021/ic50197a006 – volume: 122 start-page: 154101 year: 2005 ident: D2CP05135D/cit36/1 publication-title: J. Chem. Phys. doi: 10.1063/1.2065267 – volume-title: Modern Rhodium-Catalyzed Organic Reactions year: 2005 ident: D2CP05135D/cit17/1 |
SSID | ssj0001513 |
Score | 2.4254608 |
Snippet | The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7423 |
SubjectTerms | Atomic radius Benzaldehyde Bonding strength Cycloaddition Density functional theory Lewis acid Lewis base Potential energy Silicon compounds |
Title | Computational insights into the reactivity for the [2+5] cycloaddition reactions of norbornene-linked group 14 element/P-based and Si/group 15 element-based frustrated Lewis pairs with benzaldehyde |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36847783 https://www.proquest.com/docview/2784252278 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dbtMwFMetsl3ADeJrrDCQJegFqkxTO06Ty63tNFA1KtFKFQhFieOwSlVatZ3Q9n68Bs_C8VeSahUCbqLUcd2059fjv0-ObYTeSugGhPQk6YVdQXwYQZDEzwJCE6bUQkJZqlf7vAwupv7HGZ81Gr9qWUvX2_S9uN07r-R_rAplYFc1S_YfLFs2CgVwDvaFI1gYjn9lY7MlgwvnzYuNGmmrBCsrKEEQCrs7hMsmbPEz2qJnvMUHbXEjFkuVUKQZMJVtWlyxXAMcBThCoh7xgirV0z_aXb8tTcI53PWYqD4wM9mf6mvYOtzVsdfztQ6oKG07kj_mm_ZKPUQyIeBUFrfJIpNXN9lOUtLY8SPcjnTmTBWZaMxGRzPG_X45Q-3LlSy-E7CQdl86FF7yBD00Gcg1OMp6nIMynegVlmSaaIpLZdWpKvbja97bDxiB0b5dW7teZvahcy7fzLV2aHs1B64eXNfEAOgrvrej8ZhapzWjYgVejfGs6k5dCsHlp_h8OhrFk-Fscg8dUhjGgB8-PB1OPoxKrQB6i5n5b-bG3QK6LOpUbe9KpjvjIFBFa7dbjVZFk0fooR3O4FPD5mPUkMUTdL_80Z6inzuMYscoVoxiABJXjGJgVBd9pW3-De_QiUs68TLHd-jEmjzc9bElr2PZxMAm_jzv2Osc75CJKzKxJhNrMrEiE9fJfIam58NJ_4LYrUOIYJ6_JT0vSHMvD7lHcw6SX_IoTGnkMc5kL-_CRUaz3E_hdZclfgKeCRxWTqWM8gjEHDtCB8WykMcIhzxN0iCEFhIfzCTDVCZeBG-VUuQJzZronbNOLOy6-mp7l0Ws8ztYFA9of6wtOWiiN2XdlVlNZm-tE2fk2HqbTawSBChXE9eb6LkxfNkEC0Bj9kLWREdAQllcEfTizy2-RA-qf9wJOtiur-Ur0Nrb9LUF9jeMeN0A |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+insights+into+the+reactivity+for+the+%5B2%2B5%5D+cycloaddition+reactions+of+norbornene-linked+group+14+element%2FP-based+and+Si%2Fgroup+15+element-based+frustrated+Lewis+pairs+with+benzaldehyde&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zheng-Feng%2C+Zhang&rft.au=Ming-Der+Su&rft.date=2023-03-08&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=25&rft.issue=10&rft.spage=7423&rft.epage=7435&rft_id=info:doi/10.1039%2Fd2cp05135d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |